Automi, Linguaggi e Traduttori. 13 February 2012.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [5]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a word in $\{a, b\}^{*}$ of length $n(>0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow S A|a A \rightarrow a A a| b A \mid \varepsilon
$$

- REASONING [4]. Show that for every word w in $(a+b)^{*}$ with an even number of a 's, we have that $A \rightarrow^{+} w$ where A is the axiom of a grammar with the following productions:

$$
A \rightarrow A A|a A a| a a A|b A| \varepsilon
$$

- LANGUAGES [3]. (i) Prove that the context-free language $\{a, b, c\}^{*}-\left\{a^{i} b^{i} \mid i \geq 0\right\}$ can be recognized by final state by a deterministic pushdown automaton.
(ii) Find a language $L \subseteq\{a, b\}^{*}$ which is not regular such that L^{*} is regular.
- CHOMSKY [2]. Compute the Chomsky normal form of the following grammar:

$$
T \rightarrow T \times F|F \quad F \rightarrow(T)| b
$$

- LALR [3]. Construct an $L A L R(1)$ parser, if any, for the context-free grammar G with axiom S and the following productions: $S \rightarrow A A b|A B b A \rightarrow A b| a B \rightarrow A b \mid a$
- DECIDABILITY [3]. (i) Give an example of a problem P which is undecidable and its negation is undecidable.
(ii) Give an example of a problem P which is semidecidable and its negation is undecidable. (iii) Prove that if problem is decidable, then its negation is decidable.

Prove all your assertions. Recall that, given the problem: "Is n an even number?", its negation is: "Is n not an even number?".

- CORRECTNESS [4]. Let x^{n} be defined as follows: if $n=0$ then 1 else if $\operatorname{odd}(n)$ then $x\left(x^{n-1}\right)$ else $\left(x^{n / 2}\right)^{2}$. Show the total correctness of the following program:

$$
\begin{aligned}
& \quad \begin{array}{r}
\{n \geq 0\} \\
k:=n ; \quad y:=1 ; \\
\text { while } k \neq 0 \text { do } \begin{array}{l}
\text { if } \operatorname{odd}(k) \text { then begin } k:=k-1 ; \quad y:=y z ; \text { end; } \\
\quad k:=k \operatorname{div} 2 ; \quad z:=z z ;
\end{array} \\
\quad \text { od } \\
\quad\left\{y=x^{n}\right\}
\end{array}
\end{aligned}
$$

Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi, Linguaggi e Traduttori. 10 July 2012.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [6]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a word in $\{a, b\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow A S A|A A \rightarrow a A a| a A a b|b A| \varepsilon
$$

- REASONING [3]. Show that the following two grammars G_{1} and G_{2} with axiom A are equivalent:

$$
\begin{array}{ll}
G_{1}: & A \rightarrow \varepsilon|A B B \rightarrow 0 C C \rightarrow 1| 0 C C \\
G_{2}: & A \rightarrow \varepsilon|B A B \rightarrow 0 C| 00 D C \rightarrow 1 \mid 0 C C D \rightarrow C C
\end{array}
$$

- LANGUAGES [2]. Show that $a^{*} \cup\left\{a^{m} b^{n} \mid m>n \geq 0\right\}^{*}$ is not a regular language and it satisfies the pumping lemma for regular languages.
- GREIBACH [2]. Compute a grammar in Greibach normal form of the following grammar:

$$
S \rightarrow A S|a \quad A \rightarrow S| A S|a| \varepsilon
$$

- LALR [2]. Construct an $L A L R(1)$ parser, if any, for the context-free grammar G with axiom S and the following productions: $S \rightarrow A S \mid \varepsilon A \rightarrow a S b$
- DECIDABILITY [3]. Define two sets P and Q of words (that is, two problems) such that: (i) P is undecidable and not semidecidable, (ii) Q is undecidable and semidecidable, and (iii) $Q \subset P$.
- HOARE TRIPLES and CORRECTNESS [6]. (i) Determine the set of all boolean expressions B and programs P which satisfy the triple $\{$ false $\}$ if B then $P\{$ true $\}$.
(ii) Determine the set of all programs P and Q which satisfy the triple \{true $\} P ; Q\{$ false $\}$.
(iii) Let N ! denote the factorial of the natural number N. Show that the following program:

$$
\begin{aligned}
& \quad\{N \geq 0\} \\
& n:=N ; \text { res }:=1 ; \\
& \text { while } n>1 \text { do res }:=\left(n^{2}-n\right) \times \text { res } ; n:=n-2 \text { od } \\
& \{\text { res }=N!\}
\end{aligned}
$$

is totally correct (i.e., it is partially correct and it terminates).
Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi, Linguaggi e Traduttori. 11 September 2012.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [6]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a word in $\{a, b\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow A S|A A \rightarrow a A a S| b A \mid \varepsilon
$$

- REASONING [3]. Show that the context-sensitive languages are recursive sets.
- LANGUAGES [2]. Show that $\left\{a^{m} b^{n} \mid m \neq n \geq 0\right\}$ is not a regular language and it satisfies the pumping lemma for regular languages.

A different version.

Show that $a^{*} \cup\left\{a^{m} b^{n} \mid m \neq n \geq 0\right\}$ is not a regular language and it satisfies the pumping lemma for regular languages.

- GREIBACH [3]. Give a grammar in Greibach normal form which generates the following language:

$$
\left\{0^{i} 1^{k} a 2^{i} \mid i, k>0\right\} \cup\left\{0^{i} 1^{k} b 2^{k} \mid i, k>0\right\}
$$

Show that every deterministic pda which recognizes this language has to make ε-moves.

- LALR [1]. Construct an $L A L R(1)$ parser, if any, for the context-free grammar G with axiom S and the following productions: $S \rightarrow a A|b A \rightarrow \varepsilon| a A b \mid a a$
- DECIDABILITY [3]. (1) Define two sets $P 1$ and $P 2$ of words (that is, two problems) such that: (i) $P 1$ is undecidable and not semidecidable, (ii) $P 2$ is undecidable and not semidecidable, and (iii) $P 1 \subset P 2$.
(2) Consider two sets $P 1$ and $P 2$ of words (that is, two problems) such that: (i) $P 1$ is undecidable and not semidecidable, and(ii) $P 2$ is undecidable and not semidecidable. State a condition on $P 1$ and $P 2$ so that $P 1 \cup P 2$ is decidable.
- HOARE TRIPLES and CORRECTNESS [6]. (i) Determine the set of all programs P, Q, and R which satisfy the triple $\{$ true $\} P$; if b then Q else $R\{$ false $\}$.
(ii) Let us consider the function h from natural numbers to natural numbers:

$$
\begin{aligned}
& h(0)=a \\
& h(1)=b \\
& h(n+2)=c(h(n)), \text { for any } n \geq 0,
\end{aligned}
$$

where a and b are natural numbers, and c is a function from natural numbers to natural numbers.
Show that the following program:

$$
\begin{aligned}
& \quad\{K \geq 0\} \\
& \text { if } \text { even }(K) \text { then res }:=a \text { else res }:=b ; \\
& \text { if } \text { even }(K) \text { then } n:=0 \text { else } n:=1 ; \\
& \text { while } n<K \text { do res }:=c(\text { res }) ; n:=n+2 \text { od } \\
& \qquad\{\text { res }=h(K)\}
\end{aligned}
$$

is totally correct (i.e., it is partially correct and it terminates).
Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi, Linguaggi e Traduttori. 12 February 2013.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [5]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a given word in $\{a, b\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow a B S B B a|\varepsilon \quad B \rightarrow b B b| \varepsilon
$$

- REASONING [3]. Prove that there is no Turing Machine A such that: (i) for every natural number n, the Turing Machine A given in input n, returns in output the code of a Turing Machine which terminates for all inputs, and (ii) for every Turing Machine M which terminates for all inputs, there exists a natural number m such that the Turing Machine A given in input m, returns in output the code of the Turing Machine M.
- LANGUAGES [2]. Show that $a^{*} \cup\left\{a^{m} b^{n} \mid m \neq n \wedge m \geq 0 \wedge n \geq 0\right\}^{*}$ is a regular language and it satisfies the pumping lemma for regular languages.
Solution. We have that $\{a, b\}^{*} \subseteq\left\{a^{m} b^{n} \mid m \neq n \wedge m \geq 0 \wedge n \geq 0\right\}^{*}$, because $a=a^{1} b^{0}$ and $b=a^{0} b^{1}$.
- GREIBACH [2]. Compute a grammar in Greibach normal form of the language generated by the following grammar: $S \rightarrow A S|a \quad A \rightarrow S| A S|a| \varepsilon$
- LR [3]. Construct an $L R(1)$ parser, if any, for the context-free grammar G with axiom S and the following productions (do not modify the given grammar before constructing the parsing table of the $L R(1)$ parser):

$$
S \rightarrow a A|b B \quad A \rightarrow \varepsilon| c A c \quad B \rightarrow \varepsilon
$$

- DECIDABILITY [3]. Let Σ be the set $\{a, b\}$. Let $\mathcal{P}\left(\Sigma^{*}\right)$ denote the set of all subsets of Σ^{*}. Give a function f from $\mathcal{P}\left(\Sigma^{*}\right)$ to $\mathcal{P}\left(\Sigma^{*}\right)$ such that for all subsets P of Σ^{*}, if P is not semidecidable and not decidable, then $f(P)$ is a decidable set and $P \subseteq f(P)$. Show that any such function f is not an injection.
- HOARE TRIPLES and CORRECTNESS [6]. (i) Determine the set of all boolean expressions B, all C-like programs P and Q which satisfy the triple $\{$ true $\} P$; (if B then $P ;$) $Q ;\{$ false $\}$ (Assume that the evaluation of B returns either true or false without modifying the store).
(ii) Same as (i) with the precondition false, instead of true.
(iii) Let N ! denote the factorial of the natural number N. Show that the following program:

$$
\{N \geq 0\}
$$

$n:=N ;$
if $N=0 \vee \operatorname{odd}(N)$ then res $:=1$ else res $:=2$;
while $n>2$ do res $:=\left(n^{2}-n\right) \times$ res; $n:=n-2$ od

$$
\{\text { res }=N!\}
$$

is totally correct (i.e., it is partially correct and it terminates).
Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi, Linguaggi e Traduttori. 04 July 2013.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [5]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a given word in $\{a, b\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow B a B S B a|\varepsilon \quad B \rightarrow b B b| \varepsilon
$$

- REASONING [4]. (i) Show that the following two grammars G_{1} and G_{2} with axiom A are equivalent:

$$
G_{1}: \quad A \rightarrow \varepsilon\left|a A G_{2}: \quad A \rightarrow \varepsilon\right| a \mid A A A
$$

(ii) Prove that there is no Turing Machine A such that: (i) for every natural number n, the Turing Machine A given in input n, returns in output the code of a Turing Machine which terminates for all inputs, and (ii) for every Turing Machine M which terminates for all inputs, there exists a natural number m such that the Turing Machine A given in input m, returns in output the code of the Turing Machine M.

- LANGUAGES [2]. Show that $a^{*} \cup\left\{a^{m} b^{n} \mid m \neq n \geq 0\right\}$ is not a regular language and it satisfies the pumping lemma for regular languages.
- CONTEXT-SENSITIVE [2]. Give a context-sensitive grammar, if any, which generates the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ and show that L is not context-free.
- GREIBACH [2]. Compute a grammar in Greibach normal form, if any, of the language

$$
\left\{a^{i} b^{j} c^{k} \mid i \geq 1 \wedge j+k=2 i\right\}
$$

- LR [2]. Construct an $L A L R(1)$ parser, if any, for the context-free grammar G with axiom S and the following productions (do not modify the given grammar before constructing the parsing table of the $\operatorname{LALR}(1)$ parser):

$$
S \rightarrow B B a \quad B \rightarrow c \mid B b
$$

- DECIDABILITY [3]. Let Σ be the set $\{a, b\}$. Let $\mathcal{P}\left(\Sigma^{*}\right)$ denote the set of all subsets of Σ^{*}. Give a function f from $\mathcal{P}\left(\Sigma^{*}\right)$ to $\mathcal{P}\left(\Sigma^{*}\right)$ such that for all subsets P of Σ^{*}, if P is not semidecidable and not decidable, then $f(P)$ is a decidable set and $P \supseteq f(P)$. Show that that function f cannot be a bijection.
- HOARE TRIPLES and CORRECTNESS [6]. (i) Determine the set of all boolean expressions B, all C-like programs P and Q which satisfy the triple $\{$ true $\}$ (if B then $P ;$) Q (if B then $P ;$) \{false $\}$ (Assume that the evaluation of B returns either true or false without modifying the store).
(ii) Same as (i), with the precondition false, instead of true.
(iii) Same as (i), with the postcondition true, instead of false.
(iv) Let N ! denote the factorial of the natural number N. Show that the following program:

$$
\begin{aligned}
& \quad\{N \geq 1\} \\
& n:=N ; \\
& \text { if } \operatorname{odd}(N) \text { then res }:=1 \text { else res }:=0 ; \\
& \text { while } n>2 \text { do res }:=\left(n^{2}-n\right) \times \text { res } ; n:=n-2 \text { od } \\
& \quad\{\text { res }=\text { if } \operatorname{odd}(N) \text { then } N!\text { else } 0\}
\end{aligned}
$$

is totally correct (i.e., it is partially correct and it terminates) w.r.t. the precondition $N \geq 1$ and the postcondition res $=$ if $\operatorname{odd}(N)$ then N ! else 0 .
Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi, Linguaggi e Traduttori. 10 September 2013.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [5]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a given word in $\{a, b\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom A and the following productions:

$$
A \rightarrow a A B a|\varepsilon \quad B \rightarrow b B b| b B \mid \varepsilon
$$

- REASONING [4]. (i) Prove by rule induction that the grammar with axiom A and productions: $A \rightarrow 0 A 1|\varepsilon| A A$
is equivalent to the grammar with axiom S and productions:
$S \rightarrow \varepsilon|0 B S B \rightarrow 1| 0 B B$
(ii) Write in pseudocode an algorithm, if there exists one, that given a context-free grammar G, decides whether or not G is a regular grammar.
- LANGUAGES [2]. Prove that for all languages A and B that are regular subsets of $(a+b+c)^{*}$, we have that $\left(\left\{a^{i} b^{i} \mid i \geq 0\right\} \cup A\right) \cap B$ is a context-free language.
- GREIBACH [2]. Compute a context-free grammar in Greibach normal form that generates the language $\left\{a^{i} b^{j} c^{k} \mid i+j=2 k \wedge k \geq 1\right\}$.
- LR [2]. Construct an $\operatorname{LALR}(1)$ parser, if any, for the context-free grammar G with axiom S and the following productions (do not modify the given grammar before constructing the parsing table of the $\operatorname{LALR}(1)$ parser):

$$
E \rightarrow E+T|T \quad T \rightarrow a|(E)
$$

- DECIDABILITY [3]. Show that it is undecidable whether or not the intersection of a context-free language with a context-sensitive language is the empty language. (Recall that the emptiness problem of a contextsensitive language is undecidable.)
- HOARE TRIPLES and CORRECTNESS [6]. (i) Determine the set of all boolean expressions B, all C-like programs P and Q which satisfy the triple $\{$ true $\}$ if B then P; if B then $Q\{x \geq 0\}$ (Assume that the evaluation of B returns either true or false and it does not modify the store, but the evaluation of P may modify the store).
(ii) Same as (i), with the precondition false, instead of true.
(iii) Same as (i), with the postcondition true, instead of $x \geq 0$.
(iv) Let a be the array $a[0], \ldots, a[N-1]$ with N elements. Show that the following program:
$i:=0$;
while $i<N$ do $a[i]:=0 ; \quad i:=i+1$ od
is totally correct (that is, it is partially correct and it terminates) with respect to the precondition $N \geq 1$ and the postcondition $\forall j$. if $0 \leq j<N$ then $a[j]=0$. Hint: find a suitable invariant for the while-do loop.

Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi, Linguaggi e Traduttori. 04 February 2014.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [5]. Write a C ++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a given word in $\{a, b\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow A S|A \quad A \rightarrow a S A a S| b A \mid \varepsilon
$$

- REASONING [4]. Let N be the set of the natural numbers. Show by Mathematical Induction the correctness of the following deduction rule:

$$
\frac{p(0,0) \quad \forall x \in N . p(x, 0) \rightarrow p(s(x), 0) \quad \forall x \in N . \forall y \in N . p(x, y) \rightarrow p(x, s(y))}{\forall x \in N . \forall y \in N . p(x, y)}
$$

- LANGUAGES [2]. Let us consider the context-free grammar with axiom A and the following productions:

$$
A \rightarrow \varepsilon \mid A A \quad 0 A 1
$$

Let us also consider the context-free grammar with axiom B and the following productions:

$$
B \rightarrow 1 \mid 0 B B
$$

Prove by rule induction that: $L(A) \cdot L(B) \subseteq L(B)$.

- $\mathbf{L R}(1)$ [2]. Construct a context-free grammar such that: (i) it is not $L R(1)$, and (ii) it is equivalent to the following grammar with axiom S which generates the language of balanced parentheses (a is the open parenthesis and b is the closed parenthesis):

$$
S \rightarrow A S \mid \varepsilon \quad A \rightarrow a S b
$$

Show that the grammar you propose is not $L R(1)$ by constructing its LR parsing table.

- GREIBACH [1]. Compute the Greibach normal form of a grammar equivalent to the one with axiom S and the following productions:

$$
S \rightarrow S A|B| a \quad A \rightarrow A a a|a| \varepsilon \quad B \rightarrow B b B b \mid \varepsilon
$$

- DECIDABILITY [4]. (i) Prove that for all finite sets S of context-free grammars, there exists a Turing Machine M such that for all grammars G_{1}, G_{2} in S, we have that $M\left(G_{1}, G_{2}\right)$ terminates and answers "yes" (by entering a final state) iff $L\left(G_{1}\right)=L\left(G_{2}\right)$.
(As usual $M\left(G_{1}, G_{2}\right)$ denotes the result computed by the Turing Machine M when acting of some encoding of the input grammars G_{1} and G_{2}.)
(ii) Show that the membership problem for type 0 grammars is semidecidable and not decidable.
- HOARE TRIPLES [6]. (i) Determine the set of all boolean expressions B and all C-like programs P which satisfy the triple $\{x \geq 0\}$ if B then P; if B then $P\{x \geq 0\}$ Assume that the evaluation of B always terminates and returns either true or false and it does not modify the store. The evaluation of P may modify the store.
(ii) Same as (i), with the precondition and postcondition true, instead of $x \geq 0$.
(iii) Let a be the array $a[0], \ldots, a[N-1]$ with N elements. Show that the following program:

$$
\begin{aligned}
& \quad\{N \geq 1\} \\
& i:=0 ; \\
& \text { while } i<N \text { do } a[i]:=0 ; \quad i:=i+2 \text { od } \\
& \quad\{\forall j . \text { if even }(j) \wedge 0 \leq j<N \text { then } a[j]=0\}
\end{aligned}
$$

is totally correct (that is, it is partially correct with respect to the given assertions and it terminates).
Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

Automi e Linguaggi. 10 April 2014.

Precision and clarity are important. The PARSER exercise is compulsory. Use comments to document your program of the PARSER exercise. Motivate your constructions and answers.

- PARSER [4]. Write a C++ or Java program whose time complexity is at most $O(n)$, for testing whether or not a given word in $\{a, b, c\}^{*}$ of length $n(\geq 0)$ is generated by the grammar with axiom S and the following productions:

$$
S \rightarrow A S|A \quad A \rightarrow a A a| b S c \mid \varepsilon
$$

- REASONING [4]. Let N be the set of the natural numbers. Give a deduction rule based on Mathematical Induction that allows us to conclude that $\forall x \in N . \forall y \in N . \forall z \in N . p(x, y, z)$ for any predicate p of three arguments. Prove the correctness of the rule.
- LANGUAGES [2]. (i) Let us consider the following grammar with axiom A and productions:
$A \rightarrow a b A \mid a$
Let us also consider the following grammar with axiom B and productions:

$$
B \rightarrow B b a \mid a
$$

Prove by rule induction that: $L(A)=L(B)$.

- PDA's [2]. Prove that for nondeterministic pda's we have that acceptance by final state is equivalent to acceptance by empty stack.
- LR(1) [2]. (i) Construct an $L R(1)$ parser, if any, for the context-free grammar G with axiom S^{\prime} and the following productions (do not modify the productions for S, A, and B before constructing the parsing table of the $L R(1)$ parser):

$$
S \rightarrow a A|b B \quad A \rightarrow \varepsilon| a A c \quad B \rightarrow \varepsilon
$$

(ii) Prove that the property of not being an $L R(1)$ grammar is not preserved by unfolding one of its productions. Hint. From $S \rightarrow A \mid a, A \rightarrow a$ by unfolding A we get: $S \rightarrow a$.

- DECIDABILITY [4]. (i) Prove that for all finite sets $\mathcal{S}_{\text {fin }}$ of Turing Machines it is decidable whether or not given any two Turing Machines M_{1} and M_{2} in $\mathcal{S}_{\text {fin }}$ they recognize the same language, that is, $L\left(M_{1}\right)=L\left(M_{2}\right)$.
(ii) Let us consider a fixed character c. Prove that the problem of deciding whether or not a Turing Machine prints c is semidecidable and not decidable.
- HOARE TRIPLES [6]. Let a be the array $a[0], \ldots, a[N-1]$ with $N(\geq 1)$ elements. Show that the following program:

$$
\{N \geq 1 \text { and } \operatorname{odd}(N)\}
$$

$i:=0 ;$
$M:=(N-1) / 2 ;$
while $i \leq M$ do $\quad a[M-i]:=0 ; \quad a[M+i]:=0 ; \quad i:=i+1 \quad$ od;

$$
\{\forall j \text {. if } 0 \leq j<N \text { then } a[j]=0\}
$$

is totally correct (that is, it is partially correct with respect to the given assertions and it terminates).
Nota. Tra parentesi quadre sono indicati i punti per ogni esercizio. Le due prove in itinere valgono, di norma, $3+3$ punti. Per la prova orale, si presenti: (i) il programma, fatto da solo/a, dell'Esercizio del PARSER con alcune prove di esecuzione, (ii) un elaborato con la soluzione degli altri esercizi fatto da solo/a e (iii) si venga, se possibile, con un computer portatile ove siano istallati e pronti per l'esecuzione i programmi relativi alle due prove in itinere.

