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Abstract

We address the problem of verifying safety properties of infinite state reactive systems that use
unbounded integer variables. We consider systems specified by using linear constraints over the
integers and we assume that, for verifying safety properties of these systems, one uses reachability
analysis techniques. Our method improves the effectiveness of forward and backward reacha-
bility analyses by preprocessing the system specification. For forward reachability our method
consists in: (i) transforming the system specification into an equivalent one (with respect to the
safety property of interest) by a constraint propagation technique that works backward from
the constraints representing the unsafe states, and then (ii) applying to the transformed system
specification a reachability analysis that works forward from the constraints representing the
initial states. For backward reachability our method works as for forward reachability, by inter-
changing the roles of the initial states and the unsafe states. We have implemented our method
by using the MAP program transformation tool. Our implementation works as a preprocessor
for infinite state systems specified in FASTer, a powerful tool for verifying safety properties of
infinite state systems with integer variables. Through various experiments performed on several
infinite state systems, we have shown that our constraint-based transformation of the system
specifications considerably increases the number of successful verifications without a significant
degradation of the time performance.

Key words: Program Transformation, Software Verification, Infinite State Systems.





1. Introduction

After the development of very effective techniques for model checking of reactive systems spec-
ified by finite state automata [8], the verification community is shifting its interest to classes
of more complex system specifications, where one is allowed to model reactive systems with
unbounded data structures, and thus, with a possibly infinite set of reachable states.

Counter systems are among the classes of system specifications that have been recently stud-
ied: they augment a finite state control structure with unbounded integer variables (see, for
instance, [2, 5, 6, 16, 22]). These systems use Presburger formulas to symbolically represent
(possibly infinite) sets of states and transitions. For reasons of simplicity, in this paper we con-
sider counter systems defined by linear constraints (that is, equalities and inequalities) over the
integers, instead of full Presburger formulas.

It is straightforward to encode as counter systems many classical devices, such as Petri nets
(with reset, inhibitor, and transfer arcs) and counter machines (with increment, decrement,
and test-if-zero). As a consequence of well-known results in the theory of computation, many
properties, like reachability, are undecidable for counter systems. Thus, in order to verify safety

properties of counter systems, that is, properties that specify that some given states are not
reachable from the initial states, a naive computation of the set of reachable states will not
terminate in most cases and, for this reason, several alternative approaches have been proposed.

Several works have identified restricted classes of systems for which the reachability problem
is solvable. These classes include various types of Petri nets (see [11] for some results) or,
equivalently, vector addition systems [22]. These decidability results are useful when the system
to be analysed falls within a specific class (at least in theory, as a tight complexity analysis is
still required). However, they do not provide a general method and no action can be performed
when the system is outside those decidable classes.

Another approach consists in providing terminating methods for computing a symbolic over-

approximation of the set of states that are reachable from the initial states (see, for instance, [1,
7, 17]). Then a safety property is verified if this over-approximated set has an empty intersection
with the set of unsafe states. Clearly, methods following this approach are inconclusive in the
case where the over-approximated reachability set has a non-empty intersection with the set of
unsafe states.

More sophisticated methods for the exact (symbolic) computation of the reachability set of
counter systems have been proposed [2, 6, 5, 16]. In particular, these methods use accelera-

tion techniques to improve the convergence of the computation of the reachability set by pre-
computing new transitions that condense in one step the effect of the transitive closure of a
sequence of transitions.

In this paper we focus on methods which allow the exact computation of the reachability set
and we propose a transformation technique for improving the convergence of the symbolic com-
putation of that set. The effect of our technique adds on the improvements due to acceleration
techniques.

Our starting point is the observation that in some cases during a forward reachability analysis,
the computation of the set Reach of states that are reachable from the initial states diverges
because this set is not representable as a finite set of constraints. However, in order to verify
a safety property stating that no element in a set Unsafe of unsafe states is reachable, we are
actually interested in computing Reach ∩Unsafe and checking whether or not this set is empty.
In some cases the computation of this set may terminate even if the computation of Reach

diverges (consider, for instance, the extreme case where the set Unsafe is empty).
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The main objective of the technique presented in this paper is to exploit the information about
the set Unsafe of the unsafe states during the computation of Reach. Our technique does not
modify the algorithm for computing the reachability set. On the contrary, it transforms the
system specification so that the reachability computation for the new specification incorporates
the information about Unsafe. By interchanging the roles of the initial states and the unsafe
states, our technique can also be applied when performing a backward reachability analysis and
it allows us to exploit the information about the set Init of the initial states.

The contributions of this paper are the following ones.

(1) We have defined a transformation algorithm that, given a system specification Spec and a
set Unsafe of unsafe states, computes a new specification Spec′ by propagating the constraints
representing Unsafe. The propagation process proceeds backwards from Unsafe, that is, in
opposite direction with respect to the one for computing the set of reachable states from the
initial states. Propagation is realized by means of a generalized pre operator, called Genpre,
which computes constraints entailed by the states from which a given set of states is reachable
in one transition step.

(2) We have proved that, under some assumptions on the Genpre operator, the transformation
algorithm terminates and produces a new specification Spec′ which is equivalent to the given
Spec with respect to Unsafe. That is, Spec is safe if and only if Spec′ is safe. This preservation
of equivalence is a notable difference with respect to the techniques that use approximations,
such as the ones cited above [1, 7, 17].

(3) We have provided several definitions of the Genpre operator that combine (variants of)
operators and relations introduced in the field of program analysis and transformation, such as
the widening and convex hull operators and the well-quasi order relations on constraints. We
have proved that these definitions guarantee termination and correctness of the transformation
algorithm.

(4) Finally, we have implemented our transformation algorithm on the MAP transformation sys-
tem [23], an experimental transformation tool written in constraint logic programming (CLP),
and we have performed experiments on several infinite state systems by using the FASTer verifi-
cation tool for counter systems [4]. These experiments show that our transformation determines
an increase of the number of successful verifications without a significant degradation of the
time performance (actually, in some cases the verification time is highly improved).

Our paper is structured as follows. In Section 2 we present a language based on linear con-
straints over the integers for specifying counter systems and their safety properties. In Sections 3
and 4 we present our transformation algorithm for counter systems and we prove its termination
and correctness. In Section 5 we present some experimental results using FASTer. Finally, in
Section 6 we discuss related work in the field of program transformation and analysis.

2. Specifying Counter Systems

In order to specify counter systems and their safety properties we use a simplified version of the
languages considered in [3, 4, 21, 25]. Our language allows us to specify systems and properties
by using linear constraints over the set Z of the integers.

A system specification is a 4-tuple 〈Var, Init,Trans,Unsafe〉 defined as follows.

(i) Var is a variable declaration which is a sequence of declarations of (distinct) variables, each
of which may be either: (i.1) an enumerated variable, or (i.2) an integer variable. (i.1) An
enumerated variable x is declared by the statement: enumerated x D, meaning that x ranges
over a finite set D of constants. The set D is said to be the type of x and it is also said to be the
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type of every constant in D. (i.2) An integer variable x is declared by the statement: integer x,
meaning that x is a variable ranging over the set Z of the integers.
(ii) Init denotes the set of initial states. It is a set of constraints of the form {init1(X), . . . ,
initK(X)}.
(iii) Trans denotes the transition relation between states. It is a set of constraints of the form
{t1(X,X ′), . . . , tM (X,X ′)}.
(iv) Unsafe denotes the set of the unsafe states. It is a set of constraints of the form {u1(X), . . . ,
uN (X)}.

Each set of constraints of Points (ii)–(iv) has to be interpreted as a disjunction of constraints.
By X we denote the tuple 〈x1, . . . , xk, xk+1, . . . , xn〉 of variables declared in Var, where: (i) for
i = 1, . . . , k, xi is an enumerated variable of type Di, for some finite set Di of constants, and
(ii) for i = k + 1, . . . , n, xi is an integer variable. By X ′ we denote the tuple 〈x′

1, . . . , x
′
k,

x′
k+1, . . . , x

′
n〉 of the primed variables.

Constraints are defined as follows. If e1 and e2 are enumerated variables or constants of the
same type, then e1 = e2 and e1 6= e2 are atomic constraints. If p1 and p2 are linear polynomials
with integer coefficients, then p1 =p2, p1≥p2, and p1 >p2 are atomic constraints. A constraint is
either true, or false, or an atomic constraint, or a conjunction of constraints. By c(X) we denote
a constraint on the tuple X of variables. By C[X] we denote the set of all constraints on X.

Example 1. In Figure 1 we show a reactive system and its specification.

〈x1,x2〉

(1.1) (1.2)
x′

1 = x1+x2

x′
2 = x2+1

Var : integer x1; integer x2;

Init : {x1 ≥ 0 ∧∧ x2 ≥ 0 ∧∧ x2 ≤ 1};

Trans: {x′
1 = x1+x2 ∧∧ x′

2 = x2+1};

Unsafe: {(x1 <0 ∧∧ x2≤1), (x2≤−1 ∧∧ x2≥−2)}

Figure 1: A reactive system (1.1) and its specification Spec (1.2). A set of constraints is inter-
preted as a disjunction of constraints.

Now we define the notion of reachability associated with a system specification.
A state is an n-tuple 〈r1, . . . , rk, zk+1, . . . , zn〉 of constants in D1 × . . .×Dk × Z

n−k. By Σ we
denote the set of all states. A state s will be called an initial (resp., unsafe) state if there exists
initi(X) ∈ Init (resp., ui(X) ∈ Unsafe) such that initi(s) (resp. ui(s)) holds. A constraint c(X)
is less general than a constraint d(X), or d(X) is more general than c(X), denoted c(X) ⊑ d(X),
if for all s ∈ Σ, if c(s) holds then also d(s) holds. c(X) is said to be equivalent to d(X), denoted
c(X) ≡ d(X), if c(X) ⊑ d(X) and d(X) ⊑ c(X).

A computation sequence is a sequence of states s0, . . . , sm, with m ≥ 0, such that, for i =
0, . . . ,m−1, t(si, si+1) holds, for some t(X,X ′) ∈ Trans. State sm is reachable from state s0

if there exists a computation sequence s0, . . . , sm. A system specification is safe if there is no
unsafe state which is reachable from an initial state. Two system specifications Spec1 and Spec2

are said to be equivalent if Spec1 is safe iff Spec2 is safe.
In order to compute the possibly infinite set of states which are (forward) reachable from

an initial state, available verification tools make use of symbolic reachability algorithms which
represent set of states as Presburger formulas, or equivalent automata-theoretic notions [3, 4,
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Input : A specification Spec.
Output : A new specification Spec ′ equivalent to Spec.

Phase 1: Construction of the tree CTree of constraints.
Let Genpre(Λ) be the set {g1(X), . . . , gR(X)}.

CTree := {Λ
{}
←− g1(X), . . . ,Λ

{}
←− gR(X)}.

while there exists a non-recurrent constraint c(X) labelling a leaf of CTree do
let Genpre(c(X)) be the set {g1(X), . . . , gS(X)};
for j = 1, . . . , S, let Tj be {ti(X,X ′) ∈ Trans | π(i) = j};

CTree := CTree ∪ {c(X)
T1←− g1(X), . . . , c(X)

TS←− gS(X)};
od ;

Phase 2: Extraction of the new specification Spec ′ from the tree CTree of constraints.
SpecExtract(Spec,CTree,Spec ′)

Figure 2: The Specification Transformer algorithm.

21, 25]. Similar symbolic techniques are used for computing the set of states from which an
unsafe state is (backward) reachable. In this paper we will not need to take into consideration
any specific algorithm for computing reachability sets, as our technique transforms a system
specification into an equivalent one, independently of any such algorithm.

3. An Algorithm for Transforming Specifications

In this section we present our method for improving the reachability analysis of counter systems
by applying constraint-based transformations of system specifications. Here we consider the
forward reachability, but our method can also be applied to the case of backward reachability
by interchanging the roles of initial states and unsafe states.

Our method is based on an algorithm that transforms a specification Spec = 〈Var, Init,Trans,

Unsafe〉 into an equivalent specification Spec ′ = 〈Var ′, Init ′, Trans ′, Unsafe ′〉 for which the
reachability analysis is hopefully more effective. The objective of our transformation is to derive,
from the transition relation Trans and the set Unsafe of the unsafe states, a new transition
relation Trans ′ such that by using the relation Trans ′, instead of Trans, the unsafe states are
implicitly taken into consideration when constructing the set of the reachable states.

Our Specification Transformer algorithm (see Figure 2) consists of two phases:

(Phase 1) the construction of a tree of constraints, called CTree, by using the procedure Genpre

from the given specification Spec, and

(Phase 2) the extraction of a new specification Spec ′ from the tree CTree by using the procedure
SpecExtract.

In the tree CTree, (i) the root node is labelled by a distinguished symbol Λ (which stands for
the constraint false), (ii) each non-root node is labelled by a constraint in C[X], and (iii) each
arc is labelled by a set of transitions. When no confusion arises, we will identify a node with
the constraint which labels it. An arc from a node (or constraint) c1(X) to a node (or con-

straint) c2(X) labelled by a set T ⊆ Trans of transitions is denoted by c1(X)
T
←− c2(X). For

simplicity, CTree will be represented as the set of its labelled arcs.

In the tree CTree the following hold: (i) the disjunction of all constraints in the non-root
nodes is an over-approximation of the set of states from which an unsafe state is reachable, and
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(ii) for every arc c1(X)
T
←− c2(X), we have that c2(X) is an over-approximation of the set of

states from which a state X satisfying c1(X) can be reached in one step by using one of the
transitions in T .

In order to construct CTree we will use the following operator.

Definition 3.1. A generalized pre operator, called Genpre, is a function which, for any

a ∈ C[X] ∪ {Λ},
– if a = Λ, then it returns a set {g1(X), . . ., gR(X)} of constraints in C[X] and a surjective

mapping λ : {1, . . . , N} −→ {1, . . . , R}, with R≤N (where N is the cardinality of Unsafe),
such that, for i = 1, . . . , N , ui(X) ⊑ gλ(i)(X);

– else if a=c(X) for some c(X) ∈ C[X], then it returns a set {g1(X), . . ., gS(X)} of constraints

in C[X] and a surjective mapping π : {1, . . . ,M} −→ {1, . . . , S}, with S≤M (where M is the

cardinality of Trans and both π and S may depend on c(X) ), such that, for i = 1, . . . ,M ,

c(X) ∧∧ ti(Y,X) ⊑ gπ(i)(Y ).

Note that the Genpre operator depends on the input a, but also on: (i) the set Trans of
transitions, and (ii) the upper portion of the tree CTree constructed so far. However, for
reasons of simplicity, we do not explicitly indicate Trans and CTree among the arguments of
the operator Genpre and we indicate the argument a only.

The tree CTree is incrementally constructed as follows. Initially, CTree is given by the R arcs:

Λ
{}
←− g1(X), . . ., Λ

{}
←− gR(X), where {g1(X), . . . , gR(X)} = Genpre(Λ).

Suppose that we have constructed an upper portion U of CTree. Let us introduce the following
terminology.

A leaf constraint c(X) of the tree U is said to be recurrent if there exists a non-leaf con-
straint d(X) in U such that c(X) ⊑ d(X).

Now, if all leaf constraints in U are recurrent, then the construction of CTree terminates.
Otherwise, if there exists a non-recurrent leaf constraint c(X) in U , then the current upper

portion U of CTree is expanded by adding the S arcs: c(X)
T1←− g1(X), . . ., and c(X)

TS←− gS(X),
where:

- {g1(X), . . . , gS(X)} = Genpre(c(X)), and

- for j = 1, . . . , S, Tj = {ti(X,X ′) ∈ Trans | π(i) = j}. Recall that the mapping π is provided
by Genpre(c(X)).

In order to guarantee the termination of the construction of CTree we assume that our Genpre

operator is terminating, in the sense specified by the following definition.

Definition 3.2. A Genpre operator is said to be terminating if, for every infinite sequence

c1(X), c2(X), . . . of constraints such that: (i) c1(X) ∈ Genpre(Λ), and (ii) for every i > 0,
ci+1(X) ∈ Genpre(ci(X)), there exist k and n, with 0<k<n, such that cn(X) ⊑ ck(X).

In the next section we define the three terminating Genpre operators we have used in our
experiments.

Theorem 3.3. For any specification Spec and any terminating Genpre operator, the construc-

tion of CTree terminates.

From CTree a new system specification Spec ′ = 〈Var ′, Init ′,Trans ′,Unsafe ′〉 can be extracted by
the SpecExtract procedure described below. In particular, this procedure adds new control
states, by introducing an enumerated variable s.

7.



Procedure SpecExtract(Spec,CTree,Spec ′).

Input : A specification Spec = 〈Var, Init,Trans,Unsafe〉 and the tree CTree constructed in
Phase 1 of the Specification Transformer.

Output : A new specification Spec ′ that is equivalent to Spec.

Step 1. We introduce a set CS of new constants (the name CS stands for ‘control states’)
starting from the nodes in the tree CTree and Unsafe. We associate a constant kΛ∈CS with
the root symbol Λ. With each constraint c(X) occurring in a node of CTree or in Unsafe, we
associate a constant kc∈CS, such that for all constraints c(X), d(X) occurring in a node of
CTree or in Unsafe, kc = kd iff c(X) ≡ d(X).
We also introduce a folding function ϕ : (CS−{kΛ}) −→ CS such that, for all constraints
c(X) and g(X) associated with the constants kc and kg, respectively, if ϕ(kc) = kg, then
c(X) ⊑ g(X), that is, g(X) is more general than c(X).

Step 2. We introduce a new enumerated variable s (ranging over a subset of CS and declared as
indicated at Step 4 below) and the corresponding primed variable s′. We define the set Trans

of constraints to be

{s=ϕ(kd) ∧∧ ti(X,X ′) ∧∧ c(X ′) ∧∧ s′=kc |

c(X)
T
←− d(X) ∈ CTree and ti(X,X ′) ∈ T and (ti(X,X ′) ∧∧ c(X ′)) is satisfiable}.

Note that every arc arriving at kΛ having the empty set as label, does not contribute to Trans.

Step 3. We define on the set CS the ‘depends on’ relation which is the transitive closure of the
‘immediately depends on’ binary relation defined as follows.

(i) kΛ immediately depends on ϕ(kc) for every constraint c(X) labelling a child node of Λ in
the tree CTree.

(ii) For any two constants k, k′∈CS, we say that k′ immediately depends on k if there exists a
constraint u(s,X, s′,X ′) ∈ Trans, where the two equalities s=k and s′=k′ occur.

Step 4. We have that Spec ′ is 〈Var ′, Init ′,Trans ′,Unsafe ′〉, where:

– Var ′ is obtained by adding to Var the variable declaration

enumerated s CS ′, where CS ′ = {k ∈ CS | kΛ depends on k};

– Init ′ is {s=kc ∧∧ c(X) ∧∧ init(X) |

kΛ depends on kc and init(X)∈Init and (c(X) ∧∧ init(X)) is satisfiable};

– Trans ′ is {u(s,X, s′,X ′) ∈ Trans |

equality s′=k occurs in u(s,X, s′,X ′) and kΛ depends on k};

– Unsafe ′ is {s=ϕ(ku) ∧∧ u(X) | u(X)∈Unsafe}

Note that at Step 1 of the SpecExtract procedure we may choose ϕ to be a function such that
ϕ(kc)=kg for some constraint g(X) which is maximally general , that is, for all d(X) labelling
a node of CTree, if g(X) ⊑ d(X) then g(X) ≡ d(X). The function ϕ will be called a maximally

general folding.

Theorem 3.4 (Correctness of the Specification Transformer) For any specification Spec

and terminating Genpre operator, the Specification Transformer algorithm terminates and re-

turns a specification Spec ′ which is equivalent to Spec.

Example 2. In Figures 3 and 4 we show the two-phase construction of the new specification
Spec ′ starting from the system specification of Figure 1. In the left part of Figure 3 we show
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kΛ

k1 k2

k3 k4

k5 k4

k5

{} {}

{t}

{t}

{t}

{t}

{t}

k1 : x1 <0 ∧∧ x2≤1 ϕ(k1) = k1
k2 : x2≤−1 ∧∧ x2≥−2 ϕ(k2) = k5
k3 : x1+x2 <0 ∧∧ x2≤0 ϕ(k3) = k5
k4 : x2≤−2 ϕ(k4) = k5
k5 : x2≤0 ϕ(k5) = k5

t stands for x′
1 =x2+x1 ∧∧ x′

2 =x2+1

Figure 3: On the left we show the constraint tree CTree rooted in kΛ for the system specification

of Figure 1. Every arc km
T
←− kn is obtained by applying the Genpre operator with the options

Singleton and WidenSum. In the middle we show the correspondence between the constraints
and the associated constants k1, . . . , k5. On the right we show the maximally general folding
function ϕ.

kΛ

k1 k5
{t15}

{t55}

Var ′: integer x1; integer x2; enumerated s {k1, k5};

Init ′: {s=k5 ∧∧ x1 ≥ 0 ∧∧ x2 =0};

Trans ′: {(s=k5 ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
1 <0 ∧∧ x′

2≤1 ∧∧ s′=k1), (t15)

(s=k5 ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
2≤0 ∧∧ s′=k5)}; (t55)

Unsafe ′: {(s=k1 ∧∧ x1 <0 ∧∧ x2≤1), (s=k5 ∧∧ x2≤−1 ∧∧ x2≥−2)}

Figure 4: On the left we show the relation Trans ′: the arc km
{t}
←− kn indicates that km depends

on kn and t ∈Trans ′ (the dashed arcs show that kΛ depends on k1 and k5). On the right we
show the specification Spec ′ derived from the system specification of Figure 1. In Trans ′ and
Unsafe ′ comma is interpreted as disjunction.

the CTree constructed at the end of Phase 1 of the Specification Transformer algorithm. For
reasons of simplicity, in the nodes of the tree CTree in Figure 3, instead of the constraints,
we have indicated their associated constants kΛ, k1, . . . , k5 (to be introduced at Step 1 of the
SpecExtract procedure). The correspondence between the constraints and the constants is
given in the middle part of Figure 3. Let t be an abbreviation for x′

1 =x2+x1 ∧∧ x′
2 =x2+1, which

is the only constraint in Trans. In what follows, when no confusion arises, we will identify the
constraints with their associated constants.

The specific Genpre operator we consider, uses the option Singleton for partitioning and
WidenSum for generalizing (see Section 4).

At the beginning of Phase 1 of the derivation of the new system specification, Genpre(Λ)
returns the two constraints k1 (that is, x1 <0 ∧∧ x2≤1) and k2 (that is, x2≤−1 ∧∧ x2≥−2) and

introduces the two arcs kΛ
{}
←− k1 and kΛ

{}
←− k2. Note that k1 and k2 are exactly the two

constraints in Unsafe and, with reference to the Specification Transformer algorithm of Figure 2,
this means that: (i) R=N =2, (ii) the function λ returned by Genpre is the identity function,
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and (iii) Genpre does not make any generalization at this time, that is, gλ(1)(X)=u1(X) and
gλ(2)(X) = u2(X). Since k1 and k2 are non-recurrent, the construction continues by further
applications of Genpre to k1 and k2, which return, respectively, the two constraints k3 (that

is, x1 +x2 < 0 ∧∧ x2 ≤ 0) and k4 (that is, x2 ≤ −2) and introduces the two arcs k1
{t}
←− k3

and k2
{t}
←− k4. Now, a further application of Genpre to k4 returns the same constraint and

introduces the arc k4
{t}
←− k4, which indicates that k4 is recurrent. The construction continues

by applying Genpre to k3, which returns k5 (that is, x2≤0) and introduces the arc k3
{t}
←− k5.

One more application of Genpre to k5 returns the same constraint and introduces the arc

k5
{t}
←− k5. Now, since also k5 is recurrent, the construction of the tree CTree is completed.

We proceed with Phase 2 by considering the maximally general folding function ϕ whose
definition is as follows: ϕ(k1)=k1 and ϕ(k2)=ϕ(k3)=ϕ(k4)=ϕ(k5)=k5 (see the right part of
Figure 3). The function ϕ satisfies the condition of Step 1 because k5 is more general than k2,
k3, k4, and k5 itself, while it is incomparable with k1.

At Step 2 we compute the following set Trans of constraints (every arc in CTree which does
not arrive at kΛ, generates an element of Trans):

{s=ϕ(k3) ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
1 <0 ∧∧ x′

2≤1 ∧∧ s′=k1,

s=ϕ(k4) ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
2≤−1 ∧∧ x′

2≥−2 ∧∧ s′=k2,

s=ϕ(k5) ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
1+x′

2 <0 ∧∧ x′
2≤0 ∧∧ s′=k3,

s=ϕ(k4) ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
2≤−2 ∧∧ s′=k4,

s=ϕ(k5) ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
2≤0 ∧∧ s′=k5}

Then, at Step 3, from the set Trans we compute the immediately depends on relation which
is the set {(kΛ, k1), (kΛ, k5), (k1, k5), (k2, k5), (k3, k5), (k4, k5), (k5, k5)}. We have that kΛ
depends on k1 and k5 and only on those constraints. The constraints on which kΛ depends are
required in the following Step 4 for constructing Trans′ starting from Trans.

Finally, at Step 4 we extract the new specification Spec′ (see Figure 4) as follows:

(i) the enumerated variable s ranges over the set {k1, k5} of constraints on which kΛ depends,

(ii) Init′ is {s = k5 ∧∧ x2≤ 0 ∧∧ Init}, where Init is the constraint x1≥ 0 ∧∧ x2≥ 0 ∧∧ x2≤ 1 (note

that s = k1 ∧∧ x1 < 0 ∧∧ x2 ≤ 1 ∧∧ Init is unsatisfiable), and thus, Init′ can also be rewritten as
{s=k5 ∧∧ x1≥0 ∧∧ x2 =0},

(iii) Trans ′ is built by selecting from Trans every constraint that assigns to the variable s′ either
the value k1 or the value k5: there are two of them

(s=k5 ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
1 <0 ∧∧ x′

2≤1 ∧∧ s′=k1), (t15)

(s=k5 ∧∧ x′
1 =x2+x1 ∧∧ x′

2 =x2+1 ∧∧ x′
2≤0 ∧∧ s′=k5), (t55)

(iv) Unsafe ′ is obtained from Unsafe = {u1(X), u2(X)}, where u1(X) is (x1 < 0 ∧∧ x2≤ 1) and
u2(X) is (x2≤−1 ∧∧ x2≥−2). Now, k1 is the constant associated with u1 and k2 is the constant
associated with u2 (see Figure 3). Thus, Unsafe ′ = {s = ϕ(k1) ∧∧ u1(X), s = ϕ(k2) ∧∧ u2(X)},
that is, Unsafe ′ = {(s=k1 ∧∧ x1 <0 ∧∧ x2≤1), (s=k5 ∧∧ x2≤−1 ∧∧ x2≥−2)}.

4. Generalized PRE Operators

In this section we present the definitions of various Genpre operators that are used in the
construction of the constraint tree CTree. We will use variants of generalization operators, such
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as the convex-hull operator and the widening operator, which are introduced in the field of
static program analysis. In our construction of the tree CTree these operators should act on the
integers Z and, unfortunately, in this case they are not as efficient as in the case in which they act
on the reals R. Thus, in order to overcome this difficulty and have an efficient implementation
of our generalization operators, we use a relaxation from the integers Z to the reals R, that is,
we use solvers on the reals R for performing the unsatisfiability tests, the entailment tests, and
the projection operations which are required by our generalization operators.

In [15] it is shown that, for any given finite domains D1, . . . ,Dk, the tree CTree derived by
using a relaxation from D1 × . . . × Dk × Z

n−k to D1 × . . . × Dk × R
n−k allows us to get a

specification which is equivalent to the given specification. Details on this point can be found
in [15].

In the definition of the Genpre operators we distinguish between: (i) atomic constraints on
enumerated variables and (ii) atomic constraints on variables ranging over the integers. Thus,
any constraint c can be partitioned into: (i) a (possibly empty) conjunction of equalities on
enumerated variables, denoted fd(c) (fd stands for ‘finite domain’), and (ii) a (possibly empty)
conjunction of linear inequalities on the integers, denoted it(c) (it stands for ‘integer type’).

Note that the set of all conjunctions of equalities on enumerated variables can be viewed as a fi-
nite lattice whose underlining partial order is defined by the entailment relation ⊑. Given the set
of constraints {c1, . . . , cn}, we define their most specific generalization, denoted γ({c1, . . . , cn}),
to be the conjunction of: (i) the least upper bound of the conjunctions fd(c1), . . . , fd(cn) of equal-
ities on enumerated variables, and (ii) the convex hull [9] of the constraints it(c1), . . . , it(cn) on
the reals R. For i = 1, . . . , n, we have that ci ⊑ γ({c1, . . . , cn}).

Given a set of constraints Cs = {c1, . . . , cn}, we introduce the equivalence relation ≃fd on Cs

such that, for every c1, c2 ∈ Cs, c1 ≃fd c2 iff fd(c1) is equivalent to fd(c2). We also define the
equivalence relation ≃it on Cs as the reflexive, transitive closure of the relation ↓R on Cs such
that, for every c1, c2∈Cs, c1 ↓R c2 iff it(c1) ∧∧ it(c2) is satisfiable in R.

For example, let the constraint c1 be x1 =a ∧∧ x2 >0, for some a in a finite domain D, and the
constraint c2 be x1 = a ∧∧ x2 < 0. We have that c1 ≃fd c2 on {c1, c2}. Let c3 be the constraint
x1 > 0 ∧∧ x1 < 2, c4 be the constraint x1 > 1 ∧∧ x1 < 3, and c5 be the constraint x1 > 2 ∧∧ x1 < 4.
Since c3 ↓R c4 and c4 ↓R c5, we have c3 ≃it c5 on {c3, c4, c5}. Note that c3 6≃it c5 on {c3, c5}
because c3 ∧∧ c5 is not satisfiable in R.

Given a specification Spec=〈Var, Init,Trans,Unsafe〉 and a leaf node L of the constraint tree
CTree, the Genpre operator constructs the child nodes g1(X), . . . , gS(X) of L in the following
three steps: (1) Unfold, (2) Partition, and (3) Generalize.

(Step 1). (Unfold) If L is Λ, we define U to be the set {u1(Y ), . . . , uN (Y )} of the constraints in
Unsafe. If L is a constraint c(X), we define U to be the set {d1(Y ), . . . , dM (Y )} of R-satisfiable
constraints obtained as follows.

First, we use the transitions in the set Trans arriving at the node c(X) and we obtain the
set TempU = {c(X) ∧ t1(Y,X), . . . , c(X) ∧ tM(Y,X)} of constraints. Then we compute the
R-projection of each element in TempU on the tuple of variables Y , thereby deriving the set
{d1(Y ), . . . , dM (Y )} of R-satisfiable constraints.

(Step 2). (Partition) The partition of the set U consists of the equivalence classes E1, . . . , ES ,
for S ≥ 1, induced on U by one of the following equivalence relations:

(Singleton) no two constraints are equivalent (every block is a singleton);

(Chain) for i, j = 1, . . . ,M , two constraints di(Y ) and dj(Y ) are equivalent iff di(Y ) ≃fd dj(Y )
and di(Y ) ≃it dj(Y ) on {d1(Y ), . . . , dM (Y )};
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(All) all constraints are equivalent (a single block).

(Step 3). (Generalize) For i = 1, . . . , S, the children contraints g1(X), . . . , gS(X) of c(X) are
constructed as follows. Let Ei be the set {d1(X), . . ., dK(X)} (where Y variables have been
replaced by X variables):

Step 3.1 Let b(X) denote the most specific generalization γ({d1(X), . . . , dK(X)}).
if there exists a nearest ancestor a1(X) of c(X) (possibly c(X) itself) in CTree such that
a1(X)≃fd c(X)
then banc(X)=γ({a1(X), b(X)}) else banc(X)=b(X);

Step 3.2 Let us consider a generalization operator ⊖ (for instance, the operator WidenSum

defined below).
if in CTree there exists a constraint d(X) such that banc(X) ⊑ d(X) in R

then gi(X) = d(X)

else if there exists a nearest ancestor a2(X) of c(X) (possibly c(X) itself) in CTree such
that a2(X) ≃fd banc(X)

then gi(X) = a2(X) ⊖ banc(X) else gi(X) = banc(X).

The generalization operator we have considered in our experiments is the WidenSum operator,
denoted ⊖WS, and it has been defined and studied in [13]. As shown in [13], it performs quite
well in practice with respect to other generalization operators introduced in the literature. For
convenience of the reader we now recall its definition.

We first introduce the thin well-quasi ordering -S . For any atomic constraint a on R of the
form q0 + q1x1 +. . .+ qkxk ⋖ 0, where ⋖ is either < or ≤, we define sumcoeff(a) to be

∑k
j=0 |qj|.

Given two atomic constraints a1 of the form p1 < 0 and a2 of the form p2 < 0, we have that
a1 -S a2 iff sumcoeff(a1)≤ sumcoeff(a2). Similarly, if we are given the atomic constraints a1 of
the form p1 ≤ 0 and a2 of the form p2 ≤ 0. Given any two constraints c = a1 ∧∧ . . . ∧∧ am and
d = b1 ∧∧ . . . ∧∧ bn, where the ai’s and the bi’s are atomic constraints, the operator WidenSum

returns the constraint c ⊖WS d which is the conjunction of the constraints in the set {ah |
1≤h≤m and d ⊑ ah} ∪ {bk | bk occurs in it(d) and ∃ ai occuring in it(c), bk -S ai}. Note that
it is the case that fd(d) is a subconjunction of c⊖WS d.

5. Experimental Evaluation

In this section we present the results of the experiments we have performed for verifying safety
properties of some infinite state systems taken from the literature [4, 10, 25].

We have performed our experiments by using the FASTer tool, which is designed to prove
safety properties of linear counter systems [4]. FASTer performs forward reachability analysis
by an exact computation of the least fixpoint of the transition relation of an accelerated version
of the system, which is obtained by adding transitions which realize the effect of sequences of
transitions.

We have run FASTer using its best options, that is, the options which make it terminate more
often, among those reported on the FASTer home page. In particular, we have used the MONA
system for manipulating constraints, and we have used a fixed value as the seed of the random
number generator.

The constraint manipulation techniques presented in this paper were implemented on MAP [23],
a tool for transforming CLP programs which uses the SICStus Prolog clpr library to operate
on constraints on the reals. (Recall that the Genpre operators defined in Section 4 manipulate
constraints on the reals.)
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All experiments were performed on an Intel Core 2 Duo E7300 2.66 GHz with 4GB of memory,
under Linux. The results of our experiments are reported in Table 1, where we have indicated,
for each counter system, the following times expressed in seconds: (i) the time taken by FASTer
for verifying the given system (column System), and (ii) for each Genpre operator, the sum of
the time taken by MAP for transforming the system and the time taken by FASTer for verifying
the transformed system (columns Singleton, Chain, and All).

System (= Spec) Transformed System (= Spec ′)

EXAMPLES Singleton Chain All

Bakery2 24.08 0.09 0.10 0.08

Bakery3 ∞ 2.25 2.23 ∞

Mutast 0.48 1.32 1.35 0.63

Ticket 0.27 0.94 0.94 0.34

Bounded Buffer ∞ 0.21 0.23 ∞

Unbounded Buffer 0.06 0.19 0.28 0.11

Selection Sort ∞ 0.78 ∞ ∞

Scheduler2 0.20 ∞ 0.26 0.28

Train 8.86 1.06 11.24 8.93

TTP 112.88 ∞ 41.72 6.15

Number of verified properties 7 8 9 7

Table 1: Verification times (in seconds) using FASTer [4]. ‘∞’ means ‘No answer’ within 5 min-
utes or memory limit exceeded.

The experiments show that the overall precision, that is, the number of verified properties,
achieved by FASTer on the systems obtained by applying our transformation technique, is never
worse than the precision of FASTer on the original systems.

By comparing the precision of the Genpre operators, we observe that: (i) the Chain operator
is the most precise, being able to prove 9 out of 10 safety properties (all, except Selection Sort);
(ii) the Singleton operator is able to improve the precision for the three systems whose safety
property could not be proved by FASTer (Bakery3, Bounded Buffer and Selection Sort), but it
fails on two other systems (Scheduler and TTP); (iii) the All operator, with 7 properties out of
10, is the least precise (actually, it has the same precision of FASTer on the original systems).

If we consider the verification times, we have that the time in column System and the time
in the other columns are of the same order of magnitude in almost all cases. Sometimes (and,
in particular, in the case of the Bakery2 system) our method substantially reduces the total
verification time.

Moreover, we have compared the total verification times of the given systems and the derived
systems for which FASTer is able to prove the safety property, that is, we computed the total
time of each column by summing up only the times occurring in the rows which do not have
any ∞ symbol in any of the columns.

The smallest total verification time thus obtained, is the one of column Singleton, that is, the
one relative to the systems derived by the Singleton operator (3.6 seconds), followed by the times
relative to the systems derived by using the All and Chain operators (10.09 and 13.91 seconds,
respectively). The largest overall verification time of FASTer is the one relative to the original
systems (33.75 seconds).
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Similar considerations also apply if we compare the time taken by FASTer on the original
systems with that it takes on the systems derived by using Chain, which is the most precise
operator (146.83 and 55.89 seconds, respectively).

Thus, the increase of precision due to the constraint-based transformation technique we have
proposed, does not determine any significant degradation of the time performance.

6. Related Work and Conclusions

The transformation method presented in this paper is related to program specialization, which
is a program transformation technique that, given a program and a specific context of use,
derives a specialized program that is more effective in the given context [20]. Indeed, the
improvement of precision (and performance) of forward reachability analysis is due to the fact
that the transformed systems incorporate information about the specific properties holding in
the unsafe states.

The use of specialization techniques for the verification of infinite state systems has been
first proposed in the context of constraint logic programming (see, for instance, [12, 14, 24]).
In [12, 24] infinite state systems and their properties are encoded as constraint logic programs
(following an approach similar to [10, 16]) and program specialization is used as a pre-processing
technique for a more effective computation of the least model (or an over-approximation thereof)
of those programs. In [14] constraint logic programs provide an intermediate representation of
the systems to be verified. However, the final result of the specialization is not a constraint logic
program, but a new infinite state system which is then analyzed by using the ALV tool [25].

Unlike [12, 14, 24], in this paper we define a transformation method that works directly on
the system specification, without the need of any constraint logic programming representation.
Our new approach has the advantage of allowing the use of efficient representation and manip-
ulation techniques for constraints, without the need for providing the representation and the
manipulation of clauses, which we, thus, prove to be redundant. We have used our technique as
a pre-processing of FASTer [4], instead of ALV, thereby demonstrating that our transformation
method works well also in combination with flat acceleration.

Our transformation method is also related to some techniques for abstract interpretation [9]
and, in particular, to those proposed in the field of verification of infinite state systems [1,
8]. Indeed, in Section 4 we have introduced several generalized pre operators by combining
various operators previously considered in program analysis and program specialization, such
as, widening, convex hull, and well-quasi orders on the integers [9, 12, 13, 24].

The main difference between our transformation technique and abstract interpretation is that,
when applied to a given system specification, the former produces an equivalent specification,
while the latter produces a more abstract (possibly, finite state) model whose semantics is an
approximation of the semantics of the given specification. Moreover, since our transformation
method returns a new system specification which is written in the same language of the given
specification, after transformation we may also apply abstract interpretation techniques for
proving system properties.

A notable feature of our approach is that we use operators that manipulate linear constraints
on real numbers, and yet, as already mentioned, we are able to preserve the equivalence of
counter systems defined on the integers (obviously, this equivalence is with respect to the class
of properties we consider). This feature allows us to apply at transformation time more efficient
constraint solvers and more efficient manipulation techniques.

Finally, we would like to note that the transformation algorithm proposed in Section 3 is
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independent of the specific interpretation of the constraints (in particular, on the integers or on
the reals). Thus, our technique can easily be extended to other classes of reactive systems such
as linear hybrid systems [18].
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