
CHAPTER 6

Higher Order, Typed Functional Languages

• Types

τ over Types τ ::= int | τ1 × τ2 | τ1 → τ2

• Integers

n, m, . . . over N = {. . . ,−2,−1, 0, 1, 2, . . .}

• Arithmetic operators

op∈ {+,−,×}

• Variables

x, y, f, v, w, . . . over Var

1. Syntax

1.1. Eager Language.

• Terms

t over Terms t ::= n | x | t1 op t2 |

if t0 then t1 else t2 |

(t1, t2) | fst(t) | snd(t) |

(t1 t2) | λx.t |

rec y.(λx.t)

1.2. Lazy Language.

• Terms

t over Terms t ::= n | x | t1 op t2 |

if t0 then t1 else t2 |

(t1, t2) | fst(t) | snd(t) |

(t1 t2) | λx.t |

recx.t

We will also feel free to denote the function application as t1(t2) or t1 t2, instead of
(t1t2).
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76 6. HIGHER ORDER, TYPED FUNCTIONAL LANGUAGES

1.3. Typing Rules.

Both the Eager and the Lazy languages are typed languages. For all terms t and
types τ , by t : τ we denote that the term t has type τ .

Now we list the rules which give a type to each term of the Eager language and
the Lazy language (actually, we will have two variants of the Lazy language: the
Lazy1 language and the Lazy2 language with the same operational semantics and
two distinct denotational semantics).

One can show that every term can be given exactly one type.

x : τ (the type τ is known from the identifier of the variable x)

n : int for each integer n ∈ N

t1 : int t2 : int

t1 op t2 : int

t0 : int t1 : τ t2 : τ

if t0 then t1 else t2 : τ

t1 : τ1 t2 : τ2
(t1, t2) : τ1 × τ2

t : τ1 × τ2

fst(t) : τ1

t : τ1 × τ2

snd(t) : τ2

x : τ1 t : τ2
λx.t : τ1 → τ2

t1 : τ1 → τ2 t2 : τ1
(t1 t2) : τ2

y : τ λx.t : τ

rec y.(λx.t) : τ (for the Eager language) τ is of the form τ1 → τ2

x : τ t : τ

recx.t : τ (for the Lazy language)

2. Operational Semantics

The operational semantics rules are structural, that is, they are based on the
structure of the syntactic terms.

A context C[−] is a term without a subterm, that is, a term ‘with a hole’. In the
following table we list some contexts with a missing subterm. C[t] denotes the context
C[−] where we have inserted the term t in the place of the missing subterm.
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context C[−] missing subterm t complete term C[t]

(i) (t [−]) t1 (t t1)

(ii) [−] op t2 t1 t1 op t2

(iii) if [−] then t1 else t2 t0 if t0 then t1 else t2

(iv) [−] t t

Note that in Case (iv) the missing subterm is the whole term. In this case the context
is called the empty context.

2.1. Eager Operational Semantics.

• Canonical forms

c over Canonical forms c ::= n | (c1, c2) | λx.t

where λx.t is a closed term.

Take a closed term t of type τ.
The eager operational semantics relation t →e c is defined as follows. The superscript
e stands for eager. For simplicity, we write t → c, instead of t →e c. If t →e c we
also say that the eager operational evaluation of t yields the canonical form c.

c → c

t1 → c1 t2 → c2
t1 op t2 → c

where c = c1op c2 and op is the semantic operation corresponding to op

t0 → 0 t1 → c1

if t0 then t1 else t2 → c1

t0 →n t2 → c2 n%=0

if t0 then t1 else t2 → c2

t1 → c1 t2 → c2
(t1, t2) → (c1, c2)

t→ (c1, c2)

fst(t) → c1

t→ (c1, c2)

snd(t) → c2

t1 → λx.t t2 → c2 t[c2/x]→ c

(t1 t2) → c

rec y.(λx.t) → λx.(t[rec y.(λx.t)/y])

Note 2.1. The eager operational semantics rules define a so called big-step se-
mantics in the sense that for every term t1 and t2, if t1 →e t2 then t2 is a canonical
value for the eager operational semantics.

If t1 →e t2 we will say that t2 is the eager operational value of t1. !



78 6. HIGHER ORDER, TYPED FUNCTIONAL LANGUAGES

Note 2.2. In the definition of the eager operational semantics we do not have a
context rule of the form:

t→ c

C[t]→C[c]
for every context C[−].

!

2.2. Lazy Operational Semantics.

• Canonical forms

c over Canonical forms c ::= n | (t1, t2) | λx.t

where t1, t2, and λx.t are closed terms.

Take a closed term t of type τ.
The lazy operational semantics relation t →! c is defined as follows. The superscript
# stands for lazy. For simplicity we write t → c, instead of t →! c. If t →! c we also
say that the lazy operational evaluation of t yields the canonical form c.

c → c

t1 → c1 t2 → c2
t1 op t2 → c

where c = c1op c2 and op is the semantic operation corresponding to op

t0 → 0 t1 → c1

if t0 then t1 else t2 → c1

t0 →n t2 → c2 n%=0

if t0 then t1 else t2 → c2

t→ (t1,t2) t1 → c1

fst(t) → c1

t→ (t1,t2) t2 → c2

snd(t) → c2

t1 → λx.t t[t2/x]→ c

(t1 t2) → c

t[(recx.t)/x]→ c

recx.t → c

Note 2.3. In the definition of the lazy operational semantics we do not have a
context rule of the form:

t→ c

C[t]→C[c]
for every context C[−].

!

Note 2.4. In the lazy operational semantics there are no rules for pairs with
conclusion of the form (t1, t2) → (c1, c2) because for all terms t1 and t2, (t1, t2) is a
canonical form. !
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Note 2.5. The lazy operational semantics rules define a big-step semantics in the
sense that for every term t1 and t2, if t1 →! t2 then t2 is a canonical value for the
lazy operational semantics.

If t1 →! t2 we will say that t2 is the lazy operational value of t1. !

Note 2.6. Both in the eager operational semantics and lazy operational semantics
the evaluation of the operations op’s is done by evaluating its arguments first. Anal-
ogously, the evaluation of the if t0 then t1 else t2 is done by evaluating the condition
t0 first and then either the arm t1 or the arm t2, according to the value of t0. !

Note 2.7. We have the following difference between the eager operational seman-
tics and the lazy operational semantics in the case of pairs.
(i) In the eager semantics the canonical form of a pair is the pair of the canonical forms
of the two components. For any pair t, in order to evaluate fst(t) we need to evaluate
the canonical form of both the first and the second component of t. Analogously for
the the evaluation of second component snd(t).
(ii) In the lazy semantics any pair (t1, t2) is already in canonical form, and for any
pair t in order to evaluate fst(t) we need to evaluate only the canonical form c1 of t1.
Analogously for the evaluation of the second component snd(t).

We also have the following difference between the eager operational semantics and
the lazy operational semantics in the case of function application.
(i) In the eager semantics in order to evaluate the function application (t1 t2), we first
evaluate t1 and t2 to their canonical forms, say c1 and c2, respectively, and then we
apply c1 to c2.
(ii) In the lazy semantics we evaluate t1 to its canonical form, say c1, and then we
apply c1 to t2.

Other differences between the eager operational semantics and the lazy opera-
tional semantics are in the syntax and semantics of the rec construct which are
evident from the rules we have given above. !

Note 2.8. The eager operational rule for the rec, that is,

rec y.(λx.t) → λx.(t[rec y.(λx.t)/y])

follows from the usual semantics of recursion via unfolding. Indeed, the rule one
expects via unfolding is

(λx.t)[(rec y.(λx.t))/x]→ c

rec y.(λx.t) → c

and it reduces to rec y.(λx.t) → λx.(t[rec y.(λx.t)/y]) because:
(i) (λx.t)[(rec y.(λx.t))/x] is equal to λx.(t[(rec y.(λx.t))/x]) (recall that x and y are
distinct variables having distinct types), and
(ii) λx.(t[(rec y.(λx.t))/x]) →e λx.(t[(rec y.(λx.t))/x]) because any term of the form
λx.t is a canonical form in the Eager language. !

2.3. Operational Evaluation in Linear Form.

The deduction, that is, a proof tree which justifies the operational evaluation of a
given term, will often be written in linear form. This form is obtained by visiting the
proof tree in a preorder way. Thus, for instance, instead of writing:
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a → a′ b → b′

a + b → c d → d′

(a + b) + d → e

we will write:

(a+b)+d → (a′+b)+d → (a′+b′)+d → c+d → c+d′ → e.

Analogously, instead of writing:

t1 → λx.t t2 → c2 t[c2/x]→ c

(t1 t2) → c

we will write:

(t1t2) → ((λx.t) t2) → ((λx.t) c2) → t[c2/x] → c.

In the case of the lazy operational semantics, instead of writing:

t[recx.t/x]) → c

rec x. t → c

we will write:

rec x. t → t[recx.t/x]) → c.

Remark 2.9. When the evaluation of a term t is written in linear form, the term
u occurring in a pair of the form t → u, need not be a canonical form. !

Definition 2.10. [Eager Canonical Form of a Term] We will say that a term
t has the eager canonical form c iff its eager operational evaluation in linear form is
a sequence of the form: t →e . . . →e c and c is a term in eager canonical form.

Definition 2.11. [Lazy Canonical Form of a Term] We will say that a term
t has the lazy canonical form c iff its lazy operational evaluation in linear form is a
sequence of the form: t →! . . . →! c and c is a term in lazy canonical form.

2.4. Eager Operational Semantics in Action: The Factorial Function.

Let us now show the evaluation, according to the eager operational semantics, of
(fact 2), where fact is the factorial function.

In order to evaluate (fact 2) we have to consider the initial term:

((rec f.(λx. if x then 1 else x × f(x−1)))2).

Here is the evaluation of (fact 2) according to the eager operational semantics.

((rec f.(λx. if x then 1 elsex × f(x−1)))2)

→ ((λx. if x then 1 else x × ((rec f.(λx. if x then 1 elsex × f(x−1))) (x−1))) 2)

→ if 2 then 1 else 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1))

→ 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1)) (e2)

→ 2×((λx. if x then 1 else x×((rec f.(λx. if x then 1 else x×f(x−1))) (x−1))) (2−1))

→ 2 × ((λx. if x then 1 elsex × ((rec f.(λx. if x then 1 else x × f(x−1))) (x−1))) 1)

→ 2 × (if 1 then 1 else 1 × ((rec f.(λx. if x then 1 else x × f(x−1))) (1−1)))
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→ 2 × (1 × ((rec f.(λx. if x then 1 else x × f(x−1))) (1−1))) (e1)

→ 2 × (1 × ((λx. if x then 1 else x×
((rec f.(λx. if x then 1 else x × f(x−1))) (x−1))) (1−1)))

→ 2×(1×((λx. if x then 1 elsex×((rec f.(λx. if x then 1 elsex×f(x−1))) (x−1)))0))

→ 2 × (1 × (if 0 then 1 else 0 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (0−1))))

→ 2 × (1 × 1) (e0)

→ 2 × 1 → 2.

Note that the derivation between term (e1) and term (e0) is similar to the derivation
between term (e2) and term (e1).

2.5. Lazy Operational Semantics in Action: The Factorial Function.

Here is the evaluation of fact(2) according to the lazy operational semantics.

((rec f.(λx. if x then 1 elsex × f(x−1)))2)

→ ((λx. if x then 1 else x × ((rec f.(λx. if x then 1 elsex × f(x−1))) (x−1))) 2)

→ if 2 then 1 else 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1))

→ 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1)) (#2)

→ 2×((λx. if x then 1 else x×((rec f.(λx. if x then 1 else x×f(x−1))) (x−1))) (2−1))

→ 2×(if 2−1 then 1 else (2−1)×(((rec f.(λx. if x then 1 else x×f(x−1))) ((2−1)−1))))

→ 2×(if 1 then 1 else (2−1)×(((rec f.(λx. if x then 1 else x×f(x−1))) ((2−1)−1))))

→ 2 × ((2−1) × (((rec f.(λx. if x then 1 else x × f(x−1))) ((2−1)−1))))

→ 2 × (1 × (((rec f.(λx. if x then 1 else x × f(x−1))) ((2−1)−1)))) (#1)

→ 2 × (1 × (λx. if x then 1 else x×
((rec f.(λx. if x then 1 else x × f(x−1))) (x−1)) ((2−1)−1)))

→ 2 × (1 × (if ((2−1)−1) then 1 else ((2−1)−1)×
((rec f.(λx. if x then 1 else x × f(x−1))) (((2−1)−1)−1))))

→ 2 × (1 × (if (1−1) then 1 else ((2−1)−1)×
((rec f.(λx. if x then 1 else x × f(x−1))) (((2−1)−1)−1))))

→ 2 × (1 × (if 0 then 1 else ((2−1)−1)×

((rec f.(λx. if x then 1 else x × f(x−1))) (((2−1)−1)−1))))

→ 2 × (1 × 1) (#0)

→ 2 × 1 → 2

Note that the derivation between term (#1) and term (#0) is similar to the derivation
between term (#2) and term (#1).

2.6. Adding the let-in construct: the Operational Semantics.

Let us assume that we have one more syntactic construct:

let x ⇐ t1 in t

with the following typing rule:

x : τ1 t1 : τ1 t : τ

letx ⇐ t1 in t : τ
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and the following eager operational semantics rule:

t1 → c1 t[c1/x]→ c

let x⇐ t1 in t → c

and the following lazy operational semantics:

t[t1/x]→ c

let x⇐ t1 in t → c

The construct let x ⇐ t1 in t has the same eager operational semantics as ((λx.t) t1).
Indeed:

t1 → c1 t[c1/x]→ c

let x⇐ t1 in t → c
and

λx.t → λx.t t1 → c1 t[c1/x]→ c

((λx.t) t1) → c

and, obviously, λx.t → λx.t always holds because λx.t is a canonical form.

The construct let x ⇐ t1 in t has the same lazy operational semantics as ((λx.t) t1).
Indeed, we have that:

t[t1/x]→ c

let x⇐ t1 in t → c
and

λx.t → λx.t t[t1/x]→ c

((λx.t) t1) → c

and, obviously, λx.t → λx.t always holds because λx.t is a canonical form.

3. Eager, Lazy1, and Lazy2 Denotational Semantics

Take a closed term t of type τ . For all terms t and types τ , t : τ denotes that the
type of t is τ .
The domain of values of type τ is the cpo Vτ .
The canonical form c of a term t of the Eager, Lazy1, and Lazy2 languages is indicated
in Table 1. The corresponding semantic domains are indicated in Table 2 on the next
page.

Type τ Eager language Lazy1 language and Lazy2 language

τ = int n n

= τ1 × τ2 (c1, c2) (t1, t2)

= τ1 → τ2 λx.t closed λx.t closed

Table 1. The canonical forms for the Eager, Lazy1, and Lazy2 languages.
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Type τ Eager Semantics Lazy1 Semantics Lazy2 Semantics

ρ ∈ Var →
⋃

τ Vτ ρ ∈ Var →
⋃

τ (Vτ)⊥ ρ ∈ Var →
⋃

τ Vτ

τ = int Vτ = N Vτ = N Vτ = N⊥

= τ1 × τ2 = Vτ1 × Vτ2 = (Vτ1)⊥ × (Vτ2)⊥ = Vτ1 × Vτ2

= τ1 → τ2 = [Vτ1 → (Vτ2)⊥] = [(Vτ1)⊥ → (Vτ2)⊥] = [Vτ1 → Vτ2 ]

! t "e ρ ∈ (Vτ )⊥ ! t "l1 ρ ∈ (Vτ )⊥ ! t "l2 ρ ∈ Vτ

Table 2. The semantic domains for the Eager, Lazy1, and Lazy2 languages.

Eager Denotational Semantics. For simplicity, we write !_", instead of !_"e.

! n " ρ = 'n(

! x " ρ = 'ρ(x)(

! t1 op t2 " ρ = ! t1 " ρ op⊥ ! t2 " ρ

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

! (t1, t2) " ρ = let v1 ⇐ ! t1 " ρ, v2 ← ! t2 " ρ " '(v1, v2)(

! fst(t) " ρ = let v ⇐ ! t " ρ " 'π1(v)(

! snd(t) " ρ = let v ⇐ ! t " ρ " 'π2(v)(

! t1t2 " ρ = let ϕ ⇐ ! t1 " ρ, v ⇐ ! t2 " ρ " ϕ(v)

! λx.t " ρ = 'λv.! t " ρ [v/x](

! rec y.(λx.t) " ρ = 'fix (λf.λv.! t " ρ[v/x, f/y])( (recGlynn)

= fix (λf.! λx.t " ρ[down(f)/y]) (recAlberto)

Note 3.1. The right hand side of the semantic equation for ! λx.t " ρ cannot be
simplified to 'λx.! t " ρ(. If we make this wrong simplification, in fact, the eager
semantics value of the application (λx.x) 4 in the environment ρ such that ρ(x)=1,
is '1(, instead of the expected value '4(. Indeed,

! (λx.x) 4 " ρ =

= (λx.(! x " ρ)) 4 =

= (λx.'1() 4 = '1(.

Note also that in the expression (λx.(! x " ρ)) 4, the binder λx, which is a piece
of semantics, binds the variable x in ! x ", which is a piece of syntax, and this is an
indication that the expression λx.(! x " ρ) is not correct. !
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Note 3.2. The fix operator in the expression (recGlynn) is different from the
fix operator in the expression (recAlberto) because they have different types (see
below). Actually, there is a fix operator of type [[Vτ → Vτ ] → Vτ ] for each type τ . !

Note 3.3. Instead of fix (λf.e), we will also write µf.e. By definition of the
minimal fixpoint fix (λf.e) of the function λf.e, we have that: µf.e = (λf.e)(µf.e). !

Note 3.4. op⊥ is the strict semantic function in [N⊥×N⊥ → N⊥] corresponding
to op. Thus, for all x and y,

x op⊥ y =

{
⊥ if x=⊥ or y=⊥

'x′+y′( if x='x′( and y='y′( !

Note 3.5. The denotational semantics for the Eager language satisfies the fol-
lowing context rule: for all context C[_] and for all typable, closed terms t1 and t2
such that C[t1] and C[t2] are typable, closed terms,

if ! t1 " ρ = !t2" ρ then ! C[t1] " ρ = !C[t2]" ρ. !

Note 3.6. Let us assume that in the term rec y.(λx.t) we have that:

(i) y : τ1 → τ2

(ii) x : τ1

(iii) t : τ2

Then in Equations (recGlynn) and (recAlberto) we have that:

! rec y.(λx.t) " ρ ∈ [Vτ1 → (Vτ2)⊥]⊥

ρ ∈ Var → Vτ1 ∪ [Vτ1 → (Vτ2)⊥]

In Equation (recGlynn) we also have that:

f ∈ [Vτ1 → (Vτ2)⊥]

v ∈ Vτ1

! t " ρ ∈ (Vτ2)⊥

fix ∈ [[Vτ1 → (Vτ2)⊥] → [Vτ1 → (Vτ2)⊥]] → [Vτ1 → (Vτ2)⊥]

In Equation (recAlberto) we also have that:

f ∈ [Vτ1 → (Vτ2)⊥]⊥

! λx.t " ρ ∈ [Vτ1 → (Vτ2)⊥]⊥

down(f) ∈ [Vτ1 → (Vτ2)⊥]

fix ∈ [[Vτ1 → (Vτ2)⊥]⊥ → [Vτ1 → (Vτ2)⊥]⊥] → [Vτ1 → (Vτ2)⊥]⊥ !

Now we show that, indeed, the two definitions of ! rec y.(λx.t) " ρ for the eager
semantics are equivalent, that is, they define the same semantic value. Thus, we have
to show that:

'fix (λf.d)( = fix (λf.'d[down(f)/f ]() (G)
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where: (i) d is of the form λx.t for some x ∈ Vτ1 and some term t ∈ (Vτ2)⊥, and
(ii) d[down(f)/f ] is the expression d where each occurrence of f has been replaced
by down(f).
Thus, on the left hand side of (G):

f ∈ [Vτ1 → (Vτ2)⊥]

d ∈ [Vτ1 → (Vτ2)⊥]

fix ∈ [[Vτ1 → (Vτ2)⊥] → [Vτ1 → (Vτ2)⊥]] → [Vτ1 → (Vτ2)⊥]

while on the right hand side:

f ∈ [Vτ1 → (Vτ2)⊥]⊥

d ∈ [Vτ1 → (Vτ2)⊥] (not [Vτ1 → (Vτ2)⊥]⊥)

fix ∈ [[Vτ1 → (Vτ2)⊥]⊥ → [Vτ1 → (Vτ2)⊥]⊥] → [Vτ1 → (Vτ2)⊥]⊥

Thus, in (G) the two occurrences of fix denote two different operators because their
types are different.

We first show that:

'fix (λf.d)( , fix (λf.'d[down(f)/f ]() (G1)

and then we show that:

'fix (λf.d)( - fix (λf.'d[down(f)/f ]() (G2)

Proof of (G1). Since '_( is continuous 'fix (λf.d)( =fix'(λf.d)(. Thus, we have to
show that:

⊔
i∈ω '(λf.d)i(⊥)( ,

⊔
i∈ω (λf.'d[down(f)/f ]()i(⊥)

and we will prove this by showing that

for all i ≥ 0, '(λf.d)i(⊥)( ,
⊔

i∈ω (λf.'d[down(f)/f ]()i(⊥).

The proof by induction on i.

(Basis) We have to show that '⊥( ,
⊔

i∈ω (λf.'d[down(f)/f ]()i(⊥).
This holds because 'd[down(f)/f ]( %= ⊥ ∈ [Vτ1 → (Vτ2)⊥]⊥, and thus,

'⊥( , (λf.'d[down(f)/f ]() (⊥).

To help the reader to better understand this inequality let us consider the types of
its subexpressions. Let Vτ denote the cpo [Vτ1 → (Vτ2)⊥]. Then, on the left hand side
⊥ ∈ Vτ and on the right hand side the first two occurrences of f are in (Vτ )⊥ while
the third one is in Vτ and ⊥ ∈ (Vτ )⊥.

(Step) Assume that '(λf.d)i(⊥)( , fix (λf.'d[down(f)/f ](). We have to show that:

'(λf.d)((λf.d)i(⊥))( , fix (λf.'d[down(f)/f ]().

Indeed, for the left hand side we have that:

'(λf.d)((λf.d)i(⊥))( =

= 'd[(λf.d)i(⊥)/f ]( = {by down('x() = x } =

= 'd[down('(λf.d)i(⊥)()/f ](. (G1.1)

For the right hand side we have that:

fix (λf.'d[down(f)/f ]() =

= (λf.'d[down(f)/f ]() (fix (λf.'d[down(f)/f ]()) =
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='d[down(fix (λf.'d[down(f)/f ]())/f ](. (G1.2)

Now we have that (G1.1) , (G1.2), by induction hypothesis, and monotonicity of
down, substitution, and '_(. This completes the proof of (G1).

Proof of (G2). We have to show that:

'
⊔

i∈ω (λf.d)i(⊥)( -
⊔

i∈ω (λf.'d[down(f)/f ]()i(⊥)

and we will prove this by showing that

for all i ≥ 0, '
⊔

i∈ω (λf.d)i(⊥)( - (λf.'d[down(f)/f ]()i(⊥).

The proof by induction on i.

(Basis) Obviously, we have that: '
⊔

i∈ω (λf.d)i(⊥)( - ⊥ ∈ [Vτ1 → (Vτ2)⊥]⊥.

(Step) Assume that 'fix (λf.d)( - (λf.'d[down(f)/f ]()i(⊥). We have to show that:

'fix (λf.d)( - (λf.'d[down(f)/f ]() ((λf.'d[down(f)/f ]()i(⊥)).

Indeed, for the left hand side we have that:

'd[fix (λf.d)/f ]( = {by down('x() = x } =

= 'd[down('fix(λf.d)() /f ](. (G2.1)

For the right hand side we have that:

(λf.'d[down(f)/f ]() ((λf.'d[down(f)/f ]()i(⊥)) =

='d[down((λf.'d[down(f)/f ]()i(⊥))/f ]( (G2.2)

Now we have that (G2.1) - (G2.2) by induction hypothesis, and monotonicity of
down, substitution, and '_(. This completes the proof of (G2).

3.1. Computing the Factorial by Eager Denotational Semantics.

Now let us see in action the eager denotational semantics and let us compute the
value of !(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)". We have:

!(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" ρ =

= let ϕ ⇐ !rec fact. λx. if x then 1 else x×fact(x − 1)" ρ, v ⇐ !2" ρ " ϕ(v) =

= let ϕ ⇐ 'µψ.λv.!if x then 1 else x×fact(x − 1)"
ρ[ψ/fact , v/x](, v ⇐ '2( ρ " ϕ(v) =

= (µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x]) (2) (E2)

Now we may proceed by computing by mathematical induction the minimal fixpoint
µψ.λv.!if x then 1 else x×fact(x−1)" ρ[ψ/fact , v/x]. A different way of proceeding
is to use the following equation, which holds in the eager semantics:

µx.t = (λx.t)(µx.t) (FixUnfold)

This equation characterizes the fixpoint µx.t and allows us to unfold the fixpoint as
many times as required for its evaluation for any given argument. Now we clarify
this sentence by performing the unfolding of the fixpoint in the case of our fixpoint

µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x]

with the argument 2.

From (E2) by applying (FixUnfold), we get:

(λψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x])
(µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x]) (2) =

= !if x then 1 else x×fact(x − 1)"
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ρ[(µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x])/fact , 2/x] =

= Cond(!x"ρ[. . . , 2/x], !1"ρ[. . . , 2/x], !x×fact(x − 1)" ρ[. . . , 2/x]) =

= Cond('2(, !1"ρ[. . .], !x×fact(x − 1)" ρ[. . .]) =

= !x×fact(x−1)" ρ[(µψ.λv.!if x then 1 else x×fact(x−1)"
ρ[ψ/fact , v/x])/fact , 2/x] =

= !x" ρ[. . ., 2/x] ×⊥ !fact(x − 1)" ρ[. . . , 2/x] =

= '2( ×⊥ (let ϕ ⇐ !fact"ρ[. . . , 2/x], v ⇐ !x − 1"ρ[. . . , 2/x].ϕ(v)) =

= '2( ×⊥ (let ϕ ⇐ 'µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x](,
v ⇐ !x"ρ[. . . , 2/x] −⊥ !1"ρ[. . . , 2/x].ϕ(v) =

= '2( ×⊥ ((µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x])
(down('2( −⊥ '1())) =

= '2( ×⊥ ((µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x]) (1)) (E1)

Now if we compare expressions (E1) and (E2), we can see that, by performing
from (E1) a sequence of evaluation steps analogous to the sequence which leads
from (E2) to (E1), we eventually get:

'2( ×⊥ ('1( ×⊥ ((µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x]) (0)))

Then, after a few more evaluation steps we get:

'2( ×⊥ ('1( ×⊥ '1()

which is equal to '2(, as expected.

3.2. Two Equivalent Expressions in the Eager Denotational Semantics.

In this section we will show that the following equality holds in the eager denotational
semantics:

!((λf.(fx)) (recf.λx.t)" ρ = !((recf.λx.t) x)" ρ (RecDef )

For the left hand side of (RecDef ) we have:

!((λf.(fx)) (recf.λx.t)" ρ =

= let ϕ ⇐ !λf.(fx)" ρ, v ⇐ !recf.(λx. t)" ρ " ϕ(v) =

= let ϕ ⇐ 'λg.!fx" ρ[g/f ](, v ⇐ 'µg.λv. !t" ρ[g/f, v/x]( " ϕ(v) =

= (λg.!fx" ρ[g/f ])(µg.λv. !t" ρ[g/f, v/x]) =

= !fx"ρ[(µg.λv. !t" ρ[g/f, v/x])/f ] =

= let ϕ ⇐ 'µg.λv. !t" ρ[g/f, v/x](, v ⇐ 'ρ(x)(. ϕ(v) =

= (µg.λv. !t" ρ[g/f, v/x]) ρ(x)

For the right hand side of (RecDef ) we have:

!((recf.(λx.t)) x)" ρ =

= let ϕ ⇐ !recf.(λx.t)" ρ, v ⇐ !x" ρ " ϕ(v) =

= let ϕ ⇐ 'µg.λv. !t" ρ[g/f, v/x](, v ⇐ 'ρ(x)( " ϕ(v) =

= (µg.λv. !t" ρ[g/f, v/x]) ρ(x)

Thus, Equation (RecDef ) has been proved. !
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Note 3.7. (i) Equation (RecDef ) is a consequence of the β-rule in lambda calcu-
lus. However, the β-rule does not hold, in general, in the eager denotational semantics
as we will see later.
(ii) As a consequence of the above Equation (RecDef ) we have, for instance, that:

!(λfact. fact(2)) (rec fact. λx. if x then 1 else x×fact(x − 1))"ρ =

= !(rec fact. λx. if x then 1 else x×fact(x − 1))(2)"ρ.

Lazy1 Denotational Semantics. For simplicity, we write !_", instead of !_"l1.

! n " ρ = 'n(

! x " ρ = ρ(x)

! t1 op t2 " ρ = ! t1 " ρ op⊥ ! t2 " ρ

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

! (t1, t2) " ρ = '(! t1 " ρ, ! t2 " ρ)(

! fst(t) " ρ = let v ⇐ ! t " ρ " π1(v)

! snd(t) " ρ = let v ⇐ ! t " ρ " π2(v)

! t1t2 " ρ = let ϕ ⇐ ! t1 " ρ " ϕ(!t2"ρ)

! λx.t " ρ = 'λv.! t " ρ [v/x](

! recx.t " ρ = fix(λf.! t " ρ[f/x])

Lazy2 Denotational Semantics. For simplicity, we write !_", instead of !_"l2.

! n " ρ = 'n(

! x " ρ = ρ(x)

! t1 op t2 " ρ = ! t1 " ρ op⊥ ! t2 " ρ

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

! (t1, t2) " ρ = (! t1 " ρ, ! t2 " ρ)

! fst(t) " ρ = π1(! t " ρ)

! snd(t) " ρ = π2(! t " ρ)

! t1t2 " ρ = (!t1"ρ)(!t2"ρ)

! λx.t " ρ = λv.! t " ρ [v/x]

! recx.t " ρ = fix(λf.! t " ρ[f/x])

Note 3.8. As in the case of the denotational semantics for the Eager language,
the denotational semantics for the Lazy1 language and Lazy2 language satisfy the
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following context rule: for all context C[_] and for all typable, closed terms t1 and
t2 such that C[t1] and C[t2] are typable, closed terms,

if ! t1 " ρ = !t2" ρ then ! C[t1] " ρ = !C[t2]" ρ. !

3.3. Computing the Factorial by Lazy1 Denotational Semantics.

Now let us see in action the lazy1 denotational semantics and let us compute the
value of !(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)". We have:

!(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" ρ =

= let ϕ ⇐ !rec fact. λx. if x then 1 else x×fact(x − 1)" ρ " ϕ(!2" ρ) =

= let ϕ ⇐ (µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) " ϕ('2() =

= (µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) ('2() (L1.2)

Now we proceed by using the equation which holds in the lazy1 semantics:

µx.t = (λx.t)(µx.t) (FixUnfold)

Thus, from (L1.2) by applying (FixUnfold), we get:

(λψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])
(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) ('2() =

= !λx. if x then 1 else x×fact(x − 1)"
ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact ] ('2() =

= 'λv. !if x then 1 else x×fact(x − 1)"
ρ[(µψ.!λx. if x then 1 else x×fact(x−1)" ρ[ψ/fact ])/fact , v/x]( ('2() =

= !if x then 1 else x×fact(x − 1)"
ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact , '2(/x] =

= Cond(!x"ρ[. . ./fact , '2(/x], !1"ρ[. . ./fact , '2(/x],
!x×fact(x − 1)" ρ[. . . /fact , '2(/x]) =

= Cond('2(, '1(,
'2(×⊥(µψ.!λx. if x then 1 else x×fact(x−1)" ρ[ψ/fact ])('2(−⊥ '1()) =

= '2(×⊥(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])('1()) = (L1.1)

Now if we compare the expressions (L1.1) and (L1.2), we can see that, by performing
from (L1.1) a sequence of evaluation steps analogous to the sequence which leads
from (L1.2) to (L1.1), we eventually get:

'2( ×⊥ ('1( ×⊥ ((µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact]) ('0()))

Then, after a few more evaluation steps we get:

'2( ×⊥ ('1( ×⊥ '1() = '2(, as desired.

3.4. Computing the Factorial by Lazy2 Denotational Semantics.

Now let us see in action the lazy2 denotational semantics and let us compute the
value of !(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)". We have:

!(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" ρ =

= (!rec fact. λx. if x then 1 else x×fact(x − 1)" ρ) (!2" ρ) =

= (µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) ('2() (L2.2)

Now we proceed by using the equation which holds in the lazy2 semantics:
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µx.t = (λx.t)(µx.t) (FixUnfold)

Thus, from (L2.2) by applying (FixUnfold), we get:

(λψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])
(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) ('2() =

= !λx. if x then 1 else x×fact(x − 1)"
ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact ] ('2() =

= λv. !if x then 1 else x×fact(x − 1)"
ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact , v/x] ('2().

Note that with respect to the evaluation of the lazy1 semantics, in the above expres-
sion there is no lifting. The evaluation proceeds as in the case of the lazy1 semantics
and we then get:

!if x then 1 else x×fact(x − 1)"
ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact , '2(/x] =

= Cond(!x"ρ[. . ./fact , '2(/x], !1"ρ[. . ./fact , '2(/x],
!x×fact(x − 1)" ρ[. . . /fact , '2(/x]) =

= Cond('2(, '1(,

'2(×⊥(µψ.!λx. if x then 1 else x×fact(x−1)" ρ[ψ/fact ])('2(−⊥ '1()) =

= '2(×⊥(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])('1()) = (L2.1)

Now if we compare the expressions (L2.1) and (L2.2), we can see that, by performing
from (L2.1) a sequence of evaluation steps analogous to the sequence which leads
from (L2.2) to (L2.1), we eventually get:

'2( ×⊥ ('1( ×⊥ ((µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact]) ('0()))

Then, after a few more evaluation steps we get:

'2( ×⊥ ('1( ×⊥ '1() = '2(, as expected.

3.5. Adding the let-in construct: the Denotational Semantics.

Let us assume that we have the syntactic construct:

let x ⇐ t1 in t

we have introduced in Section 2.6. We want to have the equivalence of the deno-
tational semantics of let x ⇐ t1 in t and the denotational semantics of ((λx.t)t1).
Thus, in the eager denotational semantics we should have:

! let x ⇐ t1 in t " ρ = !t" ρ[down(!t1"ρ)/x]

and in the lazy1 and lazy2 denotational semantics we should have:

! let x ⇐ t1 in t " ρ = !t" ρ[!t1"ρ/x].
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4. The alpha rule

• The α-rule does not hold in the eager operational semantics. The same for the
lazy operational semantics.

Indeed, both for the eager operational semantics and the lazy operational semantics
λx.t and λy.t[y/x] are different canonical forms. (As usual, t[y/x] denotes the term
t where each free occurrence of the variable x is replaced by y.)

• The α-rule holds in the eager denotational semantics, in the lazy1 denotational
semantics, and in the lazy2 denotational semantics.

Let us consider the case of the eager denotational semantics. The cases of the lazy1
and the lazy2 denotational semantics are similar. We have that:

!λx.t" ρ = 'λv.!t" ρ[v/x]( and

!λy.t[y/x]" ρ = 'λv.!t[y/x]" ρ[v/y]( and

the right hand sides of the above two equations are equal.

5. The beta rule

• The β-rule does not hold in the eager operational semantics.

It is not the case that:

((λx.t) e) → c iff t[e/x] → c

Indeed, take t = 1 and e = ((rec y.λx.(y x)) 5). We have the following Points (i)
and (ii).
(i) No canonical form c exists such that (λx.1)e → c, because no canonical form c2

exists such that e → c2. Indeed, since e is an application, by the following rules of
the eager operational semantics (see the table on page 77)

t1 → λx.t t2 → c2 t[c2/x]→ c

(t1 t2) → c
(app)

rec y.(λx.t) → λx.(t[rec y.(λx.t)/y]) (rec)

we have that:

there exists a canonical form c2 such that e → c2 iff

{by (rec)}

there exists a canonical form c such that λx.((rec y.λx̃.(y x̃)) x) 5 → c iff

{by (app)}

there exists a canonical form c such that ((rec y.λx̃.(y x̃)) 5) → c

Now, since e is the term ((rec y.λx̃.(y x̃)) 5), there is no proof that shows that there
exists a canonical form c2 such that e → c2.

(ii) We have that t[e/x] → 1[e/x] → 1 atnd 1 is a canonical form.

• The β-rule holds in the lazy operational semantics.

It is the case that:

((λx.t) e) → c iff t[e/x] → c
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because we have the following derived rule for the lazy operational semantics (see the
table on page 78) when t1 is λx.t and t2 is e:

t[e/x]→ c

((λx.t) e) → c

• The β-rule does not hold in the eager denotational semantics.

We have that:

!(λx.t) e" ρ %= !t" ρ[!e"ρ/x]

Indeed,

!(λx.t)e"ρ =

= let ϕ ⇐ 'λṽ.!t"ρ[ṽ/x](, v ⇐ !e"ρ " ϕ(v) =

= let v ⇐ !e"ρ " (λṽ.!t"ρ[ṽ/x])(v) =

= let v ⇐ !e"ρ " !t"ρ[v/x]

which is different from !t"ρ[!e"ρ/x] whenever !e"ρ = ⊥.

Indeed, take t=1 and e=((rec y.λx.(y x)) 5).
We have that y : int → int and x : int.

We have that

!(λx.1) ((rec y.λx.(y x)) 5)" ρ %= !1" ρ[!((rec y.λx.(y x)) 5)"ρ/x]. (†)

left-hand-side of (†) =

= let v ⇐ !(rec y.λx.(y x)) 5"ρ " !t"ρ[v/x] =

= let v ⇐ (let ϕ⇐!rec y.λx.(y x)"ρ, v⇐!5"ρ " ϕ(v)) " !t"ρ[v/x] =

{by Remark 5.1 below}

= let v ⇐ (λx.⊥) 5 " !t"ρ[v/x] =

= ⊥ ∈ N⊥, and

right-hand-side of (†) =

= !1" ρ[!(rec y.λx.(y x)) 5"ρ/x] = '1( .

Remark 5.1. Here is the proof that !rec y.λx.(y x)"ρ = 'λx.⊥(.

!rec y.λx(yx)"ρ ∈ [N → N⊥]⊥.

We have that:

!rec y.λx(yx)"ρ =

= 'µϕ.λv. let y′ ⇐ !y"ρ[v/x, ϕ/y], x′ ⇐ !x"ρ[v/x, ϕ/y] " y′(x′)( =

= 'µϕ.λv.ϕ(v)( = 'fix (λϕ.λv.ϕ(v))( = {see below} =

= 'λx.⊥( ∈ [N → N⊥]⊥.

Indeed, we have that fix (λϕ.λv.ϕ(v)) = λx.⊥, with λx.⊥ ∈ [N → N⊥], because we
have that:⊔

n≥0
(λϕ.λv. ϕ(v))n(⊥) =

⊔
n≥0

τn(⊥) for τ = λϕ.λv.ϕ(v) with ⊥ ∈ [N → N⊥]⊥.

τ 0(⊥) = λx.⊥ ∈ [N → N⊥] and

τ 1(⊥) = λv.((λx.⊥)(v)) which is λv.⊥ ∈ [N → N⊥].

where ⊥ ∈ [N → N⊥]⊥ on the left hand sides, and ⊥ ∈ N⊥ on the right hand sides.
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Thus,
⊔

n≥0
(λϕ.λv. ϕ(v))n(⊥) = λv.⊥ ∈ [N → N⊥]. !

• The β-rule holds in the lazy1 denotational semantics.

We have that:

!(λx.t) e" ρ =

= let ϕ ⇐ 'λd.!t"ρ[d/x]( " ϕ(!e"ρ) =

= (λd.!t"ρ[d/x] (!e"ρ) =

= !t"ρ[!e"ρ/x].

• The β-rule holds in the lazy2 denotational semantics.

We have that:

!(λx.t) e" ρ = (λd.!t"ρ[d/x]) (!e"ρ) = !t"ρ[!e"ρ/x].

6. The eta rule

• The η-rule does not hold in the eager operational semantics.

Let us consider the term λx.(fx) where x is not free in f . This term is a canonical
form and it may be the case that there is no canonical form c such that f → c.
Consider, for instance, f = ((rec y.λx.(y x)) 5). Indeed,

f → c iff λx.((rec y.λx̃.(y x̃)) x) 5 → c iff ((rec y.λx̃.(y x̃)) 5) → c

and thus, there is no finite proof which shows that there exists a canonical form c
such that f → c.

• The η-rule does not hold in the lazy operational semantics.

The proof is as in the case of the eager operational semantics, but consider the term
f = recw.w, instead of f = ((rec y.λx.(y x)) 5).

• The η-rule does not hold in the eager denotational semantics.

Consider x : σ f : σ → τ λx.(fx) : σ → τ with x not free in f .

We have:

!f"ρ, !λx.(fx)"ρ ∈ [Vσ → (Vτ )⊥]⊥

x : σ ρ(x) ∈ Vσ !x"ρ ∈ (Vσ)⊥.

Assume !f"ρ = ⊥ with ⊥ ∈ [Vσ → (Vτ )⊥]⊥.

We have:

!λx.(fx)" ρ =

= 'λw. let ϕ ⇐ !f"ρ[w/x], v ⇐ !x"ρ[w/x] " ϕ(v)( =

= 'λw. let ϕ ⇐ !f"ρ, v ⇐ 'w( " ϕ(v)( =

= 'λw. let ϕ ⇐ !f"ρ " ϕ(w)( (where w ∈ Vσ and ϕ ∈ [Vσ → (Vτ )⊥]) = (*)

= {because !f"ρ=⊥} =

= 'λw.⊥(

which is different from ⊥ ∈ [Vσ → (Vτ )⊥]⊥.
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Note that if we assume that !f"ρ %= ⊥ with ⊥ ∈ [Vσ → (Vτ )⊥]⊥ then the η-rule
holds in the eager denotational semantics. Indeed,

!λx.(fx)" ρ = {see (*) above} =

= 'λw. let ϕ ⇐ !f"ρ " ϕ(w)( = {evaluating the let expression} =

= 'λw.(down(!f"ρ) w)( = {the η-rule holds in mathematics} =

= 'down(!f"ρ)( = {since !f"ρ %=⊥} =

= !f"ρ.

• The η-rule does not hold in the lazy1 denotational semantics.

Consider x : σ f : σ → τ λx.(fx) : σ → τ with x not free in f .

We have:

!f"ρ, !λx.(fx)"ρ ∈ [(Vσ)⊥ → (Vτ )⊥]⊥

x : σ ρ(x) ∈ Vσ !x"ρ ∈ (Vσ)⊥.

Assume !f"ρ = ⊥ with ⊥ ∈ [(Vσ)⊥ → (Vτ )⊥]⊥.

We have:

!λx.(fx)" ρ =

= 'λd. !fx"ρ[d/x]( (where d ∈ (Vσ)⊥ and ϕ ∈ [Vσ → (Vτ )⊥]) =

= 'λd. let ϕ ⇐ !f"ρ[d/x] " ϕ(!x"ρ[d/x])( (where ϕ ∈ [(Vσ)⊥ → (Vτ )⊥]) =

= 'λd. let ϕ ⇐ !f"ρ " ϕ(d)( = (**)

= 'λd.⊥(, with 'λd.⊥( ∈ [(Vσ)⊥ → (Vτ)⊥]⊥
which is different from ⊥ of [(Vσ)⊥ → (Vτ )⊥]⊥.

Note that if we assume that !f"ρ %= ⊥ with ⊥ ∈ [(Vσ)⊥ → (Vτ )⊥]⊥ then the η-rule
holds in the lazy1 denotational semantics. Indeed,

!λx.(fx)" ρ = {see (**) above} =

= 'λd. let ϕ ⇐ !f"ρ " ϕ(d)( = {evaluating the let expression} =

= 'λd.(down(!f"ρ) d)( = {the η-rule holds in mathematics} =

= 'down(!f"ρ)( = {because !f"ρ %=⊥} =

= !f"ρ.

• The η-rule holds in the lazy2 denotational semantics.

Consider x : σ f : σ → τ λx.(fx) : σ → τ with x not free in f .

We have:

!f"ρ, !λx.(fx)"ρ ∈ [Vσ → Vτ ]

x : σ ρ(x) ∈ Vσ !x"ρ ∈ Vσ.

We have:

!λx.(fx)" ρ =

= λd.(!fx"ρ[d/x]) =

= λd.((!f"ρ[d/x]) (!x"ρ[d/x])) =

= λd.((!f"ρ) d) =
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= {the η-rule holds in mathematics} =

= !f"ρ.

7. The fixpoint operators

In the Eager language, given the terms x : α, t : β, λx.t : τ , and y : τ , with
τ = α → β, there exists a term R : (τ → τ) → τ such that:

!R (λy.λx.t)"ρ = !rec y.(λx.t)"ρ (E)

We will show that the term R can be taken to be recw.λf.λx.((f(wf)) x) where
w : (τ → τ) → τ , f :τ → τ , and x :α, with τ = α → β.

Other choices for R are possible.

In the Lazy1 language and the Lazy2 language, given the terms y : τ , and t : τ ,
there exists a term R : (τ → τ) → τ such that:

!R (λy.t)"ρ = !rec y.t"ρ (L)

We will show that in the Lazy1 language and the Lazy2 language the term R can be
taken to be recw.λf.(f(wf)) where w : (τ → τ) → τ and f :τ → τ .

Other choices for R are possible.

In the Eager language we have that:

!R"ρ = 'λϕ. 'fix (down ◦ϕ)(( ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥]⊥

with ϕ ∈ [Vτ → (Vτ )⊥], fix ∈ [[Vτ → Vτ ] → Vτ ], and

down ∈ [(Vτ )⊥ → Vτ ].

(RE)

In the Lazy1 language we have that:

!R"ρ = 'λϕ. fix (down ϕ)( ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥

with ϕ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥, fix ∈ [[(Vτ )⊥ → (Vτ )⊥] → (Vτ )⊥], and

down ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → [(Vτ )⊥ → (Vτ )⊥]].

(RL1)

In the Lazy2 language we have that:

!R"ρ = fix ∈ [[Vτ → Vτ ] → Vτ ] (RL2)

In the case of the Lazy2 language we require that the cpo Vτ is a cpo with the bottom
element. This hypothesis is required, in particular, in the proof of (RL2), where we
need the bottom element of the cpo [[Vτ → Vτ ] → Vτ ] (see page 97).

The terms R are called fixpoint operators because for any given term F : τ → τ ,
in the Eager language we have that:

!RF "ρ = !F (RF )"ρ ∈ (Vτ )⊥ if down(!F "ρ) %= (λx.⊥) ∈ [Vτ → (Vτ )⊥] (EF)

in the Lazy1 language we have that:

!RF "ρ = !F (RF )"ρ ∈ (Vτ )⊥ (LF1)

in the Lazy2 language we have that:
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!RF "ρ = !F (RF )"ρ ∈ Vτ (LF2)

In (EF) the condition down(!F "ρ) %= (λx.⊥) ∈ [Vτ → (Vτ )⊥] is equivalent to the
conjunction of the following two conditions:

(i) !F "ρ %=⊥∈ [Vτ →(Vτ )⊥]⊥ where ⊥ is the bottom element in [Vτ →(Vτ )⊥]⊥, and

(ii) !F "ρ %=(λx.⊥)∈ [Vτ →(Vτ )⊥] where x∈Vτ and ⊥ is the bottom element in (Vτ )⊥.

First we show (RE), (RL1), and (RL2).

Proof of (RE). We have to show that !R"ρ = 'λϕ. 'fix (down ◦ϕ)((.

We have that !R"ρ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥]⊥.

Since R is recw.λf.λx.((f(wf)) x), we have that:

!R"ρ = ' fix (λu.λϕ.'down (let v ⇐ u(ϕ) " (ϕ v))()(

with ϕ ∈ [Vτ → (Vτ )⊥], u ∈ A, and fix ∈ [[A → A] → A],

where A stands for [[Vτ → (Vτ )⊥] → (Vτ )⊥].

Thus,

!R"ρ = '
⊔

n∈ω χn(⊥)( with χ = λu.λϕ.'down (let v ⇐ u(ϕ) " (ϕ v))( and

χ ∈ [[[Vτ → (Vτ )⊥] → (Vτ )⊥] → [[Vτ → (Vτ )⊥] → (Vτ )⊥]].

We have that:

χ0(⊥) = ⊥ with both ⊥’s belonging to [[Vτ → (Vτ )⊥] → (Vτ )⊥]

= λϕ.⊥ with ⊥ ∈ (Vτ )⊥

χ1(⊥) = λϕ.'down (let v ⇐ ⊥ " (ϕ v))( =

= λϕ.'down (ϕ⊥)( =

= λϕ.'(down ◦ϕ)⊥(

where on the left hand side ⊥ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥] and on the right hand sides
⊥ ∈ (Vτ )⊥.

χ2(⊥) = λϕ.'down (let v ⇐ λϕ̃.'(down ◦ ϕ̃)⊥((ϕ) " (ϕ v))( =

= λϕ.'down (let v ⇐ '(down ◦ϕ)⊥( " (ϕ v))( =

= λϕ.'down (ϕ((down ◦ϕ)⊥))( =

= λϕ.'(down ◦ϕ)((down ◦ϕ)⊥)( =

= λϕ.'(down ◦ϕ)2(⊥)(

where on the left hand side ⊥ ∈ [Vτ → (Vτ )⊥] → (Vτ )⊥] and on the right hand sides
⊥ ∈ (Vτ )⊥,

and, by induction, one can show that for all n ≥ 0, we have that:

χn(⊥) = λϕ.'(down ◦ϕ)n⊥)(

where on the left hand side ⊥ ∈ [Vτ → (Vτ )⊥] → (Vτ )⊥] and on the right hand side
⊥ ∈ (Vτ )⊥. Thus,
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!R"ρ = '
⊔

n∈ω χn(⊥)( =

= '
⊔

n∈ω λϕ.'((down ◦ϕ)n⊥)(( = {lub’s of functions are computed pointwise} =

= 'λϕ.
⊔

n∈ω '((down ◦ϕ)n⊥)(( = {by continuity of '_(} =

= 'λϕ.'
⊔

n∈ω (down ◦ϕ)n⊥)(( = {by definition of fix = λf.
⊔

n∈ω fn(⊥)} =

= 'λϕ.' fix (down ◦ϕ)((. !

Proof of (RL1). We have to show that !R"ρ = 'λϕ. fix (down ϕ)(.

We have that !R"ρ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥.

Since R is recw.λf.(f(wf)), we have that:

!R"ρ = fix (λu.'λϕ.(down (ϕ))((down(u))ϕ)()

with ϕ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥ and u ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥.

(Note that the two down oprators are different because they have different types.)

Thus,

!R"ρ =
⊔

n∈ω χn(⊥) with χ = λu.'λϕ.(down (ϕ))((down(u))ϕ)( and

χ ∈ [[[(Vτ )⊥ → (Vτ)⊥]⊥ → (Vτ )⊥]⊥ → [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥].

We have that:

χ0(⊥) = ⊥ with both ⊥’s belonging to [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥

χ1(⊥) = 'λϕ.(down (ϕ)⊥)(

where on the left hand side ⊥ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥ and on the right hand
sides ⊥ ∈ (Vτ )⊥.

χ2(⊥) = 'λϕ.(down (ϕ))((down('λϕ̃.(down (ϕ̃)⊥)())ϕ)( =

= 'λϕ.(down (ϕ))((λϕ̃.(down (ϕ̃)⊥))ϕ)( =

= 'λϕ.(down (ϕ))((down (ϕ)⊥))( =

= 'λϕ.(down (ϕ))2(⊥)(

where on the left hand side ⊥ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥ and on the right hand
sides ⊥ ∈ (Vτ )⊥. By induction on n we have that for all n≥0,

χn(⊥) = 'λϕ.(down(ϕ))n(⊥)(

where on the left hand side ⊥ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥ and on the right hand
side ⊥ ∈ (Vτ )⊥. Thus,

!R"ρ =
⊔

n∈ω χn(⊥) =

=
⊔

n∈ω'λϕ.(down(ϕ))n(⊥)( = {by continuity of '_(} =

= '
⊔

n∈ωλϕ.(down(ϕ))n(⊥)( = {lub’s of functions are computed pointwise} =

= 'λϕ.
⊔

n∈ω(down(ϕ))n(⊥)( = {by definition of fix = λf.
⊔

n∈ω fn(⊥)} =

= 'λϕ.fix (down(ϕ))(. !

Proof of (RL2). We have to show that !R"ρ = fix, where R : (τ → τ) → τ .

We have that !R"ρ ∈ [[Vτ → Vτ ] → Vτ ].
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Since R is recw.λf.(f(wf)), we have that:

!R"ρ = !recw.λf.(f(wf))"ρ =

= fix (λw̃.!λf.(f(wf))"ρ[w̃/w] =

= fix (λw̃.λf̃ .!f(wf)"ρ[w̃/w, f̃/f ] = {by renaming of bound variables} =

= fix (λw.λf.f(wf)).

Thus,

!R"ρ =
⊔

n∈ω χn(⊥) with χ = λw.λf.f(wf) and

χ ∈ [[[Vτ → Vτ ] → Vτ ] → [[Vτ → Vτ ] → Vτ ]].

We have that:

χ0(⊥) = ⊥

χ1(⊥) = (λw.λf.f(wf)) (⊥) = λf.⊥

χ2(⊥) = (λw.λf.f(wf)) (λf.⊥) = λf.f(⊥)

χ3(⊥) = (λw.λf.f(wf)) (λf.f(⊥)) = λf.f(f(⊥))

where all ⊥’s belong to ⊥ ∈ [[Vτ → Vτ ] → Vτ ]. By induction on n we have that for
all n≥0, χn(⊥) = λf.fn(⊥). Thus,

!R"ρ =
⊔

n∈ω χn(⊥) =
⊔

n∈ω λf.fn(⊥) = fix . !

Proof of (E). For the Eager language we have to show that

!R (λy.λx.t)"ρ = !rec y.λx.t"ρ (E)

with R = recw.λf.λx.((f(wf))x) and R : (τ → τ) → τ . By (RE) and the definition
of the eager denotational semantics of rec y.λx.t, we have to show that

let ϕ̃⇐'λϕ. 'fix (down ◦ϕ)((, v⇐!λy.λx.t"ρ " ϕ̃(v) = 'fix (λu.λv.! t " ρ[u/y, v/x])(,

that is,

let v ⇐ 'λu.!λx.t"ρ[u/y]( " (λϕ. 'fix (down ◦ϕ)()(v) = 'fix (λu.λv.! t " ρ[u/y, v/x])(.

Now, this last equality holds because:

let v ⇐ 'λu.!λx.t"ρ[u/y]( " (λϕ. 'fix (down ◦ϕ)()(v) =

= λϕ.' fix (down ◦ϕ)( (λu.!λx.t"ρ[u/y]) =

= ' fix (down ◦ (λu.!λx.t"ρ[u/y]))( =

= ' fix (down ◦ (λu.'λv.!t"ρ[u/y, v/x]())( = {see (†3) below} =
= ' fix (λu.λv.! t " ρ[u/y, v/x])(.

Thus, the proof is completed if the following equality holds between elements of the
cpo [Vτ → Vτ ]:

down ◦ (λu.'λv.!t"ρ[u/y, v/x]() = λu.λv.! t " ρ[u/y, v/x] (†3)

where u : τ , v : α, and t : β, with τ = α → β. Indeed, for all r and s, we have that:

(down ◦ (λu.'r())s = down((λu.'r()s) = down'r[s/u]( = r[s/u] =

= (λu.r)s

Then, by instantiating this equality (down ◦ (λu.'r())s = (λu.r)s for r equal to the
term λv.!t"ρ[u/y, v/x], we get the desired equality (†3). !

Proof of (L) for the Lazy1 language. We have to show that
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!R (λy.t)"ρ = !rec y.t"ρ (L)

with R = recw.λf.(f(wf)) and R : (τ → τ) → τ . By (RL1) and the definition of
the lazy1 denotational semantics of rec y.t, we have to show that:

let ϕ̃ ⇐ 'λϕ. fix (down ϕ)( " ϕ̃(!λy.t"ρ) = fix (λu.! t " ρ[u/y]).

This equality holds because:

let ϕ̃ ⇐ 'λϕ. fix (down ϕ)( " ϕ̃(!λy.t"ρ) = {by definition of the let construct} =

= fix (down (!λy.t"ρ)) = {by definition of !λy.t"ρ} =

= fix (down 'λu.!t"ρ[u/y]() = {by down'x( = x} =

= fix (λu.! t " ρ[u/y]). !

Proof of (L) for the Lazy2 language. We have to show that:

!R (λy.t)"ρ = !rec y.t"ρ (L)

with R = recw.λf.(f(wf)) and R : (τ → τ) → τ . By (RL2) and the definition of
the lazy2 denotational semantics of rec y.t, we have to show that:

fix (!λy.t"ρ) = fix (λu.! t " ρ[u/y]).

This equality holds in the lazy2 denotational semantics because:

!λy.t"ρ = λu.! t " ρ[u/y]. !

Proof of (EF). Consider F : τ → τ and R : (τ → τ) → τ . For the Eager language
we have that:

!F "ρ ∈ [Vτ → (Vτ )⊥]⊥
!R"ρ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥]⊥
fix ∈ [[Vτ → Vτ ] → Vτ ]

ϕ ∈ [Vτ → (Vτ )⊥]

down ◦ϕ ∈ [Vτ → Vτ ]

!R"ρ = 'λϕ.'fix (down ◦ϕ)((

We have to show that:

!RF "ρ = !F (RF )"ρ if down(!F "ρ) %= (λx.⊥) ∈ [Vτ → (Vτ )⊥]. (EF)

For the left hand side of (EF) we have that:

!RF "ρ = let r ⇐ !R"ρ, v ⇐ !F "ρ " r(v) =

{by definition of the let construct}

= (down(!R"ρ)) (down(!F "ρ)) =

{by definition of !R"ρ}

= 'fix (down ◦ (down(!F "ρ)))( =

{by definition of fix and ◦ }

= 'down((down(!F "ρ))(fix(down ◦ (down(!F "ρ)))))( = (‡1)

{by 'down(x)( = x for x %= ⊥ ∈ (Vτ )⊥}

= (down(!F "ρ))(fix (down ◦ (down(!F "ρ)))). (‡2)

This last step from expression (‡1) to expression (‡2) is justified by the fact that
the argument of the leftmost down in (‡1) is different from ⊥ ∈ (Vτ )⊥ because, by
hypothesis, down(!F "ρ)) %= (λx.⊥) ∈ [Vτ → (Vτ )⊥].
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For the right hand side of (EF) we have that:

!F (RF )"ρ = let f ⇐ !F "ρ, x ⇐ (let r ⇐ !R"ρ, v ⇐ !F "ρ " r(v))" f(x)) =

{by definition of the let construct}

= (down(!F "ρ)) (down((down(!R"ρ)) (down(!F "ρ)))) =

{by definition of !R"ρ}

= (down(!F "ρ)) (down((down'λϕ.'fix (down ◦ϕ(() (down(!F "ρ)))) =

{by down('x() = x and function application}

= (down(!F "ρ)) (down('fix (down ◦ (down(!F "ρ))()) =

{by down('x() = x}

= (down(!F "ρ)) (fix (down ◦ (down(!F "ρ)))). (‡3)

Since (‡2) = (‡3) the proof is completed. !

Proof of (LF1). Consider F : τ → τ and R : (τ → τ) → τ . For the Lazy1 language
we have that:

!F "ρ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥
!R"ρ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥
fix ∈ [[(Vτ )⊥ → (Vτ )⊥] → (Vτ )⊥]

!R"ρ = fix

We have to show that:

!RF "ρ = !F (RF )"ρ ∈ (Vτ )⊥.

This equality holds because we have that:

!RF "ρ = let ϕ ⇐ !R"ρ " ϕ(!F "ρ) =

= let ϕ̃ ⇐ 'λϕ.fix(down ϕ)( " ϕ̃(!F "ρ) =

= (λϕ.fix(down ϕ))(!F "ρ) =

= fix(down (!F "ρ)), (‡4)

!F (RF )"ρ = let ϕ ⇐ !F "ρ " ϕ(!RF "ρ) = {see (‡4)} =

= let ϕ ⇐ !F "ρ " ϕ(fix(down (!F "ρ))) =

= (down (!F "ρ)) (fix(down (!F "ρ))), and

for all x, fix x = x (fix x ). !

Proof of (LF2). Consider F : τ → τ and R : (τ → τ) → τ . For the Lazy2 language
we have that:

!F "ρ ∈ [Vτ → Vτ ]

!R"ρ ∈ [[Vτ → Vτ ] → Vτ ]

fix ∈ [[Vτ → Vτ ] → Vτ ]

!R"ρ = fix

Since in the Lazy2 language we have that ! t1t2 " ρ = (!t1"ρ)(!t2"ρ), we have to show
that !RF "ρ = !F (RF )"ρ, that is,

fix (!F "ρ) = (!F "ρ) (fix (!F "ρ))

Indeed, this equality holds because for any x ∈ [Vτ → Vτ ] we have that fix x =
x (fix x). !
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7.1. Operational Semantics of Fixpoint Operators.

7.1.1. Eager Operational Semantics.

Let R denote the fixpoint operator rec y.(λf.λx.((f(yf))x)) of the eager operational
semantics.

We show that in the eager operational semantics for all terms F : τ → τ ,
(i) if F has no canonical form then both RF and F (RF ) have no canonical form, and
(ii) if F has canonical form then RF has canonical form, while F (RF ) may or may
not have canonical form.

Point (i) is immediate because in the eager operational semantics the evaluation of
an application (t1t2) requires that both subterms t1 and t2 have canonical forms.

In order to show Point (ii) let us consider the term F = λu.t which is a canonical
form. We have that:

RF ≡ (rec y.(λf.λx.((f(yf))x))) (λu.t) →

→ (λf.λx.((f(yf))x) [rec y. (λgλv.((g(yg))v)) / y]) (λu.t) →

→ λx.(((λu.t)(y(λu.t)))x) [rec y. (λgλv.((g(yg))v))) / y] (α)

which is a canonical form. Let us call it α. We also have that:

F (RF ) ≡ (λu.t) ((rec y.(λf.λx.((f(yf))x))) (λu.t)) → . . . → (λu.t) α → t[α/u]

If in F we take t to be 1 then RF → α[1/t] and F (RF ) → 1. Thus, we get the
two distinct canonical forms α[1/t] and 1. We have that RF and F (RF ) have the
same canonical form if in F we take t to be u. In that case, in fact, the terms α and
t[α/u] are both equal to α[u/t].

If in F we take t to be ((rec y.(λf.(f(yf)))) (λv.t1)) for some term t1 then RF has
the canonical form α with ((rec y.(λf.(f(yf)))) (λv.t1)) instead of t, and F (RF ) has
no canonical form in the eager operational semantics. Indeed, in the eager operational
semantics the application:

(rec y.(λf.(f(yf)))) (λv.t1)

where rec y.(λf.(f(yf))) is the fixpoint operator of the lazy operational semantics,
has no canonical form.

7.1.2. Lazy Operational Semantics.

We show that in the lazy operational semantics for all terms F : τ → τ and every
canonical form c, RF → c iff F (RF ) → c, where R denotes the fixpoint operator
rec y.λf.(f(yf)) of the lazy operational semantics. Indeed, we have that:

RF → c

{by definition of R}

iff (rec y.λf.(f(yf))) F → c

{by operational rule for rec}

iff λf.(f((rec y. λg.(g(yg)))f)) F → c

{by operational rule for function application}

iff F ((rec y. (λg.g(yg)))F ) → c

{by definition of R}

iff F (RF ) → c.
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8. Adequacy

Let us introduce the following definition.

Definition 8.1. Given a cpo Vτ , a predicate pτ : Vτ → {true, false} is said to be
canonically consistent iff for all terms t of type τ and all environments ρ,

pτ (!t"l2 ρ) = true iff
there exists a canonical form c of type τ such that !t"l2 ρ = !c"l2 ρ.

We have that for each type τ , there exists a unique canonically consistent predicate
from Vτ to {true, false} which we call haltτ .

We also need the following notations. For any closed, typable term t of type τ ,

(i) t ↓e (pronounced, t converges in the eager operational semantics) iff
there exists a canonical form c such that t →e c,
where →e denotes the eager operational semantics relation.

(ii) t ↓! (pronounced, t converges in the lazy operational semantics) iff
there exists a canonical form c such that t →! c,
where →! denotes the lazy operational semantics relation.

(iii) t ⇓e (pronounced, t converges in the eager denotational semantics) iff
there exists v ∈ Vτ such that for all environments ρ, !t"e ρ = 'v(.

(iv) t ⇓!1 (pronounced, t converges in the lazy1 denotational semantics) iff
there exists v ∈ Vτ such that for all environments ρ, !t"!1 ρ = 'v(.

(v) t ⇓!2 (pronounced, t converges in the lazy2 denotational semantics) iff
for all environments ρ, haltτ (!t"!2 ρ) = true.

Note that the definition of convergence t ⇓!2 in the lazy2 denotational semantics (see
Point (v) above) cannot be given in a way which is analogous to that of convergence
in the lazy1 denotational semantics (see Point (iv) above), because for any term t of
type τ , !t"!2 ρ is of type Vτ , and not of type (Vτ )⊥. (Note, however, that for any term
of type int, !t"!2 ρ belongs to Vint which is N⊥, not N .)

Now we introduce the notion of adequacy of the denotational semantics w.r.t. the
operational semantics for the following three languages:

(i) the Eager language,

(ii) the Lazy language with the lazy1 denotational semantics, called Lazy1, and

(iii) the Lazy language, with the lazy2 denotational semantics, called Lazy2.

These three definitions of adequacy follow the same pattern and they can be derived
one from the other by making the changes indicated in the following Table 3.

Definition 8.2. [Adequacy of the Eager Denotational Semantics] The
eager denotational semantics !_"e is said to be adequate w.r.t. the eager operational
semantics →e iff
(Ae) for all closed, typed terms t, t ↓e iff t ⇓e, and
(Be) for all closed, typed terms t, there exists a canonical form c such that

t →e c implies !t"e ρ = !c"e ρ.
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Eager Lazy1 Lazy2

operational semantics and
operational convergence

→e ↓e →! ↓! →! ↓!

denotational semantics and
operational convergence

!_"e ⇓e !_"!1 ⇓!1 !_"!2 ⇓!2
halt

Table 3. Notations for operational semantics, denotational semantics,
and convergence. Note that Lazy1 and Lazy2 languages have the same
operational semantics.

Definition 8.3. [Adequacy of the Lazy1 Denotational Semantics] The
lazy1 denotational semantics !_"!1 is said to be adequate w.r.t. the lazy operational
semantics →! iff
(A!1) for all closed, typed terms t, t ↓! iff t ⇓!1, and
(B!1) for all closed, typed terms t, there exists a canonical form c such that

t →v c implies !t"!1 ρ = !c"!1 ρ.

Definition 8.4. [Adequacy of the Lazy2 Denotational Semantics] The
lazy2 denotational semantics !_"!2 is said to be adequate w.r.t. the lazy operational
semantics →! iff
(Al2) for all closed term t of type τ , t ↓! iff t ⇓!2, and
(Bl2) for all closed, typed terms t, there exists a canonical form c such that

t →! c implies !t"!2 ρ = !c"!2 ρ.

With reference to the above Definitions 8.2, 8.3, and 8.4, we have the following
theorem.

Theorem 8.5. For every closed term t of type int,

(i) (Ae) is equivalent to (Be) with ‘implies’ replaced by ‘iff’ and

(ii) (A!1) is equivalent to (B!1) with ‘implies’ replaced by ‘iff’ and

(iii) (A!2) is equivalent to (B!2) with ‘implies’ replaced by ‘iff’.

Proof. (i) We have to show that:
(i.1) (Ae) implies (Be) with ‘implies’ replaced by ‘iff’, and
(i.2) (Be) with ‘implies’ replaced by ‘iff’, implies (Ae).

For (i.1) we have that (Be) with ‘implies’ replaced by ‘iff’, is proved in Corol-
lary 11.15 [6, page 200]. For (i.2) we have to show that:

∃n ∈ N. t →e n iff ∃n ∈ N. !t"eρ = 'n( (C1)

because the canonical forms of type int are the elements of N . Now, Equivalence (C1)
is a consequence of Corollary 11.15 [6, page 200] and thus, we get the thesis.

(ii) The proof of this point is analogous that of Point (i), but we have to refer to
Corollary 11.24 [6, page 209], instead of Corollary 11.15 [6, page 200].

(iii) We have to show that: (iii.1) (A!2) implies (B!2) with ‘implies’ replaced by ‘iff’,
and (iii.2) (B!2) with ‘implies’ replaced by ‘iff’, implies (A!2).
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For (iii.1) we have that (B!2) with ‘implies’ replaced by ‘iff’, is proved in Exer-
cise 11.28 (3) [6, page 217]. For (iii.2) we have to show that:

∃n ∈ N. t →! n iff halt int(!t"!2ρ) = true (C2)

that is, ∃n ∈ N. t →! n iff ∃n ∈ N. !t"l2ρ = 'n(, because the canonical forms of
type int are the elements of N . Now, Equivalence (C2) is a consequence of Exer-
cise 11.28 (3) [6, page 217] and thus, we get the thesis. !

We also have the following theorem.

Theorem 8.6. For some closed, typed terms t1 and t2 both of type int → int,

(i) !t1"e ρ = !t2"e ρ does not imply t1 →e t2 and

(ii) !t1"!1 ρ = !t2"!1 ρ does not imply t1 →! t2 and

(iii) !t1"!2 ρ = !t2"!2 ρ does not imply t1 →! t2.

Proof. (i) Let us consider the terms λx.x+0 and λx.x. We have that: !λx.x+0"e ρ =
!λx.x"e ρ. However, since in the eager operational semantics λx.x+0 and λx.x are
both canonical forms, it is not the case that λx.x+0 →e λx.x.

The proofs of (ii) and (iii) are analogous to the proof of (i). !

As a consequence of this Theorem 8.6, the above Theorem 8.5 cannot be extended
to the case where the type of the term t is not int. In particular, (Ae) holds, while (Be)
with ‘implies’ replaced by ‘iff’, does not hold (because of Theorem 8.6). Analogously,
for #1 and #2, instead of e.

Theorem 8.7. [Adequacy of the Eager Denotational Semantics] The eager
denotational semantics !_"e is adequate w.r.t. the eager operational semantics →e.

Proof. Omitted. !

Theorem 8.8. [Adequacy of the Lazy1 Denotational Semantics] The lazy1
denotational semantics !_"!1 is adequate w.r.t. the lazy operational semantics →!.

Proof. Omitted. !

As a consequence of Theorems 8.5, 8.7, and 8.8 we have the following corollary.

Corollary 8.9. For every closed term t of type int and n ∈ N ,

(i) t →e n iff !t"e ρ = !n"e ρ and

(ii) t →l n iff !t"!1 ρ = !n"!1 ρ and

(iii) t →l n iff !t"!2 ρ = !n"!2 ρ.

Recall that for any n and ρ, we have that: !n"e ρ = !n"!1 ρ = !n"!2 ρ = 'n(.

Let us consider the following two terms of the Lazy language:
(i) recw.w, also denoted Ω, where the variable w is of type int → int and the term
recw.w is of type int → int , and
(ii) λx.((recw.w) x), also denoted λx.(Ω x), where the variable x is of type int , the
variable w is of type int → int , and the term λx.((recw.w) x) is of type int → int .

We have the following lemma and theorem.
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Lemma 8.10. For any ρ, !Ω"!2ρ=!λx.(Ωx)"!2ρ (both sides belong to [N⊥→N⊥]).

Proof. This lemma is a consequence of the fact that the η-rule holds in the Lazy2
language (see page 94). We have that for any ρ,

!Ω"!2ρ = !recw.w"!2ρ = fix(λd.!w"!2ρ[d/w]) =

= fix (λd.d), with fix ∈ [[[N⊥→N⊥] → [N⊥→N⊥]] → [N⊥→N⊥]] =

= λd.⊥, with d∈N⊥ and ⊥∈N⊥.

Recall that λd.⊥ is the bottom element in [N⊥→N⊥]. !

Remark 8.11. For any ρ, !Ω"!1ρ %= !λx.(Ωx)"!1ρ (both sides belong to [N⊥ →
N⊥]⊥). Indeed, for the left hand side we have that:

!Ω"!1ρ = !recw.w"!1ρ = fix(λd.!w"!1ρ[d/w]) =

= fix (λd.d), with fix ∈ [[[N⊥→N⊥]⊥ → [N⊥→N⊥]⊥] → [N⊥→N⊥]⊥] =

= ⊥, with ⊥ ∈ [N⊥→N⊥]⊥.

For the right hand side we have that:

!λx.(Ωx)"!1ρ = 'λd.(!Ω x"!1ρ[d/x])( ∈ [N⊥→N⊥]⊥ with d ∈ N⊥ =

= 'λd.(let ϕ ⇐ !Ω"!1ρ[d/x] " ϕ(!x"!1ρ[d/x]))( =

= {since !Ω"!1ρ=⊥ ∈ [N⊥→N⊥]⊥ (as we have now shown) we have that
ϕ=λn.⊥ ∈ [N⊥→N⊥]} =

= 'λd.(⊥(!x"!1ρ[d/x]))( =

= 'λd.⊥( ∈ [N⊥→N⊥]⊥. !

Theorem 8.12. [The Lazy2 Denotational Semantics is not adequate]
The lazy2 denotational semantics !_"!2 is not adequate w.r.t. the lazy operational
semantics →!.

Proof. Let us assume, by absurdum, that the lazy2 denotational semantics !_"!2 is
adequate w.r.t. the lazy operational semantics →!. In particular, we assume that:

Ω ↓! iff Ω ⇓!2 and (†1)

λx.(Ωx) ↓! iff λx.(Ωx) ⇓!2. (†2)

We have that:

Ω ↓! {by (†1)}

iff Ω ⇓!2 {by definition of ⇓!2}

iff halt int→int(!Ω"!2ρ) {by Lemma 8.10}

iff halt int→int(!λx.(Ωx)"!2ρ) {by definition of ⇓!2}

iff λx.(Ωx) ⇓!2 {by (†2)}

iff λx.(Ωx) ↓!

Now, it cannot be the case that: Ω ↓! iff λx.(Ωx) ↓!, because:
(i) λx.(Ωx) is a lazy canonical form, being an abstraction, and thus, λx.(Ωx) →
λx.(Ωx), and
(ii) no lazy canonical form c exists such that Ω →! c because the only way of deducing
recw.w →! c is to prove recw.w →! c (see the lazy operational rule for rec). !
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Now we sum up the main notions and results we have presented in this section.
Let us consider a closed, typed term t. Let t be of type τ . t : any means that the

term t is of any type and t : int means that the term t is of type int.

In the Eager, Lazy1, and Lazy2 languages

t ↓ stands for there exists a canonical form c such that t → c.

In the Eager and Lazy1 languages

t ⇓ stands for ∃v ∈ Vτ . !t"ρ = 'v(.

In the Lazy2 language for any t : int

t ⇓ stands for ∃n ∈ N⊥. !t"ρ = 'n(.

The following Table 4 sums up the results of this section.

Eager Lazy1 Lazy2

• Property A1: t :any t ↓ iff t ⇓ yes yes no

Property A1int : t : int t ↓ iff t ⇓ yes yes yes

• Property A2: t :any t → c implies !t"ρ = !c"ρ yes yes yes

Property A2∗int : t : int t → n iff !t"ρ = 'n( yes yes yes

Table 4. Adequacy of the Eager and Lazy1 languages (that is, Prop-
erties A1 and A2 hold). The Lazy2 language is not adequate. In
Property A2 ‘implies’ cannot be replaced by ‘iff’ because in the Eager,
Lazy1, and Lazy2 languages, !λx.x"ρ = !λx.x+0"ρ and it is not the
case that λx.x → λx.x+0.

Adequacy of the denotational semantics with respect to the operational semantics is
the conjunction of Property A1 and Property A2. Note that in Property A2 the term
t is of any type, not necessarily of type int.

Table 4 indicates that: (i) the eager denotational semantics is adequate with
respect to the eager operational semantics, (ii) the lazy1 denotational semantics is
adequate with respect to the lazy operational semantics, while (iii) the lazy2 deno-
tational semantics is not adequate with respect to the lazy operational semantics.
Indeed, in the case of the lazy2 denotational semantics Property A1 holds only for
terms t of type int, and not for terms of any type.

9. Half and Full Abstraction

Let us consider a generic, higher order operational semantics relation, denoted −→−,
and a generic, higher order denotational semantics function, denoted !−" ρ. For every
closed, typed term t, we write t ↓ iff there exists a canonical form c such that t → c.

Let us also consider the following two formulas, which are assumed to have as
parameters two terms t1 and t2 with the same type:
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Op(t1, t2) which holds iff for every contextC[−] such that C[t1] andC[t2]
are typable, closed terms, C[t1] ↓ iff C[t2] ↓

Den(t1, t2) which holds iff for every environment ρ, !t1"ρ = !t2"ρ.

The name of the function Op derives from the fact that its definition refers to the
operational semantics. Analogously, the name of the function Den derives from the
fact that its definition refers to the denotational semantics.

The following definitions relate the convergence of the operational semantics to
the equality of the denotational semantics. These definitions are meaningful because
through contexts we can establish equality of denotational values. For instance, in
the Eager language for any term t of type int, for any n ∈ N , we have that:

t →e n iff if (t−n) then 0 else Ω → n

iff !t"eρ = 'n(.

Analogous properties hold for the Lazy1 and Lazy2 languages.

Definition 9.1. [Half Abstraction of a Denotational Semantics with re-
spect to an Operational Semantics] A denotational semantics !−" is said to be
half abstract w.r.t. the observation of convergence of the operational semantics → (or
simply, w.r.t. the operational semantics →) if

for all terms t1 and t2, Op(t1, t2) if Den(t1, t2).

Definition 9.2. [Full Abstraction of a Denotational Semantics with re-
spect to an Operational Semantics] A denotational semantics !−" is said to be
fully abstract w.r.t. the observation of convergence of the operational semantics →
(or simply, w.r.t. the operational semantics →) if

for all terms t1 and t2, Op(t1, t2) if and only if Den(t1, t2).

Theorem 9.3. [The Eager Denotational Semantics is Half Abstract] For
the eager semantics !−"e which is adequate w.r.t. →e, we have that for all terms t1
and t2 of the same type, Op(t1, t2) if Den(t1, t2).

Proof. Let us consider the terms t1 and t2 of type τ . If !t1"eρ = !t2"eρ we get that:
for every context C[−], !C[t1]"eρ = !C[t2]"eρ. Now there are two cases.
Case (i): !C[t1]"eρ %= ⊥ ∈ (Vτ )⊥ and Case (ii): !C[t1]"eρ = ⊥ ∈ (Vτ )⊥.
In Case (i), from !C[t1]"eρ = !C[t2]"eρ %= ⊥, by adequacy, we get that: C[t1] ↓ and
C[t2] ↓ .
In Case (ii), from !C[t1]"eρ = !C[t2]"eρ = ⊥, by adequacy, we get that: ¬C[t1] ↓ and
¬C[t2] ↓ .
Thus, in both cases we have C[t1] ↓ iff C[t2] ↓ . !

Theorem 9.4. [The Lazy1 Denotational Semantics is Half Abstract] For
the lazy1 semantics !−"!1 which is adequate w.r.t. →!, we have that for all terms t1
and t2 of the same type, Op(t1, t2) if Den(t1, t2).

Proof. Similar to the proof of Theorem 9.3. !

Theorem 9.5. [The Lazy2 Denotational Semantics is not Half Abstract]
For the lazy2 semantics !−"!2 which is not adequate w.r.t. →!, it is not the case that
for all terms t1 and t2 of the same type, Op(t1, t2) if Den(t1, t2).
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Proof. Let us consider the terms Ω and λx.(Ω x) both of type int → int. We have
that:
(i) !Ω"!2ρ = !λx.(Ωx)"!2ρ,
(ii) λx.(Ωx) →! λx.(Ωx), and
(iii) no lazy operational canonical form c exists such that Ω →! c.

Thus, by Point (i), Den(Ω, λx.(Ωx)) holds, and by Point (ii), it is not the case that
Ω ↓! iff λx.(Ωx) ↓!, and thus, Op(Ω, λx.(Ωx)) does not hold because if we take the
context C[_] to be empty context, it is not the case that C[Ω] ↓! iff C[λx.(Ωx)] ↓!. !

Theorem 9.6. [The Eager Denotational Semantics is Not Fully Abstract]
The eager denotational semantics !−"e is not fully abstract w.r.t. the eager operational
semantics →e.

Proof. Omitted. !

Theorem 9.7. [The Lazy1 Denotational Semantics is Not Fully Abstract]
The lazy1 denotational semantics !−"!1 is not fully abstract w.r.t. the lazy operational
semantics →!.

Proof. Omitted. !

Theorem 9.8. [The Lazy2 Denotational Semantics is Not Fully Abstract]
The lazy2 denotational semantics !−"!2 is not fully abstract w.r.t. the lazy operational
semantics →!.

Proof. It is a consequence of Theorem 9.5. !

Tables 5 and 6 on the facing page summarize the results of Sections 5, 6, 8, and 9.
‘yes’ means that the rule (or the property) holds, while ‘no’ means that the rule (or
the property) does not hold.

operational
semantics α-rule β-rule η-rule

Eager no no no

Lazy no yes no

Table 5. Validity of the α-rule, β-rule, and η-rule in the eager and
lazy operational semantics.
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denotational
semantics α-rule β-rule η -rule

A1int
& A2∗int

adequacy
A1 & A2

abstraction
half full

Eager yes no no yes yes yes no

Lazy1 yes yes no yes yes yes no

Lazy2 yes yes yes yes no no no

Table 6. Validity of the α-rule, β-rule, η-rule, adequacy, half abstrac-
tion, and full abstraction in the eager, lazy1, and lazy2 denotational
semantics. Properties A1, A2, A1int , and A2∗int are defined in Ta-
ble 4 on page 106. Half abstraction and full abstraction are defined in
Definition 9.1 on page 107 and Definition 9.2 on page 107, respectively.


