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Abstract. We present a method for performing model checking of im-
perative programs by using techniques based on the specialization of
constraint logic programs (CLP). We have considered a simple imper-
ative language, called SIMP, extended with a nondeterministic choice
operator, and we have introduced a CLP interpreter which defines the
operational semantics of SIMP. Our software model checking method
which consists in: (1) translating a given SIMP program, together with
the safety property to be verified and a description of the input values,
into terms, (2) specializing the CLP interpreter with respect to the above
translation, and (3) computing the least model of the specialized inter-
preter. By inspecting the derived least model we can verify whether or
not the given SIMP program satisfies the safety property. The method is
fully automatic and has been implemented using the MAP transforma-
tion system. We have shown the effectiveness of our method by applying
it to some examples taken from the literature and we have compared its
performance with that of other state-of-the-art software model checkers.

1 Introduction

Formal verification of software products has recently received a growing attention
as a promising methodology for increasing the reliability and reducing the cost
of software production (e.g. by reducing the time to market).

Software model checking is a body of formal verification techniques for im-
perative programs that combine and extend ideas and techniques developed in
the fields of static program analysis and model checking (see our discussion in
Section 5 and [12] for a recent survey).

Among the various software model checking techniques, there are some which
make use of Constraint Logic Programming (CLP). This programming paradigm
has been shown to be very suitable for the symbolic evaluation and the analysis
of imperative programs (see, for instance, [10,11,15,16]).



Also the technique we present in this paper makes use of CLP and addresses
the problem of verifying safety properties of imperative programs. Basically, a
safety property states that an unsafe configuration (or an error configuration)
is not reachable from an initial configuration by any execution of the program.
Since we consider programs that act on integer numbers, the problem of deciding
whether or not an unsafe configuration is reachable is undecidable.

In previous work we have shown that the termination of reachability analyses
of infinite state systems can be improved by encoding reachability as a CLP pro-
gram and then specializing the CLP program by incorporating the information
about the initial and the unsafe states [4].

In this paper we show that the approach presented in [4] can be extended to
perform software model checking of SIMP programs, that is, simple imperative
programs which also include a nondeterministic choice operator. In order to make
this extension we follow an approach similar to the one proposed in [15] and, in
particular, we introduce a CLP program which encodes an interpreter defining
the operational semantics of imperative programs.

Then, in order to verify a safety property of a given SIMP program c, we
introduce a predicate unsafe which holds if and only if an unsafe configuration is
reachable from an initial configuration by any execution of the CLP interpreter
taking c as input. Thus, we can show that program c is safe by checking that
unsafe does not belong to the least model of the CLP interpreter with c as the
input program.

Unfortunately, it is often the case that the construction of that least model
does not terminate. In order to mitigate this problem, we specialize the CLP
interpreter with respect to program c and the property characterizing its input
values. We show through experiments that the computation of the least model
of the specialized program terminates in many interesting cases. Since program
specialization preserves the least model of CLP programs, we can verify whether
or not the given SIMP program c satisfies a given safety property by inspecting
the least model of the specialized CLP interpreter and checking whether or not
it contains unsafe.

Our software model checking method consists of the following three steps.
First, Step (1): we translate the given SIMP program, together with the safety
property to be verified and a description of the input values, into terms, then,
Step (2): we specialize the CLP interpreter with respect to the terms derived at
the end of the previous step, and finally, Step (3): we compute the least model of
the specialized interpreter. By inspecting the derived least model we can verify
whether or not the given SIMP program satisfies the safety property.

We have implemented our software model checking method using the MAP
transformation system [14] and we have shown that our method is competitive
with state-of-the-art software model checking systems such as ARMC [16] and
TRACER [8].

The paper is organized as follows. In Section 2 we describe the syntax of the
SIMP language and the CLP interpreter which defines its operational semantics.
In Section 3 we describe our software model checking approach and the particu-



lar CLP program specialization technique which we use. In Section 4 we report
on some experiments we have performed by using a prototype implementation
based on the MAP transformation system. We also compare the results we have
obtained using the MAP system with the results we have obtained using ARMC
and TRACER. Finally, in Section 5 we discuss the related work and, in par-
ticular, we compare our approach with other existing software model checking
methods.

2 A CLP Interpreter for a Simple Imperative Language

In this section we describe the syntax and the semantics of a simple imperative
language (SIMP) which is based on the IMP language [18] and extends it with
the nondeterministic choice operator ndc (often denoted by ∗ in the literature).

We also introduce a CLP encoding of an interpreter for SIMP which defines
the structural operational semantics (also known as small-step semantics) of the
SIMP language, and by means of an example, we show how to translate SIMP
programs to CLP terms.

The syntax of SIMP is built upon the following sets:

– Int of integer constants, ranged over by the variable n,
– Bool of boolean constants {true, false},
– Loc of locations, ranged over by the variable x,
– AExpr of arithmetic expressions, ranged over by the variable a,
– BExpr of boolean expressions, ranged over by the variable b,
– TExpr of test expressions, ranged over by the variable t, and
– Com of commands, ranged over by the variable c.

The abstract syntax of the language is as follows.
a ::= n | x | a1+a2 | a1−a2 | a1×a2
b ::= true | false | a1 op a2 | ! b | b1 && b2 | b1 || b2
t ::= ndc | b
c ::= skip | x = a | c1; c2 | if t then c1 else c2 | while t do c od

where op ∈ {<,>,<=, >=,==, ! =} and the operators !, &&, and || define ‘not’,
‘and’ and ‘or’, respectively.

In order to define the operational semantics of SIMP commands we need
the following notions. An environment e is a finite function from Loc to Int.
We write e[n/x] to denote the environment e′ such that e′(x) = n and e′(y) =
e(y) for every y 6= x. A configuration is a pair 〈c, e〉 of a command c and an
environment e. The operational semantics is defined in terms of a transition
relation =⇒ over configurations. We say that a configuration 〈c′, e′〉 is reachable
from the configuration 〈c, e〉 if 〈c, e〉 =⇒∗ 〈c′, e′〉.

Here are the axioms and inference rules defining the operational semantics
of commands:



〈ndc, e〉 −→ true 〈ndc, e〉 −→ false

〈a, e〉 −→ n

〈x=a ; c, e〉 =⇒ 〈c, e[n/x]〉

〈skip ; c, e〉 =⇒ 〈c, e〉

〈((c1 ; c2) ; c3) , e〉 =⇒ 〈(c1 ; (c2 ; c3) , e〉

〈t, e〉 −→ true

〈(if t then c1 else c2) ; c, e〉 =⇒ 〈c1 ; c, e〉

〈t, e〉 −→ false

〈(if t then c1 else c2) ; c, e〉 =⇒ 〈c2 ; c, e〉

〈while tdo c1 od ; c, e〉 =⇒ 〈(if t then (c1 ; while tdo c1 od) else skip) ; c, e〉

together with the usual rules which define the relation −→ for the operational
semantics of arithmetic and boolean expressions (see, for instance, [18]).

Note that, similarly to what is done in [15], we have defined the operational
semantics of commands under the assumption that every command is either skip
or a concatenation of commands ending by skip. In the next section we present
the CLP program which encodes these rules for the operational semantics of
commands.

A (software model checking) specification is a triple of the form 〈init-prop,
com, unsafe-prop〉, where com is a command, and init-prop and unsafe-prop
are boolean expressions. An environment e is said to be initial (or unsafe) if
the boolean expression init-prop (or unsafe-prop, respectively) is true in e. A
configuration 〈c, e〉 is said to be initial (or unsafe) if the environment e is initial
(or unsafe, respectively).

We say that a command com satisfies the specification 〈init-prop, com,
unsafe-prop〉 (or com is safe, for short) if no unsafe configuration is reachable
from an initial configuration of the form 〈com, e〉, for some environment e.

2.1 A CLP Interpreter for SIMP Commands

Now we introduce a CLP program which encodes the operational semantics of
the SIMP language. We assume that the reader is familiar with the basic notions
of constraint logic programming [7].

An environment is a list of terms each of which is of the form lv(loc(v), V),
where V is a variable which stores the value associated with the location v. We
assume that the locations used in our programs are known in advance and, thus,



the lists used to represent the environments have a fixed length. We also intro-
duce two auxiliary predicates lookup and update, that operate on environments.
The predicate lookup is defined as follows:
lookup(loc(X), [lv(loc(X),Y)|_], V) :- V=Y.
lookup(loc(X), [_|T], V) :- lookup(loc(X), T, V).

thus, lookup(loc(X),E,V) holds iff V is the value associated with the location X

in the environment E. The predicate update is defined as follows:
update(loc(X), Y, [lv(loc(X),_)|T], [lv(loc(X),V)|T]) :- V=Y.
update(loc(X), V, [H|T], [H|T1]) :- update(loc(X), V, T, T1).

thus, update(loc(X),V,E1,E2) holds iff E2 is the environment equal to E1 ex-
cept that V is the value associated with the location X.

Now, we introduce the predicate aeval which defines the semantics function
for arithmetic expressions. The predicate aeval(A,E,V) holds iff 〈A, E〉 −→ V,
that is, V is the value of the arithmetic expression A in the environment E.
aeval(int(N),_,V) :- V=N.
aeval(loc(X),E,V) :- V=N, lookup(loc(X),E,N).
aeval(plus(A1,A2),E,V) :- V=V1+V2, aeval(A1,E,V1), aeval(A2,E,V2).
aeval(minus(A1,A2),E,V) :- V=V1-V2, aeval(A1,E,V1), aeval(A2,E,V2).
aeval(mult(A1,A2),E,V) :- V=V1*V2, aeval(A1,E,V1), aeval(A2,E,V2).

The semantics function for boolean expressions is encoded by using the predicate
beval, which is shown below. The predicate beval(B,E) holds iff 〈B, E〉 −→ true,
that is, the boolean expression B evaluates to true in the environment E.
beval(true,_).
beval(eq(A1,A2),E) :- T1=T2, aeval(A1,E,T1), aeval(A2,E,T2).
beval(lte(A1,A2),E) :- T1=<T2, aeval(A1,E,T1), aeval(A2,E,T2).
beval(lt(A1,A2),E) :- T1<T2, aeval(A1,E,T1), aeval(A2,E,T2).
beval(gte(A1,A2),E) :- T1>=T2, aeval(A1,E,T1), aeval(A2,E,T2).
bexpr(gt(A1,A2),E) :- T1>T2, aeval(A1,E,T1), aeval(A2,E,T2).
beval(or(B1,_),E) :- beval(B1,E).
beval(or(_,B2),E) :- beval(B2,E).
beval(and(B1,B2),E) :- beval(B1,E), beval(B2,E).
beval(neq(A1,A2),E) :- beval(not(eq(A1,A2)),E).

beval(not(eq(A1,A2)),E) :- beval(or(lt(A1,A2),gt(A1,A2)),E).
beval(not(lte(A1,A2)),E) :- beval(gt(A1,A2),E).
beval(not(lt(A1,A2)),E) :- beval(gte(A1,A2),E).
beval(not(gte(A1,A2)),E) :- beval(lt(A1,A2),E).
beval(not(gt(A1,A2)),E) :- beval(lte(A1,A2),E).
beval(not(or(B1,B2)),E) :- beval(and(not(B1),not(B2)),E).
beval(not(and(B1,B2)),E) :- beval(or(not(B1),not(B2)),E).
beval(not(neq(A1,A2)),E) :- beval(eq(A1,A2),E).

Notice that the evaluation of arithmetic and boolean expressions does not modify
the environment.

In order to define the CLP clauses for the semantics of commands we intro-
duce the term s(c,e) encoding a configuration 〈c, e〉, where c is a command



and e is an environment. A command is encoded as a term built out of the fol-
lowing constructors: skip for the empty command, asgn for assignment, comp
for command composition, ite for if-then-else, and while for while-do.

The transition relation =⇒ over configurations is encoded by the predicate t
which is defined by the clauses we give below.

The predicate t( s(C,E), s(C1,E1) ) holds iff s(C,E) =⇒ s(C1,E1), that
is, the execution of the command C in the environment E leads to the execution
of the command C1 in the environment E1.
t( s(comp(skip,S),E), s(S,E) ).
t( s(comp(asgn(loc(X),A),S),E1), s(S,E2) ) :-

aeval(A,E1,V), update(loc(X),V,E1,E2).
t( s(comp(comp(S1,S2),S3),E), s(comp(S1,comp(S2,S3) ),E)).
t( s(comp(ite(B,S1,_),S3),E), s(comp(S1,S3),E) ) :- beval(B,E).
t( s(comp(ite(B,_,S2),S3),E), s(comp(S2,S3),E) ) :- beval(not(B),E).
t( s(comp(ite(ndc,S1,_),S3),E), s(comp(S1,S3),E) ).
t( s(comp(ite(ndc,_,S2),S3),E), s(comp(S2,S3),E) ).
t( s(comp(while(B,S1),S2),E),

s(comp(ite(B,comp(S1,while(B,S1)),skip),S2),E) ).

We have not written the clauses for the semantics of the test expression ndc
because we have implicitly considered them in the if -then-else command.

Now, we introduce a CLP program Bw which, by using a bottom-up evalu-
ation strategy, performs the reachability analysis over configurations in a back-
ward way, starting from unsafe configurations.

Definition 1 (Encoding Program). Given a specification 〈init-prop, com,
unsafe-prop〉, the program Bw consists of the following clauses:

unsafe :- init(X), bwReach(X).
bwReach(X) :- unsafe(X).
bwReach(X) :- t(X,X1), bwReach(X1).
init(s(com,E)) :- beval(init-prop,E).
unsafe(s(_,E)) :- beval(unsafe-prop,E).

together with the clauses for the predicates aeval, beval, and t. In program Bw ,
com, init-prop, and unsafe-prop stand for the terms which are the result of
the translation of the command com and the boolean expressions init-prop and
unsafe-prop, respectively.

The predicate bwReach(X) holds iff an unsafe configuration is reachable from
the configuration X (that is, X is backward reachable from some unsafe configura-
tion) and the predicate unsafe holds iff there is an initial configuration X of the
form s(com,E) such that bwReach(X) holds. Thus, in order to verify that com
is safe, it is sufficient to show that unsafe cannot be derived by using program
Bw .

In the following example, we show how to translate commands and test ex-
pressions and derive the corresponding terms. This example is the program
tracer_prog_d taken from [10], which has also been used in the experimental
evaluation as reported in Section 4.



Example 1. Let us consider a specification 〈init-prop, com, unsafe-prop〉 where:
- init-prop is x==0 && y>=0 && error==0
- com is the command:

while ( x < 10000) {
y = y + 1;
x = x + 1;

}
if ( y + x < 10000)

error = 1;

- unsafe-prop is error==1
The components init-prop, com, and unsafe-prop of that specification are trans-
lated as follows:
- init-prop is translated into

and(eq(loc(x),int(0)),and(eq(loc(y),int(0)),eq(loc(error),int(0))))

- com is translated into
comp(comp(while(lt(loc(x),int(10000)),

comp(asgn(loc(y),plus(loc(y),int(1))),
asgn(loc(x),plus(loc(x),int(1))))),

ite(lt(plus(loc(y),loc(x)),int(10000)),
asgn(loc(error),int(1)),
skip)),

skip)

- unsafe-prop is translated into eq(loc(error),int(1))

The environment is a term of the form:
[lv(loc(y),Y),lv(loc(x),X),lv(loc(error),Error)].

The following theorem establishes the correctness of the translation from
a given specification S to the CLP program Bw . The proof of this theorem
follows immediately from the correctness of the clauses for t (which encode
the operational semantics of commands) and the correctness of the backward
reachability algorithm.

Theorem 1 (Correctness of Encoding). Let S=〈init-prop, com, unsafe-prop〉
be a specification, Bw be the CLP program obtained from S as indicated in Defi-
nition 1, andM(Bw) be the least model of Bw. Then, the command com satisfies
the specification S iff unsafe 6∈M(Bw).

3 Software Model Checking by Specialization of CLP
Programs

Let S = 〈init-prop, com, unsafe-prop〉 be a specification. Our method for verifying
whether or not com is safe consists of three steps.
Step (1). We translate the given specification into the terms init-prop, com,
and unsafe-prop as indicated in the previous section.



Step (2). We specialize the program Bw with respect to the command com and the
boolean expression init-prop that characterizes the set of initial environments.
The output of this step is the program SpBw such that unsafe ∈ M(Bw) iff
unsafe ∈M(SpBw).

Step (3). We compute the least model M(SpBw) of the specialized program
SpBw and we infer that com is safe iff unsafe 6∈M(SpBw).

The objective of Step (2) is to modify the initial program Bw by propa-
gating the information specified by the term com encoding the command, and
the term init-prop characterizing the set of the initial environments. By ex-
ploiting this information, the computation of the least model M(SpBw) may
be more effective and terminate more often than the computation of the least
model M(Bw). In particular, the interpretation overhead is compiled away by
specialization, thereby producing a CLP program where the term encoding the
command is no longer present. Also the boolean expression that characterizes
the initial environments is propagated through the structure of the specialized
CLP program.

Step (2) is realized by a specialization algorithm adapted from [4]. This al-
gorithm makes use of the following transformation rules: definition introduction,
unfolding, clause removal, and folding which, under suitable conditions, guar-
antee that the least model semantics is preserved by specialization (see, for
instance, [3]).

The specialization starts from the clause unsafe :- init(X), bwReach(X)
and iterates the application of two procedures: (i) the Unfold procedure, which
applies the unfolding and clause removal rules, and (ii) the Generalize&Fold
procedure, which applies the definition introduction and folding rules.

The Unfold procedure takes as input a clause γ of the form H :- c(X),
bwReach(X) and returns as output a set Γ of clauses derived from γ by one or
more applications of the unfolding rule, which consists in replacing an atom A
occurring in the body of a clause by the bodies of the clauses in Bw whose head
is unifiable with A. The first step of the Unfold procedure consists in unfolding γ
with respect to bwReach(X). The subsequent steps are performed according to
the following strategy.

A clause is unfolded with respect to an atom in its body if and only if that
atom is either of the form init(. . .), or unsafe(. . .), or aeval(. . .), or beval(. . .),
or t(. . .), or lookup(. . .), or update(. . .), or bwReach(s(c,e)), where c is a
ground term not of the form comp(while(b,s1),s2).

Due to the structure of the clauses in Bw, the Unfold procedure terminates
for every input clause γ. Note that, in particular, in order to enforce termination,
no atom of the form bwReach(s(comp(while(b,s1),s2),e),t2) is selected for
unfolding after the first unfolding step, thereby avoiding a potentially infinite
unrolling of while-do loops.

At the end of the Unfold procedure, clauses with unsatisfiable constraints
and subsumed clauses are removed.

The Generalize&Fold procedure takes as input the set Γ of clauses produced
by the Unfold procedure and introduces a set NewDefs of definitions, that is,



clauses of the form newp(X) :- d(X), bwReach(X), where newp is a new predi-
cate symbol corresponding to specialized versions of the bwReach predicate. Any
such definition denotes a set of configurations X satisfying the constraint d(X).
By folding the clauses in Γ using the definitions in NewDefs and the definitions
introduced at previous iterations of the specialization algorithm, the procedure
derives a new set of specialized clauses. In particular, a clause of the form:

newq(X) :- c(X), bwReach(X)

obtained by the Unfold procedure is folded by using a definition of the form:

newp(X) :- d(X), bwReach(X)

if c(X) entails d(X), denoted c(X) v d(X). The result of folding is the specialized
clause:

newq(X) :- c(X), newp(X).

The specialization algorithm proceeds by applying the Unfold procedure followed
by the Generalize&Fold procedure to each clause in NewDefs, and terminates
when no new definitions are needed for applying folding steps.

Unfortunately, an uncontrolled application of the Generalize&Fold procedure
may lead to the introduction of infinitely many new definitions, thereby causing
the nontermination of the specialization algorithm. In order to guarantee termi-
nation, the Generalize&Fold procedure may introduce new definitions which are
more general than definitions introduced by previous applications of the proce-
dure, where the more general than relation between definitions is as follows: a
definition:

newr(X) :- g(X), bwReach(X)

is more general than the definition

newp(X) :- d(X), bwReach(X)

if d(X) v g(X). Thus, more general definitions correspond to larger sets of con-
figurations.

The generalization operator we use in our experiments, reported in Section 4,
is defined in terms of relations and operators on constraints such as widening,
convex-hull, and well-quasi orders. We will not describe in detail the general-
ization operator we apply, and we refer to [4,5,15] for various operators which
can be used for specializing constraint logic programs. It will be enough to say
that the termination of the specialization algorithm is ensured by the fact that,
similarly to the widening operator presented in [2], our generalization operator
guarantees that during specialization only a finite number of new predicates is
introduced.

Since the correctness of the specialization algorithm directly follows from the
fact that the transformation rules preserve the least model semantics [3], we have
the following result.

Theorem 2 (Termination and Correctness of Specialization). (i) The
specialization algorithm terminates. (ii) Let program SpBw be the output of the
specialization algorithm. Then unsafe∈M(Bw) iff unsafe∈M(SpBw).



In order to compute the least model of SpBw as required by Step (3), we
apply a procedure called BottomUp. This procedure computes sets of atoms
represented as sets of constrained facts, that is, sets of (possibly non-ground)
clauses of the form H :- c, where H is an atom and c is a constraint. The
least modelM(SpBw) is constructed by computing the least fixpoint of the non-
ground immediate consequence operator SSpBw, instead of the usual immediate
consequence operator TSpBw [7]. Since this fixpoint may consist of an infinite set
of constrained facts, the BottomUp procedure may not terminate. In Section 4 we
will see that the BottomUp procedure, applied after the specialization algorithm,
terminates in our examples.

Example 2. The following program SpBw is obtained as output of the special-
ization algorithm when it takes as input the CLP program of Example 1:
new3(X,Y,E) :- X>=0, X<10000, Y>=X, E=0, X1=X+1, Y1=Y+1, new3(X1,Y1,E).
new3(X,Y,E) :- X>=10000, Y>=X, E=0, new5(X,Y,E).
new2(X,Y,E) :- X=0, Y>=0, E=0, X1=1, Y1=Y+1, new3(X1,Y1,E).
unsafe :- X=0, Y>=0, E=0, new2(X,Y,E).

Notice that the second clause for new3 can be removed from the program because
it contains a call to a predicate new5 whose definition is empty. Since the program
contains no constrained fact, we have that M (SpBw) is empty, and thus the
original specification is safe.

4 Experimental Evaluation

In this section we present some preliminary results concerning our software model
checking technique which we have applied to several examples taken from the
literature.

We have realized our model checker as a software tool which consists of
three modules: (i) a translator from SIMP specifications to terms, (ii) the MAP
system for program specialization, and (iii) a CLP program for computing the
least models of CLP programs. The MAP system [14] is a tool for transforming
constraint logic programs implemented in SICStus Prolog which uses the clpr
library to operate on constraints over the reals.

We have performed the model checking of the following C programs: (i) f1a,
(ii) f2, (iii) seesaw, (iv) JM 06, (v) prog_dagger, (vi) tracer_prog_d, (vii) in-
terpolants_needed, and (viii) widen_needed. The source codes of the above C
programs, which can be given as input to the MAP system, are available at
http://map.uniroma2.it/smc/.

Programs f1a, f2, seesaw, and JM 06 are benchmarks which have been used
to evaluate the performance of DAGGER. Unfortunately, we were not able to
compare our results with those which can be obtained by DAGGER because
of its unavailability. Nevertheless, the source code of the benchmark programs
is available at http://www.cfdvs.iitb.ac.in/~bhargav/dagger.php. In par-
ticular, JM 06 is the benchmark program in [13]. Programs prog_dagger, inter-
polants_needed, and widen_needed have been taken from [6] (and the related
technical report) and tracer_prog_d from [10].



All experiments have been performed on an Intel Core Duo E7300 2.66Ghz
processor with 4GB under the GNU Linux operating system. The results of our
experiments are shown in Table 1.

Table 1. Time (in seconds) taken for performing model checking. ⊥ denotes ‘termi-
nating with error’ (TRACER, using the default options, terminates with ‘Fatal Error:
Heap overflow’). ∞ means ‘Model checking not successful within 20 minutes’.

Programs ARMC TRACER MAP

f1a ∞ ⊥ 0.08
f2 ∞ ⊥ 7.58
JM 06 719.39 180.09 10.20
prog_dagger ∞ ⊥ 5.37
seesaw 3.41 ⊥ 0.03
tracer_prog_d ∞ 0.01 0.03
interpolants_needed 0.13 ⊥ 0.06
widen_needed ∞ ⊥ 0.07

We have also performed our experiments on the same set of examples by using
two state-of-the-art software model checkers which use CLP: (i) ARMC [16], and
(ii) TRACER [8], and we have compared the results obtained by using those tools
and our software model checker based on the MAP system.

ARMC is a CLP-based software model checker which realizes the Counter
Example Guided Abstraction Refinement (CEGAR) technique (see Section 5 for a
detailed description). ARMC relies on a CIL front-end (C Intermediate language,
http://cil.sourceforge.net/), called c2armc, which translates a subset of
C, annotated with error labels, into a transition system whose transitions are
constraints over variables occurring in the C program.

TRACER is a Symbolic Execution (SE)-based model checker for the verifi-
cation of safety properties of sequential C programs. It uses a CIL front-end to
translate a C program, annotated with safety properties, into a CLP program,
and uses a symbolic interpreter to execute the CLP translation to prove that
unsafe states are unreachable.

TRACER, using the default options, fails in all examples in which a nonde-
terministic while-do, possibly composed with nondeterministic if-then-else state-
ments, is used (f1a, f2, prog_dagger, seesaw, interpolants_needed, and
widen_needed). In these cases, the nondeterministic choice is obtained by using
a function which returns an unknown integer. Indeed, even if TRACER pro-
vides effective improvements when using symbolic execution for the verification
of programs with unbounded execution of loops, it fails (that is, it terminates
with ‘Fatal Error: Heap overflow’) when the unbounded number of executions
is a value returned by a function. Also ARMC is unable to prove within 20



minutes these examples, with the exception of the program seesaw and inter-
polants_needed.

ARMC is unable to prove tracer_prog_d safe within 20 minutes. In fact,
in order to prove that tracer_prog_d is safe, a CEGAR-based approach has to
unroll the while-do loop (it requires at least 10000 iterations of the CEGAR
loop to discover the right set of predicates). TRACER, conversely, succeeds in
0.01 seconds. Indeed, this example has been used by the TRACER designer to
illustrate the benefits of SE-based approached with respect to CEGAR-based
approaches.

Both ARMC and TRACER succeed with JM 06, but TRACER performs
much better than ARMC.

Now let us compare the model checking times obtained by using ARMC and
TRACER with those obtained with our method, which are reported in column
called MAP of Table 1. This last column shows the total model checking time in-
cluding both the specialization time and the least model computation time. Our
method succeeds where both ARMC and TRACER fail (f1a, f2, prog_dagger,
and widen_needed). Instead, in JM 06, where both ARMC and TRACER suc-
ceed, our method substantially reduces the total time of verification. In the analy-
sis of programs seesaw and interpolants_needed we perform better than ARMC,
whereas in tracer_prog_d our method has a slight decrease of performance, but
this is not discouraging because, indeed, the program tracer_prog_d has been
designed to illustrate a situation where the techniques used by TRACER work
well.

5 Related Work and Conclusions

We have proposed a model checking method, based on the specialization of CLP
programs, to verify safety properties of a simple imperative language extended
with a nondeterministic choice operator, called SIMP. The method is fully au-
tomatic and has been implemented using the MAP transformation system.

In particular, we have defined an interpreter for the operational semantics
of the SIMP language and we have encoded it as a CLP program. Then, given
a specification 〈init-prop, com, unsafe-prop〉, where init-prop and unsafe-prop are
boolean expressions describing the initial and the unsafe environments, respec-
tively, and com is the command to be executed; the MAP transformation system
has been used to specialize the interpreter with respect to com and init-prop.
Finally, by computing the least model of the specialized CLP program we verify
whether or not the SIMP command com in the initial environment init-prop is
safe, that is, none of the reachable configurations satisfied unsafe-prop. Note that
our verification method can be applied by using a forward reachability algorithm,
instead of the backward reachability algorithm, as we have done here.

We have applied our approach to some C programs taken from the literature
and we have compared the results in terms of efficiency and precision with two
state-of-art software model checkers: ARMC and TRACER. Table 1 shows that
our model checker is competitive with the considered software model checkers.



Our software model checking approach is an extension of the one presented
in [4,5] for the verification of safety properties of infinite state reactive systems. In
that work the authors encode an infinite state reactive system as a CLP program
and then they apply program specialization to improve the effectiveness of the
reachability analysis.

The use of constraint logic programs to verify properties of simple imperative
programs has also been proposed by [15]. That paper introduces a general frame-
work in which well-known techniques developed to analyse declarative programs,
that is, partial evaluation and static analysis of constraint logic programs, are
exploited to analyse imperative programs. In particular, the formal semantics of
an imperative language is encoded into a constraint logic program. Then, the
interpreter is partially evaluated with respect to a specific imperative program
to obtain a residual program on which a static analyser for CLP programs is
applied. Finally, the information gathered during this process is translated back
to the original imperative program. The correctness of the analysis follows from
the correctness of the partial evaluator and the static analyser for the declarative
language.

Our approach does not require static analysis of CLP and, instead, we use a
bottom-up evaluator to compute the least model of the CLP program obtained
by program specialization. Moreover, in our approach we specialize the given
program also with respect to the property characterizing its input values.

A widely used verification technique implemented by software model check-
ers (e.g. SLAM, BLAST and ARMC) is the CounterExample Guided Abstraction
Refinement [12,17]. The key component of the CEGAR technique is a loop which,
given a program and a safety property, repeatedly checks whether or not the ab-
stract model of that program is safe and, based on the counterexamples possibly
found, refines the abstract model until, hopefully, the program is proved to be
safe.

In particular, the CEGAR loop starts with an initial, coarse grained, ab-
straction of the program. If the abstraction is proved to be safe then the original
program is guaranteed to be safe, otherwise a counterexample (that is, an execu-
tion which makes the program unsafe) is produced. The counterexample is then
analysed in the concrete program: if it turns out to be a genuine counterexample
(that is, an execution which can be reproduced by the concrete program), then
the program is proved to be unsafe, otherwise it is a spurious counterexample
which has been generated due to a too coarse abstraction. The abstraction is,
thus, refined to remove that counterexample, and the verification loop continues.

In a completely different manner from CEGAR-based software model check-
ers, our tool starts with a CLP program which models the most detailed model of
the program and the abstraction is obtained as a side effect of the generalization
operators used to force termination of the specialization process.

The CEGAR approach has also been implemented by using CLP programs.
In particular, in [16] the authors have designed a CLP-based model checker
for C programs with an abstraction refinement, called ARMC. The abstract
model of the program to be verified is obtained by using a predicate abstraction



domain, that is, a set of constraints whose free variables are program variables.
The set of reachable states are, thus, computed in the abstract model and if
none of the unsafe states is generated then the program is proved to be safe.
The CEGAR loop starts with an empty set of constraints and in each iteration
extends it by using a solver which generates interpolants for linear arithmetic
constraints with uninterpreted function symbols.

A different technique is that of symbolic execution which has been first used
for program testing and recently has been applied to program verification [10].
Symbolic execution (SE) of programs is a method which uses a symbolic repre-
sentation of inputs, instead of actual inputs, to execute them. Thus, the outcome
of statements are formulas over the symbolic representation of the input values.
Program execution is modelled by using a symbolic execution tree whose paths
are symbolic representations of program computations.

In [8], the authors have designed a SE-based software model checker, called
TRACER, for the verification of finite-state safety properties of C programs.
TRACER, differently from CEGAR-based tools, starts with a finer grained
model of the program and uses abstraction refinement to make symbolic exe-
cution to be effective in practice when the program to be verified consists of
unbounded loops. In particular, TRACER tries to construct a finite symbolic
execution tree which overapproximates the set of all concrete reachable states.
In doing this, the abstraction refinement removes all paths which are irrelevant
to prove that the unsafe state are reachable by computing interpolants.

Our preliminary experimental results show that our approach is viable and
competitive with state-of-the-art software model checkers. Thus, we think that
our approach can be effective in practice. In order to prove this claim, in the near
future, we plan to do experiments on a larger set of examples and compare our
results with other state-of-the-art software model checker to get better insights
about the differences with respect to related approaches. We also plan to extend
our interpreter to deal with more sophisticated features of imperative languages
such as arrays, pointers, and procedure calls.

We plan to investigate how to integrate information about the unsafe prop-
erty during the generalization process to obtain a verification method which is
closer to the use of the counterexamples in the CEGAR approach and in the
Min-max algorithm [10].

Finally, we would like to explore in more detail the way how program spe-
cialization can be effectively used to improve the precision and the efficiency
of some existing state-of-the-art software model checkers. In particular, we plan
to verify whether a post-processing of the specialized program can be given as
input to those software model checkers.
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