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Abstract. When specializing programs one can increase efficiency by
reducing nondeterminism. We consider constraint logic programs and
we propose a technique which, by making use of a new transformation
rule called clause splitting, allows us to generate efficient, specialized
programs which are deterministic. We have applied our technique to the
specialization of pattern matching programs.

1 Introduction

Programs are often written in a parametric form so that one can reuse them
in different contexts. When one reuses parametric programs, one may want to
transform those programs for taking advantage of the contexts of use and, indeed,
by doing so, often program efficiency is improved. This program transformation
is usually called program specialization [18] and it can be performed by using
well established techniques such as partial evaluation [4, 12, 18, 20, 22].

Various program specialization methods have been proposed in the litera-
ture for different programming languages. In this paper we consider a program
specialization method for constraint logic programming (CLP) and we use the
rules + strategies transformation approach. This approach was first suggested by
Burstall-Darlington for functional languages [3] and later applied to logic lan-
guages by Tamaki-Sato [25]. Our method increases program efficiency by deriv-
ing deterministic, specialized programs starting from nondeterministic, general
programs.

Our specialization method makes use of a set of rules for transforming con-
straint logic programs which are an extension of the ones presented in [6, 8,
23]. This set includes extensions of the familiar unfolding and folding rules, and
an extra rule, called clause splitting, which generalizes the case splitting rule
presented in [23]. Given a clause H ← Body and a constraint c, by the clause
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splitting rule we generate the two clauses: H ← c ∧ Body and H ← ¬c ∧ Body .
By using these clauses which have mutual exclusive bodies, in what follows we
show how we can derive efficient programs with reduced nondeterminism. The
correctness of the derived programs follows from the fact that the transformation
rules preserve the least model semantics [17].

Our specialization method is realized by an automatic strategy which guides
the application of the transformation rules. This strategy is an enhancement of
the one presented in [23] and includes a specific treatment of constraints. Our
enhanced strategy consists of the following steps: (i) the introduction of an ini-
tial definition, corresponding to the goal w.r.t. which we want to specialize the
initial program, (ii) the execution of some unfolding steps and constraint manip-
ulations, and (iii) the execution of some folding steps. If in order to perform these
folding steps we have to introduce new definitions, we do so, and we continue
the specialization process by executing unfolding, constraint manipulations, and
folding steps starting from each of these new definitions. On the contrary, if the
folding steps do not require the introduction of new definitions, we terminate
the specialization process. We will see this strategy in action in Section 5.

This paper is an extended version of [9]. In particular, in Section 6 we will
describe some experimental results obtained by implementing our specialization
method on the MAP transformation system [7].

2 An Introductory Example:
Specialization of a Constrained Matching Program

In this Section we present an example of program specialization using the rules+
strategies approach. Starting from a nondeterministic, general program which
specifies a pattern matcher on strings, we derive a deterministic, specialized pat-
tern matcher for a given pattern. In this example we define a general matching
relation between strings which is expressed as a constraint logic program. Our
derivation generalizes the derivations of the Knuth-Morris-Pratt matcher [19]
which were presented, among others, in [10–12, 15, 23, 24]. As in the case of
that matcher, we derive a program which behaves like a deterministic finite au-
tomaton with transitions labelled by constraints, rather than symbols of the
strings. We improve over the derivations of specialized pattern matchers pre-
sented in [10–12, 15, 24] because we start from a nondeterministic specification
of the matcher, while in those papers the initial programs are deterministic. As
already mentioned, the improvement over [23] is that we now deal with a general
pattern matcher presented as a constraint logic program.

In our example we define a matching relation leq
¯
match(P, S) between a

pattern P = [p1, . . . , pn] and a string S, which holds iff in S there exists a sub-
string Q=[q1, . . . , qn] and for all i=1, . . . , n, we have that pi ≤ qi. The following
CLP program Leq̄ Match can be taken as the specification of our general pattern
matching problem:



1. leq
¯
match(P, S) ← app(B, C, S) ∧ app(A,Q, B) ∧ leq(P, Q)

2. app([ ],Ys,Ys) ←
3. app([X|Xs],Ys, [X|Zs]) ← app(Xs,Ys,Zs)
4. leq([ ], [ ]) ←
5. leq([X|Xs], [Y |Ys]) ← X≤Y ∧ leq(Xs, Y s)
where app denotes the list concatenation. Now let us suppose that we want to
specialize this general program w.r.t. the pattern P = [1, 0, 2]. We start off by
introducing the following definition:
6. leq

¯
matchsp(S) ← leq

¯
match([1, 0, 2], S)

Clauses 1–6 constitute the initial program P0 from which we begin our program
specialization process. We generate a sequence of programs, each of which is
derived from the previous one by applying a transformation rule (Section 4)
according to the Determinization Strategy (Section 5). As indicated in Section 5,
we will get the following final program Leq

¯
Matchsp :

9. leq
¯
matchsp(S) ← new1(S)

16. new1([X|Xs]) ← 1≤X ∧ new2(Xs)
17. new1([X|Xs]) ← 1>X ∧ new1(Xs)
18. new2([X|Xs]) ← 1≤X ∧ new3(Xs)
19. new2([X|Xs]) ← 0≤X ∧ 1>X ∧ new4(Xs)
20. new2([X|Xs]) ← 0>X ∧ new1(Xs)
21. new3([X|Xs]) ← 2≤X ∧ new5(Xs)
22. new3([X|Xs]) ← 1≤X ∧ 2>X ∧ new3(Xs)
23. new3([X|Xs]) ← 0≤X ∧ 1>X ∧ new4(Xs)
24. new3([X|Xs]) ← 0>X ∧ new1(Xs)
25. new4([X|Xs]) ← 2≤X ∧ new6(Xs)
26. new4([X|Xs]) ← 1≤X ∧ 2>X ∧ new2(Xs)
27. new4([X|Xs]) ← 1>X ∧ new1(Xs)
28. new5([X|Xs]) ←
29. new6([X|Xs]) ←
This final program is deterministic in the sense that at most one clause can be
applied during the evaluation of every ground goal. As in the case of the Knuth-
Morris-Pratt matcher, the efficiency of this final program is very high because
it behaves like a deterministic finite automaton.

3 Preliminaries

In this section we recall some basic notions of constraint logic programming. For
notions not defined here the reader may refer to [1, 17, 21].

Syntax of Constraint Logic Programs. We consider a first order language
L generated by an infinite set Vars of variables, a set Funct of function symbols
with arity, and a set Pred of predicate symbols with arity. We assume that Pred
is the union of two disjoint sets: (i) the set Predc of constraint predicate sym-
bols, including true, false, and the equality symbol =, and (ii) the set Predu of
user defined predicate symbols. Terms and formulas of L are constructed from



the element in Vars, Funct, and Pred, by means of connectives (¬, ∧ , ∨ ) and
quantifiers (∀, ∃), as usually done in first order logic.

Given a sequence of terms or formulas e1, . . . , en (with n>0), the set of vari-
ables occurring in that sequence is denoted by vars(e1, . . . , en). Given a formula
ϕ, the set of the free variables in ϕ is denoted by FV (ϕ). A term or a formula
is ground iff it contains no variable. Given a set X ={X1, . . . , Xn} of variables,
by ∀X ϕ we denote the formula ∀X1 . . . ∀Xn ϕ. By ∀(ϕ) we denote the universal
closure of ϕ, that is, the formula ∀X ϕ, where FV (ϕ)=X. Analogously, by ∃(ϕ)
we denote the existential closure of ϕ.

A primitive constraint is an atomic formula p(t1, . . . , tn) where p is a predi-
cate symbol in Predc and t1, . . . , tn are terms. The set C of constraints, ranged
over by c, d, . . ., is the smallest set of formulas of L which contains all primitive
constraints and it is closed w.r.t. all connectives and quantifiers.

An atom A is an atomic formula p(t1, . . . , tn) where p is an element of Predu

and t1, . . . , tn are terms. A goal G is the conjunction of m (≥ 0) atoms. A con-
strained goal c ∧G is the conjunction of a constraint and a goal. The empty
conjunction of constraints or atoms is identified with true.

A clause γ is a formula of the form H ← c ∧G, where: (i) H is an atom,
called the head of γ, and (ii) c ∧G is a constrained goal, called the body of γ.
Clauses of the form H ← c are called constrained facts. Clauses of the form
H ← true are also written as H ←.

A constraint logic program (or program, for short) is a finite set of clauses.
(Here we do not allow for negated atoms in the bodies of clauses.)

Given a program P , we say that a predicate p depends on a predicate q
iff either there exists in P a clause whose head predicate is p and whose body
contains an occurrence of q or there exists a predicate r such that p depends on
r and r depends on q.

Given two atoms p(t1, . . . , tn) and p(u1, . . . , un), we denote by p(t1, . . . , tn)
= p(u1, . . . , un) the conjunction of the constraints: t1 =u1 ∧ . . . ∧ tn =un.

A variable renaming is a bijective mapping from Vars to Vars. The applica-
tion of a variable renaming ρ to a formula ϕ returns the formula ρ(ϕ), called a
variant of ϕ, obtained by replacing each (bound or free) occurrence of X in ϕ
by the variable ρ(X). A renamed apart clause is a variant of a clause such that
all its (bound or free) variables do not occur elsewhere.

We will feel free to apply to clauses the following two transformations which,
as the reader may verify, preserve program semantics (see below):
(1) application of variable renamings, and
(2) replacement of a clause of the form H ←X= t ∧ c ∧G, where X 6∈ vars(t),
by the clause (H←c ∧G){X/t}, and vice versa.

Least D-model Semantics. We assume that we are given an interpretation D
for the constraints in C. Let D be the carrier of D. D assigns a subset of Dn

to each n-ary constraint predicate symbol in Predc . In particular, D assigns the
whole carrier D to true, the empty set to false, and the identity over D to the
equality symbol =.



A D-interpretation is an interpretation for the formulas of L which extends
the interpretation D. In particular, a D-interpretation assigns a subset of Dn to
each n-ary user defined predicate symbol in Predu . Thus, a D-interpretation is
isomorphic to a subset of the set BD where:

BD = {p(d1, . . . , dn) | p ∈ Predu and (d1, . . . , dn) ∈ Dn}
A D-model of a program P is a D-interpretation I such that I |= ∀(P ). It can
be shown that for every CLP program P there exists a least D-model (w.r.t. set
inclusion), denoted by lm(P,D) [17].

Operational Semantics. Let D be the given interpretation for the constraints
in C. In order to define the operational semantics of constraint logic programs, we
assume that there is a computable total function solve: C×Pfin(Vars)→C, where
Pfin(Vars) is the set of all finite subsets of Vars. The function solve can be used
for simplifying constraints in C. We assume that solve is sound w.r.t. constraint
equivalence, that is, for all constraints c1, c2 ∈ C and for every finite set X of
variables, if solve(c1, X) = c2 then D |= ∀X((∃Y c1) ↔ (∃Z c2)), where Y =
FV (c1)−X and Z = FV (c2)−X.

We also assume that solve is complete w.r.t. satisfiability, in the sense that,
for any constraint c,
(i) solve(c, ∅)= true iff c is satisfiable, i.e., D|=∃(c), and
(ii) solve(c, ∅)= false iff c is unsatisfiable, i.e., D|=¬∃(c).
The totality and the soundness of the solve function guarantee the correctness
of the transformation strategy (see Section 5). The assumption that solve is
complete w.r.t. satisfiability is fulfilled by many classes of constraints considered
in practice, such as: (quantified) boolean formulas, equations over the Herbrand
universe, and equations over the reals. This assumption guarantees that con-
straint satisfiability tests, which are required in our transformation method, are
decidable. Moreover, the completeness w.r.t. satisfiability guarantees that for any
constraints c1 and c2, by evaluating solve(∀(c1 → c2), ∅) we can check whether
or not D |= ∀(c1 → c2) holds.

Now we define the operational semantics of a CLP program P by introducing
a derivability relation 7→P between constrained goals as follows.

c ∧A ∧G 7→P c ∧A=H1 ∧ c1 ∧G1 ∧G
iff

H1 ← c1 ∧G1 is a renamed apart clause of P and c ∧A=H1 ∧ c1 is satisfiable.
The relation 7→∗

P is the reflexive and transitive closure of 7→P . We say that
the constrained goal c ∧G succeeds in P iff c ∧G 7→∗

P d for some satisfiable
constraint d.

4 Rules for Transforming CLP Programs

The process of transforming a given program P thereby deriving a program Q,
can be formalized as a sequence P0, . . . ,Pn of programs, called a transformation
sequence, where P0 =P, Pn =Q and, for k=0, . . . , n−1, program Pk+1 is obtained
from program Pk by applying one of the following transformation rules.



R1. Definition. We introduce a set of clauses
δ1 : newp(X1, . . . , Xh) ← c1 ∧G1

· · ·
δm : newp(X1, . . . , Xh) ← cm ∧Gm

where: (i) newp is a predicate symbol not occurring in P0, . . . , Pk,
(ii) {X1, . . . , Xh}⊆FV (c1∧G1, . . ., cm∧Gm), and
(iii) the predicates occurring in G1, . . . , Gm occur also in P0.
We derive the new program Pk+1 = Pk ∪{δ1, . . . , δm}. For i ≥ 0, Defsi is the set
of clauses introduced by the definition rule during the transformation sequence
P0, . . . , Pi. In particular, Defs0 =∅.
R2. Unfolding. Let γ : H ← c ∧G′ ∧A ∧G′′ be a renamed apart clause of Pk.
By unfolding γ w.r.t. A we derive the set of clauses

Γ : {H ← c ∧A=H1 ∧ c1 ∧G′ ∧G1 ∧G′′ |
H1 ← c1 ∧G1 is a clause in Pk and
c ∧A=H1 ∧ c1 is satisfiable}

and the new program Pk+1 = (Pk − {γ}) ∪ Γ .

R3. Folding. Let
γ1 : H ← c ∧ c1ϑ ∧G′ ∧G1ϑ ∧G′′

· · ·
γm : H ← c ∧ cmϑ ∧G′ ∧Gmϑ ∧G′′

be m (>0) clauses in Pk and let newp be a predicate such that

δ1 : newp(X1, . . . , Xh) ← c1 ∧G1

· · ·
δm : newp(X1, . . . , Xh) ← cm ∧Gm

are the clauses in Defsk which have newp as head predicate. Suppose that, for
i = 1, . . . ,m and for every variable X ∈ (FV (ci ∧Gi)−{X1, . . . , Xh}), we have
that: (i) Xϑ is a variable not occurring in (H, c,G′, G′′), and (ii) for every variable
Y ∈ (FV (ci ∧Gi))−{X}), Xϑ does not occur in Y ϑ. By folding γ1, . . . , γm using
δ1, . . . , δm we derive the clause

η : H ← c ∧G′ ∧ newp(X1, . . . , Xh)ϑ ∧G′′

and the new program Pk+1 = (Pk − {γ1, . . . , γm}) ∪ {η}.
R4. Clause Removal. Let γ be a clause in Pk. We derive the new program
Pk+1 = Pk − {γ} if one of the following cases occurs:

(Unsatisfiable Constraint) γ is the clause H ← c ∧G and c is unsatisfiable, that
is, D |= ¬∃(c);
(Subsumed Clause) γ is the clause (H ← c1 ∧G1)ϑ and there exists a clause
in Pk − {γ} of the form H ← c2 ∧G2 such that D |= ∀(c1 → ∃Xc2), where
X = FV (c2)− vars(H, G2) and G2 is a subconjunction of G1.

R5. Constraint Replacement. Let γ1 : H ← c1 ∧G be a clause in Pk.
Suppose that for some constraint c2, we have that: D |= ∀ (∃Y c1 ↔ ∃Z c2)



where: (i) Y = FV (c1)− vars(H, G), and (ii) Z = FV (c2)− vars(H, G). In
particular, we may take c2 =solve(c1, vars(H, G)). Then we derive the clause

γ2 : H ← c2 ∧G

and the new program Pk+1 = (Pk − {γ1}) ∪ {γ2}.
R6. Clause Fusion. Let

γ1 : H ← c ∧G γ2 : H ← d ∧G

be clauses in Pk. Then we derive the clause

γ : H ← (c ∨ d) ∧G

and the new program Pk+1 = (Pk − {γ1, γ2}) ∪ {γ}.
R7. Clause Splitting. Let

γ : H ← (c ∨ d) ∧G

be a clause in Pk. Then we derive the clauses
γ1 : H ← c ∧G γ2 : H ← d ∧G

and the new program Pk+1 = (Pk − {γ}) ∪ {γ1, γ2}.
The following result ensures the correctness of the transformation rules w.r.t.

the least model semantics.

Theorem 1. Let P0, . . . , Pn be a transformation sequence. Suppose that, for
every k ∈ {0, . . . , n−1} such that Pk+1 is derived by folding clauses γ1, . . . , γm

in Pk using clauses δ1, . . . , δm in Defsk , one of the following conditions holds:
(1) for i=1, . . . ,m, clause δi is unfolded during the construction of P0, . . . , Pn;
(2) the head predicate of δ1, . . . , δm does not depend on itself in Pn.
Then lm(P0 ∪Defsn ,D) = lm(Pn,D).

The rules listed above are an extension of the rules for transforming logic
programs and constraint logic programs presented in [2, 6, 8, 14, 23, 25]. In par-
ticular, the folding rules considered in [2, 6, 8, 25] allow us to fold only one clause
at a time, while by using our rule R3 we can fold m (≥ 1) clauses simultane-
ously. Our rule R3 is an adaptation to the case of CLP programs of the folding
rules considered in [14, 23]. Our clause splitting rule R7 generalizes to constraint
logic programs the case splitting rule for logic programs presented in [23]. The
folding and clause splitting rule play a crucial role in the strategy for deriving
deterministic programs presented in the next section.

5 A Strategy for Deriving Deterministic Specialized
Programs

In this section we present the Determinization Strategy for guiding the applica-
tion of the transformation rules. By applying this strategy we can derive deter-
ministic, specialized programs starting from nondeterministic, general programs.



5.1 Determinism and Modes

Let us first introduce the following definition.

Definition 1. A program P is deterministic w.r.t. a constrained atom c0 ∧A0

iff for all constrained goals c ∧A ∧G such that c0 ∧A0 7→∗
P c ∧A ∧G, there

exists at most one clause γ in P with a renamed apart variant H1 ← c1 ∧G1

such that the constraint c ∧A=H1 ∧ c1 is satisfiable.

Given a constrained atom, the determinism of a program may depend on
whether or not the variables in the atom are grounded by the constraint [17]. Re-
call that a variable X is said to be grounded by a constraint c iff D |= ∃Y ∀Z (c →
X =Y ), where Y is a new variable and Z = FV (c) ∪ {X} (i.e., there is at most
one value for X which makes c satisfiable). For instance, the following program
over integers:

p(X,Y ) ← X =0 ∧ Y =0
p(X,Y ) ← X >0 ∧ Y =1

is deterministic w.r.t. the constrained atom X = 1 ∧ p(X,Y ) (where X is
grounded by X = 1), while it is not deterministic w.r.t. the constrained atom
X ≤ 1 ∧ p(X,Y ) (where X is not grounded by X ≤ 1). For this reason we now
introduce the notion of mode which provides information about the groundness
of the variables occurring in constrained atoms.

A mode M is a set of expressions of the form p(m1, . . . ,mh) such that: (i) p
is a user defined predicate, (ii) for each p there exists at most one expression
p(m1, . . . ,mh), and (iii) for i = 1, . . . , h, mi is either + (meaning that every
variable in the i-th argument of p is grounded by some constraint) or ? (meaning
that the i-th argument of p is any term). An expression of the form p(m1, . . . ,mh)
is called a mode for the predicate p. A mode M is a mode for a program P iff
there exists in M a mode for each user defined predicate occurring in P .

Given an atom p(t1, . . . , th) and a mode M with the element p(m1, . . . , mh),
(1) for i = 1, . . . , h, the term ti is said to be an input argument of p (relative
to M) iff mi is +, and (2) a variable of p(t1, . . . , th) which occurs in an input
argument of p, is said to be an input variable of p(t1, . . . , th).

Definition 2. Let P be a program and M be a mode for P . We say that a
constrained atom c ∧ p(t1, . . . , th) satisfies M iff p(m1, . . . , mh) ∈ M and for
i=1, . . . ,h, if mi is + then every variable in ti is grounded by c. We say that P
satisfies M iff for each constrained atom c0 ∧A0 which satisfies M , and for each
constrained goal c ∧A ∧G such that c0 ∧A0 7→∗

P c ∧A ∧G, we have that c ∧A
satisfies M .

Often the property that a program satisfies a mode can be automatically
verified by abstract interpretation methods [13].

Definition 3. We say that a program P is deterministic w.r.t. a mode M iff P
is deterministic w.r.t. every constrained atom c0 ∧A0 which satisfies M .



Now we give a sufficient condition which ensures that a program is determin-
istic w.r.t. a mode. We need the following definition.

Definition 4. Let us consider the following two clauses without variables in
common:

γ1 : p(t1, . . . , th, u1, . . . , uk) ← c1 ∧G1

γ2 : p(v1, . . . , vh, w1, . . . , wk) ← c2 ∧G2

where p is a k-ary predicate whose first h arguments are input arguments relative
to a given mode M . We say that γ1 and γ2 are mutually exclusive w.r.t. M iff
D|=¬∃(t1 =v1 ∧ . . . ∧ th =vh ∧ c1 ∧ c2).

Proposition 1. Let P be a program and M be a mode for P . If P satisfies
M and the clauses of P are pairwise mutually exclusive w.r.t. M , then P is
deterministic w.r.t. M .

5.2 The Determinization Strategy

Our Determinization Strategy is based upon the following three subsidiary strate-
gies: (i) Unfold-Simplify, which uses the unfolding, clause removal, and constraint
replacement rules, (ii) Partition, which uses the clause removal, constraint re-
placement, clause fusion, and clause splitting rules, and (iii) Define-Fold, which
uses the definition and folding rules.

Let us consider an initial program P , a mode M for P , and a constrained
atom c ∧ p(t1, . . . , th), with FV (c) ⊆ vars(t1, . . . , th). In order to specialize P
w.r.t. c ∧ p(t1, . . . , th), we introduce, by the definition rule, the clause

δsp : psp(X1, . . . , Xr) ← c ∧ p(t1, . . . , th)
where X1, . . . , Xr are the distinct variables occurring in p(t1, . . . , th). The mode
psp(m1, . . . , mr) for the predicate psp is the following: for j =1, . . . , r, mj is + iff
Xj is an input variable of p(t1, . . . , th) relative to M . We assume that P satisfies
M and thus, the program P ∪ {δsp} satisfies M ∪ {psp(m1, . . . , mr)}.

Our Determinization Strategy is an iterative procedure that at each iteration
manipulates the following three sets of clauses: (1) Defs, which is the set of
clauses introduced so far by the definition rule, (2) Cls, which is the set of
clauses to be transformed during the current iteration, and (3) Psp , which is the
specialized program derived so far. Initially, both Defs and Cls consist of the
single clause δsp . From the set Cls a new set of deterministic clauses is derived by
applying the transformation rules according to the Unfold-Simplify, Partition,
and Define-Fold subsidiary strategies. This new set of deterministic clauses is
added to Psp . During each iteration, in order to derive deterministic clauses,
we may need to introduce new predicates, whose defining clauses are stored in
the set NewDefs. At the end of each iteration NewDefs is added to Defs, and
the value of the set Cls is updated to NewDefs. The transformation strategy
terminates when Cls =∅, that is, when no new predicate is introduced during an
iteration.

The following definition is needed for presenting the Unfold-Simplify sub-
sidiary strategy.



Definition 5. Let H ← c ∧G′ ∧A ∧G′′ be a clause in a program P and let M
be a mode for P . We say that A is a consumer atom iff for every renamed apart
clause H1 ← c1 ∧G1 in P , we have that one of the following three conditions
holds:
(i) G1 is the empty conjunction;
(ii) c ∧A=H1 ∧ c1 is unsatisfiable;
(iii) D |= ∀(c→∃Y (A = H1)) where Y = {X ∈FV (A = H1) | X is not an input
variable of A relative to M}.

During the Unfold-Simplify subsidiary strategy we unfold w.r.t. consumer
atoms. In particular, when Condition (iii) of Definition 5 holds, we unfold w.r.t.
atoms whose input arguments are instances of the corresponding arguments in
the heads of the clauses of P .

Determinization Strategy
Input: A program P , a mode M for P such that P satisfies M , and a clause

δsp : psp(X1, . . . , Xr) ← c ∧ p(t1, . . . , th)
Output: A specialized program Psp and a mode Msp for Psp .
Initialize: Defs := {δsp}; Cls := {δsp}; Psp := ∅; Msp := {psp(m1, . . . , mr)};
while Cls 6= ∅ do

(1) Unfold-Simplify:
UnfCls := {η | η is a constrained fact in Cls or η is derived by unfolding a
clause in Cls w.r.t. the leftmost atom in its body};
while there exists a clause γ in UnfCls whose body has a leftmost consumer
atom do

UnfCls := (UnfCls−{γ})∪{η | η is derived by unfolding γ w.r.t. the leftmost
consumer atom in its body };

UnfCls := {H ← c̃ ∧G | there exists H ← c ∧G in UnfCls such that:
(i) c̃=solve(c, vars(H,G)),
(ii) c is satisfiable, and
(iii) H ← c ∧G is not subsumed by any other clause in UnfCls}.

(2) Partition: We apply the clause removal, constraint replacement, clause fu-
sion, and clause splitting rules, and we derive from UnfCls a set PartCls of
clauses which is the union of disjoint subsets, called packets, such that the
following two properties hold.
(i) Each packet is a set of clauses of the form:

H ← c ∧ d1 ∧G1

· · ·
H ← c ∧ dm ∧Gm

In particular, if for i=1, . . . ,m, Gi is the empty conjunction, then by clause
fusion we derive a packet consisting of one constrained fact only.
(ii) Any two clauses belonging to different packets are mutually exclusive
w.r.t. mode Msp .



(3) Define-Fold: Let CFacts be the union of the packets in PartCls consisting of
constrained facts only, and let NonCFacts be the union of all other packets.
Let NewDefs be a (possibly empty) set of new clauses introduced by the
definition rule such that each packet in NonCFacts can be folded by using
clauses in Defs ∪NewDefs of the form:

newp(X1, . . . , Xr) ← d1 ∧G1

· · ·
newp(X1, . . . , Xr) ← dm ∧Gm

thereby deriving from each packet a single clause of the form:
H ← c ∧ newp(X1, . . . , Xr)

When we introduce NewDefs and perform folding, we also make sure that
Condition (1) or (2) of Theorem 1 holds.
For each new predicate newp defined in NewDefs, we add to Msp the mode
newp(m1, . . . ,mr) defined as follows: for i= . . . r, mi =+ iff Xi is either an
input variable of H or an input variable of the leftmost atom of one of the
goals G1, . . . , Gm.
Let FldCls be the set of clauses derived by folding the packets in NonCFacts.

(4) Defs := Defs ∪NewDefs; Cls := NewDefs; Psp := Psp ∪ CFacts ∪ FldCls

end-while

As a consequence of Theorem 1, if the Determinization Strategy terminates,
then the specialized program Psp is equivalent to the initial program P in the
sense indicated by the following theorem.

Theorem 2 (Correctness of the Determinization Strategy). Let P be
a program, M be a mode for P such that P satisfies M , and δsp be a clause
of the form psp(X1, . . . , Xr) ← c ∧ p(t1, . . . , th). Let Psp be the specialized pro-
gram returned by the Determinization Strategy. Then, for all substitutions ϑ =
{X1/d1, . . . , Xr/dr}, where d1, . . . , dr are ground terms:

lm(P,D) |= (c ∧ p(t1, . . . , th))ϑ iff lm(Psp ,D) |= (psp(X1, . . . , Xr))ϑ.

We also have that the program derived by the Determinization Strategy is de-
terministic, as stated by the following theorem.

Theorem 3 (Determinism). Let P be a program, M be a mode for P such that
P satisfies M , and δsp be a clause of the form psp(X1, . . . , Xr) ← c ∧ p(t1, . . . , th).
Let Psp be the specialized program and let Msp be the mode for Psp returned by
the Determinization Strategy. Then, Psp is deterministic w.r.t. Msp.

Proof. By construction, Psp satisfies Msp and its clauses are pairwise mutually
exclusive w.r.t. Msp . Thus, by Proposition 1 we get the thesis. 2

The Determinization Strategy can be applied in a fully automatic way and,
indeed, it has been implemented on the MAP transformation system [7]. We do
not describe in this paper the implementation details. In Section 6 we describe
specializing various CLP pattern matching programs by using our MAP system.



Now we show the Determinization Strategy in action on the matching ex-
ample of Section 2. This will explain how the specialized program Leq

¯
Matchsp

has been automatically derived. We are given the program consisting of clauses
1–5, the mode M ={leq

¯
match(+,+), app(?,?,+), leq(+,+)}, and δsp =clause 6.

Thus, initially, Defs = Cls = {clause 6} and Msp = {leq
¯
matchsp(+)}. Since

Cls 6= ∅, we execute the body of the while-loop and we unfold clause 6 w.r.t.
leq

¯
match([1, 0, 2], S) and we get:

7. leq
¯
matchsp(S) ← app(B,C, S) ∧ app(A,Q, B) ∧ leq([1, 0, 2], Q)

Clause 7 is a packet in itself and in order to fold it, we introduce the following
definition:
8. new1(S) ← app(B, C, S) ∧ app(A, Q,B) ∧ leq([1, 0, 2], Q)
and then we fold clause 7, thereby getting:
9. leq

¯
matchsp(S) ← new1(S)

Now Defs = {clause 6, clause 8}, Cls = {clause 8}, and Msp = {leq
¯
matchsp(+),

new1(+)}. Since Cls 6=∅, we execute once more the body of the while-loop and
we unfold clause 8 w.r.t. the atoms app and leq. We get:
10. new1([X|Xs])← 1≤X ∧ app(Q,C,Xs) ∧ leq([0, 2], Q)
11. new1([X|Xs])← app(B,C,Xs) ∧ app(A, Q,B) ∧ leq([1, 0, 2], Q)
Since clause 10 and 11 are not mutually exclusive w.r.t. Msp , we apply the clause
splitting rule to clause 11, thereby getting:
12. new1([X|Xs]) ← 1≤X ∧ app(B,C,Xs) ∧ app(A,Q,B) ∧ leq([1, 0, 2], Q)
13. new1([X|Xs]) ← 1>X ∧ app(B,C,Xs) ∧ app(A,Q,B) ∧ leq([1, 0, 2], Q)
We have two packets: (i) {clause 10, clause 12} and (ii) {clause 13}. In order to
fold the first packet we introduce the following definition:
14. new2(Xs) ← app(Q,C,Xs) ∧ leq([0, 2], Q)
15. new2(Xs) ← app(B, C,Xs) ∧ app(A,Q, B) ∧ leq([1, 0, 2], Q)
We fold clauses 10 and 12 by using clauses 14 and 15, and we fold clause 13 by
using clause 8. We get the following mutually exclusive clauses:
16. new1([X|Xs]) ← 1≤X ∧ new2(Xs)
17. new1([X|Xs]) ← 1>X ∧ new1(Xs)
Now Defs ={clause 6, clause 8, clause 14, clause 15}, Cls ={clause 14, clause 15},
and Msp = {leq

¯
matchsp(+), new1(+), new2(+)}. Since Cls 6= ∅, the derivation

continues by executing again the body of the while-loop. Thus, we unfold the
clauses 14 and 15. We will not give all the details of the derivation here. We
eventually get the specialized, deterministic program Leq

¯
Matchsp of Section 2.

The termination of our Determinization Strategy depends on the finiteness
of: (i) the unfolding subsidiary strategy, and (ii) the set of definitions which are
introduced for performing folding steps. In particular, for ensuring termination it
may be necessary to consider suitable generalizations of the bodies of the clauses
to be folded (see, for instance, the techniques presented in [5, 8, 12, 18, 20, 26]).

However, the generalization technique required when applying the Deter-
minization Strategy is more sophisticated than the ones proposed for the case
of partial evaluation of (constraint) logic programs [8, 12, 20]. This is due to the



fact that the new definitions which are introduced during the Determinization
Strategy are more complex than the ones introduced during partial evaluation,
because the latter ones essentially consist of one clause whose body is a single
(constrained) atom. We leave it for further investigation the issue of designing
suitable generalization techniques for our Determinization Strategy.

6 More Examples of Constrained Matching

We have applied our Determinization Strategy for specializing several nondeter-
ministic matching programs. By using our MAP system [7], we automatically
performed the specialization of the Leq̄ Match program illustrated in Section 2
and the specialization of the programs listed below.

Near Matching. Given a pattern P = [p1, . . . , pn], a real number K, and a
string S, near

¯
match(P, K, S) holds iff there exists a sublist Q = [q1, . . . , qn] of

S such that for i = 1, . . . , n, we have that |pi − qi| ≤ K. The initial program
Near̄ Match is the following one:

near
¯
match(P,K, S) ← app(B, C, S) ∧ app(A,Q, B) ∧ near(P, K, Q)

near([ ],K, [ ]) ←
near([X|Xs],K, [Y |Ys]) ← X≥Y ∧X−Y ≤K ∧ near(Xs,K,Ys)
near([X|Xs],K, [Y |Ys]) ← X <Y ∧ Y −X≤K ∧ near(Xs,K,Ys)

together with the usual clauses for the predicate app. By specializing program
Near̄ Match w.r.t. the goal near

¯
match([2, 0], 2, S) we obtain the following de-

terministic program:

near
¯
matchsp(S) ← new1(S)

new1([X|Xs]) ← X≥0 ∧X≤2 ∧ new2(Xs)
new1([X|Xs]) ← X <0 ∧ new1(Xs)
new1([X|Xs]) ← X >2 ∧X≤4 ∧ new2(Xs)
new1([X|Xs]) ← X >4 ∧ new1(Xs)
new2([X|Xs]) ← X >2 ∧X≤4 ∧ new2(Xs)
new2([X|Xs]) ← X >0 ∧X≤2 ∧ new3(Xs)
new2([X|Xs]) ← X =0 ∧ new3(Xs)
new2([X|Xs]) ← X≥−2 ∧X <0 ∧ new4(Xs)
new2([X|Xs]) ← X <−2 ∧ new1(Xs)
new2([X|Xs]) ← X >4 ∧ new1(Xs)
new3(Xs) ←
new4(Xs) ←

Near Multimatching. Given a list Ps of patterns, a real number K, and a
string S, near

¯
mmatch(Ps,K, S) holds iff there exists a pattern P in Ps such

that near
¯
match(P, K, S) holds. The initial program Near̄ Multimatch is the

following one:
near

¯
mmatch([P |Ps],K, S) ← near

¯
match(P, K, S)

near
¯
mmatch([P |Ps],K, S) ← near

¯
mmatch(Ps,K, S)



together with the clauses needed for the predicate near match (see the above pro-
gram Near Match). By specializing the program Near̄ Multimatch w.r.t. the goal
near

¯
mmatch([[1, 1], [1, 2]], 1, S) we obtain the following deterministic program:

near
¯
mmatchsp(S) ← new1(S)

new1([X|Xs]) ← X≥0 ∧X≤1 ∧ new2(Xs)
new1([X|Xs]) ← X <0 ∧ new1(Xs)
new1([X|Xs]) ← X >1 ∧X≤2 ∧ new2(Xs)
new1([X|Xs]) ← X >2 ∧ new1(Xs)
new2([X|Xs]) ← X >1 ∧X≤2 ∧ new3(Xs)
new2([X|Xs]) ← X =1 ∧ new4(Xs)
new2([X|Xs]) ← X≥0 ∧X <1 ∧ new3(Xs)
new2([X|Xs]) ← X <0 ∧ new1(Xs)
new2([X|Xs]) ← X >2 ∧X≤3 ∧ new5(Xs)
new2([X|Xs]) ← X >3 ∧ new1(Xs)
new3(Xs) ←
new4(Xs) ←
new5(Xs) ←

Regular Expressions of Intervals. A regular expression of intervals is an
extension of the standard notion of regular expression where symbols are replaced
by intervals of real numbers. Given a regular expression E of intervals and a
string S of reals, in l̄anguage(E, S) holds iff S belongs to the language denoted
by E. The initial program Int̄ Reḡ Expr is the following one:

in l̄anguage(E, S) ← string(S) ∧ accepts(E,S)
accepts(lt(X), [Y ]) ← Y <X
accepts(gt(X), [Y ]) ← Y >X
accepts(int(X1, X2), [Y ]) ← Y >X1 ∧ Y <X2

accepts(E1 · E2, S) ← app(S1, S2, S) ∧ accepts(E1, S1) ∧ accepts(E2, S2)
accepts(E1 + E2, S) ← accepts(E1, S)
accepts(E1 + E2, S) ← accepts(E2, S)
accepts(E∗, [ ]) ←
accepts(E∗, S) ← ne āpp(S1, S2, S) ∧ accepts(E,S1) ∧ accepts(E∗, S2)
ne āpp([X],Ys, [X|Ys]) ←
ne āpp([X|Xs],Ys, [X|Zs]) ← ne āpp(Xs,Ys,Zs)
string([ ]) ←
string([X|Xs]) ← string(Xs)

where: (i) app is the usual append predicate on lists, and (ii) ne āpp(Xs,Ys,Zs)
holds iff the concatenation of the non-empty list Xs and the list Ys is the list Zs.
By specializing program Int̄ Reḡ Expr w.r.t. the goal in l̄anguage(int(0, 2)∗ +
int(1, 3)∗), S) we obtain the following deterministic program:

in l̄anguagesp(S) ← new1(S)
new1([ ]) ←
new1([X|Xs]) ← X >1 ∧X <2 ∧ new2(Xs)
new1([X|Xs]) ← X≥2 ∧X <3 ∧ new3(Xs)
new1([X|Xs]) ← X >0 ∧X≤1 ∧ new4(Xs)



new2([ ]) ←
new2([X|Xs]) ← X >1 ∧X <2 ∧ new2(Xs)
new2([X|Xs]) ← X≥2 ∧X <3 ∧ new3(Xs)
new2([X|Xs]) ← X >0 ∧X≤1 ∧ new4(Xs)
new3([ ]) ←
new3([X|Xs]) ← X >1 ∧X <3 ∧ new3(Xs)
new4([ ]) ←
new4([X|Xs]) ← X >0 ∧X <2 ∧ new4(Xs)

Experimental Results. Table 1 shows the speedups achieved by applying our
Determinization Strategy to the program of Section 2 and the programs of this
section. Our experiments have been performed on a PentiumIII, 900MHz, run-
ning Linux 2.4.17, SICStus 3.8.5, and Holzbaur’s clp(q,r) solver [16]. All speedups
have been measured for input strings where the matching pattern occurs at the
hundredth position. On the second, fifth, and sixth row of the Speedup column,
we have reported a range of values, instead of a single value, because we have
obtained different speedups for different input strings. Higher speedups have
been obtained in the case of input strings for which the initial, nondeterministic
program requires more backtracking for finding an occurrence of the matching
pattern.

Program Specialization Goal Speedup

Leq
¯
Match leq

¯
match([1, 0, 2], S) 2.74

Near
¯
Match near

¯
match([2, 0], 2, S) 37.6 – 56.1

Near
¯
Match near

¯
match([2, 0, 4], 3, S) 45.7

Near
¯
Multimatch near

¯
mmatch([[1, 1], [1, 2]], 1, S) 45.1

Int
¯
Reg

¯
Expr in

¯
language(int(0, 2)∗ + int(1, 3)∗, S) 1.2 – 7

Int
¯
Reg

¯
Expr in

¯
language(((gt(1) · gt(1)∗) + (gt(1) · gt(1)∗ · lt(0))), S) 1.3 – 320

Table 1. Speedups achieved by the Determinization Strategy

7 Conclusions

We have introduced a new transformation rule, called clause splitting, which
allows us to reason by cases and can be used for reducing nondeterminism when
specializing constrained logic programs. We have also extended the folding rule
for constrained logic programming by allowing folding of several clauses in a
single step, and we have presented a strategy, called Determinization Strategy,
for the automatic application of the transformation rules with the objective of
deriving deterministic, specialized programs.

Our transformation technique preserves the least D-model semantics. One
could slightly modify the transformation rules and the transformation strategy
if different semantics are to be preserved.

The Determinization Strategy is an extension to constraint logic programs of
the strategy presented in [23]. Our strategy is also an enhancement of conjunctive
partial deduction [5], in that we allow new predicates to be defined in terms of
disjunctions of conjunctions of constrained atoms. We have used our strategy



for specializing constrained matching algorithms and we have derived programs
which are highly efficient because, as in the case of the Knuth-Morris-Pratt
matcher, they correspond to deterministic finite automata. Their transitions,
however, are labelled by constraints, rather than symbols.
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