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PARSING

1. General context-free parsing.

Chomsky normal form:
S → ε A → BC A → a

Cocke-Younger-Kasami parser in Chomsky Normal Form: O(n3) time (Dynamic Programming)
(Actually, same complexity of matrix multiplication: Valiant’s result.)
Earley parser for context-free languages: O(n3) time

2. Chop-Expand. Parsing non-left recursive context-free grammars.

• Nondeterministic Parsing

- for Context-free grammars. existsev p f L : higher order can be avoided if p and f do not depend
on the node being visited.

Tail recursive program which keeps the list of the frontier nodes to be visited.
Chop-expand parser (by Burstall-Dijkstra) [3, pages 35–49].

- for Regular grammars. Backtracking as do-while and recursion.
(1) do-while is avoided in favour of tail recursion.
(2) recursion is implemented by keeping (as a stack) the list of the ancestor nodes.

Regular grammar parser (program by me) (ATFL) [2, page 87].

• Deterministic Parsing with lookahead: O(n) parsing
LR(1): deterministic context-free languages (and LALR(1) parsing)
LR(0): prefix-free, deterministic context free
LL(1): non left-recursive grammars. chop-expand parsing.
context-free: recursive descent parsing: bottom-up deterministic

(see the Propositional Theorem Prover [3, page 172])
regular: deterministic finite automaton for regular grammars [2, page 79]

A language L enjoys the prefix property (or it is prefix-free) iff no word in L is a proper prefix of
another word in L.

• operator-precedence grammar parsing

Every context-free language L is such that L−{ε} can be generated by an operator-precedence
grammar.

3. Rosenkrantz-Stearns’ result.

LR(1) = deterministic context-free languages
∪...
∪

LL(k)
∪...
∪

LL(2)
∪

LL(1)
∪

LL(0) (either empty or singleton languages)

We have: LL(0) ⊂ LR(0) (= prefix-free, deterministic context-free languages) ⊂ LR(1)
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• For all k≥1,

S → a T

T → S A | A
A → bB | c
B → bk−1 d | ε

is an LL(k) grammar and not an LL(k−1) grammar.

• For all k ≥ 1,
{an w | n ≥ 1 and w ∈ {b, c, bk, d}n} is an LL(k) language and it is not an LL(k−1) language.

• A language is LL(0) iff it is empty or it is a singleton.

If we assume that in the grammars there are no useless symbols, then a language is LL(0) iff it is a
singleton.

Note that we do not define the parsing tables for LL(0) parsing.
The following two examples show how to construct the parsers for LL(0) languages.

Example 1. Given the alphabet Σ = {a, b}, the algorithm for accepting the LL(0) language which
is empty, is any finite automaton without final states (see Figure 1.1).

S

a

b

Figure 1.1: A finite automaton accepting the empty language. S is not a final state.

Given the alphabet Σ = {a, b}, the algorithm for accepting the LL(0) language which is the
singleton {abaa}, is a finite automaton with a sequence of states, no cycles and exactly one final
state (see Figure 1.2). There are n+1 states in the sequence if n is the length of the word in the
singleton.

S A B C D
a b a a

Figure 1.2: The finite automaton accepting the word a b a a only.

• For all k≥1, every LR(k) language is an LR(1) language. That is, for every k≥1, for every LR(k)
language L (that is, for every language L generated by an LR(k) grammar), there exists an LR(1)
grammar which generates L.

• For all k≥0, there are LR(k+1) grammars which are not LR(k) grammars.

• For all k≥0,

S → a bk c | Abk d

A → a
is an LR(k+1) grammar and it is not an LR(k) grammar.
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LR(0) and LR(1) PARSING

• A language L is deterministic context-free, that is, it is parsable by a deterministic pda (dpda, for
short) with acceptance by final state,
iff L is an LR(1) language
iff L$, with $ 6∈ VT , is an LR(0) language.

For a deterministic pda, acceptance by final state is more powerful than acceptance by empty stack.

• Every deterministic context-free language L which enjoys the prefix property is recognized by a
dpda by final state,
iff L is a language recognized by a dpda by empty stack
iff L is an language LR(0).

• D = {0i 1k a 2i | i, k ≥ 1} ∪ {0i 1k b 2k | i, k ≥ 1} is a deterministic context-free language
and every grammar for D in Greibach normal form must have at least two productions of the

form: A → aα and A → a β, with α 6= β,
and the dpda which accepts by final state should make at least an ε-move.

We can always take this dpda such that if it has to make an ε-move, then it makes that ε-move
while the input is not completely read. This follows from a theorem holding for any dpda which:
(i) accepts a language by final state, and (ii) should perform an ε-move [2].

Note that the language D enjoys the prefix property (it is in zone (B) of Figure 1.3).
A context-free grammar which generates the language D has axiom S and the following productions:

S → 0LT | 0R L → 0LT | 1A R → 0R | 1B T

T → 2 A → 1A | a B → 1B T | b

• The language {anbn |n>0} generated by the grammar with axiom S and the following productions:
S → aS b | a b

is a prefix-free deterministic context-free language (it is in zone (B) of Figure 1.3).

• The language D ∪ {c, c c} is a deterministic context-free language, but it is not prefix-free (it is
in zone (A) of Figure 1.3).

The grammar with axiom S and the following productions: S → aS b | ε

generates the deterministic context-free language {anbn |n ≥ 0} which is not prefix-free (it is in
zone (A) of Figure 1.3).

• The language {0wwR $ 0 |w ∈ {0, 1}∗} ∪ {1wwR $ 1 |w ∈ {0, 1}∗}, where by wR we denote the
reverse of w, generated by the grammar with axiom S and the following productions:

S → 0A $ 0 | 1A $ 1 A → 0A 0 | 1A 1 | ε

is prefix-free, but it is not deterministic context-free (it is in zone (C) of Figure 1.3).

(A)

(C)

(B)

context-free

deterministic context-free: (AB)=LR(1)

prefix-free context-free: (BC)

(B)=LR(0)

Figure 1.3: Deterministic context-free languages: (AB). Prefix-free context-free languages: (BC).
Deterministic, prefix-free context-free languages: (B).

It is decidable whether or not a deterministic context-free language (given by a context-free
grammar) is prefix-free [1, page 355].

It is undecidable whether or not a context-free language (given by a context-free grammar) is
prefix-free [1, page 262].

The class of the deterministic context-free languages (see zones (AB) of Figure 1.3) is a proper
superset of the class of the deterministic context-free languages which are prefix-free (see zone (A)
of Figure 1.3). (Deterministic context-free languages which are prefix-free are also called strict
deterministic context-free languages in [1, page 355–358].)
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Conventions for LL(k) and LR(k) parsing

In Table 1 below we recall some hypotheses we made concerning the parsing of various kinds of
LL(k) and LR(k) languages and, in particular:

(i) the use of a rightmost, new symbol $ in the input string,
(ii) the use of augmented grammars with a new production for the axiom S′,
(iii) the initial configuration of the stack, and
(iv) the lookahead sets.
We have to consider augmented grammars for having the new axiom S′ not to occur on the right
hand side of any production.

input

string

augmented

grammar

production

of the axiom

initial

configuration

of the stack

lookahead

set

LL(k) ended by $ no axiom S S $
N

none

LR(0) and SLR(1) ended by $ yes
axiom S′

add: S′ → S $
q0
N

none

LR(1) and LALR(1) ended by $ yes
axiom S′

add: S′ → S
q0
N

{$}

Table 1: Our conventions on the input string, the augmented grammar with the production of the
axiom, the initial stack configuration (q0 is the initial state), and the lookahead set for various classes
of context-free grammars.

non-computable functions

TM = type 0 = λ-calculus = r.e.
rec
type 1 = linear bounded automata

type 2 = context-free
deterministic context-free

type 3 = finite automata

ℵ0

Figure 1.4: Let N denote the set of the natural numbers. In this figure we show the set NN of the
computable and non-computable functions from N to N . The cardinality of NN is ℵ1, which is the
cardinality of the set of the real numbers. ℵ0 is the cardinality of the set N of the natural numbers.
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