Exam of Theoretical Computer Science. December 2007.

1. Show that $f: N \to N$ such that $f(x) = \text{if } x \leq 1$ then 1 else $x \times f(x-2)$ is a primitive recursive function.

2. Show that the Fibonacci function from N to N, where N denotes the set of natural numbers, is a primitive recursive function.

3. Let PRF be the set of all partial-recursive-functions from N to N (p.r.f, for short). Show that the set of the total p.r.f. is not a recursive subset of PRF.

- 4. Give a bijection between $\bigcup_{k \in \omega} N^k$ and N.
- 5. Define the least Herbrand model of a definite logic program.

6. Show that $\vdash (\forall x[x = t \rightarrow A(x)]) \leftrightarrow A(t)$ if t is free for x in A(x) and x does not occur in t. Show that the two conditions above are necessary.

- 7. Given a continuous function $f: D \to D$ where D is a cpo with bottom. Show that:
 - (i) $\bigsqcup_{n \in \omega} (\lambda f. f^n(\bot)) = \lambda f.(\bigsqcup_{n \in \omega} f^n(\bot))$, and
 - (ii) fix(f) = f(fix(f)) where fix is defined as follows: $\bigsqcup_{n \in \omega} (\lambda f. f^n(\bot))$.
- 8. (i) Find the weakest precondition of the statement

x := 1; y := 0; while $x \ge 1$ do x := x - 1; y := y + 1 od and the postcondition x < y. (ii) Find the weakest precondition of the statement

x := 1; y := 0; while $x \le 1$ do x := x - 1; y := y + 1 od and the postcondition x < y.

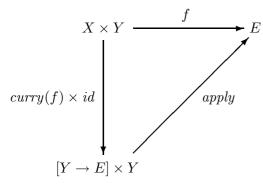
9. Find the weakest precondition of the statement x := 0; while $Q(x) \wedge x \ge 0$ do x := x + 1 and the postcondition Q(x).

10. Find all formulas P(x, y) such that the Hoare triple

 $\{y>1\}$ x:=0; while $y>x \wedge P(x,y)$ do x:=y-1 $\{x=0 \wedge y>1\}$ holds. Explain your answer.

11. Let us consider a cpo (D, \sqsubseteq) . U subset of D is said to be *open* iff (i) $\forall d, e \in D$. $(d \sqsubseteq e \text{ and } d \in U) \Rightarrow e \in U$, and (ii) for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D we have $\bigsqcup_{n \in \omega} d_n \in U \Rightarrow \exists n \in \omega. d_n \in U$. Show that: (i) \emptyset and D are open, (ii) any finite intersection of open sets is open, and (iii) the union of any set of open sets is open.

12. Discuss the following commutative diagram, where f is a continuous function:



Give the explicit definition of apply and curry(f) when: (i) X = Y = E = N (where N is the set of natural numbers), (ii) f is $\lambda xy.sum(x, y)$, and (iii) sum(0, y) = y, sum(s(x), y) = s(sum(x, y)).

13. We say that a relation \prec is well-founded on a set X iff there is no infinite descending sequence $\ldots \prec x_i \prec \ldots \prec x_1 \prec x_0$ of elements of X. Let $f : A \to B$ be a function and \prec_B a well-founded relation on B. Show that \prec_A a well-founded relation on A, where \prec_A is defined as follows: $a \prec_A a'$ iff $f(a) \prec_B f(a')$.

14. Let us consider two cpo's D and E and a continuous function f from D to E. Show that if Q is an inclusive subset of E then $P = f^{-1}(Q)$ is an inclusive subset of D. Recall that a set P is said to be *inclusive* iff for each ω -chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in P we have that $(\bigsqcup_{i \in \omega} d_i) \in P$. 15. Let a be the least fixpoint of the functional $\tau \in [[N^2 \to N_{\perp}] \to [N^2 \to N_{\perp}]]$ defined as follows: $\tau \varphi = \lambda(m, n). \ Cond(|m|, |n+1|,$

 $Cond([n], \varphi(m-1, 0), \\ let \ l \leftarrow \varphi(m, n-1). \ \varphi(m-1, l)))$

Show that $\forall m, n \ge 0$ we have that: $a(m, n) \ne \bot \land \lfloor 0 \rfloor \prec a(m, n)$, where $\lfloor x \rfloor \prec \lfloor y \rfloor$ holds iff x < y with < denoting the usual *less-than* relation in $N \times N$.

16. Consider the equation f(x) = if x < 3 then 1 else $x \times f(x-1)$ and the associated functional $\varphi = \lambda f \cdot \lambda x$. if x < 3 then 1 else $x \times f(x-1)$.

(i) Compute the function $\delta_{va} : N \to N_{\perp}$, where N is the set of natural numbers, defined as the minimal fixpoint of φ in call-by-value semantics. (ii) Compute the function $\delta_{na} : N_{\perp} \to N_{\perp}$ defined as the minimal fixpoint of φ in call-by-name semantics.

17. Show that in the lazy-2 denotational semantics for any $F : \tau \to \tau$ and for any environment ρ , we have that $[[F(RF)]]\rho = [[RF]]\rho$, where R is **rec** $y.(\lambda f.f(yf))$.

18. Write a Prolog program for evaluating the operational semantics of the Lazy-1 language.

19. Check whether or not for any environment ρ ,

 $\left[\left[\mathbf{rec}\ f.(\lambda x.e)\right]\right]\rho = \left[\left[\lambda x.(\mathbf{let}\ f \leftarrow (\mathbf{rec}\ f.(\lambda x.e))\ \mathbf{in}\ f(x))\right]\right]\rho$

in eager, lazy-1, or lazy-2 denotational semantics.

20. Show that the bisimulation equivalence in pure CCS is an equivalence relation and not a congruence relation.

21. Assume that, given a formula A, the formula $\nu X.(A \wedge [.]X)$ holds in a state, say s, of a given process. Explain in words the meaning of $\nu X.(A \wedge [.]X)$ for the state s.

Projects.

P1. Write a Prolog program for the operational semantics of IMP. Try for the factorial program.

P2. Write a Prolog program for the operational semantics (by value and by name) of REC. Try it for the term g(f(2)) where f and g are defined by the following equations: f(x) = f(x) + 1 and g(x) = 5.

P3. Write a Prolog program for local model checking.