
Every context-free grammar over a terminal alphabet of cardinality 1 gener-

ates a regular language.

Let us consider a context-free grammar G which, without loss of generality, does not have
ε-productions besides, possibly, the production S → ε.

We want to show that if the terminal alphabet of G is a singleton, then the lan-
guage L(G) generated by the grammar G is a regular language.

Given a word w, by |w| we will denote the length of w.
Let us first recall the Pumping Lemma for context-free languages.

Lemma 1. [Pumping Lemma] Given a context-free grammar G with terminal al-

phabet Σ, ∃n>0 such that ∀ z ∈ L(G), if |z| ≥ n then ∃u, v, w, x, y ∈ Σ∗, such that

(1) z = uvwxy,

(2) vx 6= ε,

(3) |vwx| ≤ n, and

(4) ∀ i ≥ 0, uviwxiy ∈ L(G).

Let us assume that the terminal alphabet of G is the set Σ = {a} with cardinality 1.
Since Σ has cardinality 1, commutativity holds, that is, ∀u, v ∈ Σ∗, u v = v u.

The following lemma easily follows from Lemma 1.

Lemma 2. [Pumping Lemma for a Terminal Alphabet of Cardinality 1] Given

a context-free grammar G with a terminal alphabet Σ of cardinality 1, ∃n > 0 such that

∀ z ∈ L(G), if |z|≥n then ∃ p≥0, ∃ q, such that

(1.1) |z| = p+q,

(2.1) q>0,
(3.1) ∃m, with 0≤m≤p, such that 0<m+q≤n, and

(4.1) ∀ s ∈ Σ∗, ∀ i≥0, if |s| = p + i q then s ∈ L(G).

Proof. The final part of the statement of Lemma 1 can be rewritten as follows.
By commutativity, we can absorb vx into v (note that v and x are both existentially
quantified) and we get:

. . .∃u, v, w, y ∈ Σ∗, such that

z = uvwy,
v 6= ε,
|vw| ≤ n, and

∀ i ≥ 0, uviwy ∈ L(G).

By commutativity, we can absorb uy into u (note that u and y are both existentially
quantified) and we get:

. . .∃u, v, w ∈ Σ∗, such that

z = uvw,
v 6= ε,
|vw| ≤ n, and

∀ i ≥ 0, uviw ∈ L(G).

By commutativity we can place the v’s after w, and we get:

. . .∃u, v, w ∈ Σ∗, such that

z = uwv,
v 6= ε,
|wv| ≤ n, and

∀ i ≥ 0, uwvi ∈ L(G).
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Let p denote |uw| and q denote |v|. By taking the lengths of the words, which are non-
negative integers, we get:

. . .∃ p≥0, ∃q≥0, ∃w ∈ Σ∗, such that

(1.1) |z| = p + q,
(2.1) q>0,
(3*) |w| + q ≤ n, and

(4.1) ∀ s ∈ Σ∗, ∀ i≥0, if |s| = p + i q then s ∈ L(G).

By Condition (2.1) we can write ∃q, instead of ∃q≥0. Let m denote |w|. Since p= |uw|,
we have that m≤p, and since q>0, we can write 0<m+q≤n, instead of |w|+q≤n.

We get:

. . .∃ p≥0, ∃q, such that

(1.1) |z| = p + q,
(2.1) q>0,
(3.1) ∃m, with 0≤m≤p, such that 0<m+q≤n, and

(4.1) ∀ s ∈ Σ∗, ∀ i≥0, if |s| = p + i q then s ∈ L(G). �

By Condition (3.1) of Lemma 2, we can replace Condition (2.1) of Lemma 2 by the
stronger condition: 0<q≤n.

Let n denote the number whose existence is asserted by Lemma 2. Let us consider the
following two languages subsets of L(G):

(i) L<n = {w ∈ L(G) | |w| < n} and
(ii) L≥n = {w ∈ L(G) | |w| ≥ n}.

Obviously, we have that L(G) = L<n ∪ L≥n. Since L<n is finite, L<n is a regular
language.

Thus, in order to show that L(G) is a regular language it is enough to show, as we now
do, that also L≥n is a regular language.

Given any word z ∈ L≥n, we have that by Lemma 2, there exist p0 ≥ 0 and q0 > 0

such that z = ap0 + q0 and ap0 ∈ L(G) (take i=0).

Since q0 >0 we have that p0 < |z|. Now, if p0≥n, starting from ap0 , instead of z, we

get that there exist p1≥0 and q1 >0 such that ap0 = ap1 + q1, and thus,

z = a(p1 + q1) + q0.

In general, there exist p0, q0, p1, q1, p2, q2, . . . , ph, qh, and h≥0, such that:

z = ap0 + q0 =

= a(p1 + q1) + q0 =

= a(p2 + q2) + q1 + q0 =

= . . . =

= a(ph + qh) + qh−1 + . . . + q2 + q1 + q0 (†)

where: (C1) ph < n, and (C2) for all i, with 0≤ i < h, we have that pi ≥n. (Note that,
when writing the expression (†), we do not assume that all the qi’s are distinct.)

Since for all i, with 0≤ i≤h, we have that qi >0, it is the case that for any z ∈ L≥n,

we can always construct an expression of the form (†) satisfying (C1) and (C2).



3

Thus, by writing i q instead of

i times
︷ ︸︸ ︷

q + . . . + q, we have that every word z ∈ L≥n is of the
form:

aph + i0q0 + . . . + ikqk

for some k, ph, i0, . . . , ik, q0, . . . , qk such that:

(ℓ 0) 0≤k,
(ℓ 1) 0≤ph <n,
(ℓ 2) i0 >0, . . . , ik >0,
(ℓ 3) 0< q0≤n, . . ., 0< qk≤n, and
(ℓ 4) the values of q0, . . . , qk are all distinct integers and since there are at most n

distinct integers r such that 0<r≤n, we have that k<n.

Thus, the language L≥n, is the union of languages of the form:

L〈ph, q0, . . . , qk〉
= {aph + i0q0 + . . . + ikqk | 0≤k≤n, 0≤ph <n, i0 >0, . . . , ik >0,

0< q0≤n, . . . , 0< qk≤n} ∩ ({a}∗ − L<n)

Note that L≥n is a finite union of such languages, because there exists only a finite

number of tuples of the form 〈ph, q0, . . . , qk〉 such that (ℓ 0), (ℓ 1), (ℓ 3), and (ℓ 4) hold.

Note also that for any tuple of the form 〈ph, q0, . . . , qk〉 such that (ℓ 0), (ℓ 1), (ℓ 3),
and (ℓ 4) hold, we have that L〈ph, q0, . . . , qk〉

is a regular language. Indeed, the finite

automaton which recognizes L〈ph, q0, . . . , qk〉
is as follows:

A B

...
...

aph+q0

aph+qk

aq0

aqk

By recalling that the class of regular languages is closed under finite union, finite
intersection, and complementation, we get that L≥n is a regular language.

This concludes the proof that every context-free grammar G over a terminal alphabet
of cardinality 1 generates a regular language.

Note that the proof we have given, does not require Parikh’s Lemma.


