Every context-free grammar over a terminal alphabet of cardinality 1 gener-
ates a regular language.

Let us consider a context-free grammar GG which, without loss of generality, does not have
e-productions besides, possibly, the production S — €.

We want to show that if the terminal alphabet of G is a singleton, then the lan-
guage L(G) generated by the grammar G is a regular language.

Given a word w, by |w| we will denote the length of w.

Let us first recall the Pumping Lemma for context-free languages.

LeEMMA 1. [Pumping Lemma| Given a context-free grammar G with terminal al-
phabet ¥, An>0 such that V¥V z € L(G), if |z| > n then u,v,w,z,y € X*, such that

(1) z =wwzy,

(2) v #e,

(3) |owz| < n, and

(4) Vi>0, wwz'y € L(G).

Let us assume that the terminal alphabet of G is the set ¥ = {a} with cardinality 1.
Since ¥ has cardinality 1, commutativity holds, that is, Vu,v € ¥*, uv = v u.

The following lemma easily follows from Lemma 1.

LEMMA 2. [Pumping Lemma for a Terminal Alphabet of Cardinality 1] Given
a context-free grammar G with a terminal alphabet 3 of cardinality 1, 3n >0 such that
Vz e L(G), if |z| >n then 3p>0,3q, such that

(L.1) |z] = p+q,

(2.1) ¢>0,

(3.1) Im, with 0<m<p, such that 0<m-+q<n, and

(4.1) VseX*Vi>0, if |s| =p+iq then s € L(G).

PrOOF. The final part of the statement of Lemma 1 can be rewritten as follows.
By commutativity, we can absorb vz into v (note that v and z are both existentially
quantified) and we get:

oo du,v,w,y € X such that

z = uowy,

v#£E,

lvw| < n, and

Vi> 0, w'wy € L(G).
By commutativity, we can absorb uy into u (note that u and y are both existentially
quantified) and we get:

.. Ju,v,w e X such that
Z = uvw,
v#£E,
lvw| < n, and
Vi> 0, w'w e L(G).
By commutativity we can place the v’s after w, and we get:

. Ju,v,w e X such that
Z = uwv,
v#eE,
lwo| < n, and

Vi >0, uwv' € L(G).
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Let p denote |uw| and ¢ denote |v|. By taking the lengths of the words, which are non-
negative integers, we get:
...3dp>0,3¢>0,Jw € ¥*, such that

(1.1) [2[=p+aq,
(2.1) ¢>0,
(3%) |w|+q<n, and

(4.1) Vs e X*Vi>0,if |s| =p+iq then s € L(G).

By Condition (2.1) we can write ¢, instead of 3¢ >0. Let m denote |w|. Since p=|uw|,
we have that m <p, and since ¢>0, we can write 0 <m+q<n, instead of |w|+q<n.
We get:

...dp>0,dq, such that

(L1) [zl =p+q,

(2.1) ¢>0,

(3.1) Im, with 0<m<p, such that 0<m+q<n, and

(4.1) Vs e ¥*,Vi>0, if |s| = p+iq then s € L(G). O

By Condition (3.1) of Lemma 2, we can replace Condition (2.1) of Lemma 2 by the
stronger condition: 0<q<n.

Let n denote the number whose existence is asserted by Lemma 2. Let us consider the
following two languages subsets of L(G):

(i) Lep ={w € L(G) | |w| < n} and

(ii) Ly = {w e L(GQ) | |lw| > n}.

Obviously, we have that L(G) = L<pn U L>,,. Since L<y, is finite, L<y is a regular
language. B

Thus, in order to show that L(G) is a regular language it is enough to show, as we now
do, that also L~ ,, is a regular language.

Given any word z € L~ ,,, we have that by Lemma 2, there exist py >0 and ¢y >0
such that z = aP0 T and aP0 € L(G) (take i=0).

Since qo >0 we have that py < |z|. Now, if pg >n, starting from a0, instead of z, we
get that there exist p; >0 and ¢; >0 such that aP0 = ¢P1 T @1 and thus,

s — a1t a)+a

In general, there exist po, qo, P1,q1, D2, G2, - - -, Pns Qn, and h >0, such that:
—a @)t -
— a2t @) tatq -

_aonta)taat o etata (1)

where: (C1) pp, < n, and (C2) for all i, with 0 <i <h, we have that p; >n. (Note that,
when writing the expression (1), we do not assume that all the ¢;’s are distinct.)

Since for all 7, with 0<¢<h, we have that ¢; >0, it is the case that for any z € L~ ,,,
we can always construct an expression of the form () satisfying (C'1) and (C2).



1 times
L. . . /_/% .
Thus, by writing ¢ ¢ instead of ¢ + ... + ¢, we have that every word z € L>,, is of the

form: , ,
aph + 2q0 + ...+ %Qk

for some k, py, g, - - -, ik, qo, - - - , G Such that:
(€0) 0<k,
(61) ngh<n7
(02) ig>0,..., it >0,
(£3) 0< q@<n, ..., 0<q.<n, and
(£4) the values of qq,...,qr are all distinct integers and since there are at most n

distinct integers r such that 0 <r <n, we have that k<n.

Thus, the language L> ,, is the union of languages of the form:

)= {aPrt 000+ F ikl | 0<k<n,0<pp<n,ig>0,...,i>0,
0<q@<n,...,0<g<n} N ({a}*—L<p)

Note that L>,, is a finite union of such languages, because there exists only a finite

number of tuples of the form (py, qo, ..., qx) such that (£0), (¢1), (£3), and (£4) hold.

Note also that for any tuple of the form (py,qo,...,q) such that (£0), (¢1), (£3),
and (£4) hold, we have that L ( is a regular language. Indeed, the finite

automaton which recognizes L (

L<ph7 q0, - - -, 4k

ph7QO7---7Qk>

Pn, 40, - - -, qk> is as follows:

aqO

By recalling that the class of regular languages is closed under finite union, finite
intersection, and complementation, we get that L~ ,, is a regular language.

This concludes the proof that every context-free grammar G over a terminal alphabet
of cardinality 1 generates a regular language.

Note that the proof we have given, does not require Parikh’s Lemma.




