5.6. PATH PROBLEMS IN DIRECTED GRAPHS 141

This algorithm is based on the Dynamic Programming idea. It is due to E. W. Di-
jkstra and it takes O(n?) time for graphs of n nodes, in the case in which labels form
a non-negative ic-semiring.

Dijkstra’s algorithm is correct also for any labeled directed graph provided that
there are not negative cycles, that is, cycles with negative sum of the labels of its
arcs. For simplicity, we will present Dijkstra’s algorithm in the case where labels of
the arcs are non-negative reals.

5.6.8. Single Source Shortest Path of a Directed Graph.

In this section we present an algorithm for computing the shortest path from a given
initial node (also called source) to any other node of a directed graph. We will
call this algorithm the Single Source Shortest Path algorithm, or SSSP algorithm,
for short. Also this algorithm, as the one in Section 5.5 for computing a minimal
spanning tree of an undirected graph (see page 121), is due to Prof. E. W. Dijkstra.
This algorithm can be viewed as an application of the so called Primal-Dual algorithm
(see |11, Capter 5]) and thus, its correctness can be derived from that of the Primal-
Dual algorithm. Now, for reasons of simplicity we asssume that the edges have
non-negative lengths.

ALGORITHM 5.6.18.
Computation of a Single Source Shortest Path in a Directed Graph. (SSSP algorithm)

Input: A directed, connected graph G with labels on the edges. A node ng, called
source, of (G. No assumptions are made on the arcs which depart from ng or arrive
at ng.

- For each edge (n,m), its label A(n,m), also called the length of the edge, is a
non-negative real number.

- For each node n, we assume that there exists the edge (n,n) whose label \(n,n)
is 0.

Output: for each node m in G, we compute a shortest path from node ng to node m,
that is, a path from ny to m with minimal length, that is, minimal sum of the labels
of its edges. The minimum is taken over all paths from ngy to m.

With each node n, we associate a label A(n) which is the length of a shortest path
from ng to n.

A. With each node n we associate a label A(n) which is the length of a shortest path
from ngy to n.

1. A(ng) :==0; Reach:={ny};
2. for each edge from ng to n, A(n) := A(ng, n);
3. Repeat | among all nodes not in Reach, take a node, say p,
with minimal label A(p);
3.1 Reach := Reach U {p};
3.2 for each edge (p, m) with m not in Reach,
if m has already a label
then (3.2.1) A(m) := min{A(p)+A(p,m), A(m)}
else (3.2.2) A(m) := A(p)+A(p,m);

142 5. VISITING OF TREES AND GRAPHS

B. We find by backtracking a shortest path from node ny to a node m in G.

4. Choose any node p, different from m, such that A(p) = —A(p, m) + A(m), and
5. Recursively, find a shortest path from ng to p.

The following remarks illustrate a few important points of the above SSSP algorithm.

(i) The source node ng can be any node of the given graph G. In particular, there
may be edges going into the source node.

(ii) At Point 4 if there exists more than one node p, different from m, such that
A(p) = —=A(p,m) + A(m), then we may choose any one of them.

If this is the case, then there exists more than one path from ny to m with minimal
length.

(iii) If (ng,nq,...,nk_1,ny) is a shortest path from ng to ny,
then A(ng) = S0 A(ng, niss).

i>0
(iv) This SSSP algorithm is similar to Dijkstra’s MST algorithm [5] for computing
a minimal spanning tree of undirected graphs with labels on the edges (see Algo-
rithm 5.5.1 on page 121). Analogously to Dijkstra’s MST algorithm:

- the SSSP algorithm is a greedy algorithm, that is, the local optimum is a global
optimum (recall what has been said for the MST algorithm at page 118),

- the nodes in Reach may be viewed as red nodes and the nodes not in Reach may
be viewed as blue nodes, and

- the SSSP algorithm, after transforming a blue node p into a red node (see Point 3.1),
readjusts (see Point 3.2.1) or generates (see Point 3.2.2) the label of each blue node
m such that there exists an edge (p, m).

Now we present the various invariants of the loops of the above Dijkstra’s SSSP
Algorithm 5.6.18. Those invariants clarifies the way that algorithm works.

The invariant of the Repeat statement (see Point 3) is:

“the label of any node n in the set Reach is the length of the shortest path
from the source node ngy to n’.

The invariant at Point 3.2 is:
“each node m not in Reach such that there is an arc (p, m) with p € Reach,
has a label which is the length of a shortest path (ng,...,p,m) from the
source node ny to m such that the nodes ng, ..., p are all in Reach”.

The invariant at Point 5 is:
“in a shortest path from the source node ng to the node m, the last edge is
from node p to node m”.

The correctness of Dijkstra’s algorithm, which we will not prove here, is based on the
following fact. Let us assume that we have computed the shortest path from node
ng to every node in a subset W of the nodes such that ng € W. Let us consider the
shortest path, say p, from node ny to any node y not in W such that for every node
x if there is an arc from x to y in G then z € W. Then the path p has the property
that it goes through the nodes of W (except for y itself).

5.6. PATH PROBLEMS IN DIRECTED GRAPHS 143

Note that if at Point 3 we take a node p which has no minimal label A(p), the
algorithm is not correct.

EXAMPLE 5.6.19. Given the graph of Figure 5.6.4 and the node ng, after Point 3
of Dijkstra’a algorithm we get the ‘boxed labels’ for each node. Then, having labeled
all nodes with the boxed labels, we may find by backtracking every edge whose label
is exactly the difference of the labels of its nodes. By doing so (see Points 4 and 5 of
Dijkstra’s algorithm), we get the following two sequences of values:

(i) [12] < [6] —[5] = [3] <=[0] and
(i) [12] < [9] = [5] < [3] - [0]

which correspond to the following two shortest paths from node ng to node ng (see
the thicker edges of the graph of Figure 5.6.4):

(i) np — mg — n3 —> Ny — ng and

(ii) ng — ng — n3 —> ny — ng, respectively.
The total length of those shortest paths is 12, that is, the boxed label of the final
node ng. Note that by backtracking, from node ng we do not go back to node ng

(because 12—9+#5). We go back either to node ny (because 12—6=6) or to node n;
(because 12—3=9). O

FIGURE 5.6.4. A directed graph with non-negative labels on the edges.
The thicker edges are those belonging to the two shortest paths from
node ng to node ng. Those paths have both length 12.

For a graph of n nodes the time complexity of Dijkstra’s SSSP algorithm is O(n?),
and this is due to the fact that: (i) the body of the Repeat statement (see Point 3)
is performed at most n times because there are at most n nodes not in Reach, and
(ii) for each node p not in Reach there exist at most n edges of the form (p, m) with
m not in Reach (see Point 3.2).

Dijkstra’s algorithm shows that if we fix the initial node and the labels of the
given graph form a non-negative ic-semiring, we may solve the shortest path problem
in O(n?) time. This is an improvement over the time complexity for solving the

144 5. VISITING OF TREES AND GRAPHS

path: worst case time complexity:

from any node to any node O(n*8') (the complexity is that
matrix multiplication)

from a fixed node to any node O(n?)

from a fixed node to a fixed node O(n?) (it is an open problem whether
or not one can do better)

FIGURE 5.6.5. Complexity of the computation of a shortest path in a
directed graph with n nodes.

shortest path problem between any two nodes. Indeed, we have shown that this
problem requires the same amount of time which is needed for matrix multiplication,
say O(n*8!) time (see also Figure 5.6.5).

One may wonder whether or not it is possible to derive an even faster algorithm
for the shortest path problem when we fix both the initial node and the target node.
This is the so called single source single target shortest path problem. The answer, to
our knowledge, is still open, in the sense that no algorithm has been found for this
last problem which has a better time performance, in the worst case, than the best
algorithm known for the single source shortest path problem.

A final point is worth noticing. Let us consider an undirected graph with weights
on its edges as a particular case of directed graph where for each edge from node x
to node y with label w, there exists a symmetric edge from node y to node = with
the same label w. In an undirected graph any pair of directed edges from node z to
node y and vice versa will be denoted by x—y. Now, given an undirected graph G
with non-negative weights on its edges, the shortest path from one node to another
node may be made out of edges none of which belongs to the minimal spanning tree
of GG. This fact is illustrated in the graph of Figure 5.6.6. In that figure we use the
convention of drawing every pair of directed edges of an undirected graph by one edge
only (without arrowhead). In Figure 5.6.6 the shortest path from node b to node ¢
is the edge b—c with weight 3, while the minimal spanning tree of the graph G has
total weight 4 and it is made out of the edges a—b and a—c.

FIGURE 5.6.6. An undirected graph with non-negative labels on the
edges. The thicker edges are those of the minimal spanning tree.

5.6. PATH PROBLEMS IN DIRECTED GRAPHS 145

In what follows we present a Java program which implements Dijkstra’s Sin-
gle Source Shortest Path algorithm. It is made out of two files: SSSP.java and
Graph. java, located in the same folder.

