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Abstract— The reduction of nondeterminism can
increase efficiency when specializing programs. We
consider constraint logic programs and we propose a
technique which by making use of a new transforma-
tion rule, called clause splitting, allows us to generate
efficient, specialized programs which are determinis-
tic. We have applied our technique to the specializa-
tion of pattern matching programs.
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I. INTRODUCTION

Programs are often written in a parametric form so that
one can reuse them in different contexts. When one
reuses parametric programs, one may want to trans-
form those programs for taking advantage of the con-
texts of use and, indeed, by doing so, often program
efficiency is improved. This program transformation is
usually called program specialization [15] and it can be
performed by using well established techniques such as
partial evaluation [4], [10], [15], [16], [18].

Various program specialization methods have been
proposed in the literature for different programming lan-
guages. In this paper we consider a program specializa-
tion method for constraint logic programming (CLP)
and we use the rules + strategies transformation ap-
proach. This approach was first suggested by Burstall-
Darlington for functional languages [3] and later applied
to logic languages by Tamaki-Sato [21]. We will present
a program transformation technique which allows us
to increase program efficiency by deriving determinis-
tic, specialized programs starting from nondeterminis-
tic, general programs.

The paper is structured as follows. We first present
the rules for transforming constraint logic programs.
These rules are an extension of the ones presented in [7],
[19]. They include extensions of the familiar unfolding
and folding rules, and an extra rule, called clause split-
ting, which generalizes the case splitting rule presented
in [19]. Given a clause H « Body and a constraint c,
by the clause splitting rule we can generate the clauses:
H «— c¢A Body and H < —c A Body. Since these clauses
have mutual exclusive bodies, we are able to derive effi-
cient programs with reduced nondeterminism. The cor-
rectness of the derived programs follows from the fact
that the transformation rules preserve the least model
semantics [14].
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We also present an automatic specialization strategy
for guiding the application of the transformation rules.
This strategy is an enhancement of the strategy pre-
sented in [19] and includes a specific treatment of con-
straints. It consists of the following steps: (i) the intro-
duction of an initial definition, corresponding to the goal
w.r.t. which we want to specialize the initial program,
(ii) the execution of some unfolding steps and constraint
manipulations, and (iii) the execution of some folding
steps. If these folding steps require the introduction of
new definitions, we introduce them, and we continue the
specialization process by executing unfolding, constraint
manipulations, and folding steps starting from each of
these new definitions. On the contrary, if the folding
steps do not require the introduction of new definitions,
we terminate the specialization process.

II. AN INTRODUCTORY EXAMPLE:
SPECIALIZATION OF CONSTRAINED MATCHING

We present an example of program specialization us-
ing the rules + strategies approach. Starting from a non-
deterministic, general program which specifies a pattern
matcher on strings, we derive a deterministic, special-
ized pattern matcher for a given pattern. In this ex-
ample we define a more general matching relation be-
tween strings which is expressed as a constraint logic
program. Our derivation generalizes the derivations of
the Knuth-Morris-Pratt matcher which were presented,
among others, in [8], [9], [10], [13], [19], [20]. As in the
case of that matcher, we derive a program which is a de-
terministic finite automaton with transitions labelled by
constraints, rather than symbols of the strings. We im-
prove over the derivations of specialized pattern match-
ers presented in [8], [9], [10], [13], [20] because we start
from a nondeterministic specification of the matcher,
while in those papers the initial programs are determin-
istic. As already mentioned, the improvement over [19]
is that we now deal with a general pattern matcher pre-
sented as a constraint logic program.

In our example we define a matching relation m(P, S)
between a pattern P=|p,...,pn] and a string S, which
holds iff in S there exists a substring Q =[qx, . .., ¢-] and
for all i=1,...,n, we have that p; < ¢;. The following
CLP program can be taken as the specification of the
general pattern matching problem:

1. m(P, S) —a(B,C,S)rna(4,Q,B)nle(P, Q)
2. a([], Vs, Ys) —

3. ([X\Xs} Ys, [X|Zs]) < a(Xs, Ys, Zs)

4. le([],1]) <

5. le([X|Xs],[Y]|Ys]) — X <Y ale(Xs, Ys)



where a denotes the list concatenation. Now let us sup-
pose that we want to specialize this general program
w.r.t. the pattern P=[1,0,2]. We start off by introduc-
ing the following definition:

6. msp(S) «— m([1,0,2],5)

Clauses 1-6 constitute the initial program P, from
which we begin our program specialization process. We
generate a sequence of programs, each of which is de-
rived from the previous one by applying a transforma-
tion rule (Section IV) according to the Determinization
Strategy (Section V). As indicated in Section V, we will
get the following final program:

9. msp(S) «— newl(S)
16. newl([X|Xs]) — 1< X A new2(Xs)

[

17. newl([X|Xs]) «— 1>X Anewl(Xs)

18. new2([X|Xs]) — 1< X A new3(Xs)

19. new2([X|Xs]) — 0< X Al>X Anewd(Xs)
20. new2([X|Xs]) < 0> X A newl(Xs)

21. new3([X|Xs]) «—2<X

22. new3([X|Xs]) «— 1< X A2>X Anew3(Xs)
23. new3([X|Xs]) — 0< X Al>X Anewd(Xs)
24. new3([X|Xs]) < 0> X A newl(Xs)

25. newd([X|Xs]) —2<X

26. newd([X|Xs]) — 1<X A2>X Anew2(Xs)
27. newd([X|Xs]) < 1> X A newl(Xs)

This final program is deterministic in the sense that at
most one clause can be applied during the evaluation of
every ground goal.

III. PRELIMINARIES

In this section we recall some basic notions of con-
straint logic programming. For notions not defined here
the reader may refer to [1], [14], [17].

A. Syntax of Constraint Logic Programs

We consider a first order language £ generated by an
infinite set Vars of variables, a set Funct of function
symbols with arity, and a set Pred of predicate symbols
with arity. We assume that Pred is the union of two
disjoint sets: (i) the set Pred. of constraint predicate
symbols, including true, false, and the equality symbol
=, and (ii) the set Pred, of user defined predicate sym-
bols. Terms and formulas of £ are constructed from the
element of Vars, Funct, and Pred, by means of connec-
tives (-, A, v) and quantifiers (V, 3), as usually done in
first order logic.

Given a sequence of terms or formulas e, ..., e, (for
n > 0), the set of variables occurring in that sequence
is denoted by wars(e1,...,es). Given a formula ¢, the
set of the free variables in ¢ is denoted by FV(p). A
term or a formula is ground iff it contains no variable.
Given a set X ={X1,...,Xn} of variables, by VX ¢ we
denote the formula VX, ...VX, ¢. By V(¢) we denote
the universal closure of ¢, that is, the formula VX ¢,
where F'V(¢)=X. Analogously, by 3(¢) we denote the
ezistential closure of .

A primitive constraint is an atomic formula
p(ti,...,tn) where p is a predicate symbol in Pred. and
ti,...,t, are terms. The set C of constraints, ranged
over by c¢,d,..., is the smallest set of formulas of £

which contains all primitive constraints and it is closed
w.r.t. all connectives and quantifiers.

An atom A is an atomic formula p(¢1, ..., t,) where p
is an element of Pred, and t1,...,t, are terms. A goal G
is the conjunction of m (> 0) atoms. A constrained goal
cA G is the conjunction of a constraint and a goal. The
empty conjunction of constraints or atoms is identified
with true.

A clause v is a formula of the form H «— ¢ G, where:
(i) H is an atom, called the head of v, and (ii) ¢cA G is
a constrained goal, called the body of . Clauses of the
form H « c are called constrained facts. Clauses of the
form H « true are also written as H «.

A constraint logic program (or program, for short) is
a finite set of clauses. (Here we do not allow for negated
atoms in the bodies of clauses.)

Given a program P, we say that a predicate p depends
on a predicate q iff either there exists in P a clause
whose head predicate is p and whose body contains an
occurrence of g or there exists a predicate r such that p
depends on 7 and r depends on gq.

Given two atoms p(t1,...,tn) and p(ui,...,un), we
denote by p(t1,...,tn) = p(u1,...,un) the conjunction
of the constraints: t1=u1 A ... Aty =Un.

A wvariable renaming is a bijective mapping from Vars
to Vars. The application of a variable renaming p to a
formula ¢ returns the formula p(p), called a variant of
¢, obtained by replacing each (bound or free) occurrence
of X in ¢ by the variable p(X). A renamed apart clause
is a variant of a clause such that all its (bound or free)
variables of do not occur elsewhere.

We will feel free to apply to clauses the following two
transformations which, as the reader may verify, pre-
serve program semantics (see below): (1) application of
variable renamings, and (2) replacement of a clause of
the form H «— X=tAcAG, where X & vars(t), by the
clause (H —cA G){X/t}, and vice versa.

B. Least D-model Semantics

We assume that we are given an interpretation D for
the constraints in C. Let D be the carrier of D. D
assigns a subset of D™ to each n-ary constraint predicate
symbol in Pred.. In particular, D assigns the whole
carrier D to true, the empty set to false, and the identity
over D to the equality symbol =.

A D-interpretation is an interpretation for the formu-
las of £ which extends the interpretation D. In partic-
ular, a D-interpretation assigns a subset of D" to each
n-ary user defined predicate symbol in Pred,. Thus, a
D-interpretation is isomorphic to a subset of the follow-
ing set Bp:

Bp = {p(di,...,dn) | pis a predicate symbol in Pred,,

and (di,...,dn) € D"}

A D-model of a program P is a D-interpretation I such
that I = V(P). It can be shown that for every CLP
program P there exists a least D-model (w.r.t. set in-
clusion), denoted by Im(P,D) [14].



C. Operational Semantics

In order to define the operational semantics of con-
straint logic programs, we assume that there is a com-
putable total function solve: C X Pgy,(Vars) —C, where
Ppn(Vars) is the set of all finite subsets of Vars, by
which we can simplify the constraints in C. We assume
that solve is sound w.r.t. constraint equivalence, that
is, for every constraint c¢; and for every finite set X of
variables, if solve(ci, X)=cz then D = VX((FY ¢1) <~
(3Z ¢2)), where Y = FV(c1)—X and Z = FV(c2)—X.

We also assume that solve is complete w.r.t. satisfia-
bility, in the sense that, for any constraint c,

(i) solve(c, )= true iff ¢ is satisfiable, i.e., D=3(c), and
(ii) solve(c, 0) = false iff ¢ is unsatisfiable, i.e., DE=—-3(c).

The totality and the soundness of the solve function
guarantee the correctness of the transformation strat-
egy (see Section V). The assumption that solve is com-
plete w.r.t. satisfiability guarantees that constraint sat-
isfiability tests, which are required in our transforma-
tion method, are decidable. Moreover, the completeness
w.r.t. satisfiability guarantees that for any constraints c;
and cz2, by evaluating solve(¥(c1 — ¢2),0) we can check
whether or not D |=V(c1 — ¢2) holds.

Now we define the operational semantics of a CLP
program P by introducing a derivability relation —p
between constrained goals as follows.
cANANG —p cAhNA=HinanG1AG

ifft Hj < c¢1AG1is arenamed apart clause of P
and cA A= H; Ac is satisfiable.

The relation —7% is the reflexive and transitive closure
of —p. We say that the constrained goal c A G succeeds
in P iff cA G —% d for some satisfiable constraint d.

IV. RULES FOR TRANSFORMING CLP PROGRAMS

The process of transforming a given program P
whereby deriving a program @, can be formalized as
a sequence Py, ...,P, of programs, called a transforma-
tion sequence, where Py= P, P, =@ and, for k=0,...,
n—1, program Py41 is obtained from program Pj by
applying one of the transformation rules listed below.

R1. Definition. We introduce a set of clauses
(51 : newp(Xl,...,Xh)HclAGl

Om :  mnewp(Xi,...,Xn) — cm AGm

where: (i) newp is a predicate symbol not occurring in
P(), .. .,Pk, (11) {Xl, .. .,Xh} g FV(Cl/\ Gl, ey CmA Gm),
and (iii) the predicates occurring in Gu,...,Gy occur
also in FPy.

We derive the new program Pri1 = P U {01,...,0m}.
For i > 0, Defs; is the set of clauses introduced by
the definition rule during the transformation sequence
Py, ..., P;. In particular, Defs,=0.

R2. Unfolding. Let v : H «— ¢cAG'AAAG"” be a
renamed apart clause of P;. By unfolding v w.r.t. A we
derive the set of clauses

I': {H—crA=HiraanG' AGLAG" |
Hy < c1 AG1 1s a clause in P, and
c¢AA=Hp Aci is satisfiable}

and the new program Pixy1 = (Py — {v}) UT.
R3. Folding. Let
v: He—cret9nG AG1ING”

Ym i He—cremInNG AGrdAG”
be m (> 0) clauses in Py and let newp be a predicate
such that

01: newp(Xi,...,Xpn) —caaAGy

Om :  newp(Xi,...,Xn) — cm AGm

are the clauses in Defs; which have newp as head pred-
icate. Suppose that, for i=1,...,m and for every vari-
able X € (FV(e; AGi)—{X1,...,Xn}), we have that:
(i) X4 is a variable not occurring in (H,c,G',G"), and
(ii) for every variable Y € (FV(cinGi)) — {X}), XV
does not occur in Y¥. By folding ~1,...,vm using
01,...,0m we derive the clause

n: H <+ cAG rnewp(X1,...,Xp)9AG"

s Ym}) U{n}
R4. Clause Removal. Let v be a clause in P,. We
derive the new program Pyy1 = Pr — {7} if one of the
following cases occurs:

and the new program Pxi1 = (Py — {71, ...

(Unsatisfiable Constraint) v is the clause H «— c¢AG
and c is unsatisfiable, that is, D | —3(c);

(Subsumed Clause) ~y is the clause (H < c¢1 AG1)?Y and
there exists a clause in Py, —{~} of the form H «— ¢c2 A G2
such that D = V(c1 — 3Xc2), where X = FV(cp) —
vars(H,G2) and G, is a subconjunction of G;.

R5. Constraint Replacement. Let v1: H <« c1 AG
be a clause in P.. Suppose that for some constraint ca,
we have that: D =V (IY ¢1 < 3Zc¢2) where: 1) ¥V =
FV(c1)—wars(H,G), and (ii) Z = FV (c2)—vars(H,G).
In particular, we may take co2 = solve(c1, vars(H,G)).
Then we derive the clause
Yo: H—conG
and the new program P11 = (P — {71}) U {72}
R6. Clause Fusion. Let

y1: H+—cnG Y2: H—dAG

be clauses in P. Then we derive the clause

v: H+—(cvVd)nG
and the new program P11 = (Pr — {71,72}) U {~}.
R7. Clause Splitting. Let

v: H—(cVd)rG

be a clause in P.. Then we derive the clauses
Y1: H+—cnG Yo: H—dAG

and the new program Pyy1 = (Pe — {v}) U{71,72}.

The following result ensures the correctness of the
transformation rules w.r.t. the least model semantics.

Theorem 1: Let Py,..., P, be a transformation se-
quence. Suppose that, for every k € {0,...,n—1} such
that P41 is derived by folding clauses v1,...,vm in Py
using clauses d1,...,dm, in Defs;, one of the following
conditions holds:



(1) for ¢ = 1,...,m, clause ¢; is unfolded during the
construction of Py,..., P,; or (2) the head predicate of
01,...,0m does not depend on itself in P,.

Then Im(Po U Defs,, D) = Im (P, D).

The rules listed above are an extension of the rules for
transforming logic programs and constraint logic pro-
grams presented in [2], [6], [7], [12], [19], [21]. In par-
ticular, the folding rules considered in [2], [6], [7], [21]
allow us to fold only one clause at a time, while by using
our rule R3 we can fold m (>1) clauses simultaneously.
Our rule R3 is an adaptation to the case of CLP pro-
grams of the folding rules considered in [12], [19]. Our
clause splitting rule R7 generalizes to constraint logic
programs the case splitting rule for logic programs pre-
sented in [19]. The folding and clause splitting rule play
a crucial role in the strategy for deriving deterministic
programs presented in the next section.

V. A STRATEGY FOR DERIVING DETERMINISTIC
SPECIALIZED PROGRAMS

In this section we present the Determinization Strat-
egy for guiding the application of the transformation
rules. By applying this strategy we can derive deter-
ministic, specialized programs starting from nondeter-
ministic, general ones.

A. Determinism and Modes

We say that a program P is deterministic w.r.t. a
constrained atom co A A iff for all constrained goals
cANAAG such that co A Ay —p cA AAG, there exists
at most one clause v in P with a renamed apart variant
Hy < c1 AG1 such that the constraint cA A=Hy Acy is
satisfiable.

Given a constrained atom, the determinism of a pro-
gram may depend on whether or not the variables in the
atom are grounded by the constraint [14]. Recall that
a variable X is said to be grounded by a constraint c iff
DE3IYVZ(c - X=Y), where Y is a new variable and
Z = FV(c)U{X} (ie., there is at most one value for X
which makes ¢ satisfiable). For instance, the following
program over integers:

P(X,Y) — X=0AY =0
P(X,Y) — X>0AY =1

is deterministic w.r.t. the constrained atom X =1 A
p(X,Y) (where X is grounded by X = 1), while it is
not deterministic w.r.t. the constrained atom X <14
p(X,Y) (where X is not grounded by X <1). For this
reason we now introduce the notion of mode which pro-
vides information about the groundness of the variables
occurring in constrained atoms.

A mode M is a set of expressions of the form
p(ma,...,my), called a mode for the predicate p, such
that: (i) p is a user defined predicate, (ii) for each p
there exists at most one expression p(ms,...,ms), and
(iii) for i=1,...,h, m; is either + (meaning that every
variable in the i-th argument of p is grounded by some
constraint) or ? (meaning that the i-th argument of p
is any term). A mode M is a mode for a program P iff
there exists in M a mode for each user defined predicate
occurring in P.

Given an atom p(t1,...,t) and a mode M with the
element p(ma,...,ms), (1) for i=1,..., h, the term ¢;
is said to be an input argument of p (relative to M) iff
m; is +, and (2) a variable of p(t1,...,ts) which occurs
in an input argument of p, is said to be an input variable
Ofp(tl, e ,th).

Definition 1: Let P be a program and M be a mode
for P. We say that a constrained atom cAp(t1,...,ts)
satisfies M iff p(mi,...,mp) € M and for i=1,...,h,
if m; is + then every variable in ¢; is grounded by c.
We say that P satisfies M iff for each constrained atom
co A Ao which satisfies M, and for each constrained goal
cAAAG such that con Ag —p cA AAG, we have that
c A A satisfies M.

Often the property that a program satisfies a mode
can be automatically verified by abstract interpretation
methods [11].

We say that a program P is deterministic w.r.t. a
mode M iff P is deterministic w.r.t. every constrained
atom co A Ap which satisfies M. Now we give a sufficient
condition which ensures that a program is deterministic
w.r.t. a mode. We need the following definition.

Definition 2: Let us consider the following two
clauses without variables in common:

Y1 :p(tl,...,th,ul,..

Yo : p(v1, ..., Vh, W1, ..
where p is a k-ary predicate whose first h arguments
are input arguments relative to a given mode M. We
say that v1 and 2 are mutually exclusive w.r.t. M iff
D':—\H(h =UV1 A ...A th =Vp NC1 /\02).

.,uk)<—61/\G1
.,wk)<—02/\G2

Proposition 1: Let P be a program and M be a mode
for P. If P satisfies M and the clauses of P are pair-
wise mutually exclusive w.r.t. M, then P is determinis-
tic w.r.t. M.

B. The Determinization Strategy

Our Determinization Strategy is based upon the fol-
lowing three subsidiary strategies: (i) Unfold-Simplify,
which uses the unfolding, clause removal, and con-
straint replacement rules, (ii) Partition, which uses the
clause removal, constraint replacement, clause fusion,
and clause splitting rules, and (iii) Define-Fold, which
uses the definition and folding rules.

Let us consider an initial program P, a mode M
for P, and a constrained atom cap(ti,...,tn), with
FV(c) C wars(ti,...,tn). In order to specialize P
w.r.t. ¢cAp(ti,...,tn), we introduce, by the definition
rule, the clause

Osp: Pop( X1y, X)) —cAp(te, ... th)
where X1, ..., X, are the distinct variables occurring in
p(t1,...,tn). The mode ps(ma,...,m,) for the pred-
icate psp is the following: for j =1,...,7r, m; is + iff
X; is an input variable of p(t1,...,ts) relative to M.
We assume that P satisfies M and thus, the program
P U {0} satisfies M U {psp(m1,...,m.)}.

Our Determinization Strategy is an iterative proce-
dure that at each iteration manipulates the following
three sets of clauses: (1) Defs, which is the set of clauses
introduced so far by the definition rule, (2) Cls, which is



the set of clauses to be transformed during the current
iteration, and (3) Psp, which is the specialized program
derived so far. Initially, both Defs and Cls consist of the
single clause dsp. From the set Cls a new set of determin-
istic clauses is derived by applying the transformation
rules according to the Unfold-Simplify, Partition, and
Define-Fold subsidiary strategies. This new set of deter-
ministic clauses is added to Ps,. During each iteration,
in order to derive deterministic clauses, we may need
to introduce new predicates, whose defining clauses are
stored in the set NewDefs. At the end of each iteration
NewDefs is added to Defs, and the value of the set Cls is
updated to NewDefs. The transformation strategy ter-
minates when Cls=(), that is, when no new predicate is
introduced during the current iteration.

The following definition is needed for presenting the
Unfold-Simplify subsidiary strategy.

Definition 3: Let H +— ¢AG' AAAG" be a clause in
a program P and let M be a mode for P. We say that
A is a consumer atom iff for every clause Hi <— c1 A G1
in P, we have that one of the following conditions holds:
(i) G1 is the empty conjunction; or
(ii) eA A=H;y Acy is unsatisfiable; or
(iii) DEVY(c—3IY(A=H1)) where Y ={X € FV(A=
Hy) | X is not an input variable of A relative to M }.

During the Unfold-Simplify subsidiary strategy we un-
fold w.r.t. consumer atoms. In particular, when Condi-
tion (iii) of Definition 3 holds, we unfold w.r.t. atoms
whose input arguments are instances of the correspond-
ing arguments in the heads of the clauses of P.

Determinization Strategy
Input: A program P, a mode M for P such that P
satisfies M, and a clause

Osp: Pop(X1,..., Xr) —cAp(ts,..., tn)
Output: A specialized program Ps, and a mode M,
for P,.
Initialize: Defs := {dsp}; Cls := {8sp}; Psp :=0;
Mgy = {psp(ma,...,ms)};
while Cls # 0 do
(1) Unfold-Simplify:
UnfCls := {n | n is a constrained fact in Cls or it is
derived by unfolding a clause in Cls w.r.t. the leftmost
atom in its body};
while there exists v in UnfCls with a leftmost consumer
atom A in the body of v do
UnfCls := (UnfCls—{~v})U{n | n is derived by unfolding
v w.r.t. A}
UnfCls == {H + ¢AG | there exists H «— cAG in
UnfCls such that: (i) ¢ = solve(c,vars(H,Q)), (ii) c is
satisfiable, and (iii)) H < ¢ A G is not subsumed by any
other clause in UnfCls}.

(2) Partition: We apply the clause removal, constraint
replacement, clause fusion, and clause splitting rules,
and from UnfCls we derive a set PartCls of clauses
which is the union of disjoint subsets, called packets,
such that the following two properties hold.

(i) Each packet is a set of clauses of the form:

H<—C/\d1/\G1

H—cndmnGnm
In particular, if fori=1, ..., m, G; is the empty conjunc-
tion, then by clause fusion we derive a packet consisting
of one constrained fact only.
(ii) Any two clauses belonging to different packets are
mutually exclusive w.r.t. mode M,,.
(3) Define-Fold: Let CFacts be the union of the pack-
ets in PartCls consisting of constrained facts only, and
let NonCFacts be the union of all other packets. Let
NewDefs be a (possibly empty) set of new clauses in-
troduced by the definition rule such that each packet
in NonCFacts can be folded by using clauses in Defs U
NewDefs of the form:

newp(Xi,...,Xy) «— di AG1

newp(X1,...,Xr) — dm AGn,
whereby deriving a single clause of the form:
H — crnewp(X1,...,Xr)

When we introduce NewDefs and perform folding, we
also make sure that Condition (1) or (2) of Theorem 1
holds.
For each new predicate newp in NewDefs, we add to
Ms, the mode newp(my, ..., m,) defined as follows: for
i=...r, m;=+ iff X, is either an input variable of H
or an input variable of the leftmost atom of one of the
goals G1,...,Gp,.
Let FldCls be the set of clauses derived by folding the
packets in NonCFacts.
(4) Defs := Defs U NewDefs; Cls := NewDefs;

Py, := Py, U CFacts U FldCls
end-while

Now we see the Determinization Strategy in action on
the matching example of Section II. This will explain
how the specialized program (clauses 9, 16-27) has been
automatically derived.

We are given the clauses 1-5, the mode M ={m(+,+),
a(?,7,4), le(+,+)}, and s = clause 6. Thus, initially,
Defs = Cls = {clause 6} and My, = {ms(+)}. Since
Cls # (), we execute the body of the while-loop and we
unfold clause 6 w.r.t. m([1,0,2],S) and we get:

7. mSP(S) - a(B7 Ca S) A a(Av Q: B) A le([L 07 2]7 Q)
Clause 7 is a packet in itself and in order to fold it, we
introduce the following definition:

8. newl(S) <« a(B,C,S)ra(A,Q,B)le([1,0,2],Q)
and then we fold clause 7, whereby getting:

9. mgp(S) «— newl(S)

Now Defs = {clause 6, clause 8}, Cls = {clause 8}, and
Mgy = {msp(+), newl(+)}. Since Cls # 0, we execute
once more the body of the while-loop and we unfold
clause 8 w.r.t. the atoms a and le. We get:

10. newl([X|Xs])«— 1<X ra(Q,C, Xs)rle([0,2],Q)

11. newl([X|Xs]) < a(B,C, Xs)rna(A,Q, B) A

le([1,0,2],Q)
Since clause 10 and 11 are not mutually exclusive w.r.t.
M,,, we apply the clause splitting rule to clause 11,
whereby getting:



12. newl([X|Xs]) « 1< X ana(B,C, Xs) A
a(A,Q,B)nle([1,0,2],Q)
13. newl([X|Xs]) — 1>X ra(B,C, Xs) A
a(A,Q, B)nle([1,0,2],Q)
We have two packets: (i) {clause 10, clause 12} and
(ii) {clause 13}. In order to fold the first packet we
introduce the following definition:

14. new2(Xs) «— a(Q,C, Xs) Ale([0,2],Q)
15. new2(Xs) «— a(B,C, Xs)ra(A,Q, B) A
le([1,0,2],Q)
We fold clauses 10 and 12 by using clauses 14 and 15,
and we fold clause 13 by using clause 8. We get the
following mutually exclusive clauses:

16. newl([X|Xs]) — 1< X Anew2(Xs)
17. newl([X|Xs]) « 1> X A newl(Xs)

Now Defs = {clause 6, clause 8, clause 14, clause 15},
Cls = {clause 14, clause 15}, and My, = {me(+),
newl(+), new2(+)}. Since Cls#(), the derivation con-
tinues by executing again the body of the while-loop.
Thus, we unfold the clauses 14 and 15. We will not give
all the details of the derivation here. We eventually get
the specialized, deterministic program of Section II.

The termination of our Determinization Strategy de-
pends on the finiteness of (i) the unfolding subsidiary
strategy and (ii) the set of definitions which are intro-
duced for performing folding steps. In particular, for
ensuring termination it may be necessary to consider
suitable generalizations of the bodies of the clauses to
be folded (see, for instance, [5], [7], [10], [15], [16], [22]).

As a consequence of Theorem 1, if the Determiniza-
tion Strategy terminates, then the specialized program
Py, is equivalent to the initial program P in the follow-
ing sense: for every constraint d,

Im(P,D) = 3(drcap(ts,... tn)) iff

Im(Psp, D) = I(dApep( Xy, ..., Xr)).

Moreover, by construction, P;, satisfies M, and its
clauses are pairwise mutually exclusive w.r.t. M,,.
Thus, by Proposition 1, Py, is deterministic w.r.t.
M,,. In particular, for every constraint d such that
dnenp(ta,...,tn) satisfies My, we have that Psp, is de-
terministic w.r.t. dApsp(X1,...,Xr).

VI. CONCLUSIONS

We have introduced a new transformation rule, called
clause splitting, which can be used for reducing the non-
determinism when specializing constrained logic pro-
grams. This rule allows us to reason by cases as often
done in various specialization techniques (see, for in-
stance, [9], [13], [22]). Clause splitting, together with
the other familiar unfolding and folding rules, is applied
according to the Determinization Strategy which is an
enhancement of conjunctive partial deduction [5]. In-
deed, we allow new predicates to be defined in terms
of disjunctions of conjunctions of constrained atoms.
The Determinization Strategy is an extension to con-
straint logic programs of the strategy presented in [19].
We have used our strategy for specializing constrained
matching algorithms and we have derived efficient pro-
grams which correspond to deterministic finite au-
tomata with transitions labelled by constraints.
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