Every context-free grammar over a terminal alphabet of cardinality 1 generates a regular language.

Let us consider a context-free grammar G which, without loss of generality, does not have ε -productions besides, possibly, the production $S \to \varepsilon$.

We want to show that if the terminal alphabet of G is a singleton, then the language L(G) generated by the grammar G is a regular language.

Given a word w, by |w| we will denote the length of w.

Let us first recall the Pumping Lemma for context-free languages.

LEMMA 1. [Pumping Lemma] Given a context-free grammar G with terminal alphabet Σ , $\exists n > 0$ such that $\forall z \in L(G)$, if $|z| \ge n$ then $\exists u, v, w, x, y \in \Sigma^*$, such that

(1) z = uvwxy,

(2) $vx \neq \varepsilon$,

- (3) $|vwx| \leq n$, and
- (4) $\forall i \ge 0, uv^i w x^i y \in L(G).$

Let us assume that the terminal alphabet of G is the set $\Sigma = \{a\}$ with cardinality 1. Since Σ has cardinality 1, commutativity holds, that is, $\forall u, v \in \Sigma^*$, uv = vu.

The following lemma easily follows from Lemma 1.

LEMMA 2. [Pumping Lemma for a Terminal Alphabet of Cardinality 1] Given a context-free grammar G with a terminal alphabet Σ of cardinality 1, $\exists n > 0$ such that $\forall z \in L(G), if |z| \ge n$ then $\exists p \ge 0, \exists q$, such that

- (1.1) |z| = p + q,
- $(2.1) \quad q > 0,$
- (3.1) $\exists m, with 0 \leq m \leq p, such that 0 < m+q \leq n, and$
- (4.1) $\forall s \in \Sigma^*, \forall i \ge 0, if |s| = p + iq then s \in L(G).$

PROOF. The final part of the statement of Lemma 1 can be rewritten as follows. By commutativity, we can absorb vx into v (note that v and x are both existentially quantified) and we get:

 $\begin{array}{l} \dots \exists u, v, w, y \in \Sigma^*, \ such \ that \\ z = uvwy, \\ v \neq \varepsilon, \\ |vw| \leq n, \ and \\ \forall i \geq 0, \ uv^i wy \in L(G). \end{array}$

By commutativity, we can absorb uy into u (note that u and y are both existentially quantified) and we get:

 $\dots \exists u, v, w \in \Sigma^*, \text{ such that} \\ z = uvw, \\ v \neq \varepsilon, \\ |vw| \le n, \text{ and} \\ \forall i \ge 0, uv^i w \in L(G).$

By commutativity we can place the v's after w, and we get:

$$\begin{array}{l} . . \exists u, v, w \in \Sigma^*, \ such \ that \\ z = uwv, \\ v \neq \varepsilon, \\ |wv| \leq n, \ and \\ \forall i \geq 0, \ uwv^i \in L(G). \end{array}$$

Let p denote |uw| and q denote |v|. By taking the lengths of the words, which are non-negative integers, we get:

 $\begin{array}{ll} \dots \exists p \ge 0, \exists q \ge 0, \exists w \in \Sigma^*, \ such \ that \\ (1.1) \quad |z| = p + q, \\ (2.1) \quad q > 0, \\ (3^*) \quad |w| + q \le n, \ and \\ (4.1) \quad \forall s \in \Sigma^*, \forall i \ge 0, \ \text{if } |s| = p + i q \ \text{then } s \in L(G). \end{array}$

By Condition (2.1) we can write $\exists q$, instead of $\exists q \ge 0$. Let m denote |w|. Since p = |uw|, we have that $m \le p$, and since q > 0, we can write $0 < m+q \le n$, instead of $|w|+q \le n$. We get:

 $\begin{array}{ll} \dots \exists p \geq 0, \exists q, \ such \ that \\ (1.1) \quad |z| = p + q, \\ (2.1) \quad q > 0, \\ (3.1) \quad \exists m, \ with \ 0 \leq m \leq p, \ such \ that \ 0 < m + q \leq n, \ and \\ (4.1) \quad \forall s \in \Sigma^*, \forall i \geq 0, \ \text{if } |s| = p + i \ q \ \text{then} \ s \in L(G). \end{array}$

By Condition (3.1) of Lemma 2, we can replace Condition (2.1) of Lemma 2 by the stronger condition: $0 < q \le n$.

Let n denote the number whose existence is asserted by Lemma 2. Let us consider the following two languages subsets of L(G):

(i) $L < n = \{w \in L(G) \mid |w| < n\}$ and (ii) $L \ge n = \{w \in L(G) \mid |w| \ge n\}.$

Obviously, we have that $L(G) = L_{\leq n} \cup L_{\geq n}$. Since $L_{\leq n}$ is finite, $L_{\leq n}$ is a regular language.

Thus, in order to show that L(G) is a regular language it is enough to show, as we now do, that also $L_{>n}$ is a regular language.

Given any word $z \in L_{\geq n}$, we have that by Lemma 2, there exist $p_0 \geq 0$ and $q_0 > 0$ such that $z = a^{p_0 + q_0}$ and $a^{p_0} \in L(G)$ (take i=0).

Since $q_0 > 0$ we have that $p_0 < |z|$. Now, if $p_0 \ge n$, starting from a^{p_0} , instead of z, we get that there exist $p_1 \ge 0$ and $q_1 > 0$ such that $a^{p_0} = a^{p_1} + q_1$, and thus,

$$z = a(p_1 + q_1) + q_0.$$

In general, there exist $p_0, q_0, p_1, q_1, p_2, q_2, \ldots, p_h, q_h$, and $h \ge 0$, such that:

$$z = a^{p_0 + q_0} =$$

$$= a^{(p_1 + q_1) + q_0} =$$

$$= a^{(p_2 + q_2) + q_1 + q_0} =$$

$$= \dots =$$

$$= a^{(p_h + q_h) + q_{h-1} + \dots + q_2 + q_1 + q_0} \qquad (\dagger)$$

where: (C1) $p_h < n$, and (C2) for all *i*, with $0 \le i < h$, we have that $p_i \ge n$. (Note that, when writing the expression (\dagger), we do *not* assume that all the q_i 's are distinct.)

Since for all *i*, with $0 \le i \le h$, we have that $q_i > 0$, it is the case that for any $z \in L_{\ge n}$, we can always construct an expression of the form (†) satisfying (C1) and (C2).

i times

Thus, by writing i q instead of $q + \ldots + q$, we have that every word $z \in L_{\geq n}$ is of the form:

$$ap_h + i_0q_0 + \ldots + i_kq_k$$

for some $k, p_h, i_0, \ldots, i_k, q_0, \ldots, q_k$ such that:

 $(\ell 0) \ 0 \leq k,$

- $(\ell 1) \ 0 \le p_h < n,$
- $(\ell 2) i_0 > 0, \ldots, i_k > 0,$
- $(\ell 3) \ 0 < q_0 \le n, \ldots, 0 < q_k \le n, \text{ and}$
- $(\ell 4)$ the values of q_0, \ldots, q_k are all distinct integers and since there are at most n distinct integers r such that $0 < r \le n$, we have that k < n.

Thus, the language $L_{>n}$, is the union of languages of the form:

$$L_{\langle p_h, q_0, \dots, q_k \rangle} = \{a^{p_h + i_0 q_0 + \dots + i_k q_k} \mid 0 \le k \le n, 0 \le p_h < n, i_0 > 0, \dots, i_k > 0, \\ 0 < q_0 \le n, \dots, 0 < q_k \le n\} \cap (\{a\}^* - L < n)$$

Note that $L_{\geq n}$ is a *finite* union of such languages, because there exists only a finite number of tuples of the form $\langle p_h, q_0, \ldots, q_k \rangle$ such that $(\ell 0), (\ell 1), (\ell 3)$, and $(\ell 4)$ hold.

Note also that for any tuple of the form $\langle p_h, q_0, \ldots, q_k \rangle$ such that $(\ell 0), (\ell 1), (\ell 3),$ and $(\ell 4)$ hold, we have that $L_{\langle p_h, q_0, \ldots, q_k \rangle}$ is a regular language. Indeed, the finite automaton which recognizes $L_{\langle p_h, q_0, \ldots, q_k \rangle}$ is as follows:

By recalling that the class of regular languages is closed under finite union, finite intersection, and complementation, we get that $L_{>n}$ is a regular language.

This concludes the proof that every context-free grammar G over a terminal alphabet of cardinality 1 generates a regular language.

Note that the proof we have given, *does not* require Parikh's Lemma.