
CHAPTER 1

Parsing Deterministic Context-Free Languages

We assume that the reader is familiar with the basic notions of context-free lan-
guages and grammars which can be found in classical books such as [4, 5]. In par-
ticular, we assume that the reader knows the notions of folding and unfolding of
context-free productions we have given in Definition ?? on page ??. For the reader’s
convenience, we only recall here the following definitions.

Definition 1.0.1. [Nullable Symbol] Given a context-free grammar G, we say
that a nonterminal symbol A is nullable iff A →∗

G ε.

Definition 1.0.2. [Production for a Nonterminal Symbol] A production of
the form A → β, with A ∈ VN and β ∈ (VT ∪ VN)∗, is said to be a production for (or
of) the nonterminal symbol A.

Unless otherwise specified, VT , VN , and S denote respectively, the set of terminal
symbols, the set of nonterminal symbols, and the start symbol of the grammars we
will consider.

1.1. LL(k) Parsers

The LL(k) parsers are algorithms for parsing the languages which are generated
by the LL(k) grammars (see Definition 1.1.1). Unless otherwise specified, in this
section we assume that VT , VN , and S denote, respectively, the set of the terminal
symbols, the set of nonterminal symbols, and the start symbol of the LL(k) grammars
we consider. In those grammars we assume that:

(i) no useless symbols occur in the productions,
(ii) ε-productions may be present for the start symbol or other symbols of VN ,
(iii) the symbol $ does not belong to VT ∪ VN , and
(iv) the input string to be parsed is terminated by $.

Let V denote the set VT ∪ VN .

We begin by giving the formal definition of an LL(k) grammar, for any k ≥ 0.
As indicated on page ??, given a string w and a natural number k ≥ 0, we stipulate
that:

w k = { w if |w| ≤ k
u if w = uv and |u|=k.

Definition 1.1.1. [LL(k) grammar] A context-free grammar (possibly with
ε-productions) is said to be LL(k) if for any x, y, z ∈ V ∗

T and for any α, β, γ ∈
(VN ∪ VT)∗, we have that:

5

6 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

if (1) S →∗

lm xAα →lm xβα →∗

lm xy and

(2) S →∗

lm xAα →lm xγα →∗

lm xz and

(3) y
k

= z k

then β =γ.

Note that (1) and (2) are two leftmost derivations of two (possibly different) words
xy and xz.

Definition 1.1.2. [LL(k) language] An LL(k) language is a language such that
there exists an LL(k) grammar which generates it.

In what follows we will also need the following definition of a strong LL(k) grammar.

Definition 1.1.3. [Strong LL(k) grammar] A context-free grammar (possibly
with ε-productions) is said to be strong LL(k) if for any x1, x2, y, z ∈ V ∗

T and for any
α1, α2, β, γ ∈ (VN ∪ VT)∗ we have that:

if (1) S →∗

lm x1Aα1 →lm x1βα1 →∗

lm x1y and

(2) S →∗

lm x2Aα2 →lm x2γα2 →∗

lm x2z and

(3) y
k

= z k

then β =γ.

Note that (1) and (2) are two leftmost derivations of two (possibly different) words
x1y and x2z.

One can show that any LL(0) grammar or strong LL(0) grammar generates a lan-
guage L ⊆ V ∗

T which is either the empty set of words or it consists of one word
only.

In view of this fact, unless otherwise specified, when referring to LL(k) grammars
or strong LL(k) grammars, we will assume that k is greater than or equal to 1.

An LL(k) parser, also called a k-predictive parsing algorithm, is a deterministic
pushdown automaton (see Figure 1.1.1) which once initialized, performs its moves
according to a table T , called a parsing table, as we will indicate.

If the string to parse is the empty string ε, the string given in input to the parsing
pushdown automaton is $. The initial configuration of the stack is the string: S $
and S is at the top of the stack. Recall that, unless otherwise specified, we assume
that the stack is represented with the top symbol on the left.

Definition 1.1.4. [Words Accepted by LL(k) Parsers] A word w is accepted
by an LL(k) parser, for k ≥ 1, if the parser, starting from the configuration where:
(i) the input tape holds the word w$, (ii) the head of the input tape points to the
leftmost symbol of w, and (iii) the stack holds S$, being S the top of the stack,
eventually reaches the configuration where: (i) the head of the input tape points
to $, and (ii) the top of the stack is $.

Contrary to what we will assume for LR(k) parsers (see Section 1.4), here for
LL(k) parsers we do not consider augmented grammars. Those grammars are defined
as follows.

1.2. LL(1) PARSERS 7

!

"

#

$ #

$S

w1 w2 wn $

: stack

The head moves
from left to right

top of the stack Parsing Table

ended by $

$a

S

A

. . .

b . . .−+

n
o
n
te

rm
in

a
ls

terminals

LL(k) parser using
the parsing table T : #

: the input string is the string to parse

Figure 1.1.1. A deterministic pushdown automaton for LL(k) pars-
ing, with k≥1. The input string is w1w2 . . . wn. Initially, the stack has
two symbols only: (i) S on top of the stack, and (ii) $ at the bottom of
the stack. The string to parse is ended by the symbol $. The table T
we have depicted is for an LL(1) parser. For the LL(k) parsers, with
k>1, different tables should be used.

Definition 1.1.5. [Augmented Context-free Grammars] Given a context-
free grammar G = 〈VT , VN , P, S〉 with start symbol S, its augmented grammar, call
it G′ = 〈VT ∪ {$}, VN ∪ {S ′}, P ′, S ′〉, is the grammar obtained by considering: (i) the
new start symbol S ′, (ii) a new terminal symbol $, and (iii) the extra production
S ′ → S $, that is, P ′ = P ∪ {S ′ → S $}. In some cases we will assume that the extra
production is S ′ → S, instead of S ′ → S $, and we will tell the reader when we make
that assumption.

Given a context-free grammar G we have that the language L(G′) generated by the
augmented grammar G′ is L(G) $, that is, a word w is generated by the grammar G iff
the word w $ is generated by the augmented grammar G′. If the extra production is
S ′ → S, instead of S ′ → S $, we have that L(G′) = L(G), instead of L(G′) = L(G) $.

Note also that when presenting LL(k) parsers, other textbooks use different con-
ventions. For instance, some authors do not use the symbol $ at the bottom of the
stack and do not place $ at the right end of the input string.

1.2. LL(1) Parsers

In this section we will study the LL(1) parsers and the LL(1) grammars. In these
parsers the parsing automaton we have depicted in Figure 1.1.1, makes its moves
according to a table T which is a matrix whose rows are labelled by the nonterminals
(that is, the elements of VN), and whose columns are labelled by the terminals (that
is, the elements of VT). In the table T there is also one extra column which is labelled
by the symbol $.

A move of the parsing automaton is either a chop move or an expand move. These
moves are specified as follows (see also Figure 1.2.1).

8 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

!

"

!

"

!

"

!

"

before :

stack

input string

after :

$a

$

a

expand A with production A → B1B2 . . . Bk

. $

before :

chop a

stack

input string

after :

$

. . . b . . . $a

a Z . . .

#

#

$

$

. . . a b . . . $

. . .Z

. . .

ZAB1 B2 Bk $Z

Figure 1.2.1. The chop and expand moves of an LL(1) parser. a and
b are symbols in VT and Z is a symbol in VT ∪ VN ∪ {$}.

chop move:

if the input head is pointing at a terminal symbol, say a, and the same symbol a
is at the top of the stack, then the input head is moved one cell to the right and
the stack is popped;

expand move:

if the input head is pointing at a terminal symbol, say a, and the top of the
stack is a nonterminal symbol, say A, then the stack is popped and a new string
α1α2 . . .αn, with αi ∈ V for i = 1, . . . , n, is pushed onto the stack if the production
A → α1α2 . . .αn is at the entry (A, a) of the parsing table T (thus, after this move
the new top symbol of the stack will be α1).

In order to explain how to construct the parsing table T of a parsing automaton for
the language generated by an LL(1) grammar, we need the following notions of First1

and Follow 1 (see, for instance, [1]).

We first introduce the notion of First1(x). For every x ∈ V , First1(x) is the set
of the terminal symbols in VT beginning any string β such that x →∗ β, with the
stipulation that First1(x) should have the extra element ε iff either x is ε or x is a
nullable nonterminal symbol (see Definition 1.0.1 on page 5). We can compute the
value of First1(x) as indicated by the following definition. Note that for every x ∈ V ,

1.2. LL(1) PARSERS 9

the definition of First1(x) depends, in general, on the definition of First1(y) for all
y ∈ V .

Definition 1.2.1. [The Set First1(x) for Symbols] Let us consider a context-
free grammar, possibly with ε-productions. First1 is a function from V ∪ {ε} to the
set of all subsets of VT ∪ {ε}. For every x ∈ V ∪ {ε}, First1(x) is the smallest set
defined as follows:

(i) First1(ε) = {ε}.

(ii) For a ∈ VT , First1(a) = {a}.

(iii) For A ∈ VN ,First1(A) is initialized to ∅ and modified as we now indicate.
For each production A→B1B2 . . . Bk−1Bk,
where: (1) k≥0, and (2) for i=1, . . . , k, Bi ∈ VT ∪ VN ,

add the elements of First1(B1) − {ε} and
if B1 →∗ ε then add the elements of First1(B2) − {ε} and
if B1B2 →∗ ε then add the elements of First1(B3) − {ε} and
· · ·

if B1B2 . . . Bk−1 →∗ ε then add the elements of First1(Bk) − {ε} and
if B1B2 . . . Bk−1Bk →∗ ε then add ε.

Note that if B1B2 . . . Bk →∗ ε then A →∗ ε and ε ∈First1(A). In particular, if A → ε
then ε ∈First1(A).

By definition, we have that for every x ∈ V ∪{ε}, First1(x) is a subset of VT ∪{ε}.
In Definition 1.2.1 we have required that First1(x) should be the smallest set which
satisfies Conditions (i)–(iii). This is due to the fact that First1(x) may depend on
itself and this happens, for instance, when in the given grammar there is a production
of the form A → AB.

We can extend to strings the above definition of the function First1 by defining
a new function, also called First1, from V ∗ to the set of all subsets of VT ∪ {ε} as
follows.

Definition 1.2.2. [The Set First1(α) for Strings] Let us consider a context-
free grammar, possibly with ε-productions. First1 is a function from V ∗ to the set of
all subsets of VT ∪ {ε}, such that for all x ∈ V and α ∈ V ∗,

(i) First1(ε) = {ε}

(ii) First1(xα) = if x →∗ ε then (First1(x) − {ε})∪ First1(α)
else First1(x)

where First1(x) is defined as indicated in Definition 1.2.1.

Fact 1.2.3. For any string α ∈ V ∗, we have that ε ∈ First1(α) iff α →∗ ε.

Now we define the set Follow 1(A) for any nonterminal A. By definition, for any
nonterminal A ∈ VN , Follow 1(A) is the smallest subset of VT ∪ {$} which includes
every symbol occurring in a sentential form derived from S $ immediately to the right
of A, that is, for all α, β ∈ V ∗ and b ∈ VT ∪ {$},

if S $ →∗ αAbβ then b ∈Follow 1(A).

For every A ∈ VN , the definition of Follow 1(A) depends, in general, on the defi-
nition of Follow 1(B) for all B ∈ VN , and the definition of First1(x) for all x ∈ V .

10 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

Definition 1.2.4. [The Set Follow 1(A) for Nonterminals] Let us consider
a context-free grammar with axiom S, possibly with ε-productions. Follow 1 is a
function from VN to the set of all subsets of VT ∪ {$} such that for each nonterminal
A ∈ VN , Follow 1(A) is the smallest set which satisfies the following conditions:

(i) if the nonterminal A is the axiom S then $ ∈ Follow 1(A);

(ii) if there is a production B → αAβ with α, β ∈ V ∗ and β →∗ ε
then Follow 1(B) ⊆ Follow 1(A);

(iii) if there is a production B → αAβ with α ∈ V ∗ and β ∈ V ∗,
then (First1(β) − {ε}) ⊆ Follow 1(A).

We have that for any A ∈ VN , the empty string ε is not an element of Follow 1(A).
Note that Case (ii) holds if there is a production B → αA with α ∈ V ∗, because

in that case β is ε. In order to clarify Condition (ii) of Definition 1.2.4, let us consider
the grammar with axiom S and the following productions:

S → Bb B → A A → Aa | b

This grammar generates the language ba∗b. We have that Follow 1(B) = {b} and
Follow 1(A) = {a, b} as one can see from the derivation S → Bb → Ab → Aab → bab.

Note also that, as a particular instance of Case (iii), we have that if there is a
production B → αAxβ with α, β ∈ V ∗, x ∈ V , and x +→∗ ε then First1(x) ⊆
Follow 1(A). This is a consequence of Fact 1.2.3 on the preceding page.

Case (iii) may hold either when β →∗ ε or when β +→∗ ε.

Finally, note that in the LL(k) parsing we do not consider augmented grammars
(see Definition 1.1.5) and thus, in particular, we consider neither the new start symbol
S ′ nor the extra production S ′ → S $.

Condition (i) of Definition 1.2.4 is motivated by the fact that we have stipulated
that the string given in input to the parsing automaton, is the string to be parsed
followed by the symbol $. We have that Follow 1(S) = {$} if S does not occur on the
right hand side of any production.

In the case of an LL(1) parser the table T is constructed as follows.

Algorithm 1.2.5.
Construction of the table T for an LL(1) parser given an LL(1) grammar G.

For each production A → α of G with A ∈ VN and α ∈ (VT ∪ VN)∗,

Rule (i): if a ∈First1(α) then we place A → α in row A and column a of the table T ,
and

Rule (ii): if ε ∈First1(α) then for each b ∈Follow 1(A) we place A → α in row A
and column b of the table T . Note that, in particular, Rule (ii) is applied if α = ε,
because in that case ε ∈First1(α).

Once the parsing table has been constructed we can use the deterministic push-
down automaton of Figure 1.1.1 as an automaton for parsing the string w. Initially,
the stack of the automaton has the string S $ (with S as top symbol) and the input
string is w $.

1.2. LL(1) PARSERS 11

We have the following properties which we state without proof.
If while the parsing automaton is working, it should use an entry without pro-

duction then the input string does not belong to the language generated by the given
grammar.

If the parsing automaton is pointing to the symbol $ in the input string and the
top of the stack is $ (that is, it may make a chop move of $), then we accept the given
string w, that is, w belongs to the language generated by the given grammar G.

Note that given any context-free grammar G, we can construct a parsing table
T as indicated above and then we can use the pushdown automaton as indicated in
Figure 1.1.1 for parsing words. If an entry of the parsing table T turns out to be
multiply defined (that is, more than one production has to be placed in the same
entry) then the given grammar is not an LL(1) grammar.

We state without proof the following theorem.

Theorem 1.2.6. [LL(1) Grammars and LL(1) Languages] The LL(1) gram-
mars are those which generate languages that can be parsed by a deterministic push-
down automaton as the one of Figure 1.1.1, with the parsing table constructed as
indicated by Algorithm 1.2.5.

The following result which we also state without proof, characterizes the LL(1) gram-
mars and the strong LL(1) grammars.

Theorem 1.2.7. [LL(1) Grammars and Strong LL(1) Grammars] (i) A
context-free grammar G is LL(1) iff for every pair of distinct productions A → α
and A → β with α += β, and for every string w A σ such that S →∗

lm w A σ with
w ∈ V ∗

T and σ ∈ V ∗, we have that:

First1(α σ)∩First1(β σ) = ∅.

(ii) A context-free grammar G is strong LL(1) iff for every pair of distinct productions
A → α and A → β with α += β, we have that:

First1(αFollow 1(A))∩First1(β Follow 1(A)) = ∅.

As a consequence of this theorem we have the following fact.

Fact 1.2.8. The notions of an LL(1) grammar and a strong LL(1) grammar
coincide.

Example 1.2.9. [An LL(1) Grammar and Its LL(1) Parsing Table] Let us
consider the grammar G whose productions are:

S → aAb | b
A → a | bSA

The axiom is S. We have that:

First1(aAb) = {a}, First1(b) = {b}, First1(a) = {a}, First1(bSA) = {b}.

The parsing table is:

a b $

S S → aAb S → b

A A → a A → bSA

12 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

input
string:

a b b a b $
!

a b b a b $
!

a b b a b $
!

a b b a b $
!

(1)
expand S
−→ (2)

chop a
−→ (3)

expand A
−→ (4)

stack: S $
!

a A b $
!

A b $
!

b S A b $
!

a b b a b $
!

a b b a b $
!

a b b a b $
!

chop b
−→ (5)

expand S
−→ (6)

chop b
−→ (7)

S A b $
!

bA b $
!

A b $
!

a b b a b $
!

a b b a b $
!

a b b a b $
!

expand A
−→ (8)

chop a
−→ (9)

chop b
−→ (10)

a b $
!

b $
!

$
!

Figure 1.2.2. LL(1) parsing of the string a b b a b $. The given gram-
mar has the following productions: S → a A b | b, A → a | b S A. The
black triangle ! indicates the symbol at hand in the input string and
the top of the stack (which is always the leftmost symbol of the stack).

In Figure 1.2.2 we have depicted the sequence of the input string and stack configu-
rations while parsing the string a b b a b $. (That sequence from configuration (1) to
configuration (10) is divided into three subsequences to be read from left to right.)
The black triangle indicates the symbols at hand in the input string and the top of
the stack (as usual, in every stack configuration the top of the stack is the leftmost
symbol).
Now, in the last configuration of Figure 1.2.2 we have that both the top of the stack
and the input head are pointing to the symbol $. Thus, the given string a b b a b
belongs to the language generated by the grammar G. "

Example 1.2.10. [LL(1) Parsing of Arithmetic Expressions] Let us consider
the context free grammar G with axiom E and the following productions:

E → E + T | T
T → T × F | F
F → (E) | a

1.2. LL(1) PARSERS 13

a () + × $

E E → T Ẽ E → T Ẽ

Ẽ Ẽ → ε Ẽ → +T Ẽ Ẽ → ε

T T → F T̃ T → F T̃

T̃ T̃ → ε T̃ → ε T̃ → ×F T̃ T̃ → ε

F F → a F → (E)

Figure 1.2.3. LL(1) parsing table for the grammar with axiom E and
productions: E → TẼ, Ẽ → ε | +TẼ, T → F T̃ , T̃ → ε | ×F T̃ ,
F → (E) | a.

This grammar is left recursive and thus, it cannot be LL(k) for any k ≥ 0 (see [2,
page 344]). If we want to use an LL(k) parsing algorithm we have to look for an
equivalent grammar which is not left recursive. One such context free grammar is
the following grammar G̃ (with ε-productions):

E → T Ẽ Ẽ → ε | + T Ẽ

T → F T̃ T̃ → ε | × F T̃
F → (E) | a

The grammar G̃ is an LL(1) grammar as shown by the LL(1) parsing table shown in
Figure 1.2.3. In order to construct that parsing table, we have first to compute the
following sets:

First1(ε) = {ε}
First1(T Ẽ) = {(, a} First1(+T Ẽ) = {+}
First1(F T̃) = {(, a} First1(×F T̃) = {×}
First1((E)) = {(} First1(a) = {a}

Follow 1(E) = {), $} Follow 1(Ẽ) = {), $}
Follow 1(T) = {+,), $} Follow 1(T̃) = {+,), $}

Figure 1.2.4 on the following page shows the sequence of input string and stack
configurations while parsing the arithmetic expression a (thus, the input is the string
a $) according to the grammar G̃. "

With reference to Example 1.2.10 note that the following grammar H , which is not
left recursive and has no ε-productions, is not LL(1):

E → T | T Ẽ Ẽ → +T | + T Ẽ

T → F | F T̃ T̃ → ×F | × F T̃
F → (E) | a

This grammar H can be obtained from the given grammar G by eliminating the left
recursion (thus, the grammar H is equivalent to grammar G and G̃). To show that

14 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

input
string:

a $
!

a $
!

a $
!

a $
!

(1)
expand E
−→ (2)

expand T
−→ (3)

expand F
−→ (4)

stack: E $
!

TẼ $
!

F T̃ Ẽ $
!

aT̃ Ẽ $
!

a $
!

a $
!

a $
!

chop a
−→ (5)

expand eT
−→ (6)

expand eE
−→ (7)

T̃ Ẽ $
!

Ẽ $
!

$
!

Figure 1.2.4. LL(1) parsing of the string a $ according to the gram-
mar G̃ with axiom E and productions: E → TẼ, Ẽ → ε | +TẼ,
T → F T̃ , T̃ → ε | ×F T̃ , F → (E) | a. The black triangle !

indicates the symbol at hand in the input string and the top of the
stack (which is always the leftmost symbol of the stack).

the grammar H is indeed not LL(1), let us consider the following grammar which is
a simplified version of H . This grammar has axiom T and the productions:

T → F | F T̃ T̃ → ×F | × F T̃
F → (T) | a

We have that:

First1(F) = First1(F T̃) = {(, a} First1(×F) = First1(×F T̃) = {×}
First1((T)) = {(} First1(a) = {a}

We get the following parsing table (there is no need to compute the Follow 1 sets
because ε does not occur in any of the First1 sets):

a () × $

T
T → F

T → F T̃

T → F

T → F T̃

T̃
T → ×F

T → ×F T̃

F F → a F → (T)
"

Example 1.2.11. [A Grammar Which is Not LL(1)] Let us consider the gram-
mar G whose axiom is S and whose productions are:

1.3. LL(K) PARSERS (FOR K ≥ 1) 15

S → ε | a bA
A → S a a | b

We have that:
First1(ε) = {ε} First1(a bA) = {a}
First1(S a a) = {ε, a} First1(b) = {b}

Follow 1(S) = {$, a} Follow 1(A) = {$, a}

The parsing table is:

a b $

S
S → a bA

S → ε
S → ε

A A → S a a A → b A → S a a

Since in that parsing table for the symbol S on the top of the stack and the input
symbol a, there are two entries, we have that the given grammar is not LL(1). "

1.3. LL(k) Parsers (for k≥ 1)

In this section we consider the general case of LL(k) parsers and LL(k) grammars
with k ≥ 1.

We first need the following definition which is a generalization of Definition 1.2.1.

Definition 1.3.1. [The Set Firstk(α)] Let us consider a context-free grammar,
possibly with ε-productions. For k ≥ 1, Firstk is a function from V ∗ to the set of all
subsets of V 0

T ∪ V 1
T ∪ . . . ∪ V k

T . Given a string α ∈ V ∗, we have that:

Firstk(α) =def {w | (α →∗ w β and w ∈ V k
T and β ∈ V ∗

T) or
(α →∗ w and w ∈ V i

T for some 0≤ i<k)}.

Note that for any k ≥ 0, if α →∗ ε then ε ∈ Firstk(α).

We will also use the following binary operation on languages.

Definition 1.3.2. [k-bounded Concatenation] Given two languages L1 and
L2, their k-bounded concatenation .k, for k≥1, is defined as follows:

L1 .k L2 = {w | (|w| ≤ k and w ∈ L1 # L2) or (|w|=k and ∃z wz ∈ L1 # L2)}.

where the concatenation operation # on languages is defined as usual (see Chap-
ter ??).

For instance, given the languages L1 = {ε, abb} and L2 = {b, bab}, we have that:

L1
L2 = {b, bab, abbb, abbbab} and

L1 .2 L2 = {b, ba, ab}.

Note that in L1 .k L2 with k≥1, there may be words whose length is less than k.

Now we describe the LL(k) parsing process for k ≥ 1.
Supposed we are given a string v to be parsed and an LL(k) grammar G. Suppose

also that we have parsed the proper prefix p of the given string v, that is, v = p u for
some u ∈ V +

T and the input head is pointing to the leftmost symbol of u. We assume

16 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

that the sentential form we have generated so far is: p A z, for some z ∈ V ∗, that is,
all symbols in p have been chopped and the stack is holding A z $ with the top of the
stack pointing to A.

The production which has to be applied by the parser for expanding the nonter-
minal A is uniquely determined by:

(i) A itself,
(ii) the leftmost k symbols of z (or z itself if |z|<k), and
(iii) the leftmost k symbols of u (or u itself if |u|<k).

In order to determine the production for expanding A, the parser uses a parsing table
which is constructed as we now indicate from some other tables.

Let T be one of these other tables. Each of these tables is parameterized by (i) a
nonterminal, and (ii) a language subset of V ∗

T $0,1. A table T with parameters the
nonterminal B and the language L, will also be denoted by T [B, L].

A table T [B, L] can be depicted as a matrix whose rows have three components
(or columns):

(i) the first one is a word in V ∗

T $ 0,1,

(ii) the second one is a production for B, and

(iii) the third one is a list of sets of words which depends on the production for B
which is the second component and also on L. Each set in the list is called a local
follow sets for B.

The first and the second components (or columns) of T [B, L] are constructed by
considering every production for B. For each of this production, say B → α, we
will construct some rows of the table T [B, L] as follows. We first compute the set of
words:

Firstk(α) .k L

and then we construct a row of the table T [B, L] for each word in Firstk(α) .k L as
follows. Let us consider one of these words, say w. The corresponding row is of the
form:

w B → α M

where M is a list of set of words constructed as follows:
(i) if α ∈ V ∗

T then M = [], and

(ii) if α is of the form: x0 B1x1 . . . Bmxm, with m≥0, and for h=0, . . . , m, xh ∈ V ∗

T ,
and for i=1, . . . , m, Bi ∈ VN , then M = [Y1, . . . , Ym], where for i=1, . . . , m,

Yi =Firstk(xi Bi+1xi+1 . . . Bmxm) .k L.

The first table to be constructed should be T [S, {$}].

When constructing tables, we also maintain a set of tables to be constructed.
Thus, initially, that set of tables to be constructed has exactly one element which is
the table T [S, {$}].

At the end of the construction of a table, say T [B, L], we update that set of tables
as follows. For each row of the table T [B, L] of the form:

w B → x0 B1x1 . . . Bmxm [Y1, . . . , Ym]

1.3. LL(K) PARSERS (FOR K ≥ 1) 17

where: (i) w ∈ V ∗

T , (ii) m≥1, (iii) for h=0, . . . , m, xh ∈ V ∗

T , and (iv) for i=1, . . . , m,
Bi ∈ VN , we add to that set of tables the m tables T [Bi, Yi], for i=1, . . . , m.

The process of constructing tables terminates when we have constructed all the
tables which occur in the set of tables to be constructed.

At that point we can construct the parsing table for the LL(k) parsing for k ≥ 1.
In the parsing table the rows are indexed by the parameters of the tables we have
constructed (thus, the rows are as many as those tables), and the columns are indexed
by the words in V 0 $ ∪ V 1 $ ∪ . . . ∪ V k−1 $ ∪ V k (of course, V 0 $ is equal to {$}). The
entry of the parsing table in row [Bi, Yi] and in column w is the second component
of row with index w of table T [Bi, Yi].

Thus,
(i) the index [Bi, Yi] of each row of the parsing table is the symbol Bi of the top of
the stack together with the string Yi of the symbols below the top, and
(ii) the index w of each column of the parsing table is the string of symbols to the
right of the input head (which is pointing to the leftmost symbol of w).

Now we will give an example of the construction of the tables in the case of
the LL(2) parsing for a particular LL(2) grammar G. This example will clarify the
general rules we have given above for the case of the LL(k) parsing, for any k≥1.

Example 1.3.3. Let us consider the following LL(2) grammar G with produc-
tions:

S → aAaa | bAba
A → b | ε

Construction of the initial table T [S, {$}].
For S we have the two productions: S → aAaa and S → bAba. For each of them,
say S → α, we have compute the set of words:

First2(α) .2 {$}.

Thus, we have:

First2(aAaa) .2 {$} = {ab, aa}.2 {$} = {ab, aa}

First2(bAba) .2 {$} = {bb}.2 {$} = {bb}

From these values we get the three rows of the table T [S, {$}]. We have that:

the first row is aa, S → aAaa, L1,
the second row is aa, S → aAaa, L2,
the third row is bb, S → bAba, L3,

where the lists of set of words L1, L2, and L3 are defined as follows:

L1 = [First2(aa) .2 {$}] = [{aa}]

(Note that aa is the word in V ∗

T which follows A in the right hand side of the pro-
duction S → aAaa, and there is only one nonterminal symbol in aAaa).

L2 = [First2(aa) .2 {$}] = [{aa}]
L3 = [First2(ba) .2 {$}] = [{ba}]

(Note that ba is the word in V ∗

T which follows A in the right hand side of the production
S → bAba.)

Thus, we get the following table T [S, {$}]:

18 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

T [S, {$}]:

aa S → aAaa [{aa}]

ab S → aAaa [{aa}]

bb S → bAba [{ba}]

Having constructed this table, we insert in the set of tables to be constructed the
following two tables:

T [A, {aa}] and T [A, {ba}].

Note that either the first row or the second row of table T [S, {$}] forces us to insert
table T [A, {aa}] in the set of tables to be constructed.

Construction of the table T [A, {aa}].
For A we have the two productions: A → b and A → ε. Thus, we have that:

First2(b) .2 {aa} = {ba}
First2(ε) .2 {aa} = {aa}

From these values we get the following two rows:

the first row is: ba, A → b, M1,
the second row is: aa, A → ε, M2.

where the lists M1 and M2 of sets of words are both empty because in the right hand
sides of the productions A → b and A → ε there are no nonterminal symbols. Thus,
we get the following table T [A, {aa}]:

T [A, {aa}]:
ba A → b []

aa A → ε []

After the construction of this table we do not add any new table to the set of tables to
be constructed because in the right hand sides of the productions A → b and A → ε
there are no nonterminal symbols.

Construction of the table T [A, {ba}].
For A we have the two productions: A → b and A → ε. Thus, we have that:

First2(b) .2 {ba} = {bb}
First2(ε) .2 {ba} = {ba}

From these values we get the following two rows:

the first row is: bb, A → b, N1,
the second row is: ba, A → ε, N2.

where the lists N1 and N2 of sets of words are both empty because in the right hand
sides of the productions A → b and A → ε there are no nonterminal symbols. Thus,
we get the following table T [A, {ba}]:

T [A, {ba}]:
bb A → b []

ba A → ε []

1.3. LL(K) PARSERS (FOR K ≥ 1) 19

a a a b b a b b a $ b $ $

[S, {$}] S → aAaa S → aAaa S → bAba

[A, {aa}] A → ε A → b

[A, {ba}] A → ε A → b

Figure 1.3.1. The LL(2) parsing table for the grammar with axiom
S and productions: S → aAaa | bAba and A → b | ε.

After the construction of this table we do not add any new table to the set of tables to
be constructed because in the right hand sides of the productions A → b and A → ε
there are no nonterminal symbols.

Construction of the parsing table.
Having constructed the tables T [S, {$}], T [A, {aa}], and T [A, {ba}], we can construct
the parsing table depicted in Figure 1.3.1. That table is used for the LL(2) parsing
of the given grammar.
In Figure 1.3.2 below we have depicted the sequence of the input string and stack
configurations when parsing the string b b a $. The symbol ! indicates the positions
of the input head and the top of the stack (as usual, in every stack configuration the
top of the stack is the leftmost symbol).

Note that the expansion of S (see Figure 1.3.2) is done using the production
S → bAba because: (i) below S on the stack there is $, and (ii) the symbols in
the position of the input head and at its right are b b (see the entry at row [S, {$}]
and column b b of the parsing table depicted in Figure 1.3.1). The expansion of A is
done using the production A → ε because: (i) below A on the stack there are the
symbols b a, and (ii) the symbols in the position of the input head and at its right
are b a (see the entry at row [A, {ba}] and column b a of the parsing table depicted
in Figure 1.3.1).

In the final configuration we have that both the top of the stack and the input
head are pointing to the symbol $. Thus, the given string b b a belongs to the language
generated by the grammar G. "

Now we define for any nonterminal A and for any k ≥ 1, the set Follow k(A).

Definition 1.3.4. [The Set Follow k(A)] Let us consider a context-free grammar,
possibly with ε-productions. For any k ≥ 1, Follow k is a function from VN to the set
of all subsets of V ∗$ 0,1. For any A ∈ VN , Follow k(A) is the smallest set such that for
any string w ∈ (V 0$ ∪ V 1$ ∪ V 2$ ∪ . . . ∪ V k−1$ ∪ V k),

if S $ →∗ αAβ for some α ∈ V ∗ and β ∈ V ∗$ and w ∈ Firstk(β)

then w ∈Follow k(A).

Thus, by definition, for every nonterminal A ∈ VN , Follow k(A) is a set of words w
in V 0$ ∪ V 1$ ∪ V 2$ ∪ . . . ∪ V k−1$ ∪ V k which occur in a sentential form derived
from S $ immediately to the right of A.

We have that for any k ≥ 1 and A ∈ VN , the empty string ε is not an element of
Follow k(A).

20 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

input
string:

b b a $
!

b b a $
!

b b a $
!

(1)
expand S
−→ (2)

expand A
−→ (4)

stack: S $
!

bA b a $
!

b a $
!

b b a $
!

b b a $
!

chop b
−→ (5)

chop a
−→ (6)

a $
!

$
!

Figure 1.3.2. LL(2) parsing of the string b b a $. The given grammar
has the following productions: S → aAaa | bAba, A → b | ε. The
black triangle indicates the symbol at hand in the input string and the
top of the stack (which is always the leftmost symbol).

Note that contrary to Definition 1.2.4 where we have given an algorithm for the
construction of the set Follow 1(A), in the above Definition 1.3.4 we do not provide
an algorithm for constructing the set Follow k(A) starting from the productions of the
given LL(k) grammar, for any k ≥ 1.

The following result which we state without proof, characterizes the LL(k) gram-
mars and the strong LL(k) grammars for any k ≥ 1 [2, page 342].

Theorem 1.3.5. [LL(k) Grammars and Strong LL(k) Grammars] (i) A con-
text-free grammar G is LL(k) iff for every pair of distinct productions A → α and
A → β with α += β, and for every string w A σ such that S →∗

lm w A σ, we have that:

Firstk(α σ)∩Firstk(β σ) = ∅.

(ii) A context-free grammar G is strong LL(k) iff for every pair of distinct productions
A → α and A → β with α += β, we have that:

Firstk(α Follow k(A))∩Firstk(β Follow k(A)) = ∅.

Example 1.3.6. The grammar G with axiom S and the following productions:

S → aAaa | bAba
A → b | ε

is an LL(2) grammar as the above Example 1.3.3 shows, but it is not a strong LL(2)
grammar. Indeed, we have that:

Follow2(A)) = {aa, ba} and

First2(bFollow2(A))∩First2(ε Follow2(A)) = {ba, bb} ∩ {aa, ba} = {ba}.

We leave it to the reader to check the following facts which we state without proofs.

1.3. LL(K) PARSERS (FOR K ≥ 1) 21

Fact 1.3.7. The rules we have given above for constructing the parsing table
for LL(1) parsing, can be obtained by instantiating with k = 1 the rules for LL(k)
parsing for k ≥ 1.

For any k ≥ 0, if a language L has an LL(k) grammar then L has a strong LL(k)
grammar.

Fact 1.3.8. Let L be a language that can be generated by an LL(k) grammar for
some k ≥ 0. Then: (i) L−{ε} can be generated by an LL(k+1) grammar in Greibach
normal form, and (ii) L can be generated by an LL(k+1) grammar G in Greibach
normal form and we have to consider also the production S → ε iff ε ∈ L [2, page
362].

In the following two examples the reader may see in action the techniques for produc-
ing from an LL(1) grammar an equivalent LL(2) grammar in Greibach normal form.
These techniques constitute the basis for the proof of the above Fact 1.3.8.

Example 1.3.9. [From LL(1) Grammars to LL(2) Grammars in Greibach
Normal Form] Let us consider the LL(1) grammar G with axiom S and the following
productions:

S → AB
A → aA | ε
B → bA | ε

We want to derive an equivalent grammar in Greibach normal form. In that equivalent
grammar we also allow the production S → ε if ε ∈ L(G). In our case, indeed, we
have the production S → ε because ε ∈ L(G).

We start from the axiom S and we perform leftmost unfolding steps (that is, we
unfold the leftmost nonterminals), thereby producing new sentential forms from old
ones. We stop these unfolding steps when we get either (i) ε, or (ii) a terminal symbol,
or (iii) a terminal followed by a non-nullable symbol. By doing so, we generate a tree
of sentential forms in which every leaf corresponds to a production of the desired
grammar in Greibach normal form (see Figure 1.3.3).

S

AB

aAB B

aaAB aB bA ε

a bA a b aA b

aAB

aaAB aB

a bA a

Ã → aAB

bA

baA b

B̃ → bA

aA

aaA a

C̃ → aA

Figure 1.3.3. Trees of sentential forms obtained by unfolding the left-
most nonterminals. A and B are nullable nonterminal symbols.

22 1. PARSING DETERMINISTIC CONTEXT-FREE LANGUAGES

In each leaf the sentential form without its leftmost terminal is used as the root
a new tree of sentential forms. The construction of new trees of sentential forms
terminates when all leaves of all trees of sentential forms are either: (i) ε, or (ii) a
terminal symbol, or (iii) a terminal symbol, say a, followed by a sequence, say σ, of
symbols labeling the root of a tree. In Case (iii), if we introduce a new nonterminal,
say A, and the production A → σ, and if we perform a folding step at the leaf of a
tree, we get at that leaf the terminal a followed by the nonterminal A.

In the case of our grammar above we introduce the productions: (i) Ã → aAB,
(ii) B̃ → bA, and (iii) C̃ → aA, and we perform the folding steps by using these
productions, we get from the root-to-leaves paths of the trees of Figure 1.3.3 the
following productions in Greibach normal form:

S → aÃ | aB̃ | a | bC̃ | b | ε

Ã → aÃ | aB̃ | a

B̃ → bC̃ | b

C̃ → aC̃ | a

Note that no unit productions are generated. We leave it to the reader to check that
these productions belong to an LL(2) grammar (besides the production S → ε). "

Example 1.3.10. [From LL(1) Grammars to LL(2) Grammars in Greibach
Normal Form] Let us consider the LL(1) grammar Gα with axiom T and the
following productions:

T → F T ′

T ′ → ε | × F T ′

F → (T) | a
(Gα)

Note that grammar Gα is an LL(1) grammar which can be derived from the following
left recursive grammar Gβ with productions:

T → F | T × F
F → (T) | a

(Gβ)

Thus, grammar Gβ is not an LL(1) grammar. Starting from the grammar (Gα),
by performing some unfolding steps by using the productions of the grammar (Gα)
according to the rules described in the above Example 1.3.9, we get the trees of
sentential forms which we have depicted in Figure 1.3.4.

If we introduce the productions: (i) R →) T ′, and (ii) B → ×F T ′, and then
we perform the folding steps by using these productions, we get from the root-to-
leaves paths of the trees of Figure 1.3.4, the grammar Gγ which has the following
productions in Greibach normal form:

T → (T R | a B | a
R →) |) B
B → ×(T R | × a T

(Gγ)

Note that no unit production is generated. There is no production T → ε because T
is not nullable. We leave it to the reader to check that the grammar (Gγ) is an LL(2)
grammar. "

1.3. LL(K) PARSERS (FOR K ≥ 1) 23

T

F T ′

(T) T ′ a T ′

a a×F T ′

) T ′

))×F T ′

R →) T ′

×F T ′

×(T) T ′ ×a T

B → ×F T ′

Figure 1.3.4. Trees of sentential forms obtained by unfolding the left-
most nonterminals.

Fact 1.3.11. For any k ≥ 0, there are languages which are generated by an
LL(k+1) grammars and cannot be generated by any LL(k) grammar.

Fact 1.3.12. For any k ≥ 0, it is decidable whether or not two LL(k) grammars
generate the same language.

Fact 1.3.13. If a grammar G is in Greibach normal form and for each nonterminal
A there exists at most one production of the form A → a α for some terminal symbol
a and some α ∈ V ∗

N and the only ε-production allowed is S → ε, then G is LL(1).

Recall that in any LL(1) grammar we allow ε-productions for each nonterminal
symbol and, thus, the class of such grammars properly includes the class of the
grammars in Greibach normal form mentioned in the above Fact 1.3.13.

As already mentioned, we have the following result.

Fact 1.3.14. A language L ∈ LL(0) iff L = ∅ or L is a singleton.

Fact 1.3.15. Every languages which is generated by an LL(k) grammar for some
k ≥ 0, is a deterministic context-free language, but there exists a subclass C of the
deterministic context-free languages such that for every language L in C there is no
k ≥ 0 such that L can be generated by an LL(k) grammar.

Fact 1.3.16. The language L = {anbn |n ≥ 1} ∪ {ancn |n ≥ 1} is a deterministic
context-free language and there is no k ≥ 0 such that L = LL(k) [3, page 689].

In the following Section 1.4 we will see that the language L = {anbn |n ≥ 1} ∪
{ancn |n ≥ 1} is LR(1).

Theorem 1.3.17. [Hierarchy of LL(k) Grammars and Languages] For every
k ≥ 0, (i) the class of the LL(k) grammars is properly contained in the class of the
LL(k + 1) grammars, and (ii) the class of the LL(k) languages is properly contained
in the class of the LL(k + 1) languages.

Fact 1.3.18. [7] For any k ≥ 0, the class of the class of LL(k) languages is
properly contained in the class of the LR(1) languages.

