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Abstract

This paper considers the problem of state estimation for discrete-time systems whose dynamics
switches within a ¯nite set of linear stochastic behaviors. In recent years such systems are
receiving a growing attention because of their importance from an applicative point of view, in
that switching phenomena are normally present in many engineering problems. The solution of
the ¯ltering problem depends on the amount of the a priori information about the switching
process.
In this paper a new approach in ¯ltering the state of a stochastic variable structure system,

driven by a Markovian jump is proposed. By using a state space realization for the Markov
process and the formalism of bilinear systems, a linear ¯lter achieves the best estimate among
all the linear transformations of the measured output. The algorithm can be considered as a
useful key tool to solve the problem of suboptimal estimates, when the system is a®ected by
non-Gaussian noises, in the framework of polynomial ¯lters.
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1. Introduction

Switching systems, also denoted hybrid systems or variable structure systems, are receiving
a growing attention in recent years because of their importance from an applicative point of
view, in that switching phenomena are normally present in many engineering problems (for a
survey on hybrid systems control and applications see [5,2,10]). Many authors investigated the
problem of state estimation for switching systems. Most papers in literature deal with systems
with a stochastically driven switching sequence, modeled as a ¯nite-state Markov Chain (see
e.g. [1, 3, 8, 7, 4, 11, 6] for the discrete-time case and [9, 13, 12] for the continuous-time case).
In the framework of discrete-time systems, the problem of ¯ltering the state of stochastic

switching systems was ¯rst formulated in [1]. The authors pointed out the complexity of the
exact solution of the problem and proposed an approximate solution. For the same problem
in [7], where a partial observation of the switching process is assumed, an almost-recursive
implementation of the exact solution is derived, whose complexity geometrically grows with
time. In [4] a linear ¯lter is implemented based on a clever use of the characteristic function
associated to the Markovian jump. In [6] di®erent approximate state estimators have been
analyzed, without assuming observations on the switching process. All estimators proposed
in [6] are iterative algorithms over a ¯nite observation time, and do not allow a recursive
implementation.
This paper proposes a linear algorithm in order to estimate the state of a discrete-time variable

structure system driven by a Markovian jump. By using a bilinear approach, the optimal linear
estimate, in the sense of minimum variance is here achieved. The paper develops the case of
a two-state Markov chain, although with some more computations, a more general ¯nite-state
Markov chain could be investigated with the same methodology. The result is particularly useful
to solve the problem of suboptimal estimates, when the system is a®ected by non-Gaussian
noises, in the framework of polynomial ¯lters.

2. The system to be ¯ltered

The class of systems investigated in this paper is described by the following set of equations:

x(k + 1) = A¹(k)x(k) +B¹(k)u(k) + F¹(k)Nk; x(0) = x0; k ¸ 0;
y(k) = C¹(k)x(k) +D¹(k)u(k) +G¹(k)Nk;

(2.1)

where x(k) is the stochastic state variable in IRn, u(k) is a deterministic known input in IRp,
y(k) is the measured output in IRq and N(k) is a zero-mean white noise standard sequence in
IRb, that is:

IE
£
N(k)N(h)T

¤
= ±khIb; 8k; h 2 IN (2.2)

and, moreover, the state noise is supposed to be uncorrelated with the output noise, that is:

F¹(k)G
T
¹(h) = On£q; 8k; h 2 IN (2.3)

The initial state x0 is a random variable with mean and covariance matrix available, named Â
and ª0 respectively, and is independent of the noise sequence

©
N(k); k 2 INª.

The dynamic matrices of system (2.1) are forced to assume values on binary ranges, for
instance: R¡A¹(k)¢ = ©A0; A1g, all according to a two-state Markov chain ¹(k), with range in©
0; 1
ª
, transition probability matrix ¦¹ and a given initial condition P (¹(0) = 0) = p0.
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Remark 2.1. By using the above notation the wide class of failure systems with a working
plant, referred to the zero value of ¹(k) for instance, and a failure plant driven by the Markovian
jump, can be represented with a useful assignment of the ¦¹ matrix. Multiple failure systems
and hybrid systems could also be modeled by equations (2.1) with a ¯nite state Markov chain
and a few more computation e®orts.

In this paper the ¯ltering problem is solved by using a suitable state space model for the
Markovian jump:

Lemma 2.2. Let
©
v0(k); k 2 IN

ª
,
©
v1(k); k 2 IN

ª
be white noise independent sequences, both

assuming values in
©
0; 1
ª
, with distribution P

¡
v0(k) = 1

¢
= "0, P

¡
v1(k) = 1

¢
= "1 respectively;

let
©
¹(k); k 2 INª be the following stochastic sequence, assuming values in ©0; 1ª:
¹(k + 1) = ¹(k) +

¡
1¡ ¹(k)¢v0(k)¡ ¹(k)v1(k);

¹(0) = ¹0;

¹(k) 2 ©0; 1ª; k 2 IN
P
¡
¹0 = 0

¢
= p0:

(2.4)

with ¹0 independent of
©
v0(k); v1(h); k; h 2 INª. Then ©¹(k); k 2 INª is a two-state Markov

chain, with transition probability matrix ¦¹ such that:

¦¹ =

"
P
¡
¹(k + 1) = 0j¹(k) = 0¢ P

¡
¹(k + 1) = 0j¹(k) = 1¢

P
¡
¹(k + 1) = 1j¹(k) = 0¢ P

¡
¹(k + 1) = 1j¹(k) = 1¢

#
=

·
1¡ "0 "1
"0 1¡ "1

¸
(2.5)

Proof. The proof that
©
¹(k); k 2 INª is a Markov chain strictly follows from the recur-

sive equations (2.4), in that for each k; h 2 IN , it comes that the conditional random vari-
able ¹(k + h)j¹(k) is a Borel function of ©v0(i); v1(j); i; j = k; : : : ; k + h ¡ 1ª, independent
of
©
¹(l); l < k

ª
. The coe±cients of matrix ¦¹ easily come from probability computation.

Remark 2.3. The sequences
©
vi(k); k 2 IN

ª
, i = 0; 1 are not zero-mean. It is useful for

the sequel to rewrite the recursive Markov equations (2.4) introducing zero-mean sequences, so
that they change in:

¹(k + 1) = (1¡ "0 ¡ "1)¹(k)¡
¡V0(k) + V1(k)¢¹(k) + V0(k) + "0; ¹(0) = ¹0: (2.6)

with Vi(k) = vi(k)¡ IE
£
vi(k)

¤
= vi(k)¡ "i.

Remark 2.4. Suppose that system (2.1) models a failure system. Then, according to Remark
2.1, "0, "1 can be considered, respectively, as the probability of failure occuring from a working
plant, and the probability of failure vanishing from a failure plant.

Remark 2.5. According to the Markov chain theory, a suitable choice for the initial
distribution p0 of ¹0 allows a constant value for the probability masses of ¹(k). That means, if
p0 is such that:µ

p0
1¡ p0

¶
=

·
1¡ "0 "1
"0 1¡ "1

¸µ
p0

1¡ p0
¶

=)
µ

p0
1¡ p0

¶
=

0@ "1
"0+"1

"0
"0+"1

1A (2.7)

¹(k) has a stationary distribution:

P
¡
¹(k) = 0

¢
=

"1
"0 + "1

(2.8)
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Remark 2.6. The Markovian jump model (2.1) can be written by using the following bilinear
formalism:

x(k + 1) =
³
A0 + (A1 ¡A0)¹(k)

´
x(k) +

³
B0 + (B1 ¡B0)¹(k)

´
u(k)

+
³
F0 + (F1 ¡ F0)¹(k)

´
N(k);

y(k) =
³
C0 + (C1 ¡ C0)¹(k)

´
x(k) +

³
D0 + (D1 ¡D0)¹(k)

´
u(k)

+
³
G0 + (G1 ¡G0)¹(k)

´
N(k);

(2.9)

with ¹(k) as in (2.6).

3. The ¯ltering algorithm

The ¯ltering problem is solved by estimating the following extended state:

»(k) =

0@ »1(k)»2(k)
»3(k)

1A =

0@ x(k)
¹(k)x(k)
¹(k)

1A 2 IR2n+1; »1(k); »2(k) 2 IRn; »3(k) 2 IR: (3.1)

Theorem 3.1. The evolution of »(k) is given by a time-varying discrete-time bilinear system
of the type

»(k + 1) = A(k)»(k) + B(k; »(k); ´(k)) + U(k) +D(k)´(k); »(0) =
¡
xT0 ; ¹0x

T
0 ; ¹0

¢T
y(k) = C(k)»(k) +M(»(k); ´(k)) +W(k) +R´(k); k ¸ 0

(3.2)
where ´(k) is a suitable zero-mean white noise sequence, B(k; »(k); ´(k)), M(»(k); ´(k)) are
bilinear forms, U(k) andW(k) are deterministic terms and A(k), D(k), C(k) and R are suitable
matrices.

Proof. The proof is constructive. The evolution of »1(k), »2(k) and »3(k) are given by:

»1(k + 1) = A0»1(k) + (A1 ¡A0)»2(k) + (B1 ¡B0)u(k)»3(k) +B0u(k)
+ (F1 ¡ F0)N(k)»3(k) + F0N(k);

(3.3)

»2(k + 1) = "0A0»1(k) +
³
(1¡ "1)A1 ¡ "0A0

´
»2(k) +

³
(1¡ "1)B1 ¡ "0B0

´
u(k)»3(k)

+ "0B0u(k)¡B0u(k)»3(k)V0(k)¡B1u(k)»3(k)V1(k) +A0»1(k)V0(k)
¡A0»2(k)V0(k)¡A1»2(k)V1(k) + (1¡ "1)F1N(k)»3(k)¡ "0F0N(k)»3(k)
¡ F1N(k)V1(k)»3(k)¡ F0N(k)V0(k)»3(k) +B0u(k)V0(k) + F0N(k)V0(k) + "0F0N(k);

(3.4)

»3(k + 1) = (1¡ "0 ¡ "1)»3(k)¡
¡V0(k) + V1(k)¢»3(k) + V0(k) + "0 (3.5)



6.

By de¯ning the following stochastic sequence:

´(k) =

0BBBB@
Â1(k)
Â2(k)
Â3(k)
Â4(k)
Â5(k)

1CCCCA =

0BBBB@
N(k)
V0(k)
V1(k)

V0(k)N(k)
V1(k)N(k)

1CCCCA 2 IRm;
m = 3b+ 2;

Âi(k) 2 IRb; i = 1; 4; 5;

Âi(k) 2 IR; i = 2; 3;

(3.6)

equation (3.2) is achieved with the time-variant matrix A(k) given by:

A(k) =

264 A0 A1 ¡A0 (B1 ¡B0)u(k)
"0A0 (1¡ "1)A1 ¡ "0A0

³
(1¡ "1)B1 ¡ "0B0

´
u(k)

O1£n O1£n (1¡ "0 ¡ "1)

375 ; (3.7)

the time-variant bilinear form:

B(k; »(k); ´(k)) =
0@ B1(»(k)´(k))
B2(k; »(k)´(k))
B3(»(k)´(k))

1A ; (3.8)

with

B1(»(k); ´(k)) = (F1 ¡ F0)Â1(k)»3(k)
B2(k; »(k); ´(k)) = ¡B0u(k)»3(k)Â2(k)¡B1u(k)»3(k)Â3(k) +A0»1(k)Â2(k)

¡A0»2(k)Â2(k)¡A1»2(k)Â3(k) +
³
(1¡ "1)F1 ¡ "0F0

´
Â1(k)»3(k)

¡ F1Â5(k)»3(k)¡ F0Â4(k)»3(k);
B3(»(k); ´(k)) = ¡»3(k)Â2(k)¡ »3(k)Â3(k)

(3.9)
and

D(k) =
24 F0 On£1 On£1 On£b On£b
"0F0 B0u(k) On£1 F0 On£b
O1£b 1 0 O1£b O1£b

35 ; U(k) =
0@ B0u(k)
"0B0u(k)

"0

1A (3:10)

The measurements equation in (3.2) comes by de¯ning

C(k) = £C0 C1¡C0 (D1¡D0)u(k)
¤
; W(k) = D0u(k); R = £G0 Oq£2(b+1)

¤
(3.11)

and
M(»(k); ´(k)) = (G1 ¡G0)Â1(k)»3(k): (3.12)

From Remark 2.3 it easily comes that ´(k) is a zero-mean sequence. In order to show the
whiteness of ´(k), it has to be veri¯ed that

IE
£
Âi(k)Âj(h)

T
¤
= Oij ; 8i; j = 1; : : : 5; 8k6= h (3.13)

where Oij is a null matrix of suitable dimensions, according to (3.6). Some of (3.13) conditions
are clearly satis¯ed by construction or de¯nition (i = 1; : : : ; 3, j = i; : : : ; 3). All the others are
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easily achieved by using the whiteness properties of N or Vi as it is shown by the following
computation: let i = 4, j = 5 and k6= h:

IE
£
Â4(k)Â5(h)

T
¤
= IE

£V0(k)N(k)N(h)TV1(h)¤ = IE£V0(k)V1(h)N(k)N(h)T ¤
= IE

£V0(k)V1(h)¤IE£N(k)N(h)T ¤ = Ob£b (3.14)

For the sequel, it is useful to rewrite the extended system (3.2) with respect to a zero-mean
state variable

³(k) = »(k)¡ ¹»(k); (3.15)

with ¹»(k) = IE
£
»(k)

¤
.

Theorem 3.2. The evolution of the zero-mean sequence ³(k) de¯ned in (3.15) is given by the
following equations:

³(k + 1) = A(k)³(k) +F(k); ³(0) = ³0 = »(0)¡ ¹»(0);
y(k) = C(k)³(k) + G(k) +Z(k) (3.16)

with
F(k) = B¡k; ³(k); ´(k)¢+ B¡k; ¹»(k); ´(k)¢+D(k)´(k)
G(k) =M(³(k); ´(k)) +M(¹»(k); ´(k)) +R´(k) (3.17)

zero-mean white noise uncorrelated sequences. Z(k) = C(k)¹»(k) + W(k) is a deterministic
term.

Proof. Substitute »(k) = ³(k) + ¹»(k) in (3.2). After some easy computations it comes:

³(k+1) = A(k)³(k)+B(k; ³(k); ´(k))+B(k; ¹»(k); ´(k))+D(k)´(k)¡IE£B(k; »(k); ´(k))¤ (3.18)
Let us prove that the last term IE

£B(k; »(k); ´(k))¤ is null. The ¯rst n components mean is:
IE
£B1(»(k); ´(k))¤ = (F1 ¡ F0)IE£¹(k)N(k)] = 0 (3.19)

as it comes from the independence of the sequences ¹ and N . The second n components mean
is given by the following eight terms:

IE
£B2(k; »(k); ´(k))¤ = ¡B0u(k)IE£¹(k)V0(k)¤¡B1u(k)IE£¹(k)V1(k)¤

+A0IE
£V0(k)x(k)¤¡A0IE£V0(k)¹(k)x(k)¤¡A1IE£V1(k)¹(k)x(k)¤

+
³
(1¡ "1)F1 ¡ "0F0

´
IE
£
¹(k)N(k)

¤
¡ F1IE

£
¹(k)V1(k)N(k)

¤¡ F0IE£¹(k)V0(k)N(k)¤
(3.20)

As it can be seen by taking a look at equations (2.6) and (2.9), ¹(k) and x(k) are Borel functions
of
©
¹0;Vi(h); i = 0; 1; h = 0; : : : ; k¡1

ª
and

©
x0; ¹0;Vi(h); N(j); i = 0; 1; h = 0; : : : ; k¡2; j =

0; : : : ; k ¡ 1ª respectively, and moreover N is a stochastic sequence independent of Vi, so that
all the components of the eight terms in (3.20) are uncorrelated, and so (3.20) is null. The same
can be repeated to prove that IE

£B3(»(k); ´(k))¤ = 0.
To show that F(k) is a white noise sequence, note that it can be written as:

F(k) = B(k; ³(k); ´(k)) + eD(k)´(k) (3.21)
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where eD(k), the time-variant deterministic matrix such that eD(k)´(k) = B(k; ¹»(k); ´(k)) +
D(k)´(k), is given by: 24 eD11(k) On£1 On£1 On£b On£beD21(k) eD22(k) eD23(k) eD24(k) eD25(k)

O1£b eD32(k) eD33(k) O1£b O1£b

35 (3.22)

with:eD11(k) = ¡1¡ ¹»3(k)¢F0 + ¹»3(k)F1;eD21(k) = "0¡1¡ ¹»3(k)¢F0 + (1¡ "1)¹»3(k)F1;eD22(k) = A0¡¹»1(k)¡ ¹»2(k)¢+B0u(k)¡B0u(k)¹»3(k);eD23(k) = ¡A1¹»2(k)¡B1u(k)¹»3(k);

eD24(k) = ¡1¡ ¹»3(k)¢F0;eD25(k) = ¹»3(k)F1;eD32(k) = 1¡ ¹»3(k);eD33(k) = ¡¹»3(k):
(3.22)

To show the whiteness of F(k) it has to be proved that the ¯rst sequence in (3.21) is white
and, moreover, that it is uncorrelated with ´(k) at di®erent instants as it has been proved in
Theorem 3.1 that ´(k) is a white noise. Let bi(k) = Bi(k; ³(k); ´(k)). b1 is clearly a white noise
sequence, as ¹ and N are independent sequences. b2 is the sum of eight white noise sequences,
uncorrelated at di®erent instants. To show the e®ectiveness of the previous statement it is
here reported the proof that the term A0³2(k)Â2(k), at time k, is uncorrelated with the term
F0Â4(h)³3(h), at time h < k. Note that:

³2(k) = '1
¡
¹0; x0;Vi(j); N(j); i = 0; 1; ; j = 0; : : : k ¡ 1¢;

³3(h) = '2
¡
¹0;Vi(j); i = 0; 1; ; j = 0; : : : h¡ 1¢; (3.24)

where '1 and '2 are suitable Borel functions.

IE
£
Â2(k)³3(h)A0³2(k)Â4(h)

TFT0
¤
= A0IE

£V0(k)V0(h)³3(h)³2(k)N(h)T ¤FT0
= A0IE

£V0(k)¤IE£V0(h)³3(h)³2(k)N(h)T ¤FT0 = On£n
(3.25)

as V0(k) is independent of the other components in (3.25). By using the same procedure it is
easy to show that also b3 is a white noise sequence and that b1, b2, b3 and ´ are uncorrelated
at di®erent instants.
The measurement equation in (3.16) easily comes by substituting »(k) = ³(k) + ¹»(k) in the

output equation of (3.2). According to the state noise sequence (3.21), also the output noise
sequence G(k) can be put in the form:

G(k) =M(³(k); ´(k)) + eR(k)´(k); (3.26)

where eR(k) = £(G1 ¡G0)¹»3(k) +G0 Oq£2(b+1)
¤
: (3.27)

By using the same procedures previously adopted, it is easy to prove that also G
is a white noise sequence and, moreover, that F and G are uncorrelated sequences.

Remark 3.3. Note that, according to Theorem 3.1:

¹»(k + 1) = A(k)¹»(k) + U(k); ¹»(0) = ¹»0 =
¡
¹xT0 ; (1¡ p0)¹xT0 ; 1¡ p0

¢T
(3.28)
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Remark 3.4. Without a loss of generality, the bilinear term B¡k; ³(k); ´(k)¢ can be expressed
in the form:

B¡k; ³(k); ´(k)¢ = mX
i=1

´i(k)Bi(k)³(k); (3.29)

where ´i(k) stands for the i-th scalar component of ´(k) and Bi(k) are time-variant matrices
in IR(2n+1)£(2n+1).

De¯nition 3.5. Consider the vector Y k of all measurements y up to time k, de¯ned as

Y k =

264 y(0)...
y(k)

375 2 IRq(k+1); (3.30)

and let L(Y k) denote the Hilbert space of all the linear transformations of the extended measured
output Y k. Then the optimal linear estimate of system (2.1), driven by the Markovian jump
de¯ned in Lemma 2.2, is intended to be:

x̂(k) =
£
In On£(n+1)

¤³
¦
£
³(k)jL(Y k)¤+ ¹»(k)´: (3.31)

where the ¯rst term of the sum is given by the projection of the zero-mean extended state ³(k)
onto L(Y c) and the second term is the mean value of »(k).

Remark 3.6. De¯nition 3.5 considers only the case of ¯ltering the state x(k) of system (2.1).
However, the methodology proposed is able to estimate also the Markovian jump, if the input
suitably excites the system.

Theorem 3.7. According to De¯nition 3.5, the optimal linear state estimate of system (2.1)
is given by:

³̂(k + 1) = ³̂(k + 1jk) +K(k + 1)£y(k + 1)¡ C(k + 1)³̂(k + 1jk)¡Z(k + 1)¤;
³̂(k + 1jk) = A(k)³̂(k); ³̂(0j ¡ 1) = IE£³0¤ = 0
¹»(k + 1) = A(k)¹»(k) + U(k); ¹»(0) = »0;

x̂(k) =
£
In On£(n+1)

¤¡
³̂(k) + ¹»(k)

¢ (3.32)

where ³̂(0j ¡ 1) is the minimum variance a priori prediction and the gain matrix K(k) is given
by the following Riccati equations:

PP (k + 1) = A(k)P (k)A(k)T +ªF (k); k ¸ 0
K(k + 1) = PP (k + 1)C(k + 1)T

¡C(k + 1)PP (k + 1)C(k + 1)T +ªG(k + 1)¢¡1
P (k + 1) =

¡
In ¡K(k + 1)C(k + 1)

¢
PP (k + 1)

PP (0) = ª³(0)

(3.33)

with ªF(k) and ªG(k) the covariance matrices of the noise sequences F and G given by:
ª³(k + 1) = A(k)ª³(k)A(k)T +ªF(k); ª³(0) = cov(»0)

ªF (k) = eD(k)ª´ eD(k)T + mX
i=1

¡
ª´
¢
ii
Bi(k)ª³(k)Bi(k)

T ; ª´ = cov(´(k))

ªG(k) = eR(k)ª´ eR(k)T + (G1 ¡G0)(G1 ¡G0)Tª³3(k):
(3.34)
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Proof. The ¯lter and Riccati equations (3.32), (3.33) come out by applying the Kalman ¯lter
to system (3.16). According to (3.21) and (3.29), the extended state noise covariance matrix
ªF(k) is given by:

ªF (k) =
mX
i=1

mX
j=1

Bi(k)IE
£
´i(k)´j(k)³(k)³(k)

T
¤
Bj(k)

T + eD(k)IE£´(k)´(k)T ¤ eD(k)T
+

mX
i=1

Bi(k)IE
£
´i(k)³(k)´(k)

T
¤ eD(k)T + mX

i=1

eD(k)IE£´i(k)´(k)³(k)T ¤Bi(k)T
(3.35)

The last two terms in (3.35) are null, as ´(k) is uncorrelated to ³(k) and, moreover, they are
both zero-mean sequences. As far as ª´(k), it is easy to show that it is a diagonal matrix, given
by:

ª´(k) =

266664
Ib ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ "0(1¡ "0) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ "1(1¡ "1) ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ "0(1¡ "0)Ib ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ "1(1¡ "1)Ib

377775 : (3.36)

5. Simulations

In order to test the theory developed in this paper, numerical simulations have been produced.
Without loss of generality, the system to be ¯ltered has been supposed with no deterministic
drift, that is equations (2.1) are considered with B¹(k) = On£p, 8¹(k) 2

©
0; 1
ª
. Numerical data

are the following:

A0 =

24 0:1 0 1
0 0:2 0:5

¡0:1 1 0:5

35 ; C0 =

·
0:5 1 0
0 1 ¡2

¸
; F0 =

24 1 0
¡0:6 0
1 0

35 ; G0 =

·
0 1
0 0:5

¸

A1 =

24¡0:2 0 1
0 0:2 0:5

¡0:1 0:1 ¡0:8

35 ; C1 = ·¡0:5 1 0:2
0:5 1 2

¸
; F1 =

24 0:1 0
¡0:5 0
¡1:3 0

35 ; G1 = · 0 1:2
0 ¡0:5

¸
(3.37)

The Markovian jump transition matrix has been chosen as the following:

¦¹ =

·
0:8 0:3
0:2 0:7

¸
(3.38)

In order to show the e±ciency of the algorithm, the noise sequenceN(k) is a zero-mean sequence,
whose distribution is the following:

P (N1(k) = ¡2) = 0:2;

P

µ
N1(k) =

1

2

¶
= 0:8;

P

Ã
N2(k) = ¡

p
6

3

!
= 0:6;

P

Ã
N2(k) =

p
6

2

!
= 0:4;

(3.39)
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The pictures below report the ¯ltered state compared with the real one.

Fig. 4.1 { True and estimated state: the ¯rst component.

Fig. 4.2 { True and estimated state: the second component.

Fig. 4.3 { True and estimated state: the third component.
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6. Conclusions

In this paper a new approach in ¯ltering the state of a stochastic variable structure system,
driven by a Markovian jump is proposed. By using a state space realization for the Markov
process and the formalism of bilinear systems, the optimal linear ¯lter, in the sense of minimum
variance, achieves the best estimate among all the linear transformations of the measured out-
put. The algorithm can be considered as a useful key tool to solve the problem of suboptimal
estimates, when the system is a®ected by non-Gaussian noises, in the framework of polynomial
¯lters. Numerical simulations show the goodness of the theoretical results.

References

[1] G. A. Ackerson, K. S. Fu, \On State Estimation in Switching Environments," IEEE
Trans. Automat. Contr., Vol. 15, No. 1, pp. 10{17, 1970.

[2] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, C. Pinello, A. L. Sangiovanni-Vincentelli,
\Automative Engine Control and Hybrid Systems: Challenge and Opportunities," Proc. of
IEEE, Vol. 88, No. 7, pp. 888{912, 2000.

[3] H.A.P. Blom and Y. Bar-Shalom, \The interactive multiple model algorithm for systems with
Markovian switching coe±cients," IEEE Trans. Automat. Contr., Vol. 33, No. 8, pp. 780{783,
1988.

[4] O. L. V. Costa, \Linear Minimum Mean Square Error Estimation for Discrete-Time Marko-
vian Jump Linear Systems," IEEE Trans. Automat. Contr., Vol. 39, No. 8, pp. 1685{1689,
1994.

[5] M. D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds): Hybrid Systems: Computation and
Control 2001, LNCS 2034, Springer-Verlag 2001.

[6] A. Doucet, A. Logothetis, V. Krishnamurthy, \Stochastic Sampling Algorithms for State
Estimation of Jump Markov Linear Systems," IEEE Trans. Automat. Contr., Vol. 45, No. 1,
pp. 188{202, 2000.

[7] R. J. Elliot, F. Dufour, D. D. Sworder, \Exact Hybrid Filters in Discrete Time," IEEE
Trans. Automat. Contr., Vol. 41, No. 12, pp. 1807{1810, 1996.

[8] R.E. Helmick, W.D. Blair, S.A. Ho®man, \Fixed-interval smoothing for Markovian switching
systems," IEEE Trans. on Inf. Theory, Vol. 41, No. 6, pp. 1845-1855, 1995.

[9] J. L. Hibey, C. D. Charalambous, \Conditional Densities for Contiuous-Time Nonlinear Hy-
brid Systems with Applications to Fault Detection," IEEE Trans. Automat. Contr., Vol. 44,
No. 11, pp. 2164{2169, 1999.

[10] K. H. Johansson, M. Egerstedt, J. Lygeros, S. Sastry, \On the regularization of Zeno hybrid
automata. Hybrid control systems," Systems Control Lett., Vol. 38, no. 3, 141{150, 1999.

[11] A. Logothetis, V. Krishnamurthy, \Expectation maximization algorithms for MAP estimation
of Jump Markov Linear Systems," IEEE Trans. n Signal Processing, Vol. 47, No. 8, pp. 2139{
2156, 1999.

[12] B. M. Miller, W. J. Runggaldier, \Kalman Filtering for Linear Systems with Coe±cients
Driven by a Hidden Markov Jump Process," Syst. and Contr. Lett., No. 31, pp. 93{102,
1997.

[13] Q. Zhang, \Hybrid Filtering for Linear Systems with Non-Gaussian Disturbances," IEEE
Trans. Automat. Contr., Vol. 45, No. 1, pp. 50{61, 2000.


