Informatica Teorica. 24 February 2009.

1. Prove that the set $[A \rightarrow B]$ of the continuous functions from a cpo A to a cpo B is itself a cpo using the partial order which is defined as follows: for all functions $f, g \in[A \rightarrow B]$, we state that $f \sqsubseteq g$ iff for all $a \in A, f(a) \sqsubseteq g(a)$.
2. Give the operational and the denotational semantics of the recursive language REC with call-by-name semantics. In the language REC we have function definitions of the form:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=t_{1} \\
\vdots \\
f_{k}\left(x_{1}, \ldots, x_{n}\right)=t_{k}
\end{gathered}
$$

and we want to evaluate terms of the form:
$t::=n|x| t_{1}$ op $t_{2} \mid$ if t_{0} then t_{1} else $t_{2} \mid f_{i}\left(t_{1}, \ldots, t_{n}\right) \quad$ where op $\in\{+,-, \times\}$.
3. Give the rules for the construction of the least Herbrand Model of a definite logic program.
4. Compute the minimal and the maximal fixpoints of the equation $X=a X+b$, where the unknown X is a CCS term.
5. Prove that the set $\{A \in A$ ssn $\mid \models A\}$ is not r.e.
6. Let N denote the set of natural numbers. Write an iterative program using assignments, ';', $i f$-then-else, and while-do (but not recursive calls) which, given in input the value $n(\geq 0)$, stores in the variable z the value of $h(n)$, where the function $h: N \rightarrow N$ is recursively defined as follows:

$$
h(0)=a \quad h(1)=b \quad h(n+2)=c(h(n))
$$

where $a, b \in N$ and $c: N \rightarrow N$. Prove, by using Hoare's triples, the partial correctness of that iterative program w.r.t. the precondition $n \geq 0$ and the postcondition $z=h(n)$.
7. Find all (not some) formulas $P(x, y)$, which may depend on x and y, such that the Hoare's triple
$\{y>1\} x:=0 ;$ while $y>x \wedge P(x, y)$ do $x:=y-1\{x=0 \wedge y>1\}$ holds.
8. Show that the eager semantics of let $x \Leftarrow e$ in t is equal to the eager semantics of $\quad(\lambda x . t) e$.

Assume that:

$$
\begin{aligned}
& \llbracket\left(t_{1} t_{2}\right) \rrbracket \rho=\text { let } \varphi \Leftarrow \llbracket t_{1} \rrbracket \rho, v \Leftarrow \llbracket t_{2} \rrbracket \rho . \varphi(v) \\
& \llbracket \lambda x . t \rrbracket \rho=\lfloor\lambda v . \llbracket t \rrbracket \rho[v / x\rfloor\rfloor \\
& \llbracket \text { let } x \Leftarrow e \text { in } t \rrbracket \rho=\text { let } v \Leftarrow \llbracket e \rrbracket \rho . \llbracket t \rrbracket \rho[v / x]
\end{aligned}
$$

9. Recall that a set $P \subseteq D_{\perp}$ is said to be inclusive iff for all ω-chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D_{\perp} we have that if for all $i \geq 0, d_{i} \in P$ then $\left(\bigsqcup_{i \geq 0} d_{i}\right) \in P$.
Show that, for given any continuous function $f: D \rightarrow E$, we have that if $Q \subseteq E$, is an inclusive set then so is $f^{-1}(Q) \subseteq D$.

The result of this test is combined with that of the take-home exam.

