
Combining Logi
 Programs and

Monadi
 Se
ond Order Logi
s

by Program Transformation

Fabio Fioravanti

1

, Alberto Pettorossi

2

, Maurizio Proietti

1

(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy

{fioravanti,adp,proietti}�iasi.rm.
nr.it

Abstra
t We present a program synthesis method based on unfold/fold

transformation rules whi
h
an be used for deriving terminating de�nite

logi
 programs from formulas of the Weak Monadi
 Se
ond Order theory

of one su

essor (WS1S). This synthesis method
an also be used as a

proof method whi
h is a de
ision pro
edure for
losed formulas of WS1S.

We apply our synthesis method for translating CLP(WS1S) programs

into logi
 programs and we use it also as a proof method for verifying

safety properties of in�nite state systems.

1 Introdu
tion

The Weak Monadi
 Se
ond Order theories of k su

essors (WSkS) are theories

of the se
ond order predi
ate logi
 whi
h express properties of �nite sets of �nite

strings over a k-symbol alphabet (see [25℄ for a survey). Their importan
e relies

on the fa
t that they are among the most expressive theories of predi
ate logi

whi
h are de
idable. These de
idability results were proved in the 1960's [4,23℄,

but they were
onsidered as purely theoreti
al results, due to the very high

omplexity of the automata-based de
ision pro
edures.

In re
ent years, however, it has been shown that some Monadi
 Se
ond Order

theories
an, in fa
t, be de
ided by using ad-ho
, e�
ient te
hniques, su
h as

BDD's and algorithms for �nite state automata. In parti
ular, the MONA system

implements these te
hniques for the WS1S and WS2S theories [10℄.

The MONA system has been used for the veri�
ation of several non-trivial

�nite state systems [3,12℄. However, the Monadi
 Se
ond Order theories alone

are not expressive enough to deal with properties of in�nite state systems and,

thus, for the veri�
ation of su
h systems alternative te
hniques have been used,

su
h as those based on the embedding of the Monadi
 Se
ond Order theories

into more powerful logi
al frameworks (see, for instan
e, [2℄).

In a previous paper of ours [7℄ we proposed a veri�
ation method for in�nite

state systems based on CLP(WSkS), whi
h is a
onstraint logi
 programming

language resulting from the embedding of WSkS into logi
 programs. In order

to perform proofs of properties of in�nite state systems in an automati
 way

a

ording to the approa
h we have proposed, we need a system for
onstraint

1

logi
 programming whi
h uses a solver for WSkS formulas and, unfortunately,

no su
h system is available yet.

In order to over
ome this di�
ulty, in this paper we propose a method for

translating CLP(WS1S) programs into logi
 programs. This translation is per-

formed by a two step program synthesis method whi
h produ
es terminating

de�nite logi
 programs from WS1S formulas. Step 1 of our synthesis method

onsists in deriving a normal logi
 program from a WS1S formula, and it is

based on a variant of the Lloyd-Topor transformation [15℄. Step 2
onsists in

applying an unfold/fold transformation strategy to the normal logi
 program

derived at the end of Step 1, thereby deriving a terminating de�nite logi
 pro-

gram. Our synthesis method follows the general approa
h presented in [17,18℄.

We leave it for future resear
h the translation into logi
 programs starting from

general CLP(WSkS) programs.

The spe
i�

ontributions of this paper are the following ones.

(1) We provide a synthesis strategy whi
h is guaranteed to terminate for any

given WS1S formula.

(2) We prove that, when we start from a
losedWS1S formula ', our synthesis

strategy produ
es a program whi
h is either (i) a unit
lause of the form f ,

where f is a nullary predi
ate equivalent to the formula ', or (ii) the empty

program. Sin
e in
ase (i) ' is true and in
ase (ii) ' is false, our strategy is also

a de
ision pro
edure for WS1S formulas.

(3) We show through a non-trivial example, that our veri�
ation method

based on CLP(WS1S) programs is useful for verifying properties of in�nite state

transition systems. In parti
ular, we prove the safety property of a mutual ex-

lusion proto
ol for a set of pro
esses whose
ardinality may
hange over time.

Our veri�
ation method requires: (i) the en
oding into WS1S formulas of both

the transition relation and the elementary properties of the states of a transition

system, and (ii) the en
oding into a CLP(WS1S) program of the safety property

under
onsideration. Here we perform our veri�
ation task by translating the

CLP(WS1S) program into a de�nite logi
 program, thereby avoiding the use of

a solver for WS1S formulas. The veri�
ation of the safety property has been

performed by using a prototype tool built on top of the MAP transformation

system [24℄.

2 The Weak Monadi
 Se
ond Order Theory of One

Su

essor

We will
onsider a �rst order presentation of the Weak Monadi
 Se
ond Order

theory of one su

essor (WS1S). This �rst order presentation
onsists in writing

formulas of the form n 2 S, where 2 is a �rst order predi
ate symbol (to be

interpreted as membership of a natural number to a �nite set of natural num-

bers), instead of formulas of the form S(n), where S is a predi
ate variable (to

be interpreted as ranging over �nite sets of natural numbers).

We use a typed �rst order language, with the following two types: nat, de-

noting the set of natural numbers, and set, denoting the set of the �nite sets of

2

natural numbers (for a brief presentation of the typed �rst order logi
 the reader

may look at [15℄). The alphabet of WS1S
onsists of: (i) a set Ivars of individual

variables N;N

1

; N

2

; : : : of type nat, (ii) a set Svars of set variables S; S

1

; S

2

; : : :

of type set, (iii) the nullary fun
tion symbol 0 (zero) of type nat, and the unary

fun
tion symbol s (su

essor) of type nat ! nat , and (iv) the binary predi
ate

symbols � of type nat � nat , and 2 of type nat � set . Ivars [Svars is ranged

over by X;X

1

; X

2

; : : : The syntax of WS1S is de�ned by the following grammar:

Individual terms : n ::= 0 j N j s(n)

Atomi
 formulas : A ::= n

1

�n

2

j n2S

Formulas : ' ::= A j :' j '

1

^ '

2

j 9N ' j 9S '

When writing formulas we feel free to use also the
onne
tives _, !, $ and the

universal quanti�er 8, as shorthands of the
orresponding formulas with :, ^,

and 9. Given any two individual terms n

1

and n

2

, we will write the formulas

n

1

=n

2

, n

1

6=n

2

, and n

1

<n

2

as shorthands of the
orresponding formulas using

�. Noti
e that, for reasons of simpli
ity, we have assumed that the symbol � is

primitive, although it is also possible to de�ne it in terms of 2 [25℄.

An example of a WS1S formula is the following formula �, with free variables

N and S, whi
h expresses that N is the maximum number in a �nite set S:

� : N 2S ^ :9N

1

(N

1

2S ^ :N

1

�N)

The semanti
s of WS1S formulas is de�ned by
onsidering the following typed

interpretation N :

(i) the domain of the type nat is the set Nat of the natural numbers and the

domain of the type set is the set P

�n

(Nat) of all �nite subsets of Nat ;

(ii) the
onstant symbol 0 is interpreted as the natural number 0 and the fun
tion

symbol s is interpreted as the su

essor fun
tion from Nat to Nat ;

(iii) the predi
ate symbol � is interpreted as the less-or-equal relation on natural

numbers, and the predi
ate symbol 2 is interpreted as the membership of a

natural number to a �nite set of natural numbers.

The notion of a variable assignment � over a typed interpretation is analo-

gous to the untyped
ase, ex
ept that � assigns to a variable an element of the

domain of the type of the variable. The de�nition of the satisfa
tion relation

I j=

�

', where I is a typed interpretation and � is a variable assignment is also

analogous to the untyped
ase, with the only di�eren
e that when we interpret

an existentially quanti�ed formula we assume that the quanti�ed variable ranges

over the domain of its type. We say that a formula ' is true in an interpretation

I , written as I j= ', i� I j=

�

' for all variable assignments �. The problem

of
he
king whether or not a WS1S formula is true in the interpretation N is

de
idable [4℄.

3 Translating WS1S Formulas into Normal Logi

Programs

In this se
tion we illustrate Step 1 of our method for synthesizing de�nite pro-

grams from WS1S formulas. In this step, starting from a WS1S formula, we de-

3

rive a strati�ed normal logi
 program [1℄ (simply
alled strati�ed programs) by

applying a variant of the Lloyd-Topor transformation,
alled typed Lloyd-Topor

transformation. Given a strati�ed program P , we denote by M(P) its perfe
t

model (whi
h is equal to its least Herbrand model if P is a de�nite program) [1℄.

Before presenting the typed Lloyd-Topor transformation, we need to intro-

du
e a de�nite program,
alled NatSet, whi
h axiomatizes: (i) the natural num-

bers, (ii) the �nite sets of natural numbers, (iii) the ordering on natural numbers

(�), and (iv) the membership of a natural number to a �nite set of natural num-

bers (2). We represent: (i) a natural number k (�0) as a ground term of the form

s

k

(0), and (ii) a set of natural numbers as a �nite, ground list [b

0

; b

1

; : : : ; b

m

℄

where, for i = 0; : : : ;m, we have that b

i

is either y or n. A number k belongs

to the set represented by [b

0

; b

1

; : : : ; b

m

℄ i� b

k

= y. Thus, the �nite, ground lists

[b

0

; b

1

; : : : ; b

m

℄ and [b

0

; b

1

; : : : ; b

m

; n; : : : ; n℄ represent the same set. In parti
ular,

the empty set is represented by any list of the form [n; : : : ; n℄. The program

NatSet
onsists of the following
lauses (we adopt in�x notation for � and 2):

nat(0) 0�N

nat(s(N)) nat(N) s(N

1

)�s(N

2

) N

1

�N

2

set([℄) 02 [yjS℄

set([yjS℄) set(S) s(N)2 [BjS℄ N 2S

set([njS℄) set(S)

Atoms of the form nat(N) and set(S) are
alled type atoms. Now we will establish

a
orresponden
e between the set of WS1S formulas whi
h are true in N and the

set of the so-
alled expli
itly typed WS1S formulas whi
h are true in the least

Herbrand model M(NatSet) (see Theorem 1 below).

Given a WS1S formula ', the expli
itly typed WS1S formula
orresponding

to ' is the formula '

�

onstru
ted as follows. We �rst repla
e the subformulas

of the form 9N by 9N (nat(N)^) and the subformulas of the form 9S by

9S (set(S)^), thereby getting a new formula '

�

where every bound (individual

or set) variable o

urs in a type atom. Then, we get:

'

�

: nat(N

1

) ^ : : : ^ nat(N

h

) ^ set(S

1

) ^ : : : ^ set(S

k

) ^ '

�

where N

1

; : : : ; N

h

; S

1

; : : : ; S

k

are the variables whi
h o

ur free in '.

For instan
e, let us
onsider again the formula � whi
h expresses that N is

the maximum number in a set S. The expli
itly typed formula
orresponding to

� is the following formula:

�

�

: nat(N) ^ set(S) ^N 2S ^ :9N

1

(nat(N

1

) ^N

1

2S ^ :N

1

�N)

For reasons of simpli
ity, in the following Theorem 1 we identify: (i) a natural

number k (� 0) in Nat with the ground term s

k

(0) representing that number,

and (ii) a �nite set of natural numbers in P

�n

(Nat) with any �nite, ground list

representing that set. By using these identi�
ations, we
an view any variable

assignment over the typed interpretation N also as a variable assignment over

the untyped interpretation M(NatSet) (but not vi
e versa).

Theorem 1. Let ' be a WS1S formula and let '

�

be the expli
itly typed

formula
orresponding to '. For every variable assignment � over N ,

N j=

�

' i� M(NatSet) j=

�

'

�

4

Proof. The proof pro
eeds by indu
tion on the stru
ture of the formula '.

(i) Suppose that ' is of the form n

1

� n

2

. By the de�nition of the satisfa
tion

relation, N j=

�

n

1

� n

2

i� the natural number �(n

1

) is less or equal than

the natural number �(n

2

). By the de�nition of least Herbrand model and by

using the
lauses in NatSet whi
h de�ne �, �(n

1

) is less or equal than �(n

2

)

i� M(NatSet) j= �(n

1

)� �(n

2

) (here we identify every natural number n with

the ground term s

n

(0)). It
an be shown that M(NatSet) j= nat(�(n

1

)) and

M(NatSet) j= nat(�(n

2

)). Thus, M(NatSet) j= �(n

1

)��(n

2

) i� M(NatSet) j=

�

nat(n

1

) ^ nat(n

2

) ^ n

1

� n

2

. Now, the term n

1

is either of the form s

m1

(0) or

of the form s

m1

(N

1

), where m1 is a natural number. Similarly, the term n

2

is

either of the form s

m2

(0) or of the form s

m2

(N), where m2 is a natural number.

We
onsider the
ase where n

1

is s

m1

(N

1

) and n

2

is s

m2

(N

2

). The other
ases

are similar and we omit them. It
an be shown that, for all natural numbers m,

M(NatSet) j=

�

nat(s

m

(N)) i� M(NatSet) j=

�

nat(N). Thus, M(NatSet) j=

�

nat(s

m1

(N

1

))^nat(s

m2

(N

2

))^s

m1

(N

1

)�s

m2

(N

2

) i�M(NatSet) j=

�

nat(N

1

)^

nat(N

2

) ^ s

m1

(N

1

)�s

m2

(N

2

), that is, M(NatSet) j=

�

(n

1

�n

2

)

�

.

(ii) The
ase where ' is of the form n2 S is similar to Case (i).

(iii) Suppose that ' is of the form : . By the de�nition of the satisfa
tion

relation and the indu
tion hypothesis, N j=

�

: i� M(NatSet) j=

�

:(

�

).

Sin
e

�

is of the form a

1

(X

1

) ^ : : : ^ a

k

(X

k

) ^

�

, where X

1

; : : : ; X

k

are the

free variables in and a

1

(X

1

); : : : ; a

k

(X

k

) are type atoms, by logi
al equiva-

len
e, we get: M(NatSet) j=

�

:(

�

) i� M(NatSet) j=

�

(a

1

(X

1

) ^ : : :^ a

k

(X

k

) ^

:(

�

)) _ :(a

1

(X

1

) ^ : : : ^ a

k

(X

k

)). Finally, sin
e for all variable assignments �,

M(NatSet) j=

�

a

1

(X

1

) ^ : : : ^ a

k

(X

k

), we have that M(NatSet) j=

�

:(

�

) i�

M(NatSet) j=

�

(a

1

(X

1

) ^ : : : ^ a

k

(X

k

) ^ :(

�

)), that is, M(NatSet) j=

�

(:)

�

(to see this, note that :(

�

) is equal to (:)

�

).

(iv) The
ase where ' is of the form

1

^

2

is similar to Case (iii).

(v) Suppose that ' is of the form 9N

1

 . By the de�nition of the satisfa
tion

relation and by the indu
tion hypothesis, N j=

�

9N

1

 i� there exists n

1

in Nat

su
h that M(NatSet) j=

�[N

1

7!n

1

℄

�

. Sin
e

�

is of the form nat(N

1

) ^ : : : ^

nat(N

h

)^ set(S

1

)^ : : :^ set(S

k

)^

�

, where N

1

; : : : ; N

h

; S

1

; : : : ; S

k

are the free

variables in , we have that:

there exists n

1

in Nat su
h that M(NatSet) j=

�[N

1

7!n

1

℄

�

i� M(NatSet) j=

�

9N

1

(nat(N

1

) ^ : : : ^ nat(N

h

) ^ set(S

1

) ^ : : : ^ set(S

k

) ^

�

)

i� (by logi
al equivalen
e) M(NatSet) j=

�

nat(N

2

) ^ : : : ^ nat(N

h

) ^ set(S

1

) ^

: : : ^ set(S

k

) ^ (9N

1

nat(N

1

) ^

�

)

i� (by de�nition of expli
itly typed formula) M(NatSet) j=

�

(9N

1

)

�

.

(vi) The
ase where ' is of the form 9S is similar to Case (v). 2

As a straightforward
onsequen
e of Theorem 1, we have the following result.

Corollary 1. For every
losed WS1S formula ', N j= ' i� M(NatSet) j= '

�

.

Noti
e that the introdu
tion of type atoms is indeed ne
essary, be
ause there

are WS1S formulas ' su
h that N j= ' andM(NatSet) 6j= '. For instan
e, N j=

8N

1

9N

2

N

1

� N

2

and M(NatSet) 6j= 8N

1

9N

2

N

1

� N

2

. Indeed, for a variable

assignment � over M(NatSet) whi
h assigns [℄ to N

1

, we have M(NatSet) 6j=

�

5

9N

2

N

1

�N

2

. (Noti
e that � is not a variable assignment over N be
ause [℄ is

not a natural number.)

Now we present a variant of the method proposed by Lloyd and Topor [15℄,

alled typed Lloyd-Topor transformation, whi
h we use for deriving a strati�ed

program from a given WS1S formula '. We need to
onsider a
lass of formulas

of the form: A �,
alled statements, where A is an atom,
alled the head of

the statement, and � is a formula of the �rst order predi
ate
al
ulus,
alled the

body of the statement. In what follows we write C[
℄ to denote a formula where

the subformula
 o

urs as an outermost
onjun
t, that is, C[
℄ =

1

^
 ^

2

for some subformulas

1

and

2

.

The Typed Lloyd-Topor Transformation.

We are given in input a set of statements, where: (i) we assume without loss of

generality, that the only
onne
tives and quanti�ers o

urring in the body of the

statements are :;^; and 9, and (ii) X;X

1

; X

2

; : : : denote either individual or set

variables.

We perform the following transformation (A) and then the transformation (B):

(A) We repeatedly apply the following rules A.1�A.4 until a set of
lauses is

generated:

(A.1) A C[::
℄ is repla
ed by A C[
℄.

(A.2) A C[:(
 ^ Æ)℄ is repla
ed by A C[:newp(X

1

; : : : ; X

k

)℄

newp(X

1

; : : : ; X

k

)
 ^ Æ

where newp is a new predi
ate and X

1

; : : : ; X

k

are the variables whi
h o

ur

free in
 ^ Æ.

(A.3) A C[:9X
℄ is repla
ed by A C[:newp(X

1

; : : : ; X

k

)℄

newp(X

1

; : : : ; X

k

)

where newp is a new predi
ate and X

1

; : : : ; X

k

are the variables whi
h o

ur free

in 9X
.

(A.4) A C[9X
℄ is repla
ed by A C[
fX=X

1

g℄

where X

1

is a new variable.

(B) Every
lause A G is repla
ed by A G

�

.

Given a WS1S formula ' with free variablesX

1

; : : : ; X

n

, we denote by Cls(f; '

�

)

the set of
lauses derived by applying the typed Lloyd-Topor transformation

starting from the singleton ff(X

1

; : : : ; X

n

) 'g, where f is a new n-ary pred-

i
ate symbol. By
onstru
tion, NatSet [Cls(f; '

�

) is a strati�ed program. We

have the following theorem.

Theorem 2. Let ' be a WS1S formula with free variables X

1

; : : : ; X

n

and let

'

�

be the expli
itly typed formula
orresponding to '. For all ground terms

t

1

; : : : ; t

n

, we have that:

6

M(NatSet) j= '

�

fX

1

=t

1

; : : : ; X

n

=t

n

g i�

M(NatSet [Cls(f; '

�

)) j= f(t

1

; : : : ; t

n

)

Proof. It is similar to the proofs presented in [15,17℄ and we omit it.

From Theorems 1 and 2 we have the following
orollaries.

Corollary 2. For every WS1S formula ' with free variables X

1

; : : : ; X

n

, and

for every variable assignment � over the typed interpretation N ,

N j=

�

' i� M(NatSet [Cls(f; '

�

)) j= f(�(X

1

); : : : ; �(X

n

))

Corollary 3. For every
losed WS1S formula ',

N j= ' i� M(NatSet [Cls(f; '

�

)) j= f

Let us
onsider again the formula � we have
onsidered above. By applying the

typed Lloyd-Topor transformation starting from the singleton fmax(S ; N) �g

we get the following set of
lauses Cls(max ; �

�

):

max(S ; N) nat(N) ^ set(S) ^N 2S ^ :newp(S;N)

newp(S;N) nat(N) ^ nat(N

1

) ^ set(S) ^N

1

2S ^ :N

1

�N

Unfortunately, the strati�ed programNatSet[Cls(f; '

�

) derived from the single-

ton ff(X

1

; : : : ; X

n

) 'g is not always satisfa
tory from a
omputational point

of view be
ause it may not terminate when evaluating the query f(X

1

; : : : ; X

n

)

by using SLDNF resolution. (A
tually, the above program Cls(max ; �

�

) whi
h

omputes the maximum number of a set, terminates for all ground queries, but

in Se
tion 5 we will give an example where the program derived at the end of

the typed Lloyd-Topor transformation does not terminate.) Similar termination

problems may o

ur by using tabled resolution [5℄, instead of SLDNF resolution.

To over
ome this problem, we apply to the program NatSet [Cls(f; '

�

)

the unfold/fold transformation strategy whi
h we will des
ribe in Se
tion 5. In

parti
ular, by applying this strategy we derive de�nite programs whi
h terminate

for all ground queries by using LD resolution (that is, SLD resolution with the

leftmost sele
tion rule).

4 The Transformation Rules

In this se
tion we des
ribe the transformation rules whi
h we use for transforming

strati�ed programs. These rules are a subset of those presented in [17,18℄, and

they are those required for the unfold/fold transformation strategy presented in

Se
tion 5.

For presenting our rules we need the following notions. A variable in the

body of a
lause C is said to be existential i� it does not o

ur in the head of

C. The de�nition of a predi
ate p in a program P , denoted by Def (p; P), is the

set of the
lauses of P whose head predi
ate is p. The extended de�nition of a

7

predi
ate p in a program P , denoted by Def

�

(p; P), is the union of the de�nition

of p and the de�nitions of all predi
ates in P on whi
h p depends. (See [1℄for

the de�nition of the depends on relation.) A program is propositional i� every

predi
ate o

urring in the program is nullary. Obviously, if P is a propositional

program then, for every predi
ate p, M(P) j= p is de
idable.

A transformation sequen
e is a sequen
e P

0

; : : : ; P

n

of programs, where for

0�k�n�1, program P

k+1

is derived from program P

k

by the appli
ation of one

of the transformation rules R1�R4 listed below. For 0�k�n, we
onsider the set

Defs

k

of the
lauses introdu
ed by the following rule R1 during the
onstru
tion

of the transformation sequen
e P

0

; : : : ; P

k

.

When
onsidering
lauses of programs, we will feel free to apply the following

transformations whi
h preserve the perfe
t model semanti
s:

(1) renaming of variables,

(2) rearrangement of the order of the literals in the body of a
lause, and

(3) repla
ement of a
onjun
tion of literals the form L ^ L in the body of a

lause by the literal L.

Rule R1. De�nition.We get the new program P

k+1

by adding to program P

k

a
lause of the form newp(X

1

; : : : ; X

r

) L

1

^ : : :^L

m

, where: (i) the predi
ate

newp is a predi
ate whi
h does not o

ur in P

0

[Defs

k

, and (ii) X

1

; : : : ; X

r

are

distin
t (individual or set) variables o

urring in L

1

^ : : : ^ L

m

.

Rule R2. Unfolding. Let C be a renamed apart
lause in P

k

of the form:

H G

1

^ L ^ G

2

, where L is either the atom A or the negated atom :A. Let

H

1

 B

1

; : : : ; H

m

 B

m

, with m�0, be all
lauses of program P

k

whose head

is uni�able with A and, for j = 1; : : : ;m, let #

j

the most general uni�er of A

and H

j

. We
onsider the following two
ases.

Case 1: L is A. By unfolding
lause C w.r.t. A we derive the new program

P

k+1

= (P

k

� fCg) [f(H G

1

^ B

1

^G

2

)#

1

; : : : ; (H G

1

^ B

m

^G

2

)#

m

g.

In parti
ular, ifm=0, that is, if we unfold C w.r.t. an atom whi
h is not uni�able

with the head of any
lause in P

k

, then we derive the program P

k+1

by deleting

lause C.

Case 2: L is :A. Assume that: (i) A = H

1

#

1

= � � � = H

m

#

m

, that is, for

j = 1; : : : ;m, A is an instan
e of H

j

, (ii) for j = 1; : : : ;m, H

j

 B

j

has no

existential variables, and (iii) Q

1

_ : : :_Q

r

, with r � 0, is the disjun
tive normal

form ofG

1

^:(B

1

#

1

_: : :_B

m

#

m

)^G

2

. By unfolding
lause C w.r.t. :A we derive

the new program P

k+1

= (P

k

�fCg)[fC

1

; : : : ; C

m

g, where for j = 1; : : : ; r, C

j

is the
lause H Q

j

.

In parti
ular: (i) if m = 0, that is, A is not uni�able with the head of any
lause

in P

k

, then we get the new program P

k+1

by deleting :A from the body of
lause

C, and (ii) if for some j 2 f1; : : : ;mg, B

j

is the empty
onjun
tion, that is, A is

an instan
e of the head of a unit
lause in P

k

, then we derive P

k+1

by deleting

lause C from P

k

.

Rule R3. Folding. Let C : H G

1

^ B# ^ G

2

be a renamed apart
lause

in P

k

and D : Newp B be a
lause in Defs

k

. Suppose that for every ex-

istential variable X of D, we have that X# is a variable whi
h o

urs neither

8

in fH;G

1

; G

2

g nor in the term Y #, for any variable Y o

urring in B and dif-

ferent from X . By folding
lause C using
lause D we derive the new program

P

k+1

= (P

k

� fCg) [fH G

1

^ Newp # ^G

2

g.

Rule R4. Propositional Simpli�
ation. Let p be a predi
ate su
h that

Def

�

(p; P

k

) is propositional. If M(Def

�

(p; P

k

)) j= p then we derive P

k+1

=

(P

k

� Def (p; P

k

)) [fp g. If M(Def

�

(p; P

k

)) j= :p then we derive P

k+1

=

(P

k

�Def (p; P

k

)).

Noti
e that we
an
he
k whether or not M(P) j= p holds by applying pro-

gram transformation te
hniques [17℄ and thus, Rule R4 may be viewed as a

derived rule.

The transformation rules R1�R4 we have introdu
ed above, are
olle
tively

alled unfold/fold transformation rules. We have the following
orre
tness result,

similar to [17℄.

Theorem 3. [Corre
tness of the Unfold/Fold Transformation Rules℄

Let us assume that during the
onstru
tion of a transformation sequen
e P

0

; : : : ;

P

n

, ea
h
lause of Defs

n

whi
h is used for folding, is unfolded (before or after

its use for folding) w.r.t. an atom whose predi
ate symbol o

urs in P

0

. Then,

M(P

0

[Defs

n

) =M(P

n

):

Noti
e that the statement obtained from Theorem 3 by repla
ing `atom' by

`literal', does not hold [17℄.

5 The Unfold/Fold Synthesis Method

In this se
tion we present our program synthesis method,
alled unfold/fold syn-

thesis method, whi
h derives a de�nite program from any given WS1S formula.

We show that the synthesis method terminates for all given formulas and also

the derived programs terminate a

ording to the following notion of program

termination: a program P terminates for a query Q i� every SLD-derivation of

P [f Qg via any
omputation rule is �nite.

The following is an outline of our unfold/fold synthesis method.

The Unfold/Fold Synthesis Method.

Let ' be a WS1S formula with free variables X

1

; : : : ; X

n

and let '

�

be the

expli
itly typed formula
orresponding to '.

Step 1. We apply the typed Lloyd-Topor transformation and we derive a set

Cls(f; '

�

) of
lauses su
h that: (i) f is a new n-ary predi
ate symbol, (ii) NatSet

[Cls(f; '

�

) is a strati�ed program, and (iii) for all ground terms t

1

; : : : ; t

n

,

(1) M(NatSet) j= '

�

fX

1

=t

1

; : : : ; X

n

=t

n

g i�

M(NatSet [Cls(f; '

�

)) j= f(t

1

; : : : ; t

n

)

Step 2. We apply the unfold/fold transformation strategy (see below) and from

the program NatSet[Cls(f; '

�

) we derive a de�nite program TransfP su
h that,

for all ground terms t

1

; : : : ; t

n

,

9

(2.1) M(NatSet [Cls(f; '

�

)) j= f(t

1

; : : : ; t

n

) i� M(TransfP) j= f(t

1

; : : : ; t

n

);

(2.2) TransfP terminates for the query f(t

1

; : : : ; t

n

).

In order to present the unfold/fold transformation strategy whi
h we use for

realizing Step 2 of our synthesis method, we introdu
e the following notions of

regular natset-typed
lauses and regular natset-typed de�nitions.

We say that a literal is linear i� ea
h variable o

urs at most on
e in it.

The syntax of regular natset-typed
lauses is de�ned by the following grammar

(re
all that by N we denote individual variables, by S we denote set variables,

and by X;X

1

; X

2

; : : : we denote either individual or set variables):

Head terms : h ::= 0 j s(N) j [℄ j [yjS℄ j [njS℄

Clauses : C ::= p(h

1

; : : : ; h

k

) j p

1

(h

1

; : : : ; h

k

) p

2

(X

1

; : : : ; X

m

)

where for every
lause C, (i) both hd(C) and bd(C) are linear atoms, and

(ii) fX

1

; : : : ; X

m

g � vars(h

1

; : : : ; h

k

) (that is, C has no existential variables). A

regular natset-typed program is a set of regular natset-typed
lauses.

The reader may
he
k that the program NatSet presented in Se
tion 3 is

a regular natset-typed program. The following properties are straightforward

onsequen
es of the de�nition of regular natset-typed program.

Lemma 1. Let P be a regular natset-typed program. Then:

(i) P terminates for every ground query p(t

1

; : : : ; t

n

) with n > 0;

(ii) If p is a nullary predi
ate then Def

�

(p; P) is propositional.

The syntax of natset-typed de�nitions is given by the following grammar:

Individual terms : n ::= 0 j N j s(n)

Terms : t ::= n j S

Type atoms: T ::= nat(N) j set(S)

Literals : L ::= p(t

1

; : : : ; t

k

) j :p(t

1

; : : : ; t

k

)

De�nitions : D ::= p(X

1

; : : : ; X

k

) T

1

^ : : : ^ T

r

^ L

1

^ : : : ^ L

m

where for all de�nitions D, vars(D) � vars(T

1

^ : : : ^ T

r

).

A sequen
e D

1

; : : : ; D

s

of natset-typed de�nitions is said to be a hierar-

hy i� for i = 1; : : : ; s the predi
ate appearing in hd(D

i

) does not o

ur in

D

1

; : : : ; D

i�1

; bd(D

i

). Noti
e that in a hierar
hy of natset-typed de�nitions, any

predi
ate o

urs in the head of at most one
lause.

One
an show that given a WS1S formula ' the set Cls(f; '

�

) of
lauses de-

rived by applying the typed Lloyd-Topor transformation is a hierar
hyD

1

; : : : ; D

s

of natset-typed de�nitions and the last
lause D

s

is the one de�ning f .

10

The Unfold/Fold Transformation Strategy.

Input : (i) A regular natset-typed program P where for ea
h nullary predi
ate

p, Def

�

(p;Transf P) is either the empty set or the singleton fp g, and (ii) a

hierar
hyD

1

; : : : ; D

s

of natset-typed de�nitions su
h that no predi
ate o

urring

in P o

urs also in the head of a
lause in D

1

; : : : ; D

s

.

Output : A regular natset-typed program TransfP su
h that, for all ground terms

t

1

; : : : ; t

n

,

(2.1) M(P [fD

1

; : : : ; D

s

g) j= f(t

1

; : : : ; t

n

) i� M(TransfP) j= f(t

1

; : : : ; t

n

);

(2.2) TransfP terminates for the query f(t

1

; : : : ; t

n

).

TransfP := P ; Defs := ;;

for i = 1; : : : ; s do

Defs := Defs [fD

i

g; InDefs := fD

i

g;

By the de�nition rule we derive the program TransfP [InDefs.

while InDefs 6= ; do

(1) Unfolding. From program TransfP [InDefs we derive TransfP [U by: (i) ap-

plying the unfolding rule w.r.t. ea
h atom o

urring positively in the body of a

lause in InDefs , thereby deriving TransfP [U

1

, then (ii) applying the unfolding

rule w.r.t. ea
h negative literal o

urring in the body of a
lause in U

1

, thereby

deriving TransfP[U

2

, and, �nally, (iii) applying the unfolding rule w.r.t. ground

literals until we derive a program TransfP [U su
h that no ground literal o

urs

in the body of a
lause of U .

(2) De�nition-Folding. From program TransfP [U we derive TransfP [F [

NewDefs as follows. Initially, NewDefs is the empty set. For ea
h non-unit
lause

C: H B in U ,

(i) we apply the de�nition rule and we add to NewDefs a
lause of the form

newp(X

1

; : : : ; X

k

) B, where X

1

; : : : ; X

k

are the non-existential variables o
-

urring in B, unless a variant
lause already o

urs in Defs, modulo the head

predi
ate symbol and the order and multipli
ity of the literals in the body, and

(ii) we repla
e C by the
lause derived by folding C w.r.t. B. The folded
lause

is an element of F .

No transformation rule is applied to the unit
lauses o

urring in U and, there-

fore, also these
lauses are elements of F .

(3) TransfP := TransfP [F ; Defs := Defs [NewDefs ; InDefs := NewDefs

end while;

Propositional Simpli�
ation. For ea
h predi
ate p su
h that Def

�

(p;TransfP) is

propositional, we apply the propositional simpli�
ation rule and

if M(TransfP) j= p

then TransfP := (TransfP �Def (p;TransfP)) [fp g

else TransfP := (TransfP �Def (p;TransfP))

end for

11

The reader may verify that if we apply the unfold/fold transformation strat-

egy starting from the program NatSet together with the
lauses Cls(max ; �

�

)

whi
h we have derived above by applying the typed Lloyd-Topor transformation,

we get the following �nal program:

max([yjS℄; 0) new1(S)

max([yjS℄; s(N)) max (S;N)

max([njS℄; s(N)) max (S;N)

new1([℄)

new1([njS℄) new1(S)

To understand the �rst
lause, re
all that the empty set is represented by any list

of the form [n; : : : ; n℄. A more detailed example of appli
ation of the unfold/fold

transformation strategy will be given later.

In order to prove the
orre
tness and the termination of our unfold/fold

transformation strategy we need the following lemmas whose proofs are mutually

dependent.

Lemma 2. During the appli
ation of the unfold/fold transformation strategy,

TransfP is a regular natset-typed program.

Proof. Initially, TransfP is the regular natset-typed program P . Now we assume

that TransfP is a regular natset-typed program and we show that after an ex-

e
ution of the body of the for statement, TransfP is a regular natset-typed

program.

First we prove that after the exe
ution of the while statement, TransfP is

a regular natset-typed program. In order to prove this, we show that every new

lause E whi
h is added to TransfP at Point (3) of the strategy is a regular

natset-typed
lause.

Clause E is derived from a
lause D of InDefs by unfolding (a

ording to

the Unfolding phase) and by folding (a

ording to the De�nition-Folding phase).

By Lemma 3, D is a natset-typed de�nition of the form p(X

1

; : : : ; X

k

) T

1

^

: : :^T

r

^L

1

^ : : :^L

m

. By unfolding w.r.t. the type atoms T

1

; : : : ; T

r

(a

ording

to Point (i) of the Unfolding phase) we get
lauses of the form p(h

1

; : : : ; h

k

)

T

0

1

^: : :^T

0

r1

^L

0

1

^: : :^L

0

m

, where: (a) h

1

; : : : ; h

k

are head terms, (b) p(h

1

; : : : ; h

k

)

is a linear atom (be
ause X

1

; : : : ; X

k

are distin
t variables), and (
) for i =

1; : : : ;m, no argument of L

0

i

is a variable. By the indu
tive hypothesis TransfP

is a regular natset-typed program and, therefore, by unfolding w.r.t. the literals

L

0

1

; : : : ; L

0

m

(a

ording to Points (ii) and (iii) of the Unfolding phase) we get

lauses of the form D

0

: p(h

1

; : : : ; h

k

) T

0

1

^ : : : ^ T

0

r1

^ L

00

1

^ : : : ^ L

00

m1

. Either

D

0

is a unit
lause or, by folding a

ording to the De�nition-Folding phase, it

is repla
ed by p(h

1

; : : : ; h

k

) newp(X

1

; : : : ; X

m

) where X

1

; : : : ; X

m

are the

distin
t, non-existential variables o

urring in bd(D

0

). Hen
e, E is either a unit

lause of the form p(h

1

; : : : ; h

k

) or a
lause of the form p(h

1

; : : : ; h

k

)

newp(X

1

; : : : ; X

m

), where fX

1

; : : : ; X

m

g � vars(h

1

; : : : ; h

k

). Thus, E is a regular

natset-typed
lause.

We
on
lude the proof by observing that if we apply the propositional simpli-

�
ation rule to a natset-typed program, then we derive a natset-typed program,

12

be
ause by this rule we
an only delete
lauses or add natset-typed
lauses of the

form p . Thus, after an exe
ution of the body of the for statement, TransfP

is a regular natset-typed program. 2

Lemma 3. During the appli
ation of the unfold/fold transformation strategy,

InDefs is a set of natset-typed de�nitions.

Proof. Let us
onsider the i-th exe
ution of the body of the for statement.

Initially, InDefs is the singleton set fD

i

g of natset-typed de�nitions. Now we

assume that InDefs is a set of natset-typed de�nitions and we prove that, after

an exe
ution of the while statement, InDefs is a set of natset-typed de�nitions.

It is enough to show that every new
lause E whi
h is added to InDefs at

Point (3) of the strategy, is a natset-typed de�nition. By the Folding phase

of the strategy, E is a
lause of the form newp(X

1

; : : : ; X

k

) B where B is

the body of a
lause derived from a
lause D of InDefs by unfolding. By the

indu
tive hypothesis, D is a natset-typed de�nition of the form p(X

1

; : : : ; X

k

)

T

1

^ : : : ^ T

r

^ L

1

^ : : : ^ L

m

. By unfolding w.r.t. the type atoms T

1

; : : : ; T

r

(a

ording to Point (i) of the Unfolding phase) we get
lauses of the form D

0

:

p(h

1

; : : : ; h

k

) T

0

1

^: : :^T

0

r1

^L

0

1

^: : :^L

0

m

, where vars(D

0

) � vars(T

0

1

^: : :^T

0

r1

).

Sin
e, by Lemma 2, TransfP is a regular natset-typed program, by unfolding

w.r.t. the literals L

0

1

; : : : ; L

0

m

(a

ording to Points (ii) and (iii) of the Unfolding

phase) we get
lauses of the formD

00

: p(h

1

; : : : ; h

k

) T

0

1

^: : :^T

0

r1

^L

00

1

^: : :^L

00

m1

where vars(D

00

) � vars(T

0

1

^ : : : ^ T

0

r1

). Thus, E is a natset-typed de�nition of

the form newp(X

1

; : : : ; X

k

) T

0

1

^ : : : ^ T

0

r1

^ L

00

1

^ : : : ^ L

00

m1

with vars(E) �

vars(T

0

1

^ : : : ^ T

0

r1

).

We
on
lude the proof by observing that the Propositional Simpli�
ation

phase does not
hange InDefs , and thus, after the exe
ution of the body of the

for statement, InDefs is a set of natset-typed de�nitions. 2

Theorem 4. Let P and D

1

; : : : ; D

s

be the input program and the input hier-

ar
hy, respe
tively, of the unfold/fold transformation strategy and let TransfP

be the output of the strategy. Then,

(1) TransfP is a natset-typed program;

(2) for every nullary predi
ate p, Def

�

(p;TransfP) is either ; or fp g;

(3) for all ground terms t

1

; : : : ; t

n

,

(3.1) M(P [fD

1

; : : : ; D

s

g) j= f(t

1

; : : : ; t

n

) i� M(TransfP) j= f(t

1

; : : : ; t

n

);

(3.2) TransfP terminates for the query f(t

1

; : : : ; t

n

).

Proof. Point (1) is a straightforward
onsequen
e of Lemma 2.

For Point (2), let us noti
e that, by Lemma 2, at ea
h point of the unfold/fold

transformation strategy TransfP is a natset-typed program and therefore, by

Lemma 1, for every nullary predi
ate p, Def

�

(p;TransfP) is propositional. Sin
e

the last step of the unfold/fold transformation strategy
onsists in applying to

TransfP the propositional simpli�
ation rule for ea
h predi
ate having a propo-

sitional extended de�nition, Def

�

(p;TransfP) is either ; or fp g.

13

Point (3.1) will be proved by using the
orre
tness of the transformation rules

w.r.t. the Perfe
t Model semanti
s (see Theorem 3). Let us �rst noti
e that the

unfold/fold transformation strategy generates a transformation sequen
e (see

Se
tion 4), where: the initial program is P , the �nal program is the �nal value of

TransfP , and the set of
lauses introdu
ed by the de�nition rule R1 is the �nal

value of Defs .

To see that our strategy indeed generates a transformation sequen
e, let us

observe the following fa
ts (A) and (B):

(A) The addition of InDefs to TransfP at the beginning of ea
h exe
ution of

the body of the for statement is an appli
ation of the de�nition rule. Indeed,

for i = 1; : : : s; InDefs = fD

i

g and, by the hypotheses on the input sequen
e

D

1

; : : : ; D

s

, we have that the head predi
ate of D

i

does not o

ur in the
urrent

value of P [Defs .

(B) When we unfold the
lauses of U

1

w.r.t. negative literals, we have that:

(B.1) Condition (i) of Case (2) of the unfolding rule (see Se
tion 4) is satis�ed

be
ause:

(a) Every
lause D of InDefs is a natset-typed de�nition (see Lemma 3) and,

thus, for ea
h variable X o

urring in D there is a type atom of the form a(X)

in bd(D). Sin
e we unfold the
lauses of InDefs w.r.t. all the atoms whi
h o

ur

positively in the bodies of the
lauses in InDefs , and in parti
ular, w.r.t. type

atoms, every argument of a negative literal in the body of a
lause of U

1

is of

one of the following forms: 0, s(n), [℄, [yjS℄, [njS℄.

(b) For ea
h negative literal :p(t

1

; : : : ; t

k

) in the body of a
lause of U

1

, the

de�nition of p is a subset of the regular natset-typed program TransfP (see

Lemma 2) and, hen
e, the head of a
lause in TransfP is a linear atom of the

form p(h

1

; : : : ; h

k

), where h

1

; : : : ; h

k

are head terms (see the de�nition of regular

natset-typed
lauses above).

From (a) and (b) it follows that if p(t

1

; : : : ; t

k

) is uni�able with p(h

1

; : : : ; h

k

)

then p(t

1

; : : : ; t

k

) is an instan
e of p(h

1

; : : : ; h

k

).

(B.2) Condition (ii) of Case (2) of the unfolding rule is satis�ed be
ause TransfP

is a regular natset-typed program (see Lemma 2) and, thus, no
lause in TransfP

has existential variables.

Now, the transformation sequen
e
onstru
ted by the unfold/fold transfor-

mation strategy satis�es the hypothesis of Theorem 3. Indeed, let us
onsider a

lause D whi
h is used for folding a
lause C. Sin
e C has been derived at the

end of the Unfolding phase, no ground literal o

urs in bd(C) and, thus, there

is at least one variable o

urring in D. Hen
e, there is at least one type atom in

bd(D), be
ause D is a natset-typed de�nition (see Lemma 3). Therefore, during

an appli
ation of the unfold/fold transformation strategy (before or after the

use of D for folding), D is unfolded w.r.t. a type atom (see Point (i) of the Un-

folding phase). Thus, by Theorem 3, we have that M(P [Defs) =M(TransfP),

where by Defs and TransfP we indi
ate the values of these variables at the end

of the unfold/fold transformation strategy. Observe that Def

�

(f;P [Defs) =

Def

�

(f;P [fD

1

; : : : ; D

s

g) and, therefore, M(P [fD

1

; : : : ; D

s

g) j= f(t

1

; : : : ; t

n

)

i� M(P [Defs) j= f(t

1

; : : : ; t

n

) i� M(TransfP) j= f(t

1

; : : : ; t

n

).

14

Finally, let us prove Point (3.2). We
onsider the following two
ases:

(n = 0) f is nullary and hen
e, by Point (2) of this theorem, Def

�

(f;TransfP)

is either ; or ff g. Thus, TransfP terminates for the query f .

(n > 0) By Point (1) of this theorem, TransfP is a natset-typed program and

thus, by Lemma 1, TransfP terminates for the ground query f(t

1

; : : : ; t

n

). 2

Theorem 5. The unfold/fold transformation strategy terminates.

Proof. We have to show that the while statement in the body of the for

statement terminates.

Ea
h exe
ution of the Unfolding phase terminates. Indeed, (a) the number of

appli
ations of the unfolding rule at Points (i) and (ii) is �nite, be
ause InDefs is

a �nite set of
lauses and the body of ea
h
lause has a �nite number of literals,

and (b) at Point (iii) only a �nite number of unfolding steps
an be applied

w.r.t. ground literals, be
ause the program held by TransfP during the Unfolding

phase terminates for every ground query. To see this latter fa
t, let us noti
e that,

by Lemma 2, TransfP is a natset-typed program. Thus, by Lemma 1, TransfP

terminates for any ground query p(t

1

; : : : ; t

n

) with n � 1. For a ground query p,

where p is a nullary predi
ate, TransfP terminates be
ause Def

�

(p;Transf P) is

either the empty set or it is the singleton fp g. Indeed, this follows from our

assumptions on the input program and from the exe
ution of the Propositional

Simpli�
ation phase after
ompletion of the while statement.

Ea
h exe
ution of the De�nition-Folding phase terminates be
ause a �nite

number of
lauses are introdu
ed by de�nition and a �nite number of
lauses are

folded.

Thus, in order to show that the strategy terminates, it is enough to show

that after a �nite number of exe
utions of the body of the while statement,

we get InDefs = ;. Let Defs

j

and InDefs

j

be the values of Defs and InDefs ,

respe
tively, at the end of the j-th exe
ution of the body of the while statement.

If the while statement terminates after z exe
utions of its body, then, for all

j > z, we de�ne Defs

j

to be Defs

z

and InDefs

j

to be ;. We have that, for any

j � 1, InDefs

j

= ; i� Defs

j�1

= Defs

j

. Sin
e for all j � 1, Defs

j�1

� Defs

j

,

the termination of the strategy will follow from the following property:

there exists K > 0 su
h that, for all j � 1, jDefs

j

j � K (*)

Let TransfP

0

, Defs

0

, and InDefs

0

(� Defs

0

) be the values of TransfP , Defs , and

InDefs , respe
tively, at the beginning of the exe
ution of the while statement.

By Lemma 3, for all j � 1, Defs

j

is a set of natset-typed de�nitions. Property (*)

follows from the fa
t that, for all D 2 Defs

j

, the following holds:

(a) every predi
ate o

urring in bd(D) also o

urs in TransfP

0

[InDefs

0

;

(b) for every literal L o

urring in bd(D),

height(L) � maxfheight(M) jM is a literal in the body of a
lause in Defs

0

g

where the height of a literal is de�ned as the length of the maximal path from

the root to a leaf of the literal
onsidered as a tree;

(
) jvars(D)j � maxfvars(D

0

) jD

0

is a
lause in Defs

0

g;

(d) no two
lauses in Defs

j

an be made equal by one or more appli
ations of the

following transformations: renaming of variables, renaming of head predi
ates,

15

rearrangement of the order of the literals in the body, and deletion of dupli
ate

literals.

Re
all that bd(D) is equal to bd(E

0

) where E

0

is derived by unfolding (a

ording

to the Unfolding phase of the strategy) a
lause E in TransfP

0

[InDefs

j

and E

belongs to InDefs

j

.

Now Property (a) is a straightforward
onsequen
e of the de�nition of the un-

folding rule.

Property (b)
an be shown as follows. E is of the form newp(X

1

; : : : ; X

k

) T

1

^

: : :^T

r

^L

1

^: : :^L

m

. By unfolding w.r.t. the type atoms T

1

; : : : ; T

r

(a

ording to

Point (i) of the Unfolding phase) we get
lauses of the form newp(h

1

; : : : ; h

k

)

T

0

1

^ : : : ^ T

0

r1

^ L

0

1

^ : : : ^ L

0

m

, where h

1

; : : : ; h

k

are head terms and, for all

i 2 f1; : : : ;mg, height(L

0

i

) � height(L

i

) + 1. By Lemma 2, TransfP

0

is a regular

natset-typed program and, therefore, by unfolding w.r.t. the literals L

0

1

; : : : ; L

0

m

(a

ording to Point (ii) of the Unfolding phase) we get
lauses of the form

newp(h

1

; : : : ; h

k

) T

0

1

^ : : :^T

0

r1

^L

00

1

^ : : :^L

00

m1

, where for all i 2 f1; : : : ;m1g,

there exists i1 2 f1; : : : ;mg; su
h that height (L

00

i

) = height(L

0

i1

)�1. Thus, Prop-

erty (b) follows from the fa
t that E

0

is derived by unfolding w.r.t. ground literals

from a
lause of the form newp(h

1

; : : : ; h

k

) T

0

1

^ : : :^T

0

r1

^L

00

1

^ : : :^L

00

m1

and

every unfolding w.r.t. a ground literal does not in
rease the height of the other

literals in a
lause.

Property (
) follows from Lemma 2 and the fa
t that by unfolding a
lause E

using regular natset-typed
lauses we get
lauses E

0

where vars(E

0

) � vars(E).

To see this, re
all that in a regular natset-typed
lause C every term has at

most one variable and vars(bd(C)) � vars(hd(C)) and, thus, by unfolding, a

variable is repla
ed by a term with at most one variable and no new variables

are introdu
ed.

Finally, Point (d) is a
onsequen
e of Point (i) of the De�nition-Folding phase

of the unfold/fold strategy. 2

6 De
iding WS1S via the Unfold/Fold Proof Method

In this se
tion we show that if we start from a
losed WS1S formula ', our

synthesis method
an be used for
he
king whether or not N j= ' holds and,

thus, our synthesis method works also as a proof method whi
h is a de
ision

pro
edure for
losed WS1S formulas.

If ' is a
losed WS1S formula then the predi
ate f introdu
ed when
on-

stru
ting the set Cls(f; '

�

), is a nullary predi
ate. Let TransfP be the program

derived by the unfold/fold transformation strategy starting from the program

NatSet [Cls(f; '

�

). As already known from Point (2) of Theorem 4, we have

that Def

�

(f;TransfP) is either the empty set or the singleton ff g. Thus, we

an de
ide whether or not N j= ' holds by
he
king whether or not f belongs

to TransfP . Sin
e the unfold/fold transformation strategy always terminates, we

have that our unfold/fold synthesis method is indeed a de
ision pro
edure for

losed WS1S formulas. We summarize our proof method as follows.

16

The Unfold/Fold Proof Method.

Let ' be a
losed WS1S formula.

Step 1. We apply the typed Lloyd-Topor transformation and we derive the set

Cls(f; '

�

) of
lauses.

Step 2. We apply the unfold/fold transformation strategy and from the program

NatSet [Cls(f; '

�

) we derive a de�nite program TransfP .

If the unit
lause f belongs to TransfP then N j= ' else N j= :'.

Now we present a simple example of appli
ation of our unfold/fold proof

method.

Example 1. (An appli
ation of the unfold/fold proof method.) Let us
onsider

the
losed WS1S formula ' : 8X 9Y X�Y . By applying the typed Lloyd-Topor

transformation starting from the statement f ', we get the following set of

lauses Cls(f; '

�

):

1. h(X) nat(X) ^ nat(Y) ^X�Y

2. g nat(X) ^ :h(X)

3. f :g

Now we apply the unfold/fold transformation strategy to the program NatSet

and the following hierar
hy of natset-typed de�nitions:
lause 1,
lause 2,
lause 3.

Initially, the program TransfP is NatSet . The transformation strategy pro
eeds

left-to-right over that hierar
hy.

(1) Defs and InDefs are both set to {
lause 1}.

(1.1) Unfolding. By unfolding, from
lause 1 we get:

4. h(0)

5. h(0) nat(Y)

6. h(s(X)) nat(X) ^ nat(Y) ^X�Y

(1.2) De�nition-Folding. In order to fold the body of
lause 5 we introdu
e the

following new
lause:

7. new1 nat(Y)

Clause 6
an be folded by using
lause 1. By folding
lauses 5 and 6 we get:

8. h(0) new1

9. h(s(X)) h(X)

(1.3) At this point TransfP = NatSet [f
lause 4,
lause 8,
lause 9}, Defs =

f
lause 1,
lause 7}, and InDefs = f
lause 7g.

(1.4) By �rst unfolding
lause 7 and then folding using
lause 7 itself, we get:

10. new1

11. new1 new1

No new
lause is introdu
ed (i.e., NewDefs = ;). At this point TransfP =

NatSet [f
lause 4,
lause 8,
lause 9,
lause 10,
lause 11}, Defs = f
lause 3,

lause 7}, and InDefs = ;. Thus, the while statement terminates.

Sin
e Def

�

(new1;TransfP) is propositional and M(TransfP) j= new1, by the

propositional simpli�
ation rule we have:

17

TransfP = NatSet [f
lause 4,
lause 8,
lause 9,
lause 10g.

(2) Defs is set to {
lause 1,
lause 2,
lause 7} and InDefs is set to {
lause 2}.

(2.1) Unfolding. By unfolding, from
lause 2 we get:

12. g nat(X) ^ :h(X)

(Noti
e that, by unfolding,
lause g :h(0) is deleted.)

(2.2) De�nition-Folding. Clause 12
an be folded by using
lause 2 whi
h o

urs

in Defs . Thus, no new
lause is introdu
ed (i.e., NewDefs = ;) and by folding

we get:

13. g g

(2.3) At this point TransfP = NatSet [f
lause 4,
lause 8,
lause 9,
lause 10,

lause 13}, Defs = f
lause 1,
lause 2,
lause 7}, and InDefs = ;. Thus, the

while statement terminates.

Sin
e Def

�

(g;TransfP) is propositional and M(TransfP) j= :g, by the proposi-

tional simpli�
ation rule we delete
lause 13 from TransfP and we have:

TransfP = NatSet [f
lause 4,
lause 8,
lause 9,
lause 10g.

(3) Defs is set to {
lause 1,
lause 2,
lause 3,
lause 7} and InDefs is set to

{
lause 3}.

(3.1) Unfolding. By unfolding
lause 3 we get:

14. f

(Re
all that, there is no
lause in TransfP with head g.)

(3.2) De�nition-Folding. No transformation steps are performed on
lause 14

be
ause it is a unit
lause.

(3.3) At this point TransfP = NatSet [f
lause 4,
lause 8,
lause 9,
lause 10,

lause 14}, Defs = f
lause 1,
lause 2,
lause 3,
lause 7}, and InDefs = ;.

The transformation strategy terminates and, sin
e the �nal program TransfP

in
ludes the unit
lause f , we have proved that N j= 8X 9Y X�Y .

We would like to noti
e that neither SLDNF nor Tabled Resolution (as

implemented in the XSB system [22℄) are able to
onstru
t a refutation of

NatSet [Cls(f; '

�

) [f fg (and thus
onstru
t a proof of '), where ' is the

WS1S formula 8X 9Y X � Y . Indeed, from the goal f we generate the goal

 :g, and neither SLDNF nor Tabled Resolution are able to infer that :g

su

eeds by dete
ting that g generates an in�nite set of failed derivations. 2

We would like to mention that some other transformations
ould be applied

for enhan
ing our unfold/fold transformation strategy. In parti
ular, during the

strategy we may apply the subsumption rule to shorten the transformation pro-

ess by deleting some useless
lauses. For instan
e, in Example 1 we
an delete

lause 5 whi
h is subsumed by
lause 4, thereby avoiding the introdu
tion of the

new predi
ate new1. In some other
ases we
an drop unne
essary type atoms.

For instan
e, in Example 1 in
lause 1 the type atom nat(X)
an be dropped

be
ause it is implied by the atom X � Y . The program derived at the end of

the exe
ution of the while statement of the unfold/fold transformation strat-

egy are nondeterministi
, in the sense that an atom with non-variable arguments

may be uni�able with the head of several
lauses. We
an apply the te
hnique

18

for deriving deterministi
 program presented in [19℄ for deriving deterministi

programs and thus, obtaining smaller programs.

When the unfold/fold transformation strategy is used for program synthesis,

it is often the
ase that the above mentioned transformations also improve the

e�
ien
y of the derived programs.

Finally, we would like to noti
e that the unfold/fold transformation strategy

an be applied starting from a program P [Cls(f; '

�

) (instead of NatSet [

Cls(f; '

�

)) where: (i) P is the output of a previous appli
ation of the strategy,

and (ii) ' is a formula built like a WS1S formula, ex
ept that it uses predi-

ates o

urring in P (besides � and 2). Thus, we
an synthesize programs (or

onstru
t proofs) in a
ompositional way, by �rst synthesizing programs for sub-

formulas. We will follow this
ompositional methodology in the example of the

following Se
tion 7.

7 An Appli
ation to the Veri�
ation of In�nite State

Systems: the Dynami
 Bakery Proto
ol

In this se
tion we present an example of veri�
ation of a safety property of

an in�nite state system by
onsidering CLP(WS1S) programs [11℄. As already

mentioned, by applying our unfold/fold synthesis method we will then translate

CLP(WS1S) programs into logi
 programs.

The syntax of CLP(WS1S) programs is de�ned as follows. We
onsider a set of

user-de�ned predi
ate symbols. A CLP(WS1S)
lause is of the form A '^G,

where A is an atom, ' is a formula of WS1S, G is a goal, and the predi
ates

o

urring in A or in G are all user-de�ned. A CLP(WS1S) program is a set of

CLP(WS1S)
lauses. We assume that CLP(WS1S) programs are strati�ed.

Given a CLP(WS1S) program P , we de�ne the semanti
s of P to be its

perfe
t model, denoted M(P) (here we extend to CLP(WS1S) programs the

de�nitions whi
h are given for normal logi
 programs in [1℄).

Our example
on
erns the Dynami
 Bakery proto
ol,
alled DBakery for

short, and we prove that it ensures mutual ex
lusion in a system of pro
esses

whi
h share a
ommon resour
e, even if the number of pro
esses in the system

hanges during a proto
ol run in a dynami
 way. The DBakery proto
ol is a

variant of the N-pro
ess Bakery proto
ol [13℄.

In order to give the formal spe
i�
ations of the DBakery proto
ol and its

mutual ex
lusion property, we will use CLP(WS1S) as we now indi
ate. The

transition relation between pairs of system states, the initial system state, and

the system states whi
h are unsafe (that is, the system states where more than

one pro
ess uses the shared resour
e) are spe
i�ed by WS1S formulas. However,

in order to spe
ify the mutual ex
lusion property we
annot use WS1S formulas

only. Indeed, mutual ex
lusion is a rea
hability property whi
h is unde
idable

in the
ase of in�nite state systems. The approa
h we follow in this example is

to spe
ify rea
hability (and, thus, mutual ex
lusion) as a CLP(WS1S) program

(see the program P

DBakery

below).

19

Let us �rst des
ribe the DBakery proto
ol. We assume that every pro
ess is

asso
iated with a natural number,
alled a
ounter, and two distin
t pro
esses

have distin
t
ounters. At ea
h instant in time, the system of pro
esses is repre-

sented by a pair hW;Ui,
alled a system state, whereW is the set of the
ounters

of the pro
esses waiting for the resour
e, and U is the set of the
ounters of the

pro
esses using the resour
e.

A system state hW;Ui is initial i� W [U is the empty set.

The transition relation from a system state hW;Ui to a new system state

hW

0

; U

0

i is the union of the following three relations:

(T1:
reation of a pro
ess)

if W [U is empty then hW

0

; U

0

i = hf0g; ;i else hW

0

; U

0

i = hW [fm+1g; Ui,

where m is the maximum
ounter in W [U ,

(T2: use of the resour
e)

if there exists a
ounter n in W whi
h is the minimum
ounter in W [U

then hW

0

; U

0

i = hW�fng; U [fngi,

(T3: release of the resour
e)

if there exists a
ounter n in U then hW

0

; U

0

i = hW;U�fngi.

The mutual ex
lusion property holds i� from the initial system state it is not

possible to rea
h a system state hW;Ui whi
h is unsafe, that is, su
h that U is

a set of at least two
ounters.

Let us now give the formal spe
i�
ation of the DBakery proto
ol and its

mutual ex
lusion property. We �rst introdu
e the following WS1S formulas (be-

tween parentheses we indi
ate their meaning):

empty(X) � :9x x2X

(the set X is empty)

max (X,m) � m2X ^ 8x (x2X ! x�m)

(m is the maximum in the set X)

min(X,m) � m2X ^ 8x (x2X ! m�x)

(m is the minimum in the set X)

(Here and in what follows, for reasons of readability, we allow ourselves to use

lower
ase letters for individual variables of WS1S formulas.)

A system state hW;Ui is initial i� N j= init(hW;Ui), where:

init(hW;Ui) � empty(W) ^ empty(U)

The transition relation R between system states is de�ned as follows:

hhW;Ui ; hW

0

; U

0

ii 2 R i�

N j=
re(hW;Ui ; hW

0

; U

0

i) _ use(hW;Ui ; hW

0

; U

0

i) _ rel(hW;Ui ; hW

0

; U

0

i)

where the predi
ates
re, use, and rel de�ne the transition relations T1, T2, and

T3, respe
tively. We have that:

20

re(hW;Ui ; hW

0

; U

0

i) � U

0

=U ^ 9Z (Z=W [U^

((empty(Z) ^W

0

=f0g)_

(:empty(Z) ^ 9m (max (Z;m) ^W

0

=W[fs(m)g))))

use(hW;Ui ; hW

0

; U

0

i) � 9n (n 2W ^ 9Z (Z=W [U ^min(Z; n))^

W

0

=W�fng ^ U

0

=U[fng)

rel(hW;Ui ; hW

0

; U

0

i) � W

0

=W ^ 9n (n 2 U ^ U

0

=U�fng)

where the subformulas involving the set union ([), set di�eren
e (�), and set

equality (=) operators
an be expressed as WS1S formulas.

Mutual ex
lusion holds in a system state hW;Ui i� N j= :unsafe(hW;Ui),

where unsafe(hW;Ui) � 9n

1

9n

2

(n

1

2U ^ n

2

2U ^ :(n

1

=n

2

)), i.e., a system

state hW;Ui is unsafe i� there exist at least two distin
t
ounters in U .

Now we will spe
ify the system states rea
hed from a given initial system state

by introdu
ing the CLP(WS1S) program P

DBakery

onsisting of the following

lauses:

rea
h(S) init(S)

rea
h(S1)
re(S; S1) ^ rea
h(S)

rea
h(S1) use(S; S1) ^ rea
h(S)

rea
h(S1) rel(S; S1) ^ rea
h(S)

where init(S),
re(S; S1), use(S; S1), and rel(S; S1) are the WS1S formulas

listed above.

From P

DBakery

we derive a de�nite program P

0

DBakery

by repla
ing the WS1S

formulas o

urring in P

DBakery

by the
orresponding atoms init(S),
re(S; S1),

use(S; S1), and rel(S; S1), and by adding to the program the
lauses (not listed

here) de�ning these atoms, whi
h are derived from the
orresponding WS1S for-

mulas listed above, by applying the unfold/fold synthesis method (see Se
tion 5).

Let us
all these
lauses Init, Cre, Use, and Rel, respe
tively.

In order to verify that the DBakery proto
ol ensures mutual ex
lusion for

every system of pro
esses whose number dynami
ally
hanges over time, we

have to prove that for every ground term s denoting a �nite set of
ounters,

ur(s) 62 M(P

0

DBakery

[f
lause 1g), where
lause 1 is the following
lause whi
h

we introdu
e by the de�nition rule:

1. ur(S) unsafe(S) ^ rea
h(S)

and unsafe(S) is de�ned by a set,
alled Unsafe, of
lauses whi
h are derived from

the
orresponding WS1S formula by using the unfold/fold synthesis method.

In order to verify the mutual ex
lusion property for the DBakery proto
ol

it is enough to show that P

0

DBakery

[f
lause 1g
an be transformed into a new

de�nite program without
lauses for ur(S). This transformation
an be done,

as we now illustrate, by a straightforward adaptation of the proof te
hnique

presented for Constraint Logi
 Programs in [7℄. In parti
ular, before performing

folding steps, we will add suitable atoms in the bodies of the
lauses to be folded.

We start o� this veri�
ation by unfolding
lause 1 w.r.t. the atom rea
h. We

obtain the following
lauses:

2. ur(S) unsafe(S) ^ init(S)

21

3. ur(S1) unsafe(S1) ^
re(S; S1) ^ rea
h(S)

4. ur(S1) unsafe(S1) ^ use(S; S1) ^ rea
h(S)

5. ur(S1) unsafe(S1) ^ rel(S; S1) ^ rea
h(S)

Now we
an remove
lause 2 be
ause

M(Unsafe [Init) j= :9S (unsafe(S) ^ init(S)).

The proof of this fa
ts and the proofs of the other fa
ts we state below, are

performed by applying the unfold/fold proof method of Se
tion 5. Then, we fold

lauses 3 and 5 by using the de�nition
lause 1 and we obtain:

6. ur(S1) unsafe(S1) ^
re(S; S1) ^ ur(S)

7. ur(S1) unsafe(S1) ^ rel(S; S1) ^ ur(S)

Noti
e that this appli
ation of the folding rule is justi�ed by the following two

fa
ts:

M(Unsafe [Cre) j= 8S 8S1 (unsafe(S1) ^
re(S; S1) ! unsafe(S))

M(Unsafe [Rel) j= 8S 8S1 (unsafe(S1) ^ rel(S; S1) ! unsafe(S))

so that, before folding, we
an add the atom unsafe(S) to the bodies of
lauses

3 and 5. Now, sin
e M(Unsafe [Use) j= :8S 8S1 (unsafe(S1) ^ use(S; S1) !

unsafe(S)),
lause 4
annot be folded using the de�nition
lause 1. Thus, we

introdu
e the new de�nition
lause:

8. p1(S)
(S) ^ rea
h(S)

where
(hW;Ui) � 9n (n2W ^9Z (Z =W[U ^min(Z; n))) ^ :empty(U) whi
h

means that: in the system state hW;Ui there is at least one pro
ess whi
h uses

the resour
e and there exists a pro
ess waiting for the resour
e with
ounter n

whi
h is the minimum
ounter in W [U .

Noti
e that, by applying the unfold/fold synthesis method, we may derive a

set,
alled Busy (not listed here), of de�nite
lauses whi
h de�ne
(S).

By using
lause 8 we fold
lause 4, and we obtain:

9. ur(S1) unsafe(S1) ^ use(S; S1) ^ p1(S)

We pro
eed by applying the unfolding rule to the newly introdu
ed
lause 8,

thereby obtaining:

10. p1(S)
(S) ^ init(S)

11. p1(S1)
(S1) ^
re(S; S1) ^ rea
h(S)

12. p1(S1)
(S1) ^ use(S; S1) ^ rea
h(S)

13. p1(S1)
(S1) ^ rel(S; S1) ^ rea
h(S)

Clauses 10 and 12 are removed, be
ause

M(Busy [Init) j= :9S (
(S) ^ init(S))

M(Busy [Use) j= :9S 9S1 (
(S1) ^ use(S; S1))

We fold
lauses 11 and 13 by using the de�nition
lauses 8 and 1, respe
tively,

thereby obtaining:

14. p1(S1)
(S1) ^
re(S; S1) ^ p1(S)

15. p1(S1)
(S1) ^ rel(S; S1) ^ ur(S)

Noti
e that this appli
ation of the folding rule is justi�ed by the following two

fa
ts:

22

M(Busy [Cre) j= 8S 8S1 ((
(S1) ^
re(S; S1)) !
(S))

M(Busy [Rel) j= 8S 8S1 ((
(S1) ^ rel(S; S1)) ! unsafe(S))

Thus, starting from program P

0

DBakery

[{
lause 1} we have derived a new pro-

gram Q
onsisting of
lauses 6, 7, 14, and 15. Sin
e all
lauses in Def

�

(ur ; Q)

are re
ursive, we have that for every ground term s denoting a �nite set of
oun-

ters, ur(s) 62 M(Q) and by the
orre
tness of the transformation rules [18℄, we

on
lude that mutual ex
lusion holds for the DBakery proto
ol.

8 Related Work and Con
lusions

We have proposed an automati
 synthesis method based on unfold/fold pro-

gram transformations for translating CLP(WS1S) programs into normal logi

programs. This method
an be used for avoiding the use of ad-ho
 solvers for

WS1S
onstraints when
onstru
ting proofs of properties of in�nite state multi-

pro
ess systems.

Our synthesis method follows the general approa
h presented in [18℄ and it

terminates for any given WS1S formula. No su
h termination result was given in

[18℄. In this paper we have also shown that, when we start from a
losed WS1S

formula ', our synthesis strategy produ
es a program whi
h is either (i) a unit

lause of the form f , where f is a nullary predi
ate equivalent to the formula

', or (ii) the empty program. Sin
e in
ase (i) ' is true and in
ase (ii) ' is false,

our strategy is also a de
ision pro
edure for
losed WS1S formulas. This result

extends [17℄ whi
h presents a de
ision pro
edure based on the unfold/fold proof

method for the
lausal fragment of the WSkS theory, i.e., the fragment dealing

with universally quanti�ed disjun
tions of
onjun
tions of literals.

Some related methods based on program transformation have been re
ently

proposed for the veri�
ation of in�nite state systems [14,21℄. However, as it

is shown by the example of Se
tion 7, an important feature of our veri�
ation

method is that the number of pro
esses involved in the proto
ol may
hange over

time and other methods �nd it problemati
 to deal with su
h dynami

hanges.

In parti
ular, the te
hniques presented in [21℄ for verifying safety properties of

parametrized systems deal with rea
tive systems where the number of pro
esses

is a parameter whi
h does not
hange over time.

Our method is also related to a number of other methods whi
h use logi

programming and, more generally,
onstraint logi
 programming for the veri�-

ation of rea
tive systems (see, for instan
e, [6,9,16,20℄ and [8℄ for a survey).

The main novelty of our approa
h w.r.t. these methods is that it
ombines logi

programming and monadi
 se
ond order logi
, thereby modelling in a very dire
t

way systems with an unbounded (and possibly variable) number of pro
esses.

Our unfold/fold synthesis method and our unfold/fold proof method have

been implemented by using the MAP transformation system [24℄. Our implemen-

tation is reasonably e�
ient for WS1S formulas of small size (see the example

formulas of Se
tion 7). However, our main
on
ern in the implementation was not

e�
ien
y and our system should not be
ompared with ad-ho
, well-established

theorem provers for WS1S formulas based on automata theory, like the MONA

23

system [10℄. Nevertheless, we believe that our te
hnique has its novelty and de-

serves to be developed be
ause, being based on unfold/fold rules, it
an easily be

ombined with other te
hniques for program derivation, spe
ialization, synthesis,

and veri�
ation, whi
h are also based on unfold/fold transformations.

Referen
es

1. K. R. Apt and R. N. Bol. Logi
 programming and negation: A survey. Journal of

Logi
 Programming, 19, 20:9�71, 1994.

2. D. Basin and S. Friedri
h. Combining WS1S and HOL. In D.M. Gabbay and

M. de Rijke, editors, Frontiers of Combining Systems 2, volume 7 of Studies in

Logi
 and Computation, pages 39�56. Resear
h Studies Press/Wiley, 2000.

3. D. Basin and N. Klarlund. Automata based symboli
 reasoning in hardware veri-

�
ation. The Journal of Formal Methods in Systems Design, 13(3):255�288, 1998.

4. J. R. Bü
hi. Weak se
ond order arithmeti
 and and �nite automata. Z. Maath

Logik Grundlagen Math, 6:66�92, 1960.

5. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logi

programs. JACM, 43(1), 1996.

6. G. Delzanno and A. Podelski. Model
he
king in CLP. In R. Cleaveland, editor,

5th International Conferen
e on Tools and Algorithms for the Constru
tion and

Analysis of Systems (TACAS'99), Le
ture Notes in Computer S
ien
e 1579, pages

223�239. Springer-Verlag, 1999.

7. F. Fioravanti, A. Pettorossi, and M. Proietti. Veri�
ation of sets of in�nite state

systems using program transformation. In A. Pettorossi, editor, Pro
eedings of

LOPSTR 2001, Eleventh International Workshop on Logi
-based Program Synthe-

sis and Transformation, Le
ture Notes in Computer S
ien
e 2372, pages 111�128.

Springer-Verlag, 2002.

8. L. Fribourg. Constraint logi
 programming applied to model
he
king. In A. Bossi,

editor, Pro
. 9th Int. Workshop on Logi
-based Program Synthesis and Transforma-

tion (LOPSTR'99), Venezia, Italy, Sept. 1999, Le
ture Notes in Computer S
ien
e

1817, pages 31�42. Springer, 2000.

9. L. Fribourg and H. Olsén. Proving safety properties of in�nite state systems by

ompilation into Presburger arithmeti
. In CONCUR '97, Le
ture Notes in Com-

puter S
ien
e 1243, pages 96�107. Springer-Verlag, 1997.

10. J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,

and A. Sandholm. Mona: Monadi
 se
ond-order logi
 in pra
ti
e. In E. Brinksma,

R. Cleaveland, K. G. Larsen, T. Margaria, and B. Ste�en, editors, Tools and Al-

gorithms for Constru
tion and Analysis of Systems, First International Workshop,

TACAS '95, Aarhus, Denmark, May 19-20, 1995, volume 1019 of Le
ture Notes in

Computer S
ien
e, pages 89�110. Springer, 1996.

11. J. Ja�ar and M. Maher. Constraint logi
 programming: A survey. Journal of Logi

Programming, 19/20:503�581, 1994.

12. N. Klarlund, M. Nielsen, and K. Sunesen. Automated logi
al veri�
ation based

on tra
e abstra
tion. In Pro
eedings of the Fifteenth Annual ACM Symposium

on Prin
iples of Distributed Computing, Philadelphia, Pennsylvania, USA, May

23-26, 1996, pages 101�110. ACM, 1996.

13. L. Lamport. A new solution of Dijkstra's
on
urrent programming problem. Com-

muni
ations of the ACM, 17(8):453�455, 1974.

24

14. M. Leus
hel and T. Massart. In�nite state model
he
king by abstra
t interpre-

tation and program spe
ialization. In A. Bossi, editor, Pro
eedings of LOPSTR

'99, Veni
e, Italy, Le
ture Notes in Computer S
ien
e 1817, pages 63�82. Springer,

1999.

15. J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, Berlin, 1987.

Se
ond Edition.

16. U. Nilsson and J. Lüb
ke. Constraint logi
 programming for lo
al and symboli

model-
he
king. In J. W. Lloyd, editor, First International Conferen
e on Compu-

tational Logi
, CL'2000, London, UK, 24-28 July, 2000, Le
ture Notes in Arti�
ial

Intelligen
e 1861, pages 384�398, 2000.

17. A. Pettorossi and M. Proietti. Perfe
t model
he
king via unfold/fold transfor-

mations. In J. W. Lloyd, editor, First International Conferen
e on Computational

Logi
, CL'2000, London, UK, 24-28 July, 2000, Le
ture Notes in Arti�
ial Intelli-

gen
e 1861, pages 613�628. Springer, 2000.

18. A. Pettorossi and M. Proietti. Program Derivation = Rules + Strategies. In

A. Kakas and F. Sadri, editors, Computational Logi
: Logi
 Programming and Be-

yond (Essays in honour of Bob Kowalski, Part I), Le
ture Notes in Computer

S
ien
e 2407, pages 273�309. Springer, 2002.

19. A. Pettorossi, M. Proietti, and S. Renault. Redu
ing nondeterminism while spe-

ializing logi
 programs. In Pro
. 24-th ACM Symposium on Prin
iples of Pro-

gramming Languages, Paris, Fran
e, pages 414�427. ACM Press, 1997.

20. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,

T. Swift, and D. S. Warren. E�
ient model
he
king using tabled resolution.

In CAV '97, Le
ture Notes in Computer S
ien
e 1254, pages 143�154. Springer-

Verlag, 1997.

21. A. Roy
houdhury and I.V. Ramakrishnan. Automated indu
tive veri�
ation of

parameterized proto
ols. In CAV 2001, pages 25�37, 2001.

22. K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui, and E. Johnson. The

XSB system, version 2.2., 2000.

23. J. W. That
her and J. B. Wright. Generalized �nite automata with an appli
ation

to a de
ision problem of se
ond-order logi
. Mathemati
al System Theory, 2:57�82,

1968.

24. The MAP group. The MAP transformation system. Available from

http://www.iasi.rm.
nr.it/�proietti/system.html, 1995�2002.

25. W. Thomas. Languages, automata, and logi
. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, volume 3, pages 389�455. Springer, 1997.

25

