Informatica Teorica. 24 February 2009.

1. Prove that the set $[A \to B]$ of the continuous functions from a cpo A to a cpo B is itself a cpo using the partial order which is defined as follows: for all functions $f, g \in [A \to B]$, we state that $f \sqsubseteq g$ iff for all $a \in A$, $f(a) \sqsubseteq g(a)$.

2. Give the operational and the denotational semantics of the recursive language REC with call-by-name semantics. In the language REC we have function definitions of the form:

$$f_1(x_1, \dots, x_n) = t_1$$

$$\vdots$$

$$f_k(x_1, \dots, x_n) = t_k$$

and we want to evaluate terms of the form:

 $t ::= n \mid x \mid t_1 \text{ op } t_2 \mid \text{if } t_0 \text{ then } t_1 \text{ else } t_2 \mid f_i(t_1, \dots, t_n) \quad \text{where } \mathbf{op} \in \{+, -, \times\}.$

3. Give the rules for the construction of the least Herbrand Model of a definite logic program.

4. Compute the minimal and the maximal fixpoints of the equation X = aX + b, where the unknown X is a CCS term.

5. Prove that the set $\{A \in Assn \mid \models A\}$ is not r.e.

6. Let N denote the set of natural numbers. Write an iterative program using assignments, ';', *if-then-else*, and *while-do* (but not recursive calls) which, given in input the value $n (\geq 0)$, stores in the variable z the value of h(n), where the function $h : N \to N$ is recursively defined as follows:

h(0) = a h(1) = b h(n+2) = c(h(n))

where $a, b \in N$ and $c : N \to N$. Prove, by using Hoare's triples, the partial correctness of that iterative program w.r.t. the precondition $n \ge 0$ and the postcondition z = h(n).

7. Find all (not some) formulas P(x, y), which may depend on x and y, such that the Hoare's triple

 $\{y > 1\} x := 0$; while $y > x \land P(x, y)$ do $x := y - 1 \{x = 0 \land y > 1\}$ holds.

8. Show that the eager semantics of let $x \Leftarrow e$ in t is equal to the eager semantics of $(\lambda x.t)e$. Assume that:

$$\llbracket (t_1 t_2) \rrbracket \rho = let \varphi \Leftarrow \llbracket t_1 \rrbracket \rho, \ v \Leftarrow \llbracket t_2 \rrbracket \rho. \ \varphi(v) \\ \llbracket \lambda x.t \rrbracket \rho = \lfloor \lambda v.\llbracket t \rrbracket \rho[v/x] \rfloor \\ \llbracket let \ x \Leftarrow e \ in \ t \rrbracket \rho = let \ v \Leftarrow \llbracket e \rrbracket \rho.\llbracket t \rrbracket \rho[v/x]$$

9. Recall that a set $P \subseteq D_{\perp}$ is said to be *inclusive* iff for all ω -chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D_{\perp} we have that if for all $i \ge 0$, $d_i \in P$ then $(\bigsqcup_{i>0} d_i) \in P$.

Show that, for given any continuous function $f: D \to E$, we have that if $Q \subseteq E$, is an inclusive set then so is $f^{-1}(Q) \subseteq D$.

The result of this test is combined with that of the take-home exam.