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Abstract. We propose a program specialization technique for locally
stratified CLP(Z) programs, that is, logic programs with linear con-
straints over the set Z of the integer numbers. For reasons of efficiency
our technique makes use of a relaxation from integers to reals. We refor-
mulate the familiar unfold/fold transformation rules for CLP programs
so that: (i) the applicability conditions of the rules are based on the sat-
isfiability or entailment of constraints over the set R of the real numbers,
and (ii) every application of the rules transforms a given program into a
new program with the same perfect model constructed over Z. Then, we
introduce a strategy which applies the transformation rules for special-
izing CLP(Z) programs with respect to a given query. Finally, we show
that our specialization strategy can be applied for verifying properties
of infinite state reactive systems specified by constraints over Z.

1 Introduction

Reactive systems are often composed of processes that make use of possibly
unbounded data structures. In order to specify and reason about this type of
systems, several formalisms have been proposed, such as unbounded counter
automata [27] and vector addition systems [26]. These formalisms are based on
linear constraints over variables ranging over the set Z of the integer numbers.

Several tools for the verification of properties of systems with unbounded
integer variables have been developed in recent years. Among these we would
like to mention ALV [36], FAST [6], LASH [25], and TReX [1]. These tools
use sophisticated solvers for constraints over the integers which are based on
automata-theoretic techniques [22] or techniques for proving formulas of Pres-
burger Arithmetic [32].

Also constraint logic programming is a very powerful formalism for specifying
and reasoning about reactive systems [20]. In fact, many properties of counter



automata and vector addition systems, such as safety properties and, more gener-
ally, temporal properties, can be easily translated into constraint logic programs
with linear constraints over the integers, called CLP(Z) programs [21].

Unfortunately, dealing with constraints over the integers is often a source
of inefficiency and, in order to overcome this limitation, many verification tech-
niques are based on the interpretation of the constraints over the set R of the
real numbers, instead of the set Z of the integer numbers [7,13]. This extension
of the domain of interpretation is sometimes called relaxation.

The relaxation from integers to reals, also called the real relaxation, has
several advantages: (i) many constraint solving problems (in particular, the sat-
isfiability problem) have lower complexity if considered in the reals, rather than
in the integers [33], (ii) the class of linear constraints over the reals is closed
under projection, which is an operation often used during program verification,
while the class of linear constraints over the integers is not, and (iii) many highly
optimized libraries are actually available for performing various operations on
constraints over the reals, such as satisfiability testing, projection, widening, and
convex hull, that are often used in the field of static program analysis [10,11]
(see, for instance, the Parma Polyhedral Library [3]).

Relaxation techniques can be viewed as approximation techniques. Indeed, if
a property holds for all real values of a given variable then it holds for all integer
values, but not vice versa. This approximation technique can be applied to the
verification of reactive systems. For instance, if a safety property ϕ =def ∀x∈R
(reachable(x) → safe(x)) holds, then it also holds when replacing the set R by
the set Z. However, if ¬ϕ =def ∃x∈R (reachable(x) ∧∧ ¬safe(x)) holds, then we
cannot conclude that ∃x∈Z (reachable(x) ∧∧ ¬safe(x)) holds.

Now, as indicated in the literature (see, for instance, [17,19,29,30,31]) the ver-
ification of infinite state reactive systems can be done via program specialization
and, in particular, in [19] we proposed a technique consisting of the following two
steps: (Step 1) the specialization of the constraint logic program that encodes
the given reactive system, with respect to the query that encodes the property to
be verified, and (Step 2) the construction of the perfect model of the specialized
program.

In this paper we propose a variant of the verification technique introduced
in [19]. This variant is based on the specialization of locally stratified CLP(Z)
programs and uses a relaxation from the integers to the reals.

In order to do so, we need: (i) a suitable reformulation of the familiar un-
fold/fold transformation rules for CLP programs [14,18] so that: (i.1) the appli-
cability conditions of the rules are based on the satisfiability or entailment of
constraints over the reals R, and (i.2) every application of the rules transforms
a given program into a new program with the same perfect model constructed
over the integers Z, called perfect Z-model, and then (ii) the introduction of a
transformation strategy which applies the reformulated transformation rules for
specializing a given CLP(Z) program with respect to a given query.

There are two advantages of the verification technique we consider here. The
first advantage is that, since our specialization strategy manipulates constraints
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over the reals, it may exploit efficient techniques for checking satisfiability and
entailment, for computing projection, and for more complex constructions, such
as the widening and the convex hull operations over sets of constraints. The
second advantage is that, since we use equivalence preserving transformation
rules, that is, rules which preserve the perfect Z-model, the property to be verified
holds in the initial program if and only if it holds in the specialized program and,
thus, we may apply to the specialized program any other verification technique
we wish, including techniques based on constraints over the integers.

The rest of the paper is structured as follows. In Section 2 we introduce
some basic notions concerning constraints and CLP programs. In Section 3 we
present the rules for transforming CLP(Z) programs and prove that they pre-
serve equivalence with respect to the perfect model semantics. In Section 4 we
present our specialization strategy and in Section 5 we show its application to
the verification of infinite state reactive systems. Finally, in Section 6 we discuss
related work in the field of program specialization and verification of infinite
state systems.

2 Constraint Logic Programs over Integers and Reals

We will consider CLP(Z) programs, that is, constraint logic programs with linear
constraints over the set Z of the integer numbers. An atomic constraint is an
inequality either of the form r ≥ 0 or of the form r > 0, where r is a linear
polynomial with integer coefficients. A constraint is a conjunction of atomic
constraints. The equality t1 = t2 stands for the conjunction t1 ≥ t2 ∧∧ t2 ≥ t1. A
clause of a CLP(Z) program is of the form A← c ∧∧ B, where A is an atom, c is a
constraint, and B is a conjunction of (positive or negative) literals. For reasons
of simplicity and without loss of generality, we also assume that the arguments
of all literals are variables, that is, the literals are of the form p(X1, . . . , Xn) or
¬p(X1, . . . , Xn), with n≥0, where p is a predicate symbol not in {>,≥,=} and
X1, . . . , Xn are distinct variables ranging over Z.

Given a constraint c, by vars(c) we denote the set of variables occurring
in c. By ∀(c) we denote the universal closure ∀X1 . . . ∀Xn c, where vars(c) =
{X1, . . . , Xn}. Similarly, by ∃(c) we denote the existential closure ∃X1 . . . ∃Xn c.
Similar notation will also be used for literals, goals, and clauses.

For the constraints over the integers we assume the usual interpretation
which, by abuse of language, we denote by Z. A Z-model of a CLP(Z) pro-
gram P is defined to be a model of P which agrees with the interpretation Z
for the constraints. We assume that programs are locally stratified [2] and, sim-
ilarly to the case of logic programs without constraints, for a locally stratified
CLP(Z) program P we can define its unique perfect Z-model (or, simply, perfect
model), denoted MZ(P ) (see [2] for the definition of the perfect model of a logic
program).

We say that a constraint c is Z-satisfiable if Z |= ∃(c). We also say that a
constraint c Z-entails a constraint d, denoted c vZ d, if Z |= ∀(c→ d).
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For the constraints over the reals we assume the usual interpretation which,
by abuse of language, we denote by R. A constraint c is R-satisfiable if R |=∃(c).
A constraint c R-entails a constraint d, denoted c vR d, if R |= ∀(c → d). The
R-projection of a constraint c onto the set X of variables is a constraint cp such
that: (i) vars(cp)⊆X and (ii) R |= ∀(cp ↔ ∃Y1 . . . ∃Yk c), where {Y1, . . . , Yk} =
vars(c)−X. Recall that the set of constraints over Z is not closed under projection.

The following lemma states some simple relationships between Z-satisfiability
and R-satisfiability, and between Z-entailment and R-entailment.

Lemma 1. Let c and d be constraints and X be a set of variables.
(i) If c is Z-satisfiable, then c is R-satisfiable. (ii) If c vR d, then c vZ d.
(iii) If cp is the R-projection of c on X, then c vZ cp.

3 Transformation Rules with Real Relaxations

In this section we present a set of transformation rules that can be used for
specializing locally stratified CLP(Z) programs. The applicability conditions of
the rules are given in terms of constraints interpreted over the set R and, as
shown by Theorem 1, these rules preserve the perfect Z-model semantics.

The rules we will consider are those needed for specializing constraint logic
programs, as indicated in the Specialization Strategy of Section 4. Note, however,
that the correctness result stated in Theorem 1 can be extended to a larger
set of rules (including the negative unfolding rule [18,34]) or to more powerful
rules (such as the definition rule with m (≥1) clauses, and the multiple positive
folding [18]).

Before presenting these rules, we would like to show through an example
that, if we consider different domains for the interpretation of the constraints
and, in particular, if we apply the relaxation from the integers to the reals, we
may derive different programs with different intended semantics.

Let us consider, for instance, the following constraint logic program P :

1. p← Y >0 ∧∧ Y <1 2. q ←
If we interpret the constraints over the reals, since R |= ∃Y (Y > 0 ∧∧ Y < 1),
program P can be transformed into program PR:

1′. p← 2. q ←
If we interpret the constraints over the integers, since Z |=¬∃Y (Y > 0 ∧∧ Y < 1),
program P can be transformed into program PZ:

2. q ←
Programs PR and PZ are not equivalent because they have different perfect
Z-models (which in this case coincide with their least Herbrand models). Thus,
when we apply a relaxation we should proceed with some care. In particu-
lar, we will admit a transformation rule only when its applicability conditions
interpreted over R imply the corresponding applicability conditions interpreted
over Z.
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The transformation rules are used to construct a transformation sequence,
that is, a sequence P0, . . . , Pn of programs. We assume that P0 is locally strat-
ified. A transformation sequence P0, . . . , Pn is constructed as follows. Suppose
that we have constructed a transformation sequence P0, . . . , Pk, for 0≤k≤n−1.
The next program Pk+1 in the transformation sequence is derived from pro-
gram Pk by the application of a transformation rule among R1–R5 defined below.

Our first rule is the Constrained Atomic Definition rule (or Definition Rule,
for short), which is applied for introducing a new predicate definition.
R1. Constrained Atomic Definition. Let us consider a clause, called a defi-
nition clause, of the form:

δ: newp(X1, . . . , Xh)← c ∧∧ p(X1, . . . , Xh)
where: (i) newp does not occur in {P0, . . . , Pk}, (ii) X1, . . . , Xh are distinct vari-
ables, (iii) c is a constraint with vars(c) ⊆ {X1, . . . , Xh}, and (iv) p occurs in P0.
By constrained atomic definition from program Pk we derive the program Pk+1 =
Pk∪{δ}. For k ≥ 0, Defsk denotes the set of clauses introduced by the definition
rule during the transformation sequence P0, . . . , Pk. In particular, Defs0 = ∅.

R2. (Positive) Unfolding. Let γ : H ← c ∧∧ GL ∧∧ A ∧∧ GR be a clause in
program Pk and let

γ1: K1 ← c1 ∧∧ B1 . . . γm: Km ← cm ∧∧ Bm (m ≥ 0)
be all clauses of (a renamed apart variant of) program Pk such that, for i=1, . . . ,
m, the constraint c ∧∧ ciρi is R-satisfiable, where ρi is a renaming substitution
such that A = Kiρi (recall that all atoms in a CLP(Z) program have distinct
variables as arguments).
By unfolding clause γ w.r.t. the atom A we derive the clauses

η1 : H ← c ∧∧ c1ρ1 ∧∧ GL ∧∧ B1ρ1 ∧∧ GR

. . .
ηm : H ← c ∧∧ cmρm ∧∧ GL ∧∧ Bmρm ∧∧ GR

and from program Pk we derive the program Pk+1 = (Pk−{γ})∪{η1, . . . , ηm}.

Note that if m=0 then, by unfolding, clause γ is deleted from Pk.

Example 1. Let Pk be the following CLP(Z) program:
1. p(X)← X>1 ∧∧ q(X)
2. q(Y )← Y >2 ∧∧ Z=Y −1 ∧∧ q(Z)
3. q(Y )← Y <2 ∧∧ 5Z=Y ∧∧ q(Z)
4. q(Y )← Y =0

Let us unfold clause 1 w.r.t. the atom q(X). We have the renaming substitution
ρ = {Y/X}, which unifies the atoms q(X) and q(Y ), and the following three
constraints:
(a) X>1 ∧∧ X>2 ∧∧ Z=X−1, derived from clauses 1 and 2,
(b) X>1 ∧∧ X<2 ∧∧ 5Z=X, derived from clauses 1 and 3,
(c) X>1 ∧∧ X=0, derived from clauses 1 and 4.
Only (a) and (b) are R-satisfiable, and only (a) is Z-satisfiable. By unfolding
clause 1 w.r.t. q(X) we derive the following clauses:
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1.a p(X)← X>1 ∧∧ X>2 ∧∧ Z=X−1 ∧∧ q(Z)
1.b p(X)← X>1 ∧∧ X<2 ∧∧ 5Z=X ∧∧ q(Z)

Now we introduce two versions of the folding rule: positive folding and negative
folding, depending on whether folding is applied to positive or negative literals
in the body of a clause.
R3. Positive Folding. Let γ: H ← c ∧∧ GL ∧∧ A ∧∧ GR be a clause in Pk and let
δ: K ← d ∧∧ B be a clause in (a renamed apart variant of) Defsk. Suppose that
there exists a renaming substitution ρ such that: (i) A = B ρ, and (ii) c vR d ρ.
By folding γ using δ we derive the clause η: H ← c ∧∧ GL ∧∧ Kρ ∧∧ GR and from
program Pk we derive the program Pk+1 = (Pk − {γ}) ∪ {η}.

The following example illustrates an application of Rule R3.
Example 2. Suppose that the following clause belongs to Pk:

γ: h(X)← X≥1 ∧∧ 2Y =3X+2 ∧∧ p(X,Y )
and suppose that the following clause is a definition clause in Defsk:

δ: new(V,Z)← Z>2 ∧∧ p(V,Z)
We have that the substitution ρ = {V/X,Z/Y } satisfies Conditions (i) and
(ii) of the positive folding rule because X≥1 ∧∧ 2Y =3X+2 vR (Z>2)ρ. Thus,
by folding clause γ using clause δ, we derive:

η: h(X)← X≥1 ∧∧ 2Y =3X+2 ∧∧ new(X,Y )

R4. Negative Folding. Let γ: H ← c ∧∧ GL ∧∧ ¬A ∧∧ GR be a clause in Pk and let
δ : K ← d ∧∧ B be a clause in (a renamed apart variant of) Defsk. Suppose that
there exists a renaming substitution ρ such that: (i) A = B ρ, and (ii) c vR d ρ.
By folding γ using δ we derive the clause η: H ← c ∧∧ GL ∧∧ ¬Kρ ∧∧ GR and from
program Pk we derive the program Pk+1 = (Pk−{γ}) ∪ {η}.
The following notion will be used for introducing the clause removal rule. Given
two clauses of the form γ: H ← c ∧∧ B and δ: H ← d, respectively, we say that
γ is Z-subsumed by δ, if c vZ d. Similarly, we say that γ is R-subsumed by δ, if
c vR d.

By Lemma 1, if γ is R-subsumed by δ, then γ is Z-subsumed by δ.

R5. Clause Removal. Let γ be a clause in Pk. By clause removal we derive
the program Pk+1 = Pk − {γ} if clause γ is R-subsumed by a clause occurring
in Pk − {γ}.

The following Theorem 1 states that the transformation rules R1–R5 preserve
the perfect Z-model semantics.

Theorem 1 (Correctness of the Transformation Rules). Let P0 be a lo-
cally stratified program and let P0, . . . , Pn be a transformation sequence obtained
by applying rules R1–R5. Let us assume that for every k, with 0<k<n−1, if
Pk+1 is derived by applying positive folding to a clause in Pk using a clause δ in
Defsk , then there exists j, with 0<j<n−1, such that: (i) δ belongs to Pj, and
(ii) Pj+1 is derived by unfolding δ w.r.t. the only atom in its body.
Then Pn is locally stratified and for every ground atom A whose predicate occurs
in P0, we have that A ∈MZ(P0) iff A ∈MZ(Pn).
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Proof. (Sketch) Let us consider variants of Rules R1–R5 where the applicability
conditions are obtained from those for R1–R5 by replacing R by Z. Let us de-
note R1Z–R5Z these variants of the rules. Rules R1Z, R2Z, R3Z, R4Z, and R5Z
can be viewed as instances (for D = Z) of the rules R1, R2p, R3(P), R3(N),
and R4s, respectively, for specializing CLP(D) programs presented in [15]. By
Theorem 3.3.10 of [15] we have that Pn is locally stratified and for every ground
atom A whose predicate occurs in P0, we have that A ∈MZ(P0) iff A ∈MZ(Pn).
Since, by Lemma 1 we have that the applicability conditions of R1–R5 imply
the applicability conditions of R1Z–R5Z, we get the thesis. �

4 The Specialization Strategy

Now we present a strategy for specializing a program P0 with respect to a query
of the form c ∧∧ p(X1, . . . , Xh), where c is a constraint and p is a predicate
occurring in P0. Our strategy constructs a transformation sequence P0, . . . , Pn

by using the rules R1–R5 defined in Section 3. The last program Pn is the
specialized version of P0 with respect to c ∧∧ p(X1, . . . , Xh). Pn is the output
program Psp of the specialization strategy presented below.

The Specialization Strategy makes use of two auxiliary operators: an unfold-
ing operator and a generalization operator that tell us how to apply the unfolding
rule R2 and the constrained atomic definition rule R1, respectively. The problem
of designing suitable unfolding and generalization operators has been addressed
in many papers and various solutions have been proposed in the literature (see,
for instance, [16,19,31] and [28] for a survey in the case of logic programs). In
this paper we will not focus on this aspect and we will simply assume that we
are given: (i) an operator Unfold(δ, P ) which, for every clause δ occurring in a
program P , returns a set of clauses derived from δ by applying n (≥ 1) times
the unfolding rule R2, and (ii) an operator Gen(c ∧∧ A,Defs) which, for every
constraint c, atom A with vars(c) ⊆ vars(A), and set Defs of the definition
clauses introduced so far by Rule R1 during the Specialization Strategy, returns
a constraint g that is more general than c, that is: (i) vars(g) ⊆ vars(c) and
(ii) c vR g. An example of the generalization operator Gen will be presented in
Section 5.

The Specialization Strategy
Input : A program P0 and a query c ∧∧ p(X1, . . . , Xh) where: (i) c is a constraint
with vars(c) ⊆ {X1, . . . , Xh}, and (ii) p occurs in P0.
Output : A program Psp such that for every tuple 〈n1, . . . , nh〉 ∈ Zh,

psp(n1, . . . , nh) ∈MZ(P0 ∪ {δ0}) iff psp(n1, . . . , nh) ∈MZ(Psp),

where: (i) δ0 is the definition clause psp(X1, . . . , Xh) ← c ∧∧ p(X1, . . . , Xh) and
(ii) psp is a predicate not occurring in P0.

Initialization:
Psp := P0 ∪ {δ0}; Defs := {δ0};
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while there exists a clause δ in Psp ∩Defs do

Unfolding: Γ := Unfold(δ, Psp);

Clause Removal:
while in Γ there exist two distinct clauses γ1 and γ2 such that γ1 is R-subsumed
by γ2 do Γ := Γ − {γ1} end-while;

Definition & Folding:
while in Γ there exists a clause γ: H ← c ∧∧ G1 ∧∧ L ∧∧ G2, where L is a literal
whose predicate occurs in P0 do

let cp be the R-projection of c on vars(L) and let A be the atom such that
L is either A or ¬A;
if in Defs there exists a clause K ← d ∧∧ B and a renaming substitution

ρ such that: (i) A = B ρ and (ii) cp vR d ρ

then Γ := (Γ − {γ}) ∪ {H ← c ∧∧ G1 ∧∧M ∧∧ G2}
where M is Kρ if L is A, and M is ¬Kρ if L is ¬A;

else Psp := Psp ∪ {K ← g ∧∧ A}; Defs := Defs ∪ {K ← g ∧∧ A}
where: (i) K = newp(Y1, . . . , Ym), (ii) newp is a predicate sym-
bol not occurring in P0 ∪ Defs, (iii) {Y1, . . . , Ym} = vars(A), and
(iv) g = Gen(cp ∧∧ A,Defs);

Γ := (Γ − {γ}) ∪ {H ← c ∧∧ G1 ∧∧M ∧∧ G2}
where M is K if L is A, and M is ¬K if L is ¬A;

end-while;

Psp := (Psp − {δ}) ∪ Γ ;

end-while

In the Specialization Strategy we use real relaxations at several points: (i) when
we apply the Unfold operator (because for applying rule R2 we check R-satisfia-
bility of constraints); (ii) when we check R-subsumption during clause removal;
(iii) when we compute the R-projection cp of the constraint c, (iv) when we
check whether or not cp vR dρ, and (v) when we compute the constraint g =
Gen(cp ∧∧ A,Defs) such that cp vR g. Note that the condition cp vR g ensures
that clause γ can be folded using the new clause K ← g ∧∧ A, as it can be checked
by inspecting Rules R3 and R4 and recalling that, by Lemma 1, c vR cp.

The correctness of the Specialization Strategy derives from the correctness of
the transformation rules (see Theorem 1). Indeed, the sequence of values assigned
to Psp during the strategy can be viewed as (a subsequence of) a transformation
sequence satisfying the hypotheses of Theorem 1.

We assume that the unfolding and the generalization operators guarantee
that the Specialization Strategy terminates. In particular, we assume that: (i) the
Unfold operator performs a finite number of unfolding steps, and (ii) the set
Defs stabilizes after a finite number of applications of the Gen operator, that
is, there exist two consecutive values, say Defsk and Defsk+1, of Defs such that
Defsk = Defsk+1. This stabilization property can be enforced by defining the
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generalization operator similarly to the widening operator on polyhedra, which
is often used in the static analysis of programs [10].

5 Application to the Verification of Reactive Systems

In this section we show how our Specialization Strategy based on real relaxations
can be used for the verification of properties of infinite state reactive systems.

Suppose that we are given an infinite state reactive system such that: (i) the
set of states is a subset of Zk, and (ii) the state transition relation is a binary
relation on Zk specified as a set of constraints over Zk × Zk. In this section we
will take into consideration safety properties, but our technique can be applied
to more complex properties, such as CTL temporal properties [9,19]. A reactive
system is said to be safe if from every initial state it is not possible to reach,
by zero or more applications of the transition relation, a state, called an unsafe
state, satisfying an undesired property. Let Unsafe be the set of all unsafe states.
A standard method to verify whether or not the system is safe consists in:
(i) computing (backwards from Unsafe) the set BR of the states from which it is
possible to reach an unsafe state, and (ii) checking whether or not BR ∩ Init = ∅,
where Init denotes the set of initial states.

In order to compute the set BR of backward reachable states, we introduce
a CLP(Z) program PBR defining a predicate br such that 〈n1, . . . , nk〉 ∈ BR
iff br(n1, . . . , nk) ∈ MZ(PBR). Then we can show that the reactive system is
safe, by showing that there is no atom br(n1, . . . , nk) ∈ MZ(PBR) such that
init(n1, . . . , nk) holds, where init(X1, . . . , Xk) is a constraint that represents
the set Init of states. Unfortunately, the computation of the perfect Z-model
MZ(PBR) by a bottom-up evaluation of the immediate consequence operator
may not terminate, and in that case we are unable to check whether or not the
system is safe.

It has been shown in [19] that the termination of the bottom-up construction
of the perfect model of a program can be improved by first specializing the
program with respect to the query of interest. In this paper, we use a variant
of the specialization-based method presented in [19] which is tailored to the
verification of safety properties.

Our specialization-based method for verification consists of two steps. In
Step 1 we apply the Specialization Strategy of Section 4 and we specialize pro-
gram PBR with respect to the initial states of the system, that is, w.r.t. the query
init(X1, . . . , Xk) ∧∧ br(X1, . . . , Xk). In Step 2 we compute the perfect Z-model
of the specialized program by a bottom-up evaluation of the immediate conse-
quence operator associated with the program.

Before presenting an example of application of our verification method, let us
introduce the generalization operator we will use in the Specialization Strategy.
We will define our generalization operator by using the widening operator [10],
but we could have made other choices by using suitable combinations of the
widening operator, the convex hull operator, and thin well-quasi orderings based
on the coefficients of the polynomials (see [11,19,31] for details).
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First, we need to structure the set Defs of definition clauses as a tree, also
called Defs (a similar approach is followed in [19]): (i) the root clause of that
tree is δ0, and (ii) the children of a definition clause δ are the new definition
clauses added to Defs (see the else branch in the body of the inner while-loop
of the Specialization Strategy) during the execution relative to δ (see the test
‘δ in Psp∩Defs’) of the body of the outer while-loop of the Specialization Strategy.

Given a constraint cp and an atom A obtained from a clause δ as described
in the Specialization Strategy, Gen(cp ∧∧A, Defs) is the constraint g defined as
follows. If in Defs there exists a (most recent) ancestor clause K ← d ∧∧ B of
δ (possibly δ itself) such that: (i) A = B ρ for some renaming substitution ρ,
and (ii) d ρ = a1∧∧ . . . ∧∧am then g =

∧m
i=1{ai | cpvR ai}. Otherwise, if no such

ancestor of δ exists in Defs, then g = cp.

Now let us present an example of application of our verification technique
based on the Specialization Strategy of Section 4. The states of the infinite state
reactive system we consider are pairs of integers and the transitions from states
to states, denoted by −→, are the following ones: for all X,Y ∈ Z,

(1) 〈X,Y 〉 −→ 〈X,Y −1〉 if X≥1
(2) 〈X,Y 〉 −→ 〈X,Y +2〉 if X≤2
(3) 〈X,Y 〉 −→ 〈X,−1〉 if ∃Z∈Z (Y =2Z+1)

(Thus, transition (3) is applicable only if Y is a positive or negative odd num-
ber.) The initial state is 〈0, 0〉 and, thus, Init is the singleton {〈0, 0〉}. We want
to prove that the system is safe in the sense that from the initial state we can-
not reach any state 〈X,Y 〉 with Y < 0. As mentioned above, we define the set
BR = {〈m,n〉 ∈ Z2 | ∃〈x, y〉 ∈ Z2 (〈m,n〉 −→∗ 〈x, y〉 ∧∧ y < 0)}, where −→∗ is
the reflexive, transitive closure of the transition relation −→. Thus, BR is the
set of states from which an unsafe state is reachable. We have to prove that
Init ∩ BR = ∅.

We proceed as follows. First, we introduce the following program PBR:

1. br(X,Y )← X≥1 ∧∧ X ′=X ∧∧ Y ′=Y −1 ∧∧ br(X ′, Y ′)
2. br(X,Y )← X≤2 ∧∧ X ′=X ∧∧ Y ′=Y +2 ∧∧ br(X ′, Y ′)
3. br(X,Y )← Y = 2Z+1 ∧∧ X ′=X ∧∧ Y ′=−1 ∧∧ br(X ′, Y ′)
4. br(X,Y )← Y <0

The predicate br computes the set BR of states, in the sense that: for all
〈m,n〉 ∈ Z2, 〈m,n〉 ∈ BR iff br(m,n) ∈ MZ(PBR). Thus, in order to prove
the safety of the system it is enough to show that br(0, 0) 6∈ MZ(PBR). Unfor-
tunately, the construction of MZ(PBR) performed by means of the bottom-up
evaluation of the immediate consequence operator does not terminate.

Note that the use of a tabled logic programming system [8], augmented with a
solver for constraints on the integers, would not overcome this difficulty. Indeed,
a top-down evaluation of the query br(0, 0) generates infinitely many calls of the
form br(0, 2n), for n ≥ 1.

Now we show that our two step verification method successfully terminates.
Step 1. We apply the Specialization Strategy which takes as input the program
PBR and the query X=0 ∧∧ Y =0 ∧∧ br(X,Y ). Thus, the clause δ0 is:

10



δ0. br sp(X,Y )← X=0 ∧∧ Y =0 ∧∧ br(X,Y )
By applying the Unfold operator we obtain the two clauses:

5. br sp(X,Y )← X=0 ∧∧ Y =0 ∧∧ X ′=0 ∧∧ Y ′=2 ∧∧ br(X ′, Y ′)
6. br sp(X,Y )← X=0 ∧∧ Y =0 ∧∧ Y = 2Z+1 ∧∧ X ′=0 ∧∧ Y ′=−1 ∧∧ br(X ′, Y ′)

Since clause δ0 cannot be used for folding clause 5, we apply the generalization
operator and we compute Gen((X ′= 0 ∧∧ Y ′= 2 ∧∧ br(X ′, Y ′)), {δ0}) as follows.
We consider the definition clause δ0 to be an ancestor clause of itself. Then, we
consider its constraint, rewritten as d ≡ (X ≥ 0 ∧∧ X ≤ 0 ∧∧ Y ≥ 0 ∧∧ Y ≤ 0), and
we generalize the constraint d ρ ≡ (X ′ ≥ 0 ∧∧ X ′ ≤ 0 ∧∧ Y ′ ≥ 0 ∧∧ Y ′ ≤ 0), using
cp ≡ (X ′ = 0 ∧∧ Y ′ = 2), thereby introducing the following definition (modulo
variable renaming):
δ1. new1(X,Y )← X=0 ∧∧ Y ≥0 ∧∧ br(X,Y )

Similarly, in order to fold clause 6, we introduce the following definition:
δ2. new2(X,Y )← X=0 ∧∧ Y ≤0 ∧∧ br(X,Y )

By folding clauses 5 and 6 by using definitions δ1 and δ2, respectively, we derive
the following clauses:

7. br sp(X,Y )← X=0 ∧∧ Y =0 ∧∧ X ′=0 ∧∧ Y ′=2 ∧∧ new1(X ′, Y ′)
8. br sp(X,Y )← X=0 ∧∧ Y =0 ∧∧ Y = 2Z+1 ∧∧ X ′=0 ∧∧ Y ′=−1 ∧∧

new2(X ′, Y ′)
Then, we proceed with the next iterations of the body of the outermost while-
loop of the Specialization Strategy, and we process first clause δ1 and then
clause δ2. By using clauses δ0, δ1, and δ2, we cannot fold all the clauses which are
obtained by unfolding δ1 and δ2 w.r.t. the atom br(X,Y ). Thus, we apply again
the generalization operator and we introduce the following definition (modulo
variable renaming):
δ3. new3(X,Y )← X=0 ∧∧ br(X,Y )

After processing also this clause δ3 and performing the unfolding and folding
steps as indicated by the Specialization Strategy, we obtain the clauses:

9. new1(X,Y )← X=0 ∧∧ Y ≥0 ∧∧ X ′=0 ∧∧ Y ′=Y +2 ∧∧ new1(X ′, Y ′)
10. new1(X,Y )← X=0 ∧∧ Y ≥0 ∧∧ Y = 2Z+1 ∧∧ X ′=0 ∧∧ Y ′=−1 ∧∧

new2(X ′, Y ′)
11. new2(X,Y )← X=0 ∧∧ Y ≤0 ∧∧ X ′=0 ∧∧ Y ′=Y +2 ∧∧ new3(X ′, Y ′)
12. new2(X,Y )← X=0 ∧∧ Y ≤0 ∧∧ Y = 2Z+1 ∧∧ X ′=0 ∧∧ Y ′=−1 ∧∧

new2(X ′, Y ′)
13. new2(X,Y )← X=0 ∧∧ Y <0
14. new3(X,Y )← X=0 ∧∧ X ′=0 ∧∧ Y ′=Y +2 ∧∧ new3(X ′, Y ′)
15. new3(X,Y )← X=0 ∧∧ Y = 2Z+1 ∧∧ X ′=0 ∧∧ Y ′=−1 ∧∧ new3(X ′, Y ′)
16. new3(X,Y )← X=0 ∧∧ Y <0

The final program Psp consists of clauses 7–16.
Step 2. Now we construct the perfect Z-model of Psp by computing the least
fixpoint of the immediate consequence operator associated with Psp (note that
in our case the least fixpoint exists, because the program is definite, and is
reached after a finite number of iterations) and we have that:
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MZ(Psp) = {new1(X,Y ) | X=0 ∧∧ Y ≥0 ∧∧ Y = 2Z+1} ∪
{new2(X,Y ) | X=0 ∧∧ (Y <0 ∨∨ Y = 2Z+1)} ∪
{new3(X,Y ) | X=0 ∧∧ (Y <0 ∨∨ Y = 2Z+1)}.

By inspection, we immediately get that br sp(0, 0) /∈ MZ(Psp) and, thus, the
safety property has been proved.

Our Specialization Strategy has been implemented on the MAP transforma-
tion system (available at http://www.iasi.cnr.it/~proietti/system.html)
by suitably modifying the specialization strategy presented in [19], so as to use
the transformation rules based on real relaxations we have presented in this pa-
per. We have tested our implementation on the set of infinite state systems used
for the experimental evaluation in [19] and we managed to prove the same prop-
erties. However, the technique proposed in [19] encodes the temporal properties
of the reactive systems we consider as CLP(Q) programs, where Q is the set of
rational numbers. Thus, a proof of correctness of the encoding is needed for each
system, to show that the properties of interest hold in the CLP(Q) encoding iff
they hold in the CLP(Z) one. In contrast, the method presented in this paper
makes use of constraint solvers over the real numbers, but it preserves equiva-
lence with respect to the perfect Z-model, thereby avoiding the need for ad hoc
proofs of the correctness of the encoding.

Finally, note that the example presented in this section cannot be worked
out by first applying the relaxation from integers to reals to the initial pro-
gram and then applying polyhedral approximations, such as those considered in
static program analysis [10]. Indeed, we have that br(0, 0) /∈ MZ(PBR), but if
the system is interpreted over the reals, instead of the integers, we have that
br(0, 0) ∈MR(PBR) (where MR denotes the perfect model constructed over R).
This is due to the fact that ∃Z(0=2Z+1) holds on the reals (but it does not hold
on the integers) and, hence, we derive br(0, 0) from clauses 3 and 4 of program
PBR. Thus, br(0, 0) is a member of every over-approximation of MR(PBR) and
the safety property cannot be proved.

6 Related Work and Conclusions

We have presented a technique for specializing a CLP(Z) program with respect
to a query of interest. Our technique is based on the unfold/fold transforma-
tion rules and its main novelty is that it makes use of the relaxation from the
integers Z to the reals R, that is, during specialization the constraints are in-
terpreted over the set of the real numbers, instead of the integer numbers. The
most interesting feature of our specialization technique is that, despite the re-
laxation, the initial program and the derived, specialized program are equivalent
with respect to the perfect model constructed over Z (restricted to the query
of interest). In essence, the reason for this equivalence is that, if the unsatis-
fiability of constraints or the entailment between constraints that occur in the
applicability conditions of the transformation rules hold in R, then they hold
also in Z.

The main practical advantage of our specialization technique is that, during
transformation, we can use tools for manipulating constraints over the reals, such
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as the libraries for constraint solving, usually available within CLP(R) systems
and, in particular, the Parma Polyhedral Library [3]. These tools are signifi-
cantly more efficient than constraint solvers over the integers and, moreover,
they implement operators which are often used during program specialization
and program analysis, such as, the widening and convex hull operators. The price
we pay, at least in principle, for the efficiency improvement, is that the result of
program specialization may be sub-optimal with respect to the one which can be
achieved by manipulating integer constraints. Indeed, our specialization strat-
egy might fail to exploit properties which hold for the integers and not for the
reals, while transforming the input program. For example, it may be unable to
detect that a clause could be removed because it contains constraints which are
unsatisfiable on the integers. However, we have checked that, for the significant
set of examples taken from [19], this sub-optimality never occurs.

The main application of our specialization technique is the verification of in-
finite state reactive systems by following the approach presented in [19]. Those
systems are often specified by using constraints over integer variables, and their
properties (for instance, reachability, safety and liveness) can be specified by us-
ing CLP(Z) programs [20,21]. It has been shown in [19] that properties of infinite
state reactive systems can be verified by first (1) specializing the program that
encodes the properties of the system with respect to the property of interest,
and then (2) constructing the perfect model of the specialized program by the
standard bottom-up procedure based on the evaluation of the immediate conse-
quence operator. However, in [19] the reactive systems and their properties were
encoded by using CLP programs over the rational numbers (or, equivalently in
the case of linear constraints, over the real numbers), instead of integer numbers.
Thus, a proof of correctness of the encoding is needed for each system (or for
some classes of systems, as in [7,13]). In contrast, our specialization technique
makes use of constraint solvers over the real numbers, but preserves equivalence
with respect to the perfect model constructed over the integer numbers, thereby
avoiding the need for ad hoc proofs of the correctness of the encoding.

Specialization techniques for constraint logic programs have been presented
in several papers [12,16,23,31,35]. However, those techniques consider CLP(D)
programs, where D is either a generic domain, or the domain of the rational
numbers, or the domain of the real numbers. None of those papers proposes
techniques for specializing CLP(Z) programs by manipulating constraints inter-
preted over the real numbers, as we do here.

Also the application of program specialization to the verification of infinite
state systems is not a novel idea [17,19,29,30,31] and, indeed, the technique
outlined in Section 5 is a variant of the one proposed in [19]. The partial de-
duction techniques presented in [29,30] do not make use of constraints. The
papers [17,19,31] propose verification techniques for reactive systems which are
based on the specialization of constraint logic programs, where the constraints
are linear equalities and inequalities over the rational or real numbers. When
applying these specialization techniques to reactive systems whose native spec-
ifications are given by using constraints over the integers, we need to prove the
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correctness of the encoding. Indeed, as shown by our example in Section 3, if
we specify a system by using constraints over the integers and then we inter-
pret those constraints over the reals (or the rationals), we may get an incorrect
result. The approach investigated in this paper avoids extra correctness proofs,
and allows us to do the specialization by interpreting constraints over the reals.

The verification of program properties based on real convex polyhedral ap-
proximations (that is, linear inequalities over the reals) has been first proposed
in the field of static program analysis [10,11] and then applied in many contexts.
In particular, [4,5,13] consider CLP(R) encodings of infinite state reactive sys-
tems. In the case where a reactive system is specified by constraints over the
integers and we want to prove a property of a set of reachable states, these en-
codings determine an over-approximation of that set. Thus, by static analysis a
further over-approximation is computed, besides the one due the interpretation
over the reals, instead of the integers, and the property of interest is checked
on the approximated set of reachable states. (Clearly this method can only be
applied to prove that certain states are not reachable.)

A relevant difference between our approach and the program analysis tech-
niques based on polyhedral approximations is that we apply equivalence preserv-
ing transformations and, therefore, the property to be verified holds in the initial
CLP(Z) program if and only if it holds in the specialized CLP(Z) program. In
some cases this equivalence preservation is an advantage of the specialization-
based verification techniques over the approximation-based techniques. For in-
stance, if we want to prove that a given state is not reachable and this property
does not hold in the CLP(R) encoding (even if it holds in the CLP(Z) encod-
ing), then we will not be able to prove the unreachability property of interest by
computing any further approximation (see our example in Section 5).

Another difference between specialization-based verification techniques and
static program analysis techniques is that program specialization allows poly-
variance [24], that is, it can produce several specialized versions for the same
predicate (see our example in Section 5), while static program analysis produces
one approximation for each predicate. Polyvariance is a potential advantage, as
it could be exploited for a more precise analysis, but, at the same time, it requires
a suitable control to avoid the explosion of the size of the specialized program.
The issue of controlling polyvariance is left for future work.

In this paper we have considered constraints consisting of conjunctions of
linear inequalities. In the case of non-linear inequalities the relaxation from inte-
ger to real numbers is even more advantageous, as the satisfiability of non-linear
inequalities is undecidable on the integers and decidable on the reals. Our tech-
niques smoothly extend to the non-linear case which, for reasons of simplicity,
we have not considered here.

Finally, in this paper we have considered transformation rules and strate-
gies for program specialization. An issue for future research is the extension of
relaxation techniques to more general unfold/fold rules, including, for instance:
(i) negative unfolding, and (ii) folding using multiple clauses with multiple lit-
erals in their bodies (see, for instance, [18]).
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