An Abstract Strategy for Transforming
Logic Programs

Maurizio PROIETTI
TASI-CNR,Viale Manzoni 30, 00185 Roma, Italy
email: proietti@iasi.rm.cnr.it

Alberto PETTOROSSI
Electronics Department, University of Roma Tor Vergata, 00133 Roma, Italy
emdil: adp@iasi.rm.cnr.it

Abstract, We study the problem of automating some development techniques for
logic programs. These techniques are based on the application of semantics
preserving transformation rules which are driven by strategies. We propose an
abstract strategy which is parametrized by three mathematical functions called
definition-folding, selection, and replacement.

Once these three functions are supplied, our abstract strategy becomes a concrete
one which can be used during program development for driving the application of the
Definition, Folding, Unfolding, and Goal Replacement Rules.

We show that the definition-folding function can be determined in an automatic
way from the description of the syntactic properties of the program we wish to
derive.

We also show through some examples that many program derivation strategies
described in the literature, such as the methodology for eliminating unnecessary
variables, the tupling strategy, the partial deduction techniques, and the promotion
strategy, can be viewed as particular instances of our abstract strategy.

1. Introduction

One of the most popular approaches to the automation of the program transformation
methodology is the so called ‘rules + strategies’ approach [4]. The rules are used for
performing elementary transformations which preserve program semantics, while the
strategies are used for controlling the application of the transformation rules and improving
program efficiency. This approach is similar to the one often used in the area of automated
Theorem Proving [3], where the basic inference rules are guided by heuristics.

One could add more levels of control to the program transformation process by
introducing, for instance, meta-strategies for composing various strategies together. The
reader may refer to [6] for a comprehensive survey in the case of functional programs. (In
that paper Feather actually uses the name of tactics for what we call here strategies.)

In this paper we consider the case of logic programs and we propose a general framework
which can be used for defining several transformation strategies. This framework consists of
an abstract strategy which can be instantiated to several concrete strategies by providing three

This work has been partially supported by the “Progetto Finalizzato Sistemi Informatici e Calcolo
Parallelo” of C.N.R. (Italy) under grant n. 89,00026.69.

mathematical functions called definition-folding, selection, and replacement, respectively.

The definition-folding function is used for driving the application of the Definition and
Folding Rules, while the selection and replacement functions are used for driving the
application of the Unfolding and Goal Replacement Rules.

We will study the class of the definition-folding functions and we will show that they can
often be mechanically generated. In particular, we will consider the case when it is required
to transform a program into an equivalent one whose text satisfies some given conditions.
Various examples of these transformations include the avoidance of multiple occurrences of
variables, the transformation to linear recursive or tail-recursive programs, etc.

We will not consider the problem of the automatic generation of the selection and
replacement functions, and we will assume that those functions are known before the
transformation process begins.

Our abstract strategy is implemented by a procedure, called (DFUR)* which is an iteration
of a compound transformation made out of some definition and folding steps, followed by an
unfolding step and a replacement step. The (DFUR)* Procedure can be viewed as a
generalization of the procedure for eliminating unnecessary variables introduced in [16],
because the (DFUR)* Procedure has two extra parameters which are the definition-folding
function and replacement function.

The paper is structured as follows.

In Section 2 we introduce the basic terminology and some preliminary definitions. In
Section 3 we state the problem of transforming programs so that some syntactic conditions
are satisfied. In order to solve that problem, in Section 4 we introduce our abstract strategy
together with the definition-folding, selection, and replacement functions. We also show
various examples of its application.

In Sections 5 and 6 we present the (DFUR)* Procedure and we prove some of its prop-
erties.

In Section 7 we introduce the so-called Contraction Procedure which is used for
eliminating some redundant predicates which may be introduced while executing the
(DFUR)* Procedure. In Section 8 we show that it is sometimes useful to iterate the
applications of the (DFUR)* and Contraction Procedure, thereby arguing in favour of the
introduction of meta-strategies.

In Section 9 we present a final example where we show that our proposed transformation
strategy may easily incorporate semantics-based conditions (such as those related to the
typing information) which the program to be derived has to satisfy.

2. Preliminary Definitions

We consider definite logic programs [12]. We assume that all our programs are written using
a fixed language £. We also assume that £ contains at least one constant. The Herbrand
universe associated with £ is the set H . of all ground terms which can be constructed using
constant and function symbols taken from L. Given a predicate p in £ and a program P, we
denote by M(P,p) the least Herbrand model of p in P, that is:

M(P.,p) = {p(tys....tp) | {tse.oty} SH and Pl=p(ty,. ..t}
We say that two programs Py and P are equivalent w.r.t. predicate p iff M(P;,p) = M(P,,p).
Given a clause C we denote its head by hd(C) and its body by bd(C). We also denote the

sets of all atoms, clauses, and programs by Atoms, Clauses, and Programs, respectively.
Given a term t, we denote by vars(t) the set of variables occurring in t. Similar notation

will be used for variables occurring in atoms, goals, and clauses. Two atoms (also goals and
clauses) which differ only for the names of the variables are said to be variants.

We now briefly describe the rules which will be used when transforming programs. We
assume that when the transformation rules are applied, two distinct clauses do rnot have
variables in common,

Definition Rule. Let P be a program and D a clause (belonging or not to P) of the form:
newp(Xl,...,Xm) « A A, such that: i) {Xl,...,Xm} C vars({Al,...,An}), ii) newp
does not occur in P — {D}, and iii) every predicate occurring in the body of D occurs in P as
well. D is said to be a definition clause.

Given a program P and a definition clause D (not occurring in P) we get a new program by
adding D to P.

We say that a clause S; is a synonym of a clause S, iff there exists a renaming substitution
p, such that vars(hd(S;)) = vars(hd(S,p)), and bd(S;) = bd(Syp).

If during the program transformation process we are required to consider a definition
clause, say S;, which is a synonym of an already introduced one, say Sy, then we do not
introduce S, and we use Sy, instead.

Unfolding Rule. Given two clauses C and D, and an atom A in bd(C) unifiable with hd(D),
the result of unfolding C w.r.t. A using D is the clause obtained by applying an SLD-
resolution step to C and D w.r.t. A.

Given a program P and a clause C in P, we get a new program by replacing C by the set of
all clauses which can be obtained by unfolding C w.r.t. A using clauses of P.

Folding Rule. Given a clause C, a definition clause D, and a subset B of bd(C) such that B is
an instance of bd(D) via a substitution 6, the result of folding C using D w.r.t. B is the clause
F obtained from C by replacing B by hd(D)e.

A folding step can be performed only if C is not a definition clause and by unfolding F
w.r.t. the atom hd(D)d using D we get a variant of clause C.

Given a program P and a clause C in P, we get a new program by replacing C by F.

For introducing the Goal Replacement Rule we need the following definition.

Definition 1. (Linking Variables) Let C be a clause and B a subset of bd(C), the linking
variables of B in C are the variables occurring in B and also in {hd(C)} U (bd(C) - B). =

Example 1. Let C be the clause: h(X) « p(b,Y), q(X,Y,Z), s(Z). The linking variables of
{p(b,Y), ¢(X,Y,Z)} in C are X and Z. -

Goal Replacement Rule. Let P be a program and C a clause in P, Suppose that:
1) G; < bd(C) and the linking variables of Gy in C are Xy,...,X,, and
ii) G, is a set of atoms such that vars(G,) N vars(C) = {Xy,...,X}.

Suppose that G and G, are equivalent, in the sense that we have:

M(P U {Dq}, new) = M(P U {D,}, new),

where Dy and D, are the clauses: new(Xy,...,Xy) < Gy and new(Xy,...,X) « Gy,
respectively, and new is a predicate symbol not occurring in P,

A goal replacement step consists in replacing the clause C by the clause C; such that
hd(C,) = hd(C) and bd(C,) = (bd(C) - G;) U G,.

Clause Deletion Rule. Given a program P and a clause C in P, we say that C is a failing
clause iff its body contains an atom which is not unifiable with the head of any clause in P.
If Cis a failing clause then it can be deleted from P,

The application of the rules presented above preserves partial correctness, in the sense that
if we derive program P, from program P; then for each predicate p in P; we have that:
M(P,,p) € M(Py,p). By forcing some restrictions on the use of those rules [19], we can
preserve total correctness, that is, we get: M(P,p) = M(P,,p).

The reader can easily verify that the use of the rules in the transformation techniques
presented in this paper always preserves total correctness.

Variants of the above transformation rules can be shown to be correct w.r.t. other logic
languages and program semantics (see, for instance, [2, 8, 10, 15, 17, 18]).

For simplicity reasons we will not discuss those variants here and we will focus our
attention on the problem of mechanizing the transformation strategies when using the rules
we have described above. However, we believe that the techniques we will introduce, can
easily be extended to more sophisticated logic languages and more complex transformation
rules.

3. The Transformation Problem and an Introductory Example

Our program transformation techniques can be used for solving instances of the following
Transformation Problem:

given a program P and a property ®, we are required to find a program TransfP
such that: i) P is equivalent to TransfP w.r.t. every predicate occurring in P and
ii) ®(TransfP) holds.

We assume that® is a decidable property. Some examples of & will be given below.

Example 2. Eliminating Unnecessary Variables.

An unnecessary variable of a clause C is a variable which either occurs in the body of C
and not in its head, or it occurs more than once in the body of C.

Given a program P we want to obtain an equivalent program without unnecessary vari-
ables, that is, we want to solve an instance of the Transformation Problem, where @ (TransfP)
holds iff no clause in TransfP contains unnecessary variables.

We may apply the strategy presented in [16] which is based on the so-called Elimination
Procedure. This procedure consists in the repeated application of a compound transform-
ation made out of an unfolding step, followed by some definition and folding steps.

The abstract transformation strategy we will present in this paper is an improvement of the
strategy for eliminating unnecessary variables, and in order to clarify our presentation, let us
briefly recall the essential features of the Elimination Procedure by looking at the following
program derivation.

Let us consider the problem of eliminating the unnecessary variables from the following
program, called RL:

rotate_leftdepth(Treel,N) « rotate(Treel,Tree2), leftdepth(Tree2,N).
rotate(leaf,leaf).

rotate(tree(L,R),tree(L1,R1)) « rotate(L,L.1), rotate(R,R1).
rotate(tree(L,R),tree(R1,L.1)) « rotate(L,L.1), rotate(R,R1).
leftdepth(leaf,0).

leftdepth(tree(L,R),succ(N)) « leftdepth(L,N).

A o

where: i) rotate(Ty,T,,) holds iff either Ty =T}, or there exists a sequence of binary trees
Ty,.... Ty, such that for i=1,...,m-1, T;, is obtained from T; by interchanging the left and
right subtrees of a node, and ii) leftdepth(T,N) holds iff N is the length of the path from the
root of the binary tree T to its leftmost leaf.

The objective of our transformation process is to replace clause 1 by a set of clauses
without unnecessary variables, thereby avoiding the construction of the intermediate tree
Tree2.

By performing an unfolding step followed by some definition and folding steps we can
indeed do so at the expense of introducing some new definitions with unnecessary variables,
as the following derivation shows.

Unfolding step. By unfolding clause 1 w.r.t. the atom rotate(Treel,Tree2) we get the three
clauses:

7. rotate_leftdepth(leaf, N) « leftdepth(leaf, N).
8. rotate_leftdepth(tree(L,R), N) « rotate(L, L.1), rotate(R, R1), leftdepth(tree(L.1,R1), N).
9. rotate_leftdepth(tree(L,R), N) « rotate(L, L1), rotate(R, R1), leftdepth(tree(R1,L.1), N).

Definition step. We introduce the following new clause, whose body is made out of the
atoms with unnecessary variables in clause 8:

10. newl(L, R, N) « rotate(L, L1), rotate(R, R1), leftdepth(tree(L1,R1), N).

Folding steps. We fold clauses 8 and 9 using the newly introduced clause 10. We get:

8f. rotate_leftdepth(tree(L, R), N) « new1(L, R, N).
Of. rotate_leftdepth(tree(L, R), N) « newl1(R, L, N).

Now we have that the program RL is equivalent to (RL - {clause 1}) U {7, 8f, 91, 10},
where clauses 7, 8f, and 9f do not contain unnecessary variables.

The application of the Elimination Procedure continues by applying to the new definition
clause 10 with the unnecessary variables L1 and R1 the compound transformation consisting
of an unfolding step followed by some definition and folding steps. This transformation may
determine the introduction of new definitions containing unnecessary variables. Thus, these
definitions must, in turn, be processed by the Elimination Procedure.

According to the Definiton Rule presented in Section 2, we comply with the following
condition: if a definition, say N, to be introduced during the execution of the Elimination
Procedure, is a synonym of an already existing definition, say M, we do not add N to the set
of the definitions to be processed by the procedure, and we use, instead, the old clause M.

The transformation process terminates when no definitions to be processed are left.

From the above description of the Elimination Procedure, one can see that it is para-
metrized by two functions: the first one, called definition-folding function, is used for
introducing the new definition clauses and performing the folding steps, while the second
one, called selection function, is used for selecting the atom for unfolding.

The selection function can be effectively constructed for a class of programs which
includes the one we consider here, as indicated in [16], and the definition-folding function
can be constructed as follows.

For any clause C and any two atoms A; and A, in bd(C), we assume that A; | A, holds

iff vars(Aq) N vars(A,) # @. Let U denote the reflexive and transitive closure of the relation
d over bd(C).

We consider the partition of bd(C) into the equivalence classes (or blocks) determined by
{, and for each equivalence class B containing unnecessary variables we consider a (possibly
new) definition Dy such that: bd(Dp) =B and hd(Dp) contains exactly the linking variables of
B in C. It is clear that by folding B using Dy all unnecessary variables occurring in B are
eliminated.

We consider the set DefC of all new definition clauses constructed as we have now
described. We also consider the clause FoldC obtained from C by performing a folding step
for each block B in bd(C) containing unnecessary variables. FoldC does not contain
unnecessary variables.

The value of the definition-folding function we need to construct is given by the pair
<DefC, FoldC>.

As an example of use of the definition-folding function, the reader may verify that in our
case, during the execution of the Elimination Procedure, we have to consider the following
clause:

11. newl(L, R, succ(N)) « rotate(L, L1), rotate(R, R1), leftdepth(L1, N).
whose body is partitioned into the blocks:

bl. {rotate(R, R1)}, with linking variable R, and
b2. {rotate(L, L1), leftdepth(L.1, N)}, with linking variables L and N.

Block b1 determines the introduction of the following definition clause:
12. new2(R) « rotate(R, R1).

while block b2 determines a definition clause which is a synonym of clause 1. Thus,
according to our Definition Rule we do not introduce a new clause for folding b2 and we use
clause 1 instead. By folding clause 11 using clauses 1 and 12 we get the clause:

13. newl(L, R, succ(N)) « rotate_leftdepth(L, N), new2(R).

which does not contain unnecessary variables. Thus, the value of the definition-folding
function for clause 11 is the pair: <{clause 12}, clause 13>,

We leave to the reader to check that, for a suitable selection function (see also Example 4),
the Elimination Procedure terminates and it produces the following set of clauses:

7. rotate_leftdepth(leaf, N) « leftdepth(leaf, N).

8f. rotate_leftdepth(tree(L, R), N) «~ new1(L, R, N).

9f. rotate_leftdepth(tree(L, R), N) «- new1(R, L, N).

13. newl(L, R, succ(N)) « rotate_leftdepth(L, N), new2(R).
14. new2(leaf).

15. new2(tree(L,R)) « new2(L), new2(R).

Now our task of eliminating all unnecessary variables has been completed because in the
initial program clause 1 can be replaced by the above set of clauses. The derived program
does not construct any tree to be passed from the computation of rotate to the computation of
leftdepth.

Moreover, the derived program can be simplified by eliminating the intermediate predicate
newl. This simplification can be done by performing some unfolding steps, which can be
considered to be an application of the Partial Evaluation technique (also called Partial
Deduction in the case of logic programs) [7, 11, 13]. These final unfolding steps will be
determined in our approach by the Contraction Procedure introduced in Section 7. [|

4. The Abstract Transformation Strategy

In order to deal with more general Transformation Problems, we will now extend the basic

ideas underlying the Elimination Procedure presented in Example 2. We will consider two

enhancements which consist in:

i) allowing the application of the Goal Replacement Rule, and

ii) considering more general ways of performing the definition and folding steps, in the sense
that the new definitions are not necessarily detcrmlned by the equivalence relation | over
the bodies of the clauses.

The abstract transformation strategy which derives from the above two enhancements is

parametrized by the definition-folding, selection, and replacement functions. It can be

outlined as follows.

Suppose that we have an instance of the Transformation Problem for a given
program P and property ®.

We partition P into two sets of clauses TransfP and RestofP, such that
®(TransfP) holds and RestofP is the complement of TransfP w.r.t. P.

We then consider a clause C in RestofP and we perform some definition
and folding steps on C (according to the definition-folding function) so that
®(TransfP L {F}) holds, where F is the clause derived by folding C.

If these definition and folding steps are not possible because either C itself
is a definition clause or we cannot find the appropriate clauses for folding, we
maintain unchanged the values of TransfP and RestofP, otherwise we add F to
TransfP and replace C in RestofP by the set of new definition clauses used for
folding C.

We then perform some unfolding steps (according to the selection function)
and we apply the Goal Replacement Rule (according to the replacement
function) on the clauses of RestofP. If for a set T of clauses generated by these
transformation steps we have that ®(TransfP U T) holds, then we add T to
TransfP.

Finally we recursively solve the Transformation Problem for the current
values of TransfP and RestofP.

The transformation process terminates when RestofP is empty. In that case
the initial program is equivalent to TransfP, for which the property ® holds by
construction.

In Section 5 we will present a procedure, called (DFUR)*, which implements the abstract
strategy we have now outlined.
In order to clarify the reader’s ideas let us now see how our abstract strategy works in the

following example.

Example 3. (Towers of Hanoi) Consider the following program for the farmhar Towers of
Hanoi problem:

1. hanoi(0,A,B,C,[]).

2. hanoi(s(N),A,B,C,M) « hanoi(N,A,C,B,M1), hanoi(N,C,B,A,M2),
append(M1,[m(A,B) | M2],M).

. append([], L, L).

append((H| T, L, [H | TL]) « append(T, L, TL).

We want to derive an equivalent /inear recursive program for the hanoi relation, where
linear recursiveness is defined as follows.

W

Given two predicates p and q in a program P, we say that p depends on q iff in P either
there exists a clause of the form p(...) « ..., q(...), ... or there exists a clause of the form
p(...) « ..., r(...), ... and r depends on . A clause E in P is said to be linear recursive
w.r.t. program P iff in bd(E) there exists at most one predicate depending on the predicate
which occurs in hd(E). We say that program P is linear recursive iff all its clauses are linear
recursive w.r.t. P.

A linear recursive program for the hanoi relation can be achieved by using the tupling
transformation strategy [14]. We now show that the same goal can also be achieved by using
our abstract transformation strategy, where ®(TransfP) holds iff TransfP is a linear recursive
program.

We assume that during the derivation process the goal replacement steps are determined by
the functionality of hanoi(N,A,B,C,M) w.r.t. the first four arguments, that is, for any term
n, a, b, ¢, ml, and m2, we may replace the goal ‘hanoi(n,a,b,c,m1), hanoi(n,a,b,c,m2)’ by
the goal ‘hanoi(n,a,b,c,m1), ml=m2’.

The subset of the initial program made out of all clauses different from clause 2 is linear
recursive. Thus, initially we have: TransfP = {clause 1, clause 3, clause 4} and RestofP =
{clause 2}.

We now perform a definition and a folding step on clause 2 so that the derived clause is
linear recursive. Indeed, we introduce the following definition clause:

5. newl(N,A,B,C,M1,M2) « hanoi(N,A,C,B,M1), hanoi(N,C,B,A,M2).
and, by folding clause 2 using clause 5 we get:
2f. hanoi(s(N),A,B,C,M) « new1(N,A,B,C,M1,M2), append(M1,[m(A,B) | M2],M).

Now, TransfP = {clause 1, clause 2f, clause 3, clause 4} and RestofP = {clause 5}.

The definition clause 5 is obtained by applying the following general technique for deriving
linear recursive programs. Given a clause C which is not linear recursive w.r.t. TransfP U
{C} we consider a definition clause D¢ of the form:

pXps....Xy) « NewBody

such that: i) p is a new predicate symbol iff D is not a synonym of an already introduced
definition, ii) Xj,...,X,, are the linking variables of NewBody in C, and iii) NewBody is the
set of all atoms in bd(C) whose predicates depend on the predicate of hd(C).

D¢ is then used for performing a folding step on C, thereby obtaining a linear recursive
clause FoldC which is added to TransfP. We have that TransfP U {FoldC} is a linear
recursive program.

Now we unfold clause 5 and we get:

6. newl(0,A,B,C,[],M) « hanoi(0,C,B,A,M).

7. newl(s(N),A,B,C,M1,M2) « hanoi(N,A,B,C,M11), hanoi(N,B,C,A,M12),
hanoi(s(N),C,B,A,M2),
append(M11,[m(A,C) | M12],M1).

Clause 6 is linear recursive while clause 7 is not. The functionality rule cannot be applied
in our case. Thus, no replacement is performed on clause 7.

The abstract transformation strategy is then applied to the current values of TransfP and
RestofP, that is, {1, 2f, 6, 3, 4} and {7}, respectively.

By definition, we introduce the predicate new2 by the following clause:

8. new2(N,A,B,C,M11,M12,M2) « hanoi(N,A,B,C,M11), hanoi(N,B,C,A,M12),
hanoi(s(N),C,B,A,M2).

By folding clause 7 using clause 8 we get the following linear recursive clause:

9. newl(s(N),A,B,C,M1,M2) « new2(N,A,B,C,M11,M12,M2),
append(M11,[m(A,C) | M12],M1).

By unfolding clause 8 we get:

10, new2(N,A,B,C,M11,M12,M2) « hanoi(N,A,B,C,M11), hanoi(N,B,C,A,M12),
hanoi(N,C,A,B,M21), hanoi(N,A,B,C,M22),
append(M21,[m(C,B) | M22], M2).

By applying the Goal Replacement Rule we get:

11. new2(N,A,B,CM11,M12,M2) « hanoi(N,A,B,C,M11), hanoi(N,B,C,A,M12),
hanoi(N,C,A,B,M21), M11=M22,
append(M21,[m(C,B) | M22], M2).

At this point of the derivation we have: TransfP = {1, 2f, 6, 9, 3, 4} and RestofP = {11}.

We are now left with the problem of transforming clause 11 into a linear recursive one.
Thus, we may continue the application of our abstract transformation strategy by introducing
some more definition clauses for performing folding steps on clause 11.

We cannot show the remaining derivation for lack of space, however the reader may easily
verify that eventually no new definitions will be introduced in RestofP and the derivation
process halts producing the following linear recursive clauses:

1. hanoi(0,A,B,C,[].
2f. hanoi(s(N),A,B,C,M) « new1(N,A,B,C,M1,M2), append(M1,[m(A,B) | M2],M).
6. newl(0,A,B,C,[1,M) « hanoi(0,C,B,A,M).
9. newl(s(N),A,B,C,M1,M2) « new2(N,A,B,C,M11,M12,M2),
append(M11,[m(A,C) | M12],M1).
12. new2(N,A,B,C,M11,M12,M2) « new3(N,A,B,C,M11,M12,M21), M11=M22,
append(M21,[m(C,B) | M22], M2).
13.new3(0,A,B,C,[,M12,M21) « newl(0,B,A,C,M12,M21).
14. new3(s(N),A,B,C,M11,M12,M21) « new4(N,A,B,C;M111,M112,M12,M21),
append(M111,[m(A,B) | M112],M11).
15. new4(N,A,B,C,M111,M112,M12,M21) « new5(N,A,B,CM111,M112,M121,M21),
M111=M122,
append(M121,[m(B,C) | M122],M12).
16.new5S(N,A,B,C,M111,M112,M121,M21) « new3(N,A,C,B,M111,M112,M121),
M211=M112, M212=M121,
append(M211,[m(C,A) | M212],M21).

The program we have derived so far can be further simplified by performing some
unfolding steps for eliminating the intermediate predicates new1, new2, new4 and new5 (see
the Contraction Procedure in Section 7) and for partially evaluating the equalities and some
atoms with the predicates append and hanoi. By doing so, we get the following program:

hanoi(0,A,B,C,[]).
hanoi(s(0),A,B,C,[m(A,B))).
hanoi(s(s(N)),A,B,C,M) — new3(N,A,B,C,M1,M2,M3),
append(M3,[m(C,B) | M1],M4),
append(M1,[m(A,C) | M2],M5),
append(M35, [m(A, B) | M4],M).
new3(0,A,B,C,[LIL[D.
new3(s(N),A,B,C,M1,M2,M3) « new3(N,A,C,B,M4,M5M6),
append(M5,[m(C,A) | M6],M3),
append(M6,[m(B,C) | M4],M2),
append(M4,[m(A,B) | M5],M1). [

As this example shows, the abstract transformation strategy we have outlined at the
beginning of this section, becomes a concrete procedure for program derivation when we
provide three mathematical functions:

1) the definition-folding function (df-function, for short) o, for determining the set NewD of
new definition clauses to be introduced and the clause obtained from a given clause by
performing some folding steps using either clauses in NewD or definition clauses
introduced in a previous application of the Definition Rule. We assume that the value of o
may depend on:

- the given clause,

- the program derived so far by the abstract transformation strategy, and

- the set of definition clauses introduced so far during the transformation process.

Thus, o is a partial function from Clauses x Programs x P(Clauses) to P(Clauses) x

Clauses. For any given clause C, program P, and set of clauses Defs, the first and second

components of a(C, P, Defs) will be written a,3(C, P, Defs) and a.¢(C, P, Defs), respect-

ively. Thus, o = <o, o.p>.

Since our restrictions on the use of the Definition Rule forbid the introduction of two

synonym clauses, we will assume that for every clause C, program P, and set of clauses

Defs, 0.4(C, P,Defs) does not contain a synonym of a clause in Defs.

i) the selection function S for selecting the atom to be unfolded in the body of the clause in
hand. S is a total function from Clauses to Atoms.

iii) the replacement function R for specifying the goal replacements (possibly none) to be
applied to the body of a clause. R is a total function from Clauses to Clauses such that
hd(C) = hd(R(C)) for every clause C.

An example of the value of the pair <o, 06> is provided by <DefC, FoldC> constructed
in Example 2 for solving the problem of eliminating unnecessary variables from the program
defining the relation rotate_leftdepth. Some more examples of df-functions will be given in
the sequel.

The df-function « is often suggested by the form of the property @ given in the specifica-
tion of the Transformation Problem. Indeed, during the application of our transformation
strategy the folding steps due to the function o should produce a clause F such that
®(TransfP U {F}) holds. Thus, we will consider only o’s which are consistent with @, in
the sense specified by the following definition.

Definition 2. (Consistent df-functions) Given a property ® over Programs, we say that a
df-function o is consistent with @ iff for every clause C, program TransfP, and set of clauses
Defs, if there exists a set N of definition clauses which are not synonym of clauses in Defs
and there exists a clause T such that T can be obtained by folding C using clauses in Defs U
N and ®(TransfP U {T}) holds then ®(TransfP U {og(C, TransfP, Defs)}) holds else a(C,
TransfP,Defs) is undefined. |

Obviously, for each @ there exists an o which is consistent with @.

The assumption of decidability of the property @ implies that for any given C the value of
a df-function o consistent with @ can be constructed by first generating the set of all clauses
derivable from C by definition and folding steps, and then selecting from that set a clause
which satisfies ®. This generate-and-test process terminates because according to our
Definition Rule, for any clause C the set of definition clauses which can be used for folding
C is finite. (Recall, in particular, that synonym clauses cannot be introduced and the
arguments of the head of a definition clause are distinct variables which also occur in its
body.)

5. The (DFUR)* Procedure
The procedure which implements our abstract transformation strategy is the following one.

(DFUR)* Procedure,

Input: An instance of the Transformation Problem, that is, a program P without failing
clauses and a predicate ® over Programs, together with a df-function o which is consistent
with @, a selection function S, and a replacement function R.

Output. a program TransfP such that: i) TransfP is equivalent to P w.r.t. every predicate
occurring in P, and ii) ®(TransfP) holds.

Initially, let TransfP be a maximal subset of P such that ®(TransfP) holds, RestofP be the
complement of TransfP w.r.t. P, and Defs be the set of definition clauses occurring in P.
while RestofP # @ do
consider a clause C in RestofP and create a set of clauses TransfC;
1: (Definition and Folding Steps)
if Cdoes not occur in Defs and a(C,TransfP,Defs) is defined
then i) TransfC :=a4(C, TransfP,Defs),
ii) TransfP := TransfP U {o.(C, TransfP,Defs)},
iii) Defs := Defs U a,3(C, TransfP,Defs)
else TransfC :={C};
2: (Unfolding Step)
TransfC := {E | E is a non-failing clause which can be obtained by unfolding a clause D
in TransfC w.r.t. the atom S(D) using clauses in P};
consider a maximal subset T of TransfC such that &(TransfP T) holds;
TransfP := TransfPU T;
TransfC := TransfC —T;
3: (Replacement Steps)
for every clause E in TransfC replace E by R(E);
consider a maximal subset T of TransfC such that ®(TransfP U T) holds;
TransfP := TransfPU T;
TransfC := TransfC - T;
4: RestofP := (RestofP — {C}) U TransfC. B

Example 4. (Eliminating Unnecessary Variables Revisited)
Let us consider again the instance of the Transformation Problem presented in Example 2. In
that case ®(TransfP) is; “TransfP does not contain any clause with unnecessary variables’.
The derivation of Example 2 above is an application of our (DFUR)* Procedure.
i) The df-function o is the one introduced in Example 2 by means of the equivalence relation
Ul That df-function is consistent with .

ii) The selection function S is constructed as follows (see also the SDR rule in [16]).
Let us assume the usual tree representation of atoms where predicate, function, constant,
and variable symbols are labels of nodes. Let A be an atom and let X be a variable
occurring in A, The depth of X in A, denoted by depth(X, A), is the length of the
shortest path from the root of A to a leaf labelled by X. Given two atoms A and B, we
write A <,,. B iff for each variable X in vars(A) N vars(B) we have that depth(X, A) <
depth(X, B).
For a given clause C the selection function S returns the leftmost atom M such that for
every atom A in bd(C) we have that A <, M. If such an atom M does not exist S returns
the leftmost atom in bd(C),
iii) The replacement function R is in this case the identity function, that is, we do not make
any goal replacement.
The reader may verify that the (DFUR)* Procedure with the definition-folding, selection,
and replacement functions described above, does terminate and it produces the program given
at the end of Example 2. [|

Example 5. (Towers of Hanoi Revisited)

The derivation presented in Example 3 is obtained by applying the (DFUR)* Procedure with

the following input functions.

i) For any given clause C which is not linear recursive w.r.t. TransfP U {C} the value of the
df-function is the pair by <D¢,FoldC>. This df-function is consistent with the property &
which for any program P states that P is linear recursive.

il) The selection function is the SDR [16].

iii) The replacement function is the one determined by the functionality of the relation
hanoi(n,a,b,c,m) w.r.t. <n,a,b,c>. |

6. Properties of the (DFUR)* Procedure

In this section we prove the partial correctness of the (DFUR)* Procedure as well as some
properties about its termination.

Theorem 1. The (DFUR)* Procedure is partially correct, that is, for any program P and
property ® we have that, if the (DFUR)* terminates with output TransfP then:

i) Pisequivalent to TransfP w.r.t. every predicate occurring in P and

ii) ®(TransfP) holds.

Proof. Point i) follows from the correctness of the transformation rules [19]. Point ii)
follows from the fact that initially ®(TransfP) holds and for every set T of clauses which is
added to TransfP, ®(TransfP U T) holds. In particular, since the df-function o is consistent
with @, we have that for any clause C, ®(TransfP U {ag(C, TransfP,Defs)}) holds. |

Theorem 2. The problem of deciding whether or not the (DFUR)* Procedure terminates is
undecidable.

Proof. The (DFUR)* Procedure is a generalization of the Elimination Procedure whose
termination is not decidable [16]. | |

We now present a result which can be useful for proving the termination of the (DFUR)*
Procedure in many practical cases.

Let us consider an execution of the (DFUR)* Procedure for a program P, a property @, a
df-function a, a selection function S, and a replacement function R. Let Defs; be the value of

the variable Defs immediately after the i-th execution of the assignment of point 1.iii) of that
procedure. By definition Defsy={D | D is a definition clause occurring in the initial program
P}.

Lemma 3. (Termination of (DFUR)¥) Suppose that the df-function o, is total. Then the
(DFUR)* Procedure terminates iff the set BdDefs = {bd(D) | D ¢ Defs; for some i20} is
finite,

Proof, If the (DFUR)* Procedure terminates then the sequence of values assigned to the
variable Defs is finite and this implies the finiteness of BdDefs.

In order to prove the inverse implication let us notice that the execution of each definition,
folding, unfolding, and replacement step terminates. Thus, it is enough to show that the body
of the while-do loop is executed a finite number of times.

Let us assume that BdDefs is a finite set. The set Defs* = {D e Defs; for some i20} is
finite as well, because no two synonym definition clauses are introduced and the set of
variables occurring in the head of a definition clause is a subset of the variables occurring in
its body.

Each unfolding step of point 2 is performed on a clause belonging to Defs*, because the
df-function a is total. Thus, the thesis follows from the fact that point 2 of the procedure can
be executed a finite number of times only and it is executed each time the body of the while-
do loop is entered. [|

The following result is an immediate consequence of the above lemma.
Theorem 4. Let o be a total df-function. If the set {bd(ay3(C, P, D)) | Ce Clauses, Pe
Programs, D e P(Clauses)} is finite modulo renaming of variables then every execution of
the (DFUR)* Procedure with o as input terminates independently of the other input values.H

7. The Contraction Procedure

As it is demonstrated by Example 2, the (DFUR)* Procedure may introduce some predicates

which can be eliminated from the derived program by means of unfolding steps. These

unfolding steps may be performed according to the Contraction Procedure presented below.
In that procedure we use the following terminology.

Given a program P, a predicate r in P is said to be recursive iff there exists a program clause

of the form: r(...) « ..., r(...),... .

Given a set Rec of predicates, the Contraction Procedure always terminates and it
produces a program in which every predicate occurring in both Rec and the body of a clause,
is recursive. Notice that our Contraction Procedure does not realize all predicate eliminations
which are possible by performing unfolding steps. However, it is impossible to exhibit a
procedure which is substantially better than ours, because the problem of deciding for any
given program whether or not a predicate can be eliminated by unfolding is undecidable.

Contraction Procedure.

Input. a program P, a set Rec of predicates occurring in P, and a predicate p in P.

Output. a program P, such that: i) Pe . is equivalent to P w.r.t. p, ii) for every predicate
q occurring in Pegp, if q is different from p then p depends on q, and iii) every predicate
belonging to Rec and occurring in the body of a clause of Pip, is recursive.

while there exists a predicate q in Rec do
1: if q is not recursive

then while there exists a clause Cin P and an atom A of the form q(...) in bd(C) do
if Cis afailing clause

thenP :=P - {C}
elseP = (P - {C}HuU{C'|C' is the result of unfolding C w.r.t. A using a
clause in P};
2: Rec:=Rec~- {q};
Pcontr := {Q | Q & P and p depends on the predicate symbol of hd(Q)}. [

Theorem 5. The Contraction Procedure is totally correct.

Proof. i) The equivalence of Ppyy and P w.r.t. p follows from the fact that we use trans-
formation rules which preserve equivalence w.r.t. p. Indeed, the Unfolding Rule, the
deletion of a failing clause, and the deletion of a clause C such that p does not depend on the
predicate symbol occurring in hd(C), preserve the equivalence w.r.t. p. (Recall that the
language from which we take the symbols for writing our programs is fixed and therefore,
these deletion operations do not change the Herbrand universe.)

ii) Obvious, by the last assignment of the Contraction Procedure.

iti) Let us consider the predicate q processed during the i-th execution of the body of the outer
while-do loop. After the execution of point 1 q is either recursive or it does not occur in the
body of any clause. Thus, after the execution of the while-do loop p does not depend on the
non-recursive predicates. Every occurrence of a non-recursive predicate different from p is
then eliminated by the last assignment of our Contraction Procedure.

The inner while-do loop terminates. Indeed, suppose that during its execution we have in
hand a non-recursive predicate q and a clause C. If C is a failing clause then, after the
execution of the body of the while-do loop, the number of occurrences of q in P decreases by
at least one. If C is not a failing clause then, by unfolding, C is replaced by a set of clauses
such that in each of them q has one occurrence less than in C. (Recall that, since q is not
recursive no occurrence of q can be introduced by unfolding a clause w.r.t. q(...).)

The termination of the Contraction Procedure is then obvious, because the body of the
outer while-do loop is executed once for every predicate in Rec which is a finite set. []

Example 6. We apply the Contraction Procedure to the final program derived in Example 2.
We write here again that program for the reader’s convenience:

7. rotate_leftdepth(leaf, N) « leftdepth(leaf, N).

8f. rotate_leftdepth(tree(L, R), N) «- newl(L, R, N).

9f. rotate_leftdepth(tree(L, R), N) « newl(R, L, N).

12. newl(L, R, succ(N)) « rotate_leftdepth(L, N), new2(R),
13, new2(leaf).

14. new2(tree(L,R)) « new2(L), new2(R).

rotate(leaf,leaf).

rotate(tree(L,R),tree(L1,R1)) « rotate(L,L1), rotate(R,R1).
rotate(tree(L,R),tree(R1,L.1)) « rotate(L,L.1), rotate(R,R1).
leftdepth(leaf,0).

leftdepth(tree(L,R),succ(N)) « leftdepth(L,N).

We take Rec to be the set {newl, new2, rotate_leftdepth}, and p to be the predicate
rotate_leftdepth.

Since newl is not recursive and it belongs to Rec, we unfold clauses 8f and 9f w.r.t.
newl(...) and we get:

15. rotate_leftdepth(tree(L, R), succ(N)) « rotate_leftdepth(L, N), new2(R).
16. rotate_leftdepth(tree(L, R), succ(N)) « rotate_leftdepth(R, N), new2(L).

A S

Now the predicates new2 and rotate_leftdepth are recursive and we exit from the while-
do loop with clauses: 7, 15, 16, 12, 13, 14, 2, 3, 4, 5, and 6.

Then we get rid of clauses: 12, 2, 3, and 4, because the predicate rotate_leftdepth does not
depend on the predicates occurring in their heads. Thus, the Contraction Procedure
terminates with the final program P, made out of clauses: 7, 15, 16, 13, 14, 5, and 6. B

8. Iterating (DFUR)* and Contraction: An Example of Partial Deduction

In Section 6 we proved that the output of the (DFUR)* Procedure is a set of clauses which
satisfy a given property . It is easy to see that the Contraction Procedure may affect the
validity of @ (see also Example 7 below). When this happens, we may start again the trans-
formation process by applying the (DFUR)* Procedure followed by the Contraction
Procedure until the derived program satisfies property &.

We would like to illustrate the usefulness of iterating the (DFUR)* and Contraction
Procedures by an example of Partial Deduction. Partial Deduction is a transformation
technique which specializes a given program to a given goal. The efficiency improvements
one can expect from the application of this technique are due to the fact that some parts of the
input are processed at compile time, and thus, during the execution of the transformed
program (which in this context is called the residual program) some computations can be
avoided.

Example 7. (Double Append)
Let us consider the following program, called Double_Append:

double_append(L1, L2, L3, L4) « append(L2, L3, A), append(L1, A, L4),
append([], L, L).
append((H| T], L, [H | TL]) « append(T, L, TL).

Suppose that we want to specialize the above program to queries which are instances of
the goal double_append(L1, [a], L3, L.4). In order to do so we introduce the new clause:

D1. query(L1, L3, L4) « double_append(L1, [a], L3, L4).

and we would like to derive from the program Double_Append U {D1} a new program in
which the binding [a] has been already processed.

In this example, and more generally in the case of Partial Deduction, a possible definition
of the property @ in the specification of the Transformation Problem is as follows:
@ (TransfP) holds iff for any given clause C in TransfP no atom in bd(C) is instantiated, that
is, all arguments of the predicates are unbound variables.

Let us consider the df-function o, = <a.4, a.¢> defined as follows:

) a4(C, P,Defs) is the set of definition clauses which are not synonyms of clauses in Def's
and are of the form new(Xy,..., X)) « A, where A is an instantiated atom in bd(C) and
X15..., X}, are the linking variables of A, and

ii) ap(C, P, Defs) is the clause obtained by folding each instantiated atom using the corre-
sponding definition clause in o 4(C, P, Defs) U Defs.

The df-function « is total and consistent with &, The selection function returns the leftmost
atom in the body of the clause in hand. The Goal Replacement Rule is not applied, that is, we
have: R(C) = C for each clause C.

We now apply the (DFUR)* Procedure to Double_Append L {D1}, the df-function, the

selection function, and replacement function given above. The (DFUR)* Procedure
terminates with the following program as output:

1. query(L1, L3, L4) « newl(L3, A), append(L1, A, L4).
2. newl(L3, [al T]) « new2(L3, T).
3. new2(L3, L3).

together with the clauses for append. Notice that the derived program satisfies the given
property @,

We apply the Contraction Procedure with input program P = Double_Append L {1, 2,
3}, set of predicates Rec = {query, newl, new2}, and predicate p = query. We get the
following clause:

D2. query(L1, L3, L4) « append(L1, [a | L3], L4).

together with the clauses for append.

The program made out of the above clause D2 and the clauses for append does not satisfy
@ because the second argument of append in bd(D2) is instantiated. Thus, we apply again the
(DFUR)* Procedure. We perform the following steps:

(Definition and Folding) Since D2 is a definition clause we do not perform any definition or
folding step.

(Unfolding) We unfold clause D2 and we get:

4. query([], L3, [a | L3)).
5. query([H | L1], L3, [H | L4]) « append(LL1, [a | 3], L4).

(Folding) No new definitions are necessary, because we can fold clause 5 using clause D2,
and we get:

6. query((H|L1], L3, [H|L4]) « query(L1, L3, L4).

The (DFUR)* Procedure terminates and the Contraction Procedure eliminates the clauses
for append. The derived program satisfies ® and consists of clauses 4 and 6 only. |

9. Using Semantic Information During Transformation: An Example

In this section we show that some semantics-based transformation techniques can easily be
incorporated into the framework of our transformation technique. As an example we consider
the case where the transformations take advantage of the type information provided by the
programming language.
For our type declarations we will follow the syntax of the Godel language [9].

We assume that each predicate pred with arity n in a program P is associated with a type
declaration of the form ‘pred : type * ... *type,’, where typeq, ... ,type, are base types.
Similarly, each constant and function symbol occurring in the program is associated with a
type declaration,

Example 8. (Leaves of Binary Trees)
Let us consider the following program Leaves which computes the list of integers which label
the leaves of a binary tree (we do not write the clauses for the predicate append: they can be

found in Example 3):

1. leaves(leaf(N), [N]).
2. leaves(tree(L,R), LT) « leaves(L, LL), leaves(R, LR), append(LL, LR, LT).

where leaves : Btree * ListOfInt and append : ListOfInt * ListOfInt * ListOfInt.

The type declarations for the constant [] and the function symbols [_|_], leaf, and tree are
the following:

[1: ListOfInt;

[_L.]: Integer * ListOfInt — ListOfInt;
leaf : Integer — Btree;

tree : Btree * Btree — Btree.

Notice that for every term occurring in a clause it is possible to infer at most one type
assignment which is consistent with the given type declarations. Thus, when we introduce a
definition clause newp(Xj,...,Xp,) < Aq,...,A,, the type declaration of the predicate newp
can be inferred in a unique way from the already known types, because the variables which
are arguments of newp occurin Ay,...,A,,.

We would like to transform the program Leaves into a program TransfLeaves in which

every clause C satisfies the following properties:

i) each atom of C has precisely one argument of type Btree, if an argument of this type
occurs in bd(C) at all,

ii) each argument of type Btree in bd(C) is a proper subterm of the argument of type Btree in
hd(C), and

iii) two arguments of type Btree in bd(C) do not have variables in common.

A clause C satisfying i), ii), and iii) is said to be strictly linear w.r.t. Btree.
Thus, we would like to solve a Transformation Problem where ®(TransfLeaves) holds iff
every clause in TransfLeaves is strictly linear w.r.t. Btree.

In program Leaves clause 2 is the only clause which is not strictly linear w.r.t. Btree,
because append has no arguments of type Btree. Thus, we start our transformation process
by partitioning the program Leaves into the following two subsets: i) TransfLeaves con-
taining clause 1 and the clauses for append, and ii) RestofLeaves containing clause 2 only.

(Definition and Folding) According to our transformation strategy, we now introduce a new
definition clause such that by folding clause 2 using that definition clause we get a clause
which is strictly linear w.r.t. Btree. Indeed, we introduce the following definition clause:

3. newl(T, A, LTA) « leaves(T, LT), append(LT, A, LTA).
For the new predicate new1 we have the following type declaration:
newl : Btree * ListOfInt * ListOfInt,

By folding clause 2 using clause 3 we get:
2f. leaves(tree(L,R), LT) « newl(L, LR, LT) , leaves(R, LR).

which is strictly linear w.r.t. Btree.

(Unfolding) By unfolding clause 3 we get:

4. newl(leaf(N), A, LTA) « append([N], A, LTA).
5. newl1(tree(L,R),A,LTA) «leaves(L,LL), leaves(R,LR), append(LL,LR,LT),
append(L.T,A,LTA).

Clause 4 is strictly linear w.r.t. Btree because no arguments of type Btree occur in its
body.

(Replacement) By the associativity of append, clause 5 can be replaced by the following
clause:

6. new1(tree(L,R),A,LTA) « leaves(L,LL), leaves(R,LR), append(LL,B,LTA),
append(LR,A,B).

(Definition and Folding) No new definition clauses are needed because by folding clause 6
using clause 3 we get the following clause which is strictly linear w.r.t. Btree:

6f. new1(tree(L,,R),A,LTA) « newl1(L,B,LTA), newl(R,A,B).

RestofLeaves is now empty and we stop our transformation process. The derived
program, which satisfies @, is the following one:

1. leaves(leaf(N), [N]).
2f. leaves(tree(L,R), LT) < newl(L, LR, LT) , leaves(R, LR).

4. newl(leaf(N), A, LTA)« append([N], A, LTA).
6f. newl(tree(L,R),A,LTA) ¢ new1(L,B,LTA), new1(R,A,B).

together with the clauses for append.

Now there is no need to apply the Contraction Procedure because all predicates in the
above program are recursive. However, further simplifications can be performed by unfold-
ing the atom append([N], A, LTA) in clause 4.

In the final program we have derived, the list concatenation performed by the predicate
append is interleaved with the computation of the predicate leaves, and the construction of the
list of leaves can be performed while the members of that list are generated. The second argu-
ment of the predicate new1 can be viewed as an accumulator, because it contains the portion
of the list of leaves constructed so far. The reader may verify as a simple exercise that a
derivation similar to ours can be performed by applying the so-called promotion and accu-
mulation strategies [1].

Finally, we would like to notice that in the Definition and Folding transformations of our
derivation above, the folding steps have all produced clauses which are strictly linear w.r.t.
Btree. Therefore, those steps can be considered to have been performed according to a df-
function which is consistent with ®. However, for this program derivation there exist more
than one df-function consistent with ®. We will not address here the problem of choosing
among all possible df-functions: we simply remark that its solution may depend on the
particular transformation problems to be solved. |

10. Conclusions

We have presented an abstract strategy for the automatic derivation of logic programs by
transformation. We assume that the programmer suggests the desired ‘shape’ of the program
to be derived (linear recursive, tail recursive, without unnecessary variables, etc.) by
supplying a syntactic property ® which should be satisfied by the transformed program.

Given the property @, we are required to generate three parameters (the definition-folding

function, the selection function, and the replacement function) which turn the abstract
strategy into a concrete one, and also drive the application of the transformation rules
(Definition, Unfolding, Folding, Goal Replacement, and Clause Deletion).

We have shown that in many cases the definition-folding function can be automatically
generated.

We did not investigate on the formal relationship between the success of our abstract
strategy in achieving the desired program shapes, and the increase of program efficiency.
However, in all examples we have considered in this paper the final program is, under a
Prolog execution, more efficient than the initial one,

We have also shown through some examples that several transformation strategies which
have been proposed in the literature for improving efficiency, can be viewed as instances of
our abstract strategy for suitable choices of the definition-folding, selection, and replacement
functions. In particular, in Examples 2, 3, 7, and 8 we have considered the strategy for
eliminating unnecessary variables [16], the tupling strategy [14], the partial deduction
techniques [7, 11, 13], and the promotion strategy [1].

Related work in the area of functional programming has been presented in [5]. In the
transformation system described there, some derivation steps are driven by the recursive
shape of the programs to be obtained. Here we have considered the case of logic programs
and we have generalized that approach by considering a generic syntactic property @ and
formalizing our transformation strategy as a higher order procedure which takes other func-
tions as arguments.

11. Acknowledgements

We want to thank Prof. C. Rauszer and Prof. A. Skowron of the Mathematics Department of
Warsaw University (Poland) for their kind invitation to take part in the Banach Semester
during November 1991.

We also thank Dr. O. Aioni for her careful reading of a previous draft of this paper and our
colleagues of the Department of Pure and Applied Mathematics of the University of Padova
(Ttaly) for their stimulating and helpful discussions.

The IASI Institute of the National Research Council of Italy and the University of Rome
Tor Vergata provided the necessary computing and research facilities.

References

[1] R.S. Bird, The Promotion and Accumulation Strategies in Transformational Programming. ACM -
TOPLAS 6 (4):487-504, October 1984,

[2] A. Bossi and N. Cocco, Basic Transformation Operations for Logic Programs which Preserve Computed
Answer Substitutions of Logic Programs. Tech. Rep. University of Padova, Italy, 1990. To appear in:
Special Issue of the Journal of Logic Programming on Partial Deduction, 1992,

[3] R.S. Boyer and J.S. Moore, Proving Theorems about LISP Functions. Journal of the ACM, 22 (1),
129-144, 1974,

[4] R.M. Burstall and J. Darlington, A Transformation System for Developing Recursive Programs,
Journal of the ACM, 24 (1).44-67, January 1977.

[5] M.S. Feather, A System for Assisting Program Transformation, ACM-TOPLAS 4 (1):1-20, January
1982,

[6] M.S. Feather, A Survey and Classification of Some Program Transformation Techniques. In: Proc. TC2
IFIP Working Conference on Program Specification and Transformation, Bad Tolz, Germany, 1986, 165-
195.

[7] Y. Futamura, Partial Evaluation of Computation Process - An Approach to a Compiler-Compiler.
Systems, Computers, Controls 2 (5): 45-50, 1971,

[8] P.A. Gardner and J.C. Shepherdson, Unfold/Fold Transformations of Logic Programs, In: J.-L. Lassez

and G. Plotkin (Eds.), Computational Logic, Essays in Honor of Alan Robinson, MIT Press, 1991,
565-583.

[91 P.M. Hill and J.W. Lloyd, The G&del Report. TR 91-02, Department of Computer Science, University
of Bristol, March 1991.

[10] T. Kawamura and T. Kanamori, Preservation of Stronger Equivalence in Unfold/Fold Logic Program
Transformation, Theoretical Computer Science 75:139-156, 1990.

[11] H.J. Komorowski, Partial Evaluation as a Means for Inferencing Data Structures in an Applicative
Language: A Theory and Implementation in the Case of Prolog. In: Proc. Ninth ACM Symp. on
Principles of Programming Languages, Albuquerque, New Mexico, 1982, pp. 255-267.

[12] J.W. Lloyd, Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.

[13] J.W. Lloyd and J.C. Shepherdson, Partial Evaluation in Logic Programming. Journal of Logic Pro-
gramming 11:217-242, 1991,

[14] A. Pettorossi, Transformation of Programs and Use of Tupling Strategy. In: Proc. Informatica *77, Bled,
Yugoslavia, 1977, pp. 1-6.

[15] M. Proietti and A. Pettorossi, Semantics Preserving Transformation Rules for Prolog. In: Proc. ACM
Symposium on Partial Evaluation and Semantics Based Program Manipulation, PEPM *91, New Haven,
CT (U.S.A)) 1991, SIGPLAN NOTICES 26 (9):274-284, 1991,

[16] M. Proietti and A, Pettorossi, Unfolding-Definition-Folding, in This Order, for Avoiding Unnecessary
Variables in Logic Programs. In: J. Maluszynski and M, Wirsing (Eds.), Proc. 3rd International
Symposium on Programming Language Implementation and Logic Programming, PLILP *91, Passau,
Germany, 1991, Lecture Notes in Computer Science 528:347-358, 1991,

[17] T. Sato, An Equivalence Preserving First Order Unfold/Fold Transformation System. In: Proc. 2nd
International Conference on Algebraic and Logic Programming, ALP *90, Nancy, France, 1990. Lecture
Notes in Computer Science 463:175-188, 1990.

[18] H. Seki, Unfold/Fold Transformation of Stratified Programs. Theoretical Computer Science 86:107-139,
1991,

[19] H. Tamaki and T. Sato, Unfold/Fold Transformation of Logic Programs, In: S.-A. Tamliind (Ed.) Proc.
2nd International Conference on Logic Programming, Uppsala, Sweden, 1984, pp. 243-251.

