Synthesizing Concurrent Programs using
Answer Set Programming

Emanuele De Angelis', Alberto Pettorossi?, and Maurizio Proietti?

! Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
deangelis@sci.unich.it
2 DISP, University of Rome Tor Vergata, Italy
pettorossi@disp.uniroma2.it
3 CNR-IASI, Rome, Italy
proietti@iasi.cnr.it

Abstract. We address the problem of the automatic synthesis of con-
current programs within a framework based on Answer Set Programming
(ASP). The concurrent program to be synthesized is specified by provid-
ing both the behavioural and the structural properties it should satisfy.
Behavioural properties, such as safety and liveness properties, are speci-
fied by using formulas of the Computation Tree Logic, which are encoded
as a logic program. Structural properties, such as the symmetry of pro-
cesses, are also encoded as a logic program. Then, the program which is
the union of these two encodings, is given as input to an ASP system
which returns as output a set of answer sets. Finally, each answer set is
decoded into a synthesized program that, by construction, satisfies the
desired behavioural and structural properties.

1 Introduction

We consider concurrent programs consisting of finite sets of processes which
interact with each other through communication protocols. Such protocols are
based on a set of instructions, called synchronization instructions, operating on
shared variables ranging over finite domains. The communication protocols are
realized in a distributed manner, that is, every process includes one or more
regions of code consisting of synchronization instructions, responsible for the
interaction between processes.

Even for a small number of processes, communication protocols which guar-
antee a desired behaviour of the concurrent programs may be hard to design. In
this paper we propose a method for automatically synthesizing correct concur-
rent programs starting from the formal specification of their desired behaviour.

Methods for the automatic synthesis of concurrent programs from temporal
logic specifications have been proposed in the past by Clarke and Emerson [6],
Manna and Wolper [15], and Attie and Emerson [1,2]. All these authors reduce
the task of synthesizing a concurrent program to the task of synthesizing the
synchronization instructions of each process. We follow their approach and ev-
erything which is irrelevant to the synchronization among processes, is abstracted
away and each process is considered to be a finite state automaton.

We introduce a framework, based on logic programming, for the automatic
synthesis of concurrent programs. We assume that the behavioural properties of
the concurrent programs, such as safety and liveness properties, are specified
by using formulas of the Computation Tree Logic (CTL for short), which is a
very popular propositional temporal logic over branching time structures (see, for
instance, [5,6]). This temporal, behavioural specification ¢ is encoded as a set II,,
of clauses. We also assume that the processes to be synthesized satisfy suitable
structural properties, such as a symmetry property, and that those properties can
be encoded as a set 11y of clauses. Structural properties cannot be easily specified
by using CTL formulas and we use, instead, a simple algebraic structure that
we will present in the paper. Thus, the specification of a concurrent program to
be synthesized consists of a logic program II = II, UIlx which encodes both the
behavioural and the structural properties that the concurrent program should
satisfy.

We show that every answer set (that is, every stable model) of the program IT
represents a concurrent program satisfying the given specification. Thus, by using
an Answer Set Programming (ASP) system, such as DLV [9] or smodels [19],
which computes the answer sets of logic programs, we can synthesize concurrent
programs which enjoy some desired properties.

We have performed some synthesis experiments and, in particular, we have
synthesized some mutual exclusion protocols which are guaranteed to enjoy var-
ious properties, such as (i) bounded overtaking, (ii) absence of starvation, and
(iii) maximal reactivity (their formal definition will be given in the paper). We
finally compare our results with those presented in [1,2,12].

The paper is structured as follows. In Section 2 we recall some preliminary
notions and terminology. In Section 3 we present our framework for synthesizing
concurrent programs and we define the notion of a symmetric concurrent pro-
gram. In Section 4 we describe our synthesis procedure and the logic program
which we use for the synthesis. In Section 5 we present some examples of syn-
thesis of symmetric concurrent programs. Finally, in Section 6 we discuss the
related work and some topics that can be investigated in the future.

2 Preliminaries

Let us recall some basic notions and terminology we will use. We present: (i) the
syntax of (a variant of) the guarded commands [7] which are used for defining
concurrent programs, (ii) some basic notions of group theory which are required
for defining symmetric concurrent programs, (iii) the syntax and the semantics
of the Computation Tree Logic, and (iv) the syntax and the semantics of Answer
Set Programming, which is the framework we use for our synthesis method.

Guarded commands. In our variant of the guarded commands we consider two
basic sets: (i) variables, v in Var, each ranging over a finite domain D,, and
(ii) guards, g in Guard, of the form: g ::= true | false | v=d | =g | g1 A g2,
with v € Var and d € D,. We also have the following derived sets whose def-
initions are mutually recursive: (iii) commands, ¢ in Command, of the form:
cu= skip| v:=d|c1;co|if ge fi | do ge od, where ‘;’ denotes the sequential

composition of commands, and (iv) guarded commands, gc in GCommand, of

the form: gc ::= g—c¢ | geq | gco, where ‘|’ denotes the parallel composition of
guarded commands.

The execution of if gcy [... || g¢,, £i is performed as follows: one of the
guarded commands g — ¢ in {gcy, ..., gc,} whose guard g evaluates to true is
chosen, then c¢ is executed; otherwise, if no guard in {gc,,..., gc,} evaluates to
true then the whole command if ... fi terminates with failure.

The execution of do gcq [... [] g¢,, od is performed as follows: one of the
guarded commands g — ¢ in {gc;, ..., gc,} whose guard g evaluates to true is
chosen, then c is executed and the whole command do...od is executed again;
otherwise, if no guard in {gcy,...,gc,} evaluates to true then the execution

proceeds with the next command.

Symmetric Groups. A group G is a pair (S, o), where S is given a set and o is
a binary operation on S satisfying the following axioms: (i) Va,y € S.xz oy €
S (closure), (ii) Vz,y,z € S. (xoy)oz=zo0(yoz) (associativity), (iii) Je €
S.Vx € S.eox=xo0e=ux (identity element), and (iv) Vo € S.Jy € S.zoy=
yox = e (inverse element). The order of a group G is the cardinality of S. For
any x € S, for any n > 0, we write 2" to denote the term x o ... oz with n
occurrences of 2. We stipulate that 20 is e.

A group G is said to be cyclic iff there exists an element z € S, called a
generator, such that S = {z™ | n > 0}. We write G, to denote the cyclic group
generated by x.

We denote by Perm(S) the set of all permutations (that is, bijections) on
the set S. Perm(S) is a group whose operation o is function composition and the
identity e is the identity permutation, denoted id. The order of a permutation p
on a finite set S is the smallest natural number n such that p™ = id.

Computation Tree Logic. Computation Tree Logic (CTL) is a propositional
branching time temporal logic [5].

Let Elem be a finite set of elementary propositions ranged over by b. The
syntax of a CTL formula ¢ is as follows:

e u=blorrnp: | | EXp | EGp | E[p1 U]

Let us introduce the following abbreviations: (i) ¢1 v @2 for =(—p1 A —p2),
(ii) EF¢ for E[true U f] (iii) AG ¢ for =EF =, (iv) AFp for =EG =y, (v) Alp1 U 2]
for =E[=p2 U (1 A —p2)] A ZEG =g, (vi) AX ¢ for =EX -, (vii) Alp1 Rps)
for —=E[-p1 U—gs], and (viii) E[p1 Rs] for —A[—p1 U —ps].

We define the semantics of CTL by giving a Kripke structure = (S, Sy, A, R),
where: (i) S is a finite set of states, (i) So C S is a set of initial states, (iii) R C
S xS is a total transition relation (thus, Yue S, Jve S, (u,v) € R), and (iv) A:
S — P(Elem) is a total, labelling function that assigns to every state s € S a
subset \(s) of the set Elem.

For reasons of simplicity, when the set of the initial states is a singleton {u},
we will feel free to identify {u} with w.

A path 7 in K from a state is an infinite sequence (s, s1,...) of states such
that, for all ¢ > 0, (s;, $;+1) € R. For i >0, we denote by ; the i-th element
of . The fact that a CTL formula ¢ holds in a state s of a Kripke structure

will be denoted by K, s F ¢. For any CTL formula ¢ and state s, we define the
relation IC, s FE ¢ as follows:

K,sEDb iff be A(s)

K,sE—-gp iff IC, s E ¢ does not hold

K,sE @1 A po iff ,sF @y and K,sF @9

K,sEEXp iff there exists (s,t) € R such that K, ¢ F ¢

K, s EE[p1 U po] iff there exists a path m = (s, s1,...) in K and i>0
such that IC,m; F @9 and for all 0<j <, K, m; F ¢
K,sEEGyp iff there exists a path 7 such that
mo=s and for all >0, IC,m; F ¢

2.1 Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based
on the answer set semantics of logic programs [10,14]. We assume the version of
ASP with function symbols [3]. Now let us recall some basic definitions of ASP.
For those not recalled here we refer to [3,10,14]. A rule r is an implication of the
form:

a1V ... VO < Qg1 A «.. ANQp ANOE A1 A ... ADOt Gy
where ay, ..., ag,...,a, (for k>0, n>k) are atoms and ‘not’ denotes negation as
failure [11]. Given a rule 7, we define the following sets: head(r) = {a1,...,ax},
pos(r) = {agt1,-.-,am}, and neg(r) = {ams1,--.,an . An integrity constraint

is a rule r such that head(r) = 0. A logic program is a set of rules. When we
write a rule r with variables, we actually mean all the ground instances of . An
interpretation I of a program II is a subset of the Herbrand base. The Gelfond-
Lifschitz transformation of a program II with respect to an interpretation I is the
program 117 = {head(r) < pos(r) | r €1 A neg(r) NI = 0}. An interpretation M
is said to be an answer set of I iff M is a minimal Herbrand model of IT*. The
answer set semantics of II assigns to II a set of answer sets, denoted ans(II).
Given an answer set M € ans(I) and an atom a, we write M =a to denote that
acM.

3 Specifying Concurrent Programs

Let P = {Py,..., P} be a finite set of processes. With every process P; € P
we associate a variable s;, called the local state, ranging over a finite domain L,
which is the same for all processes. The variable s; can be tested and modified
by P; only. All processes may test and modify also a shared variable x, which
ranges over a finite domain D.

A concurrent program consists of a finite set P of processes that are executed
in parallel and interact with each other through a communication protocol re-
alized by a set of commands acting on the shared variable x. Here is the formal
definition of a concurrent program.

Definition 1 (k-Process Concurrent Program). Let L be a set of local
states and D be a domain of the shared variable x. For any k£ > 1, a k-process
concurrent program C' is a command of the form:

C: s1:=l;...;85:=lg; x:=dp; do P, [... [Px od
where sq,...,sp,x€Var, ly,...,lx €L, and dy € D.
Every process P; in Py || ... || Py is a guarded command of the form:
P, . true = if gey ... gen £fi
Every guarded command gc in gey || ... || g¢,, is of the form:
gc: si=lax=d — s;:=1;x:=d;
where [, € L and d,d’ € D. O

We shall use the guarded command s; =1 A x =d — skip as a shorthand for
s;i=lAx=d — s;:=[;x:=d. The command s1:=1y;...;8;:=1; x:=dp; is
called initialization of C.

Ezample 1. Let L be the set {t,u} and D be the set {0,1}. A 2-process concur-
rent program C' is:

S;:=t;8y:=t;x:=0; do P, | P» od

where P; and P, are defined as follows:

P : true — if Py : true — if
s;=t Ax=0 — s;:=u; x:=0; So=t Ax=1— sp:=u; x:=1;
| si=t A x=1— skip; | sa=t A x=0— skip;
| si=un x=0—s1:=t; x:=1; | so=un x=1— s5:=1t; x:=0;
fi fi

This program is the familiar program for two processes, each of which either
‘thinks’ in its noncritical section (s; =1t) or ‘uses a resource’ in its critical section
(s;i =u). The shared variable x gives each process its turn to enter the critical
section: if x=0, process P is in its critical section, and if x=1, process P, is in
its critical section.]

Now we introduce the semantics of k-process concurrent programs by using
Kripke structures. We model a state u of a k-process concurrent program C' by a
(k+1)-tuple (4, ..., I, d), where: (i) the first & components are the values of the
local state variables sq,..., sk, and (ii) d is the value of the shared variable x.

Definition 2 (Kripke Structure Associated with a k-Process Concur-
rent Program). Let C be a k-process concurrent program of the form
C: syp:=l1;...;85:=lg; x:=dp; do Py []...[| Py od
where the [;’s belong to L and dy belongs to D. The Kripke structure IC associated
with C' is the 4-tuple (S, Sy, R, A}, where:
(i) the set S of states is L x D,
(ii) the set Sy of initial states is the singleton {(l1,..., Ik, do)},
(iii) the set R C Sx .S of transitions
{{u,v) | 5,5€{1,...,k} A s;=l A x=d—s;:=1;x:=d in P; A
u(si)=lrux)=darv(s;) =l nv(x)=d ru#vaAVYj#i, u(s;)=v(s;)},
where for all states t€ .S, for all variables x € Var, t(x) denotes the value of
the variable x in ¢, and

(iv) for all states ¢ of the form (l4,...,lx,d), the value A(¢) is defined to be
{s1=01, ...,s =1, x=d}.
The set Elem of the elementary propositions is the set | J,c g A(f).]

We make the following assumptions about k-process concurrent programs.

(i) Since, by definition, the transition relation R of any Kripke structure is total,
we have that every concurrent program C' we consider, is nonterminating, in the
sense that, in every state there exists a process P; of C' and a guarded command
g—c of P; such that: (i.1) g evaluates to true, and (i.2) ¢ cannot be abbreviated
to skip. This assumption restricts the class of concurrent programs we consider.
(ii) Every k-process concurrent program consists of deterministic processes, that
is, for i=1,...,k, in every state, at most one guard of the guarded commands
of process P; evaluates to true (a similar assumption is made in [16]).

Note that the usual assumption that every guarded command is executed
atomically (in the sense that only one process at a time among the processes of a
concurrent program is selected and executed) is taken into account in an implicit
way when constructing the transition relation R of the Kripke structure.

Ezxample 2. Given the 2-process symmetric concurrent program C' of Example 1,
the associated Kripke structure (S, {so}, R, A) is depicted in Figure 1. We depict
it as a graph whose nodes are the states in S and whose edges represent the
transitions in R. The set S of states includes the four state depicted in Figure 1
and also the states (t,u,0), (u,t,1), (u,u,0), and (u,u, 1), which have not been
depicted because they are not reachable from the initial state (t,t,0). Each
transition from state u to state v is associated with the guarded command g — ¢
whose guard g evaluates to true in u. For the labelling function X\, we have that

A((t,t,0)) is {s;=t,s2=t,x=0} and, similarly, for the other states. O
(u,t,0)
s;=tAx=0—= s;:=u;x:=0 si=uAax=0—=s;:=t;x:=1
— (t,t,0) (t,t,1)
Sse=uAx=1—sy:=t;x:=0 so=tAax=1—soi=u;x:=1
(t,u,1)

Fig. 1. The transition relation R of the Kripke structure K = (S, {so}, R, \) associated
with the concurrent program C' of Example 1. The initial state so is (t,t,0). The arcs
are labelled by the guarded commands which are responsible for the transition.

Definition 3 (Satisfaction relation for a Concurrent Program). Let C
be a k-process concurrent program, I be the Kripke structure associated with C,
so be the initial state of K, and ¢ be a CTL formula. We say that C' satisfies ¢,
denoted C' = o, iff K, sp = . O

Ezample 3. Let us consider the 2-process concurrent program C defined in Ex-
ample 1. We associate with the local states t (short for ‘think’) and u (short for
‘use’) two regions of code, called the noncritical section and the critical section,
respectively. We require that the region of code associated with state u should
be executed in a mutually exclusive way. This is formalized by the CTL formula
@ =gef AG(s1 =1u A sy =u), and we have that C' = ¢ holds because for the
Kripke structure KC of Example 2 (see Figure 1), we have that K, s9 = ¢ (in-
deed, there is no path starting from the initial state sy = (t,t,0) which leads
the system to either the state (u,u,0) or the state (u,u,1)). a

Often, in our setting a k-concurrent program consists of symmetric processes,
the symmetry being determined by the fact that, for any two processes P; and P;,
for i # j, we have that P; can be obtained from P; by permuting the values of the
shared variable x in the guarded commands. Indeed, as shown in Example 1, the
guarded commands in P, can be obtained from those in P; by interchanging 0O
and 1. In practice, the property of symmetry is very common in many concur-
rent programs, and our task is precisely the one of automatically synthesizing
symmetric processes. This observation motivates a notion of symmetry which we
now introduce by using cyclic groups. A similar approach has been followed for
the automated verification of concurrent systems in [8].

Definition 4 (k-Generating Function). Given an integer k> 1, and a finite
domain D, we say that f € Perm(D) is a k-generating function iff either f=1id
or f is a generator of a cyclic group Gy = {id, f, f%,..., f*"1} of order k. O

Let us introduce the following notation. Given a guarded command gc of the

form:
si=lax=d — s;:=l'; x:=d;

and a k-generating function f, we denote by f(gc¢) the guarded command:
S(imodk)+1:l A X:f(d) — S(imodk)+1 ::l/; X::f(d/);

Definition 5 (k-Process Symmetric Concurrent Program). Given a
k-generating function f, a k-process symmetric concurrent program C'is a com-
mand of the form:

C: s1:=lp;...;85:=lp; x:=dp; do Py || ... || Px od
where, for all processes P;, for all guarded commands gc, gc is in P; iff f(gc) is
in P(imodk)-i—l . d

Ezample 4. Let us consider the 2-process concurrent program C' of Example 1.
The group Perm(D) of permutations over D = {0,1} is made out of the fol-
lowing two permutations only: fi; = {(0,0),(1,1)} and fo = {(0,1),(1,0)}. The
2-generating function fo shows that the concurrent program C' is symmetric.

Py : true — if Py : true — if
si=t Ax=0 — s;:=u; x:=0; So=t A x=/f2(0) = sa:=u; xi=f(0);
| si=t A x=1— skip; | sa=t A x=f2(1) — skip;
| si=unA x=0—s;:=t; x:=1; [so=un x=f2(0) = sa:=1t; xi=f5(1);
£i fi 0

By definition, one can generate a k-process symmetric concurrent program C
from one of the processes in C' by applying the k-generating function f. More-
over, it is often the case that all processes of a given program C' also share
additional structural properties, besides those determined by f. For instance, in
the case of Example 4, we have that both process P, and P, may move from
the local state t to the local state u, or from t to t, or from u to t. These ad-
ditional structural properties define a local transition relation T C L x L which
together with the k-generating function f, defines a so called symmetric program
structure X = (f,T). A pair (I,I’) in T will also be denoted by [+— '

Definition 6 (Synthesis Problem of a k-Process Symmetric Concur-
rent Program). The synthesis problem of a k-process symmetric concurrent
program C' starting from: (i) a CTL formula ¢, and (ii) a symmetric program
structure X' = (f,T), where f is a k-generating function and T is a local tran-
sition relation, consists in finding C' such that C' = ¢ holds.]

Note that there exists a CTL formula that characterizes the set of initial states.
In particular, the initial state (l1,...,l;,do) can be characterized by the CTL
formula sy =101 A ... A sp =1 A x=dy, where we assume that each conjunct
belongs to Elem. However, for reasons of simplicity, we assume that the initial
state sg is given to our synthesis procedure as an additional input (see clause 1
of the logic program II,, of Definition 7).

4 Synthesising Concurrent Programs

In this section we present our synthesis procedure based on ASP. We encode
the desired behavioural property ¢ of our k-process concurrent program to be
synthesized as a logic programs II,, and the desired structural property X' as a
logic programs Il 5. Programs I, and Il x are defined in the following Definition 7
and 8, respectively.

Definition 7 (Logic program encoding a behavioural property). Let ¢
be a CTL formula expressing a behavioural property. The logic program II,
encoding ¢ is as follows:
1. < not sat(so,)
2. sat(U,F) + elem(F,U)
3. sat(U,not(F)) < not sat(U, F)
4. sat(U,and(Fy, F)) + sat(U, F1) A sat(U, Fy)
5. sat(U,ex(F)) < tr(U,V) A sat(V, F)
6. sat(U,eu(Fy, Fy)) < sat(U, Fy)
7. sat(U,eu(Fy, Fy)) « sat(U, Fy) n tr(U,V) A sat(V,eu(Fy, Fy))
8. sat(U,eg(F)) + satpath(U,V,F) A satpath(V,V, F)
9. satpath(U,V, F) < sat(U,F) A tr(U,V) A sat(V,F)
10. satpath(U, Z, F) < sat(U, F) A tr(U,V) A satpath(V,Z, F)
11.1 tr(s(S1,...,S% X),s(S1,..., S, X)) < reachable(s(S1, ..., Sk, X)) A
gc(1,81, X, 81, X)) A (S1, X)#(S1, X’

11.k tr(s(S1,..., 5% X),s(51,...,5;, X)) < reachable(s(S1,...,Sk, X)) A
gC(k,Sk,X, S,Q,X/) A <Sk,X>7é<S]/€,X/>

12. < not out(S) A reachable(S)
13. out(S) « tr(S, 2)

14. reachable(sg)

15. reachable(S) « tr(Z,S)

where the predicates are defined as follows: (i) sat(U, F') holds iff the formula F
holds in state U, (ii) elem(b,) holds iff b€ A(u), that is, the elementary propo-
sition b holds in state wu, (iii) satpath(U,V,F) holds iff there exists a path
from state U to state V such that every state in that path satisfies the for-
mula F, (iv) tr(s(S1,..., S, X),s(S1,...,S}, X)) holds iff the pair of states
((S1,...,56,X), (51,...,5},X")) belongs to the transition relation R of the
Kripke structure associated with the program C to be synthesized, and (v) the
predicates out and reachable force the relation R to be total (in particular, out(S)
holds iff from state S there is an outgoing edge, and reachable(.S) holds iff there
is a path from the initial state sq to state S.) a

Rule 1 is required for ensuring that ¢ holds in the initial state sy representing the
initialization s1:=ly;...;sk:=Ily; x:=dy of the k-process symmetric concurrent
program to be synthesized. Rule 11.¢ defines the interleaved execution of the
guarded commands, that is, for all states U and V, ¢r(U,V) holds iff U is a
reachable state, and there exists a guarded command gc of process P; whose
guard evaluates to true in U and whose execution leads from state U to state V.

Definition 8 (Logic program encoding a structural property). Let L be
the set of local states and D be the domain of the shared variable. Let X' = (f, T
be a symmetric program structure of a k-process symmetric concurrent program.
The logic program Il is defined as follows:

L1 Vs xnyeneat((s,xy 9¢(1, 51, X, 8", X) <= reachable(S1, S, . . ., Sk, X)
1.2« ge(1,8,X,58,X") A ge(1,S, X, 5", X") an (8", X")£(S", X")

2.1 ¢¢(2,8, f(X),5, (X)) + gc(1,8,X,5", X")

2.2 «gc(2,5,X,5,X") Anot ps(2,5, X)

2.3 ps(2,53,X) < reachable(Sy, Sa, ..., Sk, X)

k1l ge(k, S, f(X), S, f(X') < ge(k—1,5,X,5, X")

k2 <« gc(k,S,X,S", X’) nnot ps(k, S, X)

k3 ps(k, Sk, X) < reachable(S1,Sa, ..., Sk, X)
where: (i) ge(i,S,X,S5, X’) holds iff s; =1 A x=d — s;:=1U'; x:=d' is in P,
(ii) f is a k-generating function, (iii) ps(i, S, X) holds iff there exists a reachable
state of the form (S1,...,5;,-1,5,i+1,-..,5k, X), and (iv) for all l€ L, d€ D,
Neat(l,d) = {(I',d') | I~ ' € T ad € D}. O

Rules 1.1 and 1.2 generate a set of guarded commands for process P;. The dis-
junction in the head of Rule 1.1 is over all possible guarded commands that P;
may execute. The set of those guarded commands is defined using the sets
Nezxt(l,d), one for each | € L and d € D. The integrity constraint 1.2 enforces
the generation of a set of guarded commands in which any two guards of the

guarded commands in P; are mutually exclusive (recall that we consider only
deterministic processes). For j=2,... k, Rules j.1, j.2 and j.3 realize Definition
5. We use Rule j.1 to derive a guarded command in P; from a guarded com-
mand of the process P;_;. Rule j.2 ensures that for every guarded command
g— c derived by j.1, there exists a reachable state U such that in U the guard
g evaluates to true.

Now we present a theorem establishing the correctness of our synthesis pro-
cedure. It relates the k-process symmetric concurrent programs satisfying ¢ with
the answer sets of the logic program II, Ully. Obviously, the correctness of the
synthesis procedure implies also the correctness of the programs II, and IIy
encoding the behavioural properties and the structural properties, as specified
in Definition 7 and 8, respectively.

Theorem 1 (Correctness of Synthesis). Let II = II, UIlx be the logic
program obtained, as specified by Definitions 7 and 8, from: (i) a CTL formula ¢
and (ii) a symmetric program structure X = (f,T). Then,

(s1:=lo;...;sx:=lo; x:=do; do P [...[Py od) E ¢
iff there exists an answer set M in ans(Il) such that
Vie{l,....k},Vi,l' € L, ¥d,d' € D,
(si:l Ax=d — si::l’;x::d’) isin P, iff M [ge(i,l,d,l,d).

5 Experimental Results

In this section we present some experimental results obtained by applying our
synthesis procedure to mutual exclusion protocols. All experiments have been
performed on an Intel Core 2 Duo E7300 2.66GHz under the Linux operating
system.

The first synthesis we did is the one of a simple program, called 2-mutez-1, for
two processes enjoying the mutual exclusion property only, and then we progres-
sively increased the number of properties that the synthesized program should
satisfy (see Table 1). In that table the program k-mutez-p denotes a synthesized
program for k processes satisfying p behavioural properties. For instance, pro-
gram 2-mutex-4 is the synthesized program that works for 2 processes and enjoys
the four behavioural properties: (i) ME (mutual exclusion), (ii) SF (starvation
freedom), (iii) BO (bounded overtaking), and (iv) MR (maximal reactivity),
defined by CTL formulas as follows.

(i) Mutual Ezclusion, that is, it is not the case that process P; is in its critical
section (s; =u), and process P; is in its critical section (sj=u) at the same time:
for all 4,7 in {1,...,k}, with ¢ # 7,

AG—(s;=unAsj=u) (ME)
(ii) Starvation Freedom, that is, if a process is waiting to enter the critical section
(s;i =w), then after a finite amount of time, process P; will execute its critical
section (s;=u): for all 4 in {1,...,k},

AG (s;=w — AF s;=u) (SF)

10

(iii) Bounded Overtaking, that is, while process P; is in its waiting section,any
other process P; exits from its critical section at most once: for all 7,j in
{]" ce k}’

AG((s; =wasj=u) = AF(s; =t A A[-(s; =u)Us; =u])) (BO)
(iv) Mazimal Reactivity, that is, if process P; is waiting to execute the critical
section and all other processes are executing their noncritical sections, then in
the next state P; will enter its critical section: for all 7 in {1,...,k},

AG((si=w A Njeqr,. ki Si=t) = EXsi=u) (MR)

Table 1. Column named Program gives the names of the synthesized programs.
k-mutez-p denotes the mutual exclusion program for k processes and p behavioural
properties that are indicated in the column named Satisfied Properties. Column named
|D| gives the cardinality of the domain of the shared variable x. Column named f gives
the k-generating functions. Column named |ans(II)| gives the cardinality of ans(II),
that is, the number of answer sets of program II = I, U Ils. In column named Time
we indicate the times (in seconds) taken for the synthesis using the smodels [19].

l Program ‘Satisﬁed Properties‘ |D| ‘ f ‘ |ans(H)HTime‘

2-mutex-1 | ME 2 id 6| 0.07
2-mutez-1 | ME 2 fi 71 0.70
2-mutex-2 | ME, SF 2 fi 3] 0.71
2-mutex-3 | ME, SF, BO 2 fi 3| 1.44
2-mutex-4 | ME, SF, BO, MR 3 fe 20 11.7
3-mutex-1 | ME 2 id 5/ 0.95
3-mutex-1 | ME 2 fi 10| 0.87
3-mutez-2 | ME, SF 3 f3 8| 152
3-mutez-3 | ME, SF, BO 3 fs 8| 1700

In our synthesis experiments we have made the following choices for sg, L, D,
f,and T.

The initial state sg is (t,t,0) and (t,t,t,0) for the 2- and 3-process sym-
metric concurrent programs, respectively.

The set L of the local states for the variables s;’s is {t,w,u}, where t repre-
sents the noncritical section, w represents the waiting section, and u represents
the critical section.

The domain D of the shared variable x is a finite set of natural numbers whose
cardinality | D| depends on: (i) the number & of the processes to be synthesized,
and (ii) the properties that the concurrent program should satisfy. The value
of |D] is not known a priori, and we guess it at the beginning of our synthesis
task. If the synthesis fails, we increase the value of |D|, hoping for a successful
synthesis with a larger value of |D|.

The k-generating function f is chosen among the following ones: (i) id is the
identity function, (ii) fi = {(0,1),(1,0)}, (iii) fo = {(0,1),(1,0),(2,2)}, and
(iv) f5 = {(0, 1), (1,2),(2,0)}.

The local transition relation T is {t —w, w—w, w—u, u—t}. The pair t—w
denotes that, once the noncritical section has been executed, a process enters
the waiting section. The pairs w—w and w+— u denote that a process may repeat

11

Py true — if Py true — if

(1) s1=tAx=0— s1:=w; Xx:=2; So=tAx=0— s2:=w; X:=2;
(2) [si=tAax=1—s1:=w; x:=2; [s2=tArx=1—s2:=w; x:=2;
(3) | si=tAx=2— s1:=w; x:=1; | s2=t Ax=2— s2:=w; x:=0;
(4) | si=wAx=0—s;:=u; x:=0; | s2=wAx=0— skip;

(5) | si=wax=1— skip; | s2=wAx=1—s2:=u; x:=1;
(6) | si=wAx=2—s1:=1u; x:=2; | sa=wAx=2— s2:=u; x:=2;
(7) [si=unrx=2—s1:=t; x:=1; | s2=uArx=2—s2:=1t; x:=0;
(8) [si=uArx=0—s1:=t; x:=2; | s2=unrx=1—s2:=t; x:=2;

fi fi
Fig. 2. The two synthesized processes P; and P> of the program 2-mutez-4: sq :=t;
s2:=t; x:=0; do P || P> od. It enjoys the following properties: ME, SF, BO, and MR.

(possibly an unbounded number of times) the execution of its waiting section
and then may enter its critical section. The pair u+— t denotes that, once the
critical section has been executed, a process enters its noncritical section.

In Figures 2 and 3 we present the syntax and the semantics of the synthesized
program, called 2-mutex-4, for the 2-process mutual exclusion problem described
in Example 3. (Program 2-mutez-4 is essentially the same as the Peterson algo-
rithm [17], but it uses a single shared variable.)

Fig. 3. The transition relation of the Kripke structure associated with the 2-process
concurrent program 2-mutez-4. The initial state is (t,t,0). For ¢ = 1,2, an arc la-
belled i.n indicates that the guarded command n of process P; is responsible for that
transition.

6 Related Work and Concluding Remarks

Two well known, early works on synthesis of concurrent programs were those by
Clark and Emerson [6] and Manna and Wolper [15]. In [6] Clark and Emerson
introduce the notion of a synchronization skeleton as an abstraction of the ac-
tual processes in concurrent programs. They synthesize concurrent programs for
a shared-memory model of execution by extracting the synchronization skeletons
from the models of temporal logic specifications. In particular they introduce a
three-phase synthesis procedure: Phase (1) provide the CTL specification of the
concurrent program; Phase (2) apply the tableau-based decision procedure for

12

the satisfiability of CTL formulas to obtain a model of the CTL specification;
Phase (3) extract the synchronization skeletons from the model of the CTL spec-
ification. Similarly to [6] in [15] Manna and Wolper present a method for synthe-
sizing synchronization instructions for processes in a message-passing model of
execution from a Propositional Temporal Logic (PTL) using a tableau-based de-
cision procedure for the satisfiability of PTL formulas. The instructions synthe-
sized by their method are written as Communicating Sequential Processes [13].
In [18] Piterman, Pnueli, and Sa’ar consider the problem of the design of digital
circuits from Linear Temporal Logic (LTL) specifications and give an O(N?)
algorithm to construct an automaton satisfying a formula of a particular class
of LTL specifications. We closely follow the approaches of [6] and [15]. In par-
ticular we synthesize concurrent processes that communicate with each other by
means of shared variables starting from CTL specifications. The programs we
synthesize are written as guarded commands [7].

In order to reduce the search space of our synthesis problem, we have used
a notion of symmetric concurrent programs which is similar to the one which
was introduced in [1,8] to overcome the state explosion problem. Our notion
of symmetry is formalized using group theory, similarly to what has been done
in [8] for model checking.

Similarly to Attie and Emerson [2], we also propose a method for the synthesis
task and we separate the behavioural properties from the structural properties.
However, in our approach the structural properties, such as symmetry, are rep-
resented in the symmetric program structures, rather than an automata based
formalism.

We have implemented our synthesis method in Answer Set Programming
(ASP). One advantage of our method over [1,6,15] is its generality: besides
temporal properties, we can specify structural properties, such as the above
mentioned symmetry, and our ASP program will automatically synthesize con-
current programs satisfying the desired properties without the need for ad hoc
algorithms. To the best of our knowledge, there is only one paper by Heymans,
Nieuwenborgh and Vermeir [12] who use Answer Set Programming for the syn-
thesis of concurrent programs. They have extended the ASP paradigm by adding
preferences among models and they have developed an answer set system, called
OLPS. Using OLPS they perform the synthesis of concurrent programs following
the approach proposed in [6]. They use (preferred) ASP only for the Phase (2)
of the synthesis procedure introduced in [6]. The synchronization skeletons can
be read from the model of Phase (2) as defined in [6]. We do not require any
extension of the ASP paradigm, we use the by now standard ASP systems, such
as DLV [9] and smodels [19], and every phase of our synthesis procedure is fully
automated by using an ASP program. In particular we use a two-phase syn-
thesis procedure: (i) provide the specification of the concurrent program to be
synthesized by giving the desired behavioural (by using CTL) and structural
properties, and (ii) use the ASP program to synthesize the concurrent program
satisfying the given specification.

In practice our approach works for synthesizing k-Process Concurrent Pro-
gram with a limited number k& of processes. As future work we plan to explore

13

various techniques for reducing the search space of the synthesis procedure and,
thus, we hope to synthesize protocols for a larger number of processes and more
complex properties to be guaranteed. Among these techniques we envisage to
apply those used in compositional model checking [4].

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs with Many
Similar Processes ACM TOPLAS, 51-115, 1998.

P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs for an Atomic
Read/Write Model of Computation. ACM TOPLAS, 187-242, 2001.

F. Calimeri, S. Cozza, G. Ianni and N. Leone. Enhancing ASP by Functions: Deci-
dable Classes and Implementation Techniques. Proceedings of the 24-th AAAI
Conference on Artificial Intelligence 2010, 1666-1670, 2010.

E. M. Clarke Jr., D. E. Long, and K. L. McMillan. Compositional model checking.
Logic in Computer Science, LICS ’89, Proceedings, IEEE Computer Society, 353—
362, 19809.

E. M. Clarke Jr., O. Grumber and D. A. Peled. Model Checking. The MIT Press,
1999.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic. Workshop on Logic of Programs,
London, UK, Springer-Verlag, 52-71, 1982.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

E. A. Emerson and A. P. Sistla. Symmetry and Model Checking. Formal Methods
in System Design: 9, 1-2, 105-131, 1996.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri and F. Scarcello. The
DLV system for knowledge representation and reasoning ACM TOCL: 7, 499-562,
2006.

M. Gelfond and V. Lifschitz. The Stable Model Semantics For Logic Programming.
Proc. of the Fifth Intern. Conf. and Symp. on Logic Programming, Seattle, MIT
Press, 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing: 9, 365—-385, 1991.

S. Heymans, D. Van Nieuwenborgh and D. Vermeir. Synthesis from Temporal
Specifications using Preferred Answer Set Programming. LNCS no. 3701, Springer,
280-294, 2005.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

V. Lifschitz. Answer Set Programming and Plan Generation. Artificial Intelligence
no. 138, 39-54, 2002.

Z. Manna and P. Wolper: Synthesis of Communicating Processes from Temporal
Logic Specifications. ACM TOPLAS, 68-93, 1984.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Specification.
Springer-Verlag, 1991.

G. L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115-116, 1981.

N. Piterman, A. Pnueli and Y. Sa’ar. Synthesis of Reactive(1) Designs. LNCS
no. 3855, Springer, 364-380, 2006.

T. Syrjanen and I. Niemeld. The Smodels System. LNCS no. 2173, Springer,
434-438, 2001.

14

