
ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA

CONSIGLIO NAZIONALE DELLE RICERCHE

E. De Angelis, F. Fioravanti,

A. Pettorossi, M. Proietti

VERIFYING PROGRAMS VIA ITERATED

SPECIALIZATION

R. 22 2012

Emanuele De Angelis – Department of Sciences, University G. D’Annunzio, Pescara, Italy,
and Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, I-00185
Roma, Italy. Email : deangelis@sci.unich.it.
URL: http://www.sci.unich.it/~deangelis.

Fabio Fioravanti – Department of Sciences, University G. D’Annunzio, Pescara, Italy.
Email : fioravanti@sci.unich.it. URL: http://www.sci.unich.it/~fioravan.

Alberto Pettorossi – Department of Informatics, University of Rome Tor Vergata, Via del
Politecnico 1, I-00133 Roma, Italy, and Istituto di Analisi dei Sistemi ed Informatica del
CNR, Viale Manzoni 30, I-00185 Roma, Italy. Email : pettorossi@info.uniroma2.it.
URL : http://www.iasi.cnr.it/~adp.

Maurizio Proietti – Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni
30, I-00185 Roma, Italy. Email : maurizio.proietti@iasi.cnr.it.
URL : http://www.iasi.cnr.it/~proietti.

ISSN: 1128–3378

Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica, CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.rm.cnr.it
URL: http://www.iasi.rm.cnr.it

Abstract

We present a method for verifying properties of imperative programs by using techniques based
on the specialization of constraint logic programs (CLP). We consider a class of C programs
with integer variables and we focus our attention on safety properties, stating that no error
configuration can be reached from the initial configurations. We encode the interpreter of the
language as a CLP program I, and we also encode the safety property to be verified as the
negation of a predicate unsafe defined in I. Then, we specialize the CLP program I with
respect to the given C program and the given initial and error configurations, with the objective
of deriving a new CLP program Isp which either contains the fact unsafe (and in this case
the C program is proved unsafe) or contains no clauses with head unsafe (and in this case
the C program is proved safe). If Isp does not enjoy this property we iterate the specialization
process with the objective of deriving a CLP program where we can prove unsafety or safety.
During the various specializations we may apply different strategies for propagating information
(either propagating forward from an initial configuration, or propagating backward from an
error configuration) and different operators (such as widening and convex hull operators) for
generalizing predicate definitions. Due to the undecidability of program safety, the iterated
specialization process may not terminate. By an experimental evaluation carried out on a set
of examples taken from the literature, we show that our method is competitive with respect to
state-of-the-art software model checkers.

3.

1. Introduction

Formal verification of software products is gaining more and more attention as a promising
methodology for increasing the reliability and reducing the cost of software production (see [25]
for some case studies). In particular, software model checking has the goal of performing formal
software verification by combining and extending techniques developed in the fields of static
program analysis and model checking (a recent survey is presented in [20]).

In this paper we consider programs acting on integer variables which belong to a subset of CIL,
the C Intermediate Language [26], called Core CIL. Then we address the problem of verifying
safety properties, stating that when executing a program, an unsafe configuration cannot be
reached from any initial configuration.

Since safety is an undecidable problem for programs that act on integer numbers, many pro-
gram analysis techniques follow approaches based on abstraction [5], by which the integer data
domain is mapped to an abstract domain so that reachability is preserved, that is, if a concrete
configuration is reachable, then the corresponding abstract configuration is reachable. By a
suitable choice of the abstract domain one can design reachability algorithms that terminate
and, whenever they prove that an abstract unsafe configuration is not reachable from an ab-
stract initial configuration, then the program is proved to be safe (see [20] for a general abstract
reachability algorithm). Notable abstractions are those based on convex polyhedra, that is,
conjunctions of linear inequalities (also called constraints here).

Constraint Logic Programming (CLP) is a very suitable framework for the analysis of imper-
ative programs, because it provides a very convenient way of representing symbolic program ex-
ecutions and also, by using constraints, program abstractions (see, for instance, [17, 19, 28, 29]).
In the context of CLP-based program analysis, program specialization has been proposed as a
means for translating an imperative program to CLP [28]. By following the approach presented
in [28], the semantics of an imperative language is defined by means of a CLP program which
is the interpreter I of that language. Then, the interpreter I is specialized with respect to the
input program P whose safety property should be checked. The result of this specialization is a
CLP program Isp and, since program specialization preserves semantic equivalence, for proving
properties of the imperative program P , we can analyze the CLP program Isp by applying the
above mentioned techniques based on polyhedral abstractions.

It has also been pointed out that program specialization can be used as a technique for
software model checking on its own [9]. Indeed, by specializing Isp with respect to the constraints
characterizing the input values of P (that is, the precondition of P), in some cases one can derive
a new program I ′sp whose least model M(I ′sp) can be computed in finite time because I ′sp can be
represented by a finite set of constraints. Thus, in these cases it is possible to verify whether or
not P is safe by simply inspecting that model.

However, due to the undecidability of safety, it is impossible to devise a specialization technique
which always terminates and produces a specialized program whose least model can be finitely
computed.

In order to mitigate this limitation, in this paper we propose a method based on the repeated
application of program specializations, called here iterated specialization.

By repeated program specializations we can produce a sequence of programs of the form
I, Isp, I

1
sp, I

2
sp, Each program specialization step terminates and has the effect of modifying

the structure of the program and explicitly adding new constraints that denote invariants of the
computation. Thus, the effect of iterated specialization is the propagation of these constraints
from one program version to the next, and iterated specialization terminates when a program

4.

with finite least model is generated. In general, we have no guarantee that iterated specialization
terminates.

The paper is organized as follows.

In Section 2 we describe the syntax of the Core CIL language and the CLP interpreter which
defines its operational semantics. In Section 3 we specify the problem of proving program safety
we want to address. In Section 4 we outline our software model checking approach to establish
program safety by presenting a simple example. In Section 5 we describe the overall strategy
of iterated specialization, and also some specific strategies for performing single specialization
steps. In Section 6 we report on some experiments we have performed by using a prototype
implementation based on the MAP transformation system [24]. We also compare the results we
have obtained using the MAP system with the results we have obtained using state-of-the-art
software model checking systems such as ARMC [29], HSF(C) [13], and TRACER [18]. Finally,
in Section 7 we discuss the related work and, in particular, we compare our approach with other
existing methods of software model checking.

2. A CLP Interpreter for the Language CIL

We assume that the programs to be verified are written in a subset of CIL, called Core CIL.
Here is its syntax, where: (i) Vars is a set of variable identifiers, (ii) Ids is a set of identifiers for
types, and (iii) Z is the set of integers which denote the constants of the basic types (such as
the integer constants, the character constants, etc.)

x, y, . . . ∈ Vars (variable identifiers)
f, g, . . . ∈ Function identifiers
ℓ, ℓ1, . . . ∈ Labels
id ∈ Ids (identifiers of types)
const ∈ Z (integer constants, character constants, . . .)
basic ∈ Basic types (int, char, . . .)
uop, bop ∈ Unary and binary operators (+, -, <=, . . .)

prog ::= typedef∗ decl∗ fundef∗

typedef ::= typedef type id

decl ::= type id | type id [const]
type ::= basic | id

fundef ::= type f (decl∗) {decl∗ lab cmd+}
lab cmd ::= ℓ :cmd
cmd ::= halt | x =exp | x = f (exp∗)

| if (exp) ℓ1 else ℓ2
| goto ℓ | return exp

exp ::= const | x | uop exp
| exp bop exp | (type) exp

For reasons of brevity, we will feel free to say ‘command’, instead of ‘labelled command’. The
elements of a sequence denoted by an expression of the form e∗ or e+ will be separated by
semicolons. Note that while commands can be replaced, as usual, by suitable if-else and
goto commands. We assume that every label occurs in every program at most once. The
sequence fundef∗ of function definitions is usually not empty and it contains the definition of
the function main.

Now we give the semantics of Core CIL. For that purpose let us first introduce the following

5.

auxiliary functions and data structures. We also assume that: (i) every variable occurrence
is either global or local to a function definition, (ii) in every given program for every variable
occurrence x, one may statically determine whether x is a global variable or a local variable,
and (iii) there is only one level of locality (that is, there are no blocks and thus, no nested levels
of locality).
A global environment δ:Vars → Z is a function which maps global variables to their integer

values. Likewise, a local environment σ:Vars→Z maps function parameters and local variables
to their integer values.
An activation frame is a 3-tuple 〈ℓ, y, σ〉, where: (i) ℓ is the label where to jump after returning

from a function call, (ii) y is the variable where to store the value returned by a function call,
and (iii) σ is the local environment to be initialized when making a call binding the function
parameters and local variables.
A configuration is a 3-tuple of the form 〈〈c, δ, τ〉〉 where: (i) c is a labelled command, (ii) δ

is a global environment, and (iii) τ is a list of activation frames. We operate on the list τ by
the usual head (hd) and tail (tl) functions and the right-associative constructor cons (:). The
empty list is denoted by []. By update(f, x′, v′) we denote the function f ′ such that if x= x′

then f ′(x) = v′ else f ′(x) = f(x). For any program P , for any label ℓ, (i) at(ℓ) denotes the
command in P with label ℓ, and (ii) nextlab(ℓ) denotes the label of the command in P which
is written immediately after the command with label ℓ. Given a function identifier f , at(f)
denotes the first labelled command of the definition of the function f . For any expression e,
global environment δ, and local environment σ, JeKδσ is the integer value of e. We assume that
the evaluation of expressions has no side effects.

The operational semantics (that is, the interpreter) of the Core CIL language is given as a
transition relation =⇒ between configurations according to the following rules R1–R5. Notice
that no rules are given for the command ℓ : halt. Thus, no new configuration is constructed
when the command of the configuration at hand is halt.

(R1). Assignment. Let hd(τ) be 〈ℓ′, y, σ〉 and v be JeKδσ.

If x is a global variable:
〈〈ℓ :x=e, δ, τ〉〉 =⇒ 〈〈at(nextlab(ℓ)), update(δ, x, v), τ〉〉

If x is a local variable:
〈〈ℓ :x=e,δ,τ〉〉=⇒〈〈at (nextlab(ℓ)), δ, 〈ℓ′, y,update (σ, x, v)〉: tl (τ)〉〉

Informally, an assignment updates either the global environment or the local environment of the
topmost activation frame.

(R2). Function call. Let hd(τ) be 〈ℓ′, y, σ〉. Let {x1, . . . , xk} and {y1, . . . , yh} be the set of
the formal parameters and the set of the local variables, respectively, of the definition of the
function f .

〈〈ℓ :x=f(e1,. . . ,ek), δ, τ〉〉 =⇒ 〈〈at (f), δ, 〈nextlab(ℓ), x, σ〉 :τ〉〉

where σ is a set of bindings of the form:

σ = {〈x1, Je1Kδσ〉, . . . , 〈xk, JekKδσ〉, 〈y1, n1〉, . . . , 〈yh, nh〉}

for some values n1, . . . , nh in Z (indeed, when we declare the local variables we do not initialize
them). Note that since the values of the ni’s are left unspecified, this transition is nondetermin-
istic.
Informally, a function call creates a new activation frame with the label where to jump after

returning from the call, the variable where to store the returned value, and the new local
environment.

6.

(R3).Return. Let τ be 〈ℓ′, y, σ〉 :〈ℓ′′, z, σ′〉 :τ ′′ and v be JeKδσ.

If y is a global variable:

〈〈ℓ :return e, δ, τ〉〉 =⇒ 〈〈at(ℓ′), update(δ, y, v), tl (τ)〉〉

If y is a local variable:

〈〈ℓ :return e, δ, τ〉〉=⇒〈〈at (ℓ′), δ, 〈ℓ′′, z,update(σ′, y, v)〉 :τ ′′〉〉

Informally, a return command erases the topmost activation frame and updates either the global
or the local environment of the new topmost activation frame.

(R4). Goto. 〈〈ℓ :goto ℓ′, δ, τ〉〉 =⇒ 〈〈at(ℓ′), δ, τ〉〉

(R5). If-then-else. Let hd(τ) be 〈ℓ′, y, σ〉.

If JeKδσ= true:

〈〈ℓ : if (e) ℓ1 else ℓ2, δ, τ〉〉 =⇒ 〈〈at(ℓ1), δ, τ〉〉

If JeKδσ= false :

〈〈ℓ : if (e) ℓ1 else ℓ2, δ, τ〉〉 =⇒ 〈〈at(ℓ2), δ, τ〉〉

The initial configuration is the 3-tuple (without loss of generality, we assume that the function
main has no arguments):

〈〈ℓinit : z0=main(), δinit , []〉〉
where:

(i) ℓinit is a fresh new label such that nextlab(ℓinit) is a fresh new label ℓhalt whose associated com-
mand is halt (indeed, no command should be executed after the function call: z0=main()),

(ii) z0 is a fresh new global variable (whose type should comply with those of the expressions in
the return commands of the function main()), and

(iii) δinit is the initial global environment which is of the form: {〈z1, n1〉, . . . , 〈zr, nr〉}, where
z1, . . . , zr are the global variables of the given program and n1, . . . , nr are some given values
in Z.

Note that initially the list of activation frames is empty and the first activation frame is con-
structed when executing the initial function call: z0 = main(). That frame is of the form:
〈ℓhalt , z0, σ〉, where σ is a local environment binding the local variables of the definition of the
function main().

The semantics we have given above can be extended to a larger subset of CIL which includes
in particular array and structure types.

Let us now recall some notions and terminology concerning constraint logic programming. For
more details the reader may refer to [16]. If p1 and p2 are linear polynomials whose variables
and coefficients are of type int, then p1=p2, p1≥p2, and p1>p2 are atomic constraints. A
constraint is either true, or false, or an atomic constraint, or a conjunction of constraints. A
CLP program is a finite set of clauses of the form A:- c,B, where A is an atom, c is a constraint,
and B is a (possibly empty) conjunction of atoms. The clause A:- c is called a constrained fact.

The semantics of a CLP program P is defined to be the least model of P , denoted M(P),
which agrees with the standard interpretation on the integers for the constraints.

The CLP interpreter for our Core CIL language is given by the following clauses for the binary
predicate tr which relates old configurations to new configurations and defines the transition
relation =⇒.

1. tr(cf(cmd(L, asgn(X, E)), D, T), cf(cmd(L1, C), D1, T)) :-

loc env(T, S), aeval(E, D, S, V), update(D, X, V, D1),

nextlab(L, L1), at(L1, C).

7.

2. tr(cf(cmd(L, ite(E, L1, L2)), D, T), cf(cmd(L1, C), D, T)) :-

loc env(T, S), beval(E, D, S), at(L1, C).

3. tr(cf(cmd(L, ite(E, L1, L2)), D, T), cf(cmd(L2, C), D, T)) :-

loc env(T, S), beval(not(E), D, S), at(L2, C).

4. tr(cf(cmd(L, goto(L1)), D, T), cf(cmd(L1, C), D, T)) :-

at(L1, C).

The term asgn(X, E) encodes the assignment to a global variable of the form x=e. Similarly, the
terms ite(E, L1, L2) and goto(L) encode the conditional if (e) ℓ1 else ℓ2 and the jump goto ℓ,
respectively. The term cmd(L, C) encodes the command C with label L. The predicate loc env

extracts the local environment from the topmost activation frame in a configuration. The
predicate aeval(E, D, S, V) computes the value V of the arithmetic expression E in the global
environment D and the local environment S. Likewise the predicate beval(E, D, S) holds if the
boolean expression E is true in the global environment D and the local environment S. The
predicate update(D, X, V, D1) updates the global environment D, thereby constructing the new
global environment D1, by binding the variable X to the value V. The predicate at(L, C) binds
to C the command with label L. The predicate nextlab(L, L1) binds to L1 the label of the
command which is written immediately after the command with label L.

We have listed the clauses for the cases of: (i) assignment to global variables (clause 1),
(ii) if-else (clauses 2 and 3), and (iii) goto commands (clause 4), because they are the only
cases of interest in our examples below. The definition of tr for the cases of assignment to local
variables, function call and return are similar.

Notice that the CLP clauses 1–4 for the predicate tr have no constraints in their bodies.
However, constraints are used in the definitions of the predicates aeval and beval.

3. The safety problem

In this paper we consider the problem of verifying the safety of program fragments. Then, safety
of programs will be defined in terms of safety of program fragments. A program fragment is a
(possibly empty) program followed by a non-empty sequence of labelled commands. Thus,

prog fragm ::= prog lab cmd+ (†)

The problem of verifying the safety of a program fragment P is the problem of checking
whether or not, starting from an initial configuration, the execution of P leads to a so called
error configuration. This problem is formalized by defining an unsafety triple of the form:
{{ϕinit (z1, . . . , zr)}} P {{ϕerror (z1, . . . , zr)}}, where:

(i) P is a program fragment with global variables z1, . . . , zr,

(ii) ϕinit(z1, . . . , zr) is a disjunction of constraints that characterizes the values of the global
variables in the initial configurations, and

(iii) ϕerror (z1, . . . , zr) is a disjunction of constraints that characterizes the values of the global
variables in the error configurations.

Without loss of generality, we assume that the last command of P is ℓh :halt and no other halt
command occurs in P .

We say that a program fragment P is unsafe with respect to a set of initial configurations
satisfying ϕinit(z1, . . . , zr) and a set of error configurations satisfying ϕerror (z1, . . . , zr) or simply,
P is unsafe with respect to ϕinit and ϕerror , if there exist global environments δinit and δh such
that:

8.

(i) ϕinit (δinit(z1), . . . , δinit(zr)) holds and

(ii) 〈〈ℓ0 :c0, 〈ℓinit :z0=main(), δinit , []〉〉 =⇒
∗ 〈〈ℓh :halt, δh, []〉〉 and

(iii) ϕerror (δh (z1), . . . , δh (zr)) holds,

where ℓ0 : c0 is the first command in the sequence lab cmd+ of labelled commands at the right
end of P (see (†) above).
A program fragment is said to be safe with respect to ϕinit and ϕerror iff it is not unsafe with

respect to ϕinit and ϕerror .

We define the unsafety (and safety) of a program P ′ with respect to the formulas ϕinit and
ϕerror as the unsafety (and safety, respectively) of the program fragment obtained from P ′

by: (i) deleting the function main(), and (ii) adding at the right end of P ′ the sequence of
labelled commands of the function main(), where the command return e has been replaced by
ℓh :halt (note that, without loss of generality, we may assume that in P ′ there is a single return
command).

When ambiguity does not arise, we will feel free to say ‘program’, instead of ‘program frag-
ment’.

An unsafety triple can be encoded as a CLP program. We show how to do this encoding
through the following example. The extension to the general case is straightforward and will be
omitted. Let us consider the unsafety triple:

{{ϕinit (x, y, n)}} P {{ϕerror (x, y, n)}} where

ϕinit(x, y, n) is x=0 ∧ y=0

P is ℓ0: while (x<n) {x = x+1; y = x+y; };
ℓh: halt

ϕerror (x, y, n) is x>y

(In this program fragment P we have an empty program followed by the above two commands
while and halt.)

First, we replace the while command by the following sequence of Core CIL commands:

ℓ0: if (x<n) ℓ1 else ℓh
ℓ1: x = x+1

ℓ2: y = x+y

ℓ3: goto ℓ0
ℓh: halt

Then, this sequence of commands is translated into the following CLP facts:

1. at(0, ite(less(int(x), int(n)), 1, h)).

2. at(1, asgn(int(x), plus(int(x), int(1)))).

3. at(2, asgn(int(y), plus(int(x), int(y)))).

4. at(3, goto(0)).

5. at(h, halt).

We also have the following clauses that specify the reachability relation from the initial config-
uration to the error configuration:

6. unsafe :- initConf(X), reach(X).

7. reach(X) :- tr(X, X1), reach(X1).

8. reach(X) :- errorConf(X).

In our case the predicates initConf and errorConf specifying the initial and the error config-
urations, respectively, are defined by the following constrained facts:

9.

9. initConf(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])) :- X=0, Y=0.

10. errorConf(cf(cmd(h, halt),

[[int(x), X], [int(y), Y], [int(n), N]], [])) :- X>Y.

In the initial configuration which is defined in clause 9, we have that: (i) the initial command is
cmd(0, ite(less(int(x), int(n)), 1, h)), and (ii) the initial list of activation frames is the empty
list []. In clauses 9 and 10 the global environment (that is, the second component of the
configuration) has been encoded by the list [[int(x), X], [int(y), Y], [int(n), N]] which gives the
bindings of the variables x, y, and n, respectively.

The CLP program consisting of clauses 1–10 above, together with the clauses that define the
predicate tr (see clauses 1–4 of Section 2), is called the CLP encoding of the given unsafety
triple {{ϕinit (x, y, n)}} P {{ϕerror (x, y, n)}}.

Theorem 3.1. (Correctness of CLP Encoding) Let I be the CLP encoding of the unsafety triple

{{ϕinit}} P {{ϕerror}}. The program P is safe with respect to ϕinit and ϕerror iff unsafe /∈M(I).

4. The Software Model Checking Method in Action

In this section we present an application of our software model checking method based on
iterated specialization, which performs a sequence of program specializations, rather than one
specialization only. The formal presentation of the method will be given in the next section.

In the example we will consider the iteration of program specializations plays a crucial role
and is required for the proof of program safety.

Let us consider the unsafety triple of the previous section. We want to show that the program
fragment P is safe with respect to ϕinit (x, y, n) and ϕerror (x, y, n).

Our method for proving program safety consists of three specialization steps: (i) the removal of
the interpreter (this step is common to other specialization-based techniques for the verification
of imperative programs [9, 28]), (ii) the propagation of the constraints of the initial configuration,
and (iii) the propagation of the constraints of the error configuration.

Actually, after the removal of the interpreter, our method for proving program safety may be
applied by first propagating the constraints of the error configuration, and then the constraints of
the initial configuration (see Appendix A). In general, as specified by our Iterated Specialization
strategy (see Figure 1), these propagations of constraints may be performed in any order we
want and may be iterated any number of times.

First Specialization: Removal of the interpreter

We start off from the CLP clauses 1–10 associated with the given program fragment P (see
Section 3), and the CLP clauses for the predicate tr (clauses 1–4 of Section 2) which define
the interpreter of the Core CIL language. At the end of this first specialization we will derive a
CLP program (see program P1 below) which evaluates the predicate unsafe without evaluating
the predicate tr. In this sense we say that this first specialization realizes the removal of the
interpreter.

In order to get such a CLP program we specialize clauses 6–8 with respect to the given
definitions of the predicates initConf, errorConf, tr, and at. This specialization is performed
by following the usual unfold-definition-fold cycle of the rule-based specialization strategies [11].
In particular, we will follow the Specialization procedure presented in Figure 2 of Section 5.

10.

The various specialization steps are performed in an automatic way by our MAP system [24].
We start off by unfolding clause 6 with respect to the atom initConf(X) and we get:

11. unsafe :- X=0, Y=0,
reach(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

We introduce the new predicate definition:

12. new1(X, Y, N) :-
reach(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

We fold clause 11 and we get:

11.f unsafe :- X=0, Y=0, new1(X, Y, N).

Then we unfold clause 12 and we get the two clauses:

13. new1(X, Y, N) :-
tr(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], []), X1),
reach(X1).

14. new1(X, Y, N) :-
errorConf(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

From clause 13, after a few unfolding steps which perform the symbolic evaluation of the if-then
command using the clause for the predicate tr, we get the following two clauses:

15. new1(X, Y, N) :- X<N,
reach(cf(cmd(1, asgn(int(x), plus(int(x), int(1)))),

[[int(x), X], [int(y), Y], [int(n), N]], [])).
16. new1(X, Y, N) :- X≥N,

reach(cf(cmd(h, halt),
[[int(x), X], [int(y), Y], [int(n), N]], [])).

(Note that the test on the condition less(int(x), int(n)) in the command in clause 13 generates
two constraints: X<N and X≥N.) Then, we delete clause 14 because by unfolding it, we do not
get any clause (indeed, the term cmd(0, . . .) does not unify with the term cmd(h, . . .)).
From clause 15, after two unfolding steps, we get:

17. new1(X, Y, N) :- X<N,
tr(cf(cmd(1, asgn(int(x), plus(int(x), int(1)))),

[[int(x), X], [int(y), Y], [int(n), N]], []), X1)),
reach(X1).

From clause 16, after two unfolding steps, we get:

18. new1(X, Y, N) :- X≥N,
errorConf(cf(cmd(h, halt),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

At this point the program at hand is made out of clauses 11.f, 17, and 18. Then, by unfolding
clause 17, we get:

19. new1(X, Y, N) :- X<N, X1=X+1,
reach(cf(cmd(2, asgn(int(y), plus(int(x), int(y)))),

[[int(x), X1], [int(y), Y], [int(n), N]], [])).

11.

By unfolding clause 18 we get:

20. new1(X, Y, N) :- X≥N, X>Y.

From clause 19, after two unfolding steps, we get:

21. new1(X, Y, N) :- X<N, X1=X+1,

tr(cf(cmd(1, asgn(int(y), plus(int(x), int(y)))),

[[int(x), X1], [int(y), Y], [int(n), N]], []), X2)),

reach(X2).

By unfolding clause 21 we get:

22. new1(X, Y, N) :- X<N, X1=X+1, Y1=X1+Y,

reach(cf(cmd(3, goto(0)),

[[int(x), X1], [int(y), Y1], [int(n), N]], [])).

The sequence of clauses 12, 15, 19, and 22, which we have obtained by unfolding, mimics the
execution of the sequence of the four commands: (i) ℓ0 : if (x < n) ℓ1 else ℓh, (ii) ℓ1 :x=x+1,
(iii) ℓ2 :y=x+y, and (iv) ℓ3 :goto ℓ0 (note in those clauses the atoms reach(cf(cmd(i, ...), ..., ...)),
for i=0, 1, 2, 3). Indeed, in general, by unfolding, one is able to perform the symbolic execution
of the commands of any given program. The conditions that should hold so that a particular
command cmd(i, ...) is executed, are given by the constraints in the clause in whose body the
atom reach(cf(cmd(i, ...), ..., ...)) occurs.

From clause 22, after a few more unfolding steps, we get:

23. new1(X, Y, N) :- X<N, X1=X+1, Y1=X1+Y,

reach(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X1], [int(y), Y1], [int(n), N]], [])).

By folding clause 23 using clause 12, we get:

23.f new1(X,Y,N) :-X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).

Note that this folding step using the definition for the predicate new1 is possible because the
execution of the program returned to the command to which the definition of new1 refers. The
final, specialized program P1 is as follows:

11.f unsafe :- X=0, Y=0, new1(X, Y, N).

23.f new1(X,Y,N) :-X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).

20. new1(X,Y,N) :- X≥N, X>Y.

The derived program P1 has a constrained fact for new1 (see clause 20 and, by repeatedly using
clause 23.f, from that constrained fact, we can derive infinitely many new constrained facts which
belong to the least model of P1. Hence, we cannot show that new1 does not hold for X=Y=0,
and thus we cannot show that unsafe does not hold (see clause 11.f).

In order to show program safety, now we perform two more specialization steps. First, we
specialize program P1 by with respect to the constraints of the initial configuration, and then
we specialize the residual program with respect to the constraints of the error configuration. By
iterated specialization we will derive a new empty program allowing us to conclude that unsafe
does not hold.

Second Specialization: Propagation of the constraints of the initial configuration

Now we perform our second program specialization starting from the program P1 we have
derived by removing the interpreter. This specialization is based on the idea of propagating the

12.

constraints X=0 and Y=0 of the initial configuration which occur in clause 11.f defining the
predicate unsafe.

We begin by unfolding clause 11.f with respect to the atom with predicate new1 and we get:

24. unsafe :- X=0, Y=0, X≥N, X>Y.

25. unsafe :- N>0, X1=1, Y1=1, new1(X1, Y1, N).

Now clause 24 has an unsatisfiable constraint, and thus it is deleted. In order to fold clause 25,
we define the following new predicate:

26. new2(X, Y, N) :- N>0, X=1, Y=1, new1(X, Y, N).

By folding clause 25, we get:

25.f. unsafe :- N>0, X1=1, Y1=1, new2(X1, Y1, N).

Now we unfold the last definition which has been introduced (clause 26) and we get two clauses
of which the only one with a satisfiable constraint is (after constraint simplification):

27. new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new1(X1, Y1, N).

In order to fold this clause, we need the following new predicate:

28. new3(X, Y, N) :- N>1, X=2, Y=3, new1(X, Y, N).

The comparison between clauses 26 and 28 shows the risk of introducing an infinite number of
clauses (see, in particular, the constraints X=1 and X=2), thereby making the specialization
process never to halt. Thus, we perform a generalization step (we use the widening operator [8])
between clauses 26 and 28, and we introduce, instead of clause 28, the following clause 29 (where
the constraint X≥1 is the widening of X=1 and X=2):

29. new3(X, Y, N) :- N>0, X≥1, Y≥1, new1(X, Y, N).

We fold clause 27 using clause 29 and we get (after constraint simplification):

27.f new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).

Note that this folding step preserves equivalence between clauses 27 and 27.f, even if new3 is a
generalization of new1, because the atoms new1(X1, Y1, N) and new3(X1, Y1, N) are equivalent in
a context where the constraint N>1, X1=2, Y1=3 holds.

By continuing our specialization process following the usual unfold-definition-fold cycle ac-
cording to the Specialization procedure of Figure 2. We unfold clause 29 and we get the two
clauses:

30. new3(X, Y, N) :- X≥1, Y≥1, X1≤N, X1=X+1, Y1=X1+Y, new1(X1, Y1, N).

31. new3(X, Y, N) :- Y≥1, N>0, X≥N, X>Y.

(Note that in clause 30 we wrote X1 ≤ N , instead of the equivalent X < N .) We can fold
clause 31 by using clause 29, and we eventually get the specialized program P2:

25.f unsafe :- N>0, X1=1, Y1=1, new2(X1, Y1, N).

27.f new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1, Y1, N).

30.f new3(X, Y, N) :- X1≥1, Y1≥X1, X1≤N, X1=X+1, Y1=X1+Y, new3(X1, Y1, N).

31. new3(X, Y, N) :- Y≥1, N>0, X≥N, X>Y.

Again, as after the removal of the interpreter, in this final program the presence of a constrained
fact for the predicate new3 (see clause 31), does not allow us to conclude that P2 has an empty
least model, and hence the safety of our program.

13.

Program Reversal

At this point the novel strategy we propose in this paper iterates the specialization process by
starting from the derived program P2, and propagates the constraints of the error configuration
(not those of the initial configuration, as it has been done in our second specialization above). We
perform one more specialization, starting from program P2rev obtained by reversing program P2
as we now indicate (the general technique will be presented in the next section).
First, program P2 can be viewed as a program of the form:

s1. unsafe:- a(U), r1(U).
s2. r1(U) :- trans(U, V), r1(V).
s3. r1(U) :- b(U).

if we define the predicates a, trans, and b as follows (round parentheses make a single argument
out of a tuple of arguments):

s4. a((new2, X1, Y1, N)) :- N>0, X1=1, Y1=1.
s5. trans((new2, X, Y, N), (new3, X1, Y1, N)):-X=1, Y=1, N>1,

X1=2, Y1=3.
s6. trans((new3, X, Y, N), (new3, X1, Y1, N)):-X1≥1, Y1≥X1,

X1≤N, X1=X+1, Y1=X1+Y.
s7. b((new3, X, Y, N)) :- Y≥1, N>0, X≥N, X>Y.

Indeed, P2 can be obtained from s1–s7 by (i) unfolding clauses s1–s3 with respect to a(U),
trans(U, V), and b(U), and then (ii) rewriting the atoms of the form r1((new2, X, Y, N)) and
r1((new3, X, Y, N)) as new2(X, Y, N) and new3(X, Y, N), respectively. (The occurrences of the predi-
cate symbols new2 and new3 in the arguments of r1 should be considered as individual constants.)
Then, the reversed program P2rev is given by the following clauses:

r1. unsafe:- b(U), r2(U).
r2. r2(V) :- trans(U, V), r2(U).
r3. r2(U) :- a(U).

together with clauses s4–s7. For our proof of program safety, the correctness of this pro-
gram reversal which produces program P2rev from program P2, is established by the fact that
unsafe ∈ M(P2) iff unsafe ∈ M(P2rev).
The idea behind program reversal is best understood by considering the reachability relation

in the (possibly infinite) transition graph whose transitions are defined by the (instances of)
clauses s5 and s6. Program P2 checks the reachability of a configuration c2 satisfying b from
a configuration c1 satisfying a, by moving forward from c1 to c2. Program P2rev checks the
reachability of c2 from c1, by moving backward from c2 to c1. Thus, in the case where a and b

are predicates that characterize the initial and final configurations, respectively, the reversal
transformation derives a program that checks the reachability of an error configuration from
an initial configuration by moving backward from the error configuration. In particular, in the
body of the clause for unsafe in P2rev the constraint b(U) contains, among others, the constraint
X>Y characterizing the error configuration and, by specializing P2rev, we will propagate the
constraints of the error configuration.

Third Specialization: Propagation of the constraints of the error configuration

Let us then specialize program P2rev. We start from the clauses r1–r3 and s4–s7. We unfold the
clause for unsafe (clause r1) with respect to the leftmost atom b(U) and we get:

32. unsafe :- Y≥1, N>0, X≥N, X>Y, r2((new3, X, Y, N)).

14.

In order to fold clause 32 we introduce the definition:

33. new4(X, Y, N) :- Y≥1, N>0, X≥N, X>Y, r2((new3, X, Y, N)).

We fold clause 32, thereby getting:

32.f unsafe :- Y≥1, N>0, X≥N, X>Y, new4(X, Y, N).

Then we unfold the last definition we have introduced (clause 33) and we get:

34. new4(X, Y, N) :- Y≥1, N>0, X≥N, X>Y, a((new3, X, Y, N)).
35. new4(X1, Y1, N) :- Y1≥1, N>0, X1≥N, X1>Y1,

trans(U, (new3, X1, Y1, N)), r2(U).

By unfolding, clause 34 is deleted because the head of clause s4 is not unifiable with a(new3, X, Y, N),
and by unfolding clause 35 with respect to trans(U, (new3, X1, Y1, N)) we get two clauses each of
which has an unsatisfiable constraint in its body. Thus, we are left with clause 32.f only. Since
clause 32.f is not a constrained fact, its least model is empty, and thus unsafe does not hold
and we may conclude our program verification by stating that the given program is safe with
respect to ϕinit and ϕerror .
Thus, in this example we have seen that by iterating the specializations which propagate the

constraints occurring in the initial configuration and in the error configuration, we have been
able to show safety of the given program. It can be shown that, if we perform our specializations
by taking into account only the constraints of the initial configuration or only the constraints
of the error configuration, it is not possible to show program safety in our example. Thus, as
advocated in this paper, if we perform a sequence of program specializations, we may gain an
extra power when we have to prove program properties. This is confirmed by the experiments
we have performed on various examples taken from the literature. We will report on those
experiments in Section 6.
In the next section we will formally present our method for iterated specialization, where the

propagation of the constraints of the initial and the error configurations can be alternated in
any order.

5. Iterated Specialization

The strategy for iterated specialization we propose in this paper for directing the specialization
steps, is depicted in Figure 1.

Input : A CLP program I encoding an unsafety triple.
Output : Program Isp such that unsafe∈M(I) iff unsafe∈M(Isp).

SpecializeRemove(I, Isp);
while there exists a clause in Isp of the form: unsafe :- G, where G is not the empty goal do

either Irev :=Isp or Reverse(Isp, Irev);
SpecializeProp(Irev, Isp);

end-while

Figure 1: The Iterated Specialization strategy.

The Iterated Specialization strategy takes as input the CLP program I which encodes an
unsafety triple as shown is Section 3. Thus, given the unsafety triple {{ϕinit}} P {{ϕerror }},
program I is made out of: (i) the CLP facts associated with the Core CIL program fragment P ,
(ii) the clauses for the interpreter tr that encodes the transition relation =⇒, (iii) the clauses

15.

for the predicates unsafe and reach (see clauses 5–7 of Section 3), (iv) the clauses for initConf
and errorConf encoding the formulas ϕinit and ϕerror , respectively.

The input program I is specialized by applying the procedure SpecializeRemove which imple-
ments the removal of the interpreter as illustrated in the example of Section 4. As shown in that
example, SpecializeRemove unfolds away the relation tr and introduces new predicate definitions
corresponding to (some of the) program points of the original Core CIL program.

Then the strategy iterates the two proceduresReverse (which may be skipped) and SpecializeProp
and, if it terminates, it derives a specialized program which either contains the fact unsafe or
contains no clauses with head unsafe. In the former case the unsafety property encoded by I
holds and the given Core CIL program is unsafe, while in the latter case the unsafety property
does not hold and the given Core CIL program is safe.

The Specialize Procedure

The SpecializeRemove and SpecializeProp procedures are two specific versions of the generic Spe-

cialize procedure presented in Figure 2 on page 17.

Assume that the program I taken as input by the Specialize procedure contains j≥1 clauses
defining the predicate unsafe:

unsafe :- c1(X), p1(X), . . . , unsafe :- cj(X), pj(X)

where c1(X),...,cj(X) are either atoms or constraints, and p1(X),...,pj(X) are atoms. For
instance, when I is the initial version of the interpreter for the subset of CIL considered in this
paper, we have that j is 1, c1(X) is initConf(X), and p1(X) is reach(X).

The Specialize procedure modifies the initial program I by propagating the information en-
coded by c1(X),...,cj(X), which characterize the initial or the error configurations, depending
on the number of applications of the Reverse procedure. In particular, by unfolding we may be
able to discover that unsafe has a successful derivation, and hence the given Core CIL program
fragment is unsafe. Alternatively, by unfolding we may add constraints that are inconsistent
with the ones occurring in the constrained facts, and by folding we may derive mutually recursive
predicates, and hence these predicates will have no constrained facts and we infer safety.

The Specialize procedure makes use of two functions: Unf and Gen, for controlling unfolding
and generalization, respectively.

Given a clause C of the form H :-c, L, A, R, where H and A are atoms, c is a constraint, and L

and R are (possibly empty) conjunctions of atoms, let {Ki :-ci,Bi | i = 1, . . . ,m} be the set of
the (renamed apart) clauses in program I such that, for i = 1, . . . ,m, A is unifiable with Ki via
the most general unifier ϑi. We define the following function:

Unf (C, A) = {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m}

Each clause in Unf (C, A) is said to be derived by unfolding C w.r.t. A. In order to perform un-
folding during specialization, we assume that atoms occurring in bodies of clauses are annotated
as either unfoldable or not unfoldable. This annotation is based on an analysis of program I
which ensures that any sequence of clauses constructed by unfolding w.r.t. unfoldable atoms is
finite. We refer to [23] for a survey of techniques for controlling unfolding that guarantee this
finiteness property.

The Specialize procedure makes use of the function Gen, called generalization operator for
introducing new predicate definitions. Given a clause E: newp(X):- e(X,X1),p(X1) and the set
Defs of clauses that define the new predicates introduced up to a given point by the specialization
algorithm, Gen(E,Defs) returns a clause G: newr(X):- g(X),p(X) such that: (i) newr is a new

16.

predicate symbol, and (ii) e(X, X1) ⊑ g(X1), where ⊑ denotes entailment between constraints.
Then, E is folded by using G, thereby deriving the new clause newp(X):- e(X,X1),newr(X1).
By the correctness of the folding rule this transformation step preserves equivalence with respect
to the least model semantics. Indeed, newr(X1) is equivalent to the conjunction g(X1),p(X1)

by definition and the conjunction e(X,X1),g(X1) is equivalent to e(X,X1).

The generalization operator used in the SpecializeRemove procedure returns a clause G of the
form: newr(X):-p(X) (that is, g(X) is the constraint true). The generalization operators used in
the SpecializeProp procedure is based on widening, convex hull, and well-quasi orderings relations
which have been introduced for analyzing and specializing constraint logic programs [8, 12, 27].
For lack of space we do not present here the definitions of the generalization operators, and for
more details the reader may refer to [12], where it is also shown that these operators guarantee
that during specialization only a finite number of new predicates is introduced.

In the Specialize procedure we also use the following notions. A clause of the form H :- c, B

is subsumed by the constrained fact H :- d if c⊑d. We say that a predicate p in a program P is
useless if for all predicates q such that p depends on q there is no constrained fact for q in P ,
where the dependency relation between predicates is defined as usual.

Termination and Correctness of Specialization

The correctness of the Specialize procedure with respect to the least model semantics directly
follows from the correctness of the transformation rules [10].

As mentioned above, the termination of the unfolding phase of the Specialize procedure is
guaranteed by a suitable annotation of the atoms in the body of the clauses. Moreover, when
Gen is defined as one of the generalization operators presented in [12], a finite set of new
predicates are introduced during the Specialize procedure, and hence the procedure terminates.

Thus, we have the following result.

Theorem 5.1. (Termination and Correctness of Specialization) (i) The Specialize procedure

terminates. (ii) Let program Isp be the output of the Specialize procedure applied on the input

program I. Then unsafe ∈ M(I) iff unsafe ∈ M(Isp).

The Reverse Transformation

The Reverse procedure implements a transformation that reverses the flow of computation: the
top-down evaluation (that is, from the head to the body of a clause) of the transformed program
corresponds to the bottom-up evaluation (that is, from the body to the head) of the initial
program. In particular, if the Reverse procedure is applied to a program that checks the reacha-
bility of the error configurations from the initial configurations by exploring the transition graph
forward from the initial configurations, then the transformed program checks reachability by ex-
ploring the transition graph backward from error configurations. Vice versa, from a program
that checks reachability by a backward exploration of the transition graph, Reverse derives a
program that checks reachability by a forward exploration of the transition graph.

The output of the Specialize procedure, and hence the input of the Reverse procedure, is a

17.

Input : Program I.
Output : Program Isp such that unsafe∈M(I) iff unsafe∈M(Isp).

Initialization:
Isp := ∅;
InCls := {unsafe:-c1(X),p1(X), . . . , unsafe:- cj(X),pj(X)};
Defs := ∅;

while in InCls there is a clause C which is not a constrained fact do

Unfolding:

SpC := Unf (C,A), where A is the leftmost atom in the body of C;

while in SpC there is a clause D whose body contains an occurrence of an unfoldable
atom A do

SpC := (SpC− {D}) ∪Unf (D,A)
end-while;

Clause Removal:
while in SpC there are two distinct clauses E and F such that E subsumes F or

there is a clause F whose body contains an unsatisfiable constraint do
SpC := SpC− {F}

end-while;

Definition-Introduction & Folding:
while in SpC there is a clause E of the form:

H :- e(X,X1),p(X1)

where H is either unsafe or an atom of the form newp(X), and e(X,X1) is a constraint
do

if in Defs there is a clause D of the form:
newq(X):- c(X), p(X)

where c(X) is a constraint such that e(X,X1) ⊑ c(X1)

then SpC := (SpC− {E}) ∪ {H :- e(X,X1),newq(X1)};

else let Gen(E,Defs) be newr(X):- g(X), p(X)
where: (i) newr is a predicate symbol not occurring in I∪Defs,
and (ii) g(X) is a constraint such that e(X,X1)⊑g(X1);
Defs := Defs ∪ {Gen(E,Defs)};
InCls := InCls ∪ {Gen(E,Defs)};
SpC := (SpC − {E}) ∪ {H :- e(X,X1),newr(X1)}

end-while;

InCls := InCls− {C};
Isp := Isp ∪ SpC;

end-while;

Removal of Useless Clauses:
Remove from Isp all clauses whose head predicate is useless.

Figure 2: The Specialize Procedure.

18.

program Isp of the form:

unsafe :- a1(X), newp1(X).

· · ·
unsafe :- ak(X),newpk(X).

newq1(X) :- t1(X,X1),newr1(X1).

· · ·
newqm(X) :- tm(X,X1),newrm(X1).

news1(X) :- b1(X).

· · ·
newsn(X) :- bn(X).

where: (i) a1(X), . . . , ak(X), t1(X, X1), . . . , tm(X, X1), b1(X), . . . , bn(X) are constraints, and (ii) the
(possibly non-distinct) predicate symbols newpi’s, newqi’s, newri’s, and newsi’s are the new
predicate symbols introduced by the generalization operator Gen.
The Reverse procedure transforms program Isp in two steps as follows.

Step 1. Program Isp is transformed into a program I ′sp of the following form:

unsafe :- a(U), r1(U).

r1(U) :- trans(U,V), r1(V).

r1(U) :- b(U).

a((newp1,X)) :- a1(X).

· · ·
a((newpk,X)) :- ak(X).

trans((newq1,X),(newr1,X1)) :- t1(X,X1).

· · ·
trans((newqm,X),(newrm,X1)):- tm(X,X1).

b((news1,X)) :- b1(X).

· · ·
b((newsn,X)) :- bn(X).

The correctness of the transformation from Isp to I ′sp relies on the fact that by unfolding the
clauses of I ′sp w.r.t. a(U), trans(U, V), and b(U), and then rewriting all atoms of the form
r1((newpred, Z)) into newpred(Z), we get back Isp.

Step 2. Program I ′sp is transformed into a program Irev by replacing the first three clauses of I ′sp
by the following ones:
unsafe :- b(U), r2(U).

r2(V) :- trans(U,V), r2(U).

r2(U) :- a(U).

The correctness of this transformation can be proved as indicated in [3], and thus we have the
following result.

Theorem 5.2. Let Irev be the program derived from program Isp by the Reverse procedure. Then

unsafe∈M(Isp) iff unsafe∈M(Irev).

Finally, by using Theorems 3.1, 5.1, and 5.2, we get the following soundness result.

Theorem 5.3. (Soundness of the Software Model Checking method) Let I be the CLP encoding

of the unsafety triple {{ϕinit}} P {{ϕerror}}. If the Iterated Specialization strategy terminates for

the input program I, and Isp is the output of the strategy, then P is safe with respect to ϕinit

and ϕerror iff unsafe /∈Isp.

19.

6. Experimental Evaluation

We have performed an experimental evaluation of our software model checking method on bench-
mark programs taken from the literature. The results of our experiments show that our approach
is competitive with state-of-the-art software model checkers.

Programs substring and tracerP are taken from [21] and [17], respectively, while programs re1
and singleLoop are taken from [9]. Program selectSort is an encoding of the selection sort
algorithm where references to arrays have been replaced by using uninitialized variables to
perform array bounds checking. The other programs are taken from the benchmark set of
DAGGER [14]. The source code of all the programs we have considered in this paper is available
at http://map.uniroma2.it/smc/.

Our software model checker consists of three modules.

(i) A front-end module, based on CIL [26], which translates a C program together with the initial
and error configurations, into a set of CLP facts. These facts, together with the clauses for the
predicates tr, unsafe, and reach (and the predicates they depend upon), are used during the
first program specialization which removes the interpreter.

(ii) A module for CLP program transformation which is used for removing the interpreter and
applying the iterated specialization strategy. This module is implemented using the MAP sys-
tem [24], which is a tool for transforming constraint logic programs written in SICStus Prolog.
The MAP system operates on constraints over the rational numbers by using the clpq library.

(iii) A module for inspecting the CLP programs obtained by specialization and checking whether
they contain the fact unsafe (in which case the given C programs are proved unsafe) or they
contain no clauses with head unsafe (in which case the given C program are proved safe).

We have also tested the following three state-of-the-art CLP-based software model checkers
for C programs: (i) ARMC [29], (ii) HSF(C) [13], and (iii) TRACER [18]. ARMC and HSF(C)
are based on the Counter-Example Guided Abstraction Refinement technique (CEGAR) [4, 20,
31], while TRACER uses a technique based on approximated preconditions and approximated
postconditions. We have compared the performance of those model checkers on our benchmark
programs with that of our model checker.

Table 1 reports the results of our experimental evaluation, which has been performed on an
Intel Core Duo E7300 2.66Ghz processor with 4GB of memory under the GNU Linux operating
system.

In the columns labelled with MAP(a) and MAP(b) we have reported the time needed for the
verification process using the MAP system according to the method for iterated specialization
presented in this paper. That time includes the time needed for removing the interpreter, which
ranges from some tenths of milliseconds to eight or nine seconds, for the most complex programs.

We have used the following sequences of program transformations, where the exponent indi-
cates the number of times the associated subsequence has been applied (for reasons of simplicity,
the arguments of the procedures have been omitted):

for MAP(a): SpecializeRemove; (Reverse; SpecializeProp)
n, and

for MAP(b): SpecializeRemove; SpecializeProp; (Reverse; SpecializeProp)
n−1.

Thus, after the removal of the interpreter, the first SpecializeProp of MAP(a) propagates the
constraints of the error configuration (and this corresponds to a backward move along the tran-
sition graph associated with the reachability relation), while the first SpecializeProp of MAP(b)
propagates the constraints of the initial configuration (and this corresponds to a forward move
along the transition graph).

20.

Program to be verified
MAP(a) MAP(b)

ARMC HSF(C)
TRACER

n n SPost WPre

barber 3 137.99 2 69.74 577.06 13.88 12.86 3.86

barber1 1 13.71 2 26.43 414.01 0.59 7.00 5.17

berkeleyNat 3 1.88 2 1.51 11.48 0.29 - 1.33

berkeley 1 1.57 2 1.53 11.28 0.26 - 1.00

efm 3 6.48 2 4.04 31.17 0.51 2.43 2.68

ex1 1 0.03 2 0.40 1.69 0.22 - 1.39

f1a 2 0.17 1 0.07 - 0.21 - 1.97

heapSort 1 8.16 2 13.51 39.66 0.35 - -

heapSort1 1 3.01 2 9.58 20.55 0.26 - -

interp 1 0.12 2 0.28 11.41 0.19 - 2.92

lifnat 3 23.13 2 20.20 228.96 7.19 - 72.12

lifo 1 20.56 2 15.59 126.54 0.54 - 7.45

p2 1 14.75 1 - - 0.77 - -

re1 1 0.23 1 0.08 - 0.19 - -

seesaw 1 2.09 2 3.04 - 0.27 - 34.16

selectSort 3 1.96 6 3.26 24.97 0.25 - -

singleLoop 3 0.35 2 0.28 - - - 56.57

substring 2 0.16 1 0.20 472.32 40.51 - -

swim 3 116.56 2 40.13 - 2.94 - 15.13

tracerP 1 0.01 1 0.07 - - 1.04 1.03

number of verifiedprograms 20 (9) 19 (15) 13 18 4 14

total time 353.29 209.94 1971.10 69.42 23.33 206.78

Table 1: Time (in seconds) required for program verification. ‘-’ means ‘unable to verify within
10 minutes’. The subcolumns labelled by n report the number of SpecializeProp performed by
the MAP system, that is, the number of specializations, after the removal of the interpreter.

In the subcolumns labelled with n we have reported the total number of program special-
izations needed, after the removal of the interpreter, before a successful verification or before
timeout. The generalizations performed by the MAP system are done by applying the widening
and the convex hull operators.

In the remaining columns we have reported the results obtained by ARMC, HSF(C), and
TRACER using the strongest postcondition (SPost) and the weakest precondition (WPre) op-
tions, respectively. The last two lines report the number of programs which have been success-
fully verified and the total time needed for verification. For the MAP system we also report,
between parentheses, the number of programs which require more than one iteration (n > 1)
to be successfully verified. This number measures the effectiveness of performing additional
iterations of program specialization.

The experimental results show that our approach of iterating program specialization, is indeed
effective and determines an increase of the number of successful verifications. Sometimes the
increase is substantial.

On our set of examples, the MAP(a) system is able to verify 20 programs out of 20. It is
followed by MAP(b) (19), HSF(C) (18), TRACER using weakest precondition (14), ARMC (13),
and TRACER using strongest postcondition (4).

21.

We observe that some of the examples are verified by the MAP system using the transformation
sequence MAP(a) with n=1, that is, by propagating the constraints of the error configuration
only. The examples re1 and tracerP can be verified by MAP(a) or MAP(b) with n= 1, that
is, by a single propagation of the constraints of either the error configuration or the initial
configuration, respectively.

Thus, in some of our benchmark programs the invariants which are useful for their proofs,
can be discovered by a single propagation of the constraints of either the error configuration
or the initial configuration. However, if we perform a preliminary additional specialization by
propagating the constraints of the other configuration (that is, the initial configuration or the
final configuration, respectively), then we are still able to prove the property of interest by
requiring very little extra time. Actullay, sometimes (see, for instance, the lifo and substring

programs) this additional preliminary specialization can even reduce the total time because it
prunes the search space.

Looking at Table 1, we may conclude that the verification times taken by our MAP-based
software model checker is generally comparable with that of the other tools, and it is not much
greater than that of the fastest tools.

7. Related Work and Conclusions

The software model checking technique proposed in this paper is an extension of the technique for
the verification of simple imperative programs presented in [9]. The main novelties introduced
in this work are the following: (i) we consider CIL programs (that is, C programs transformed
by using the CIL tool [26]), and (ii) we define a general verification framework in which spe-
cialization of constraint logic programs is repeatedly applied with the objective of making a
more effective use of the information dispersed through the program to be verified (typically,
the initial configurations and the error configurations).

The use of constraint logic programming and program specialization for the verification of
properties of imperative programs is not novel. It has also been investigated, for instance,
in [28]. In that paper a CLP interpreter for the operational semantics of a simple imperative
language is specialized with respect to the input program to be verified. Then, a static analyser
for CLP programs is applied to the residual program for computing ‘invariants’ of the input
imperative program, which are used in the proof of the properties of interest. Unlike [28], our
verification approach does not require any static analyzer and, instead, we discover program
invariants during the specialization process by means of suitable generalization operators. They
are defined in terms of operators and relations on constraints such as widening, convex-hull, and
well-quasi orders [12]. As in [28], we also use program specialization to perform the removal of
the interpreter, but in addition, we repeatedly use specialization for propagating the information
about the initial configurations and the error configurations.

A popular technique for program verification is the so called Counter-Example Guided Ab-
straction Refinement (CEGAR) [4, 20, 31], which is used by many software model checkers such
as BLAST [2], DAGGER [14], and SLAM [1]. In the CEGAR technique, given a program P
and a safety property to be verified, one automatically constructs an abstract model of P which
is used to check whether or not an abstract error configuration is reachable form an abstract
initial configuration. If no abstract error configuration can be reached, then P satisfies the given
safety property, otherwise a counterexample, that is, a sequence of configurations leading to an
abstract error configuration, is generated and then analyzed. If the counterexample corresponds
to a concrete computation of P , then the program is proved unsafe, otherwise the abstraction

22.

needs to be refined because it was too coarse, and a new cycle of the verification process is
performed using that refined abstraction in the hope of a successful proof.
In the field of static program analysis the idea of performing backward and forward semantic

analyses has been proposed in [6]. These analyses have been combined, for instance, in [7],
to devise a fixpoint-guided abstraction refinement algorithm which has been proved to be at
least as powerful as the CEGAR algorithm where the refinement is performed by applying a
backward analysis. An enhanced version of that algorithm, which improves the abstract state
space exploration and makes use of disjunctive abstract domain, has been proposed in [30].
Our approach can be regarded as complementary to those based on CEGAR. Indeed, we

begin by making no abstraction at all, and if the specialization process is deemed to diverge,
then we perform some generalization steps which plays a role similar to that of abstraction.
(Note, however, that program specialization preserves program equivalence.) There are various
generalization operators that we can apply for that purpose and by varying those operators we
can tune the specialization process in the hope of making it more effective for the proofs of the
properties of interest.
Our preliminary experimental results show that our approach is viable and competitive with

state-of-the-art software model checkers, some of which follow the CEGAR approach.
As a future work, we would like to address the issue of the design of suitable heuristics that

should guide the choice of the generalization operators in each iteration of the specialization
process. It will also be important to design suitable strategies for controlling the number of
clauses of the specialized programs. Indeed, if that number is too high, then verification becomes
inefficient.

23.

A. Another Example of Iterated Specialization

As indicated at the beginning of Section 4, in this appendix we apply the iterated specializa-
tion method to the program P1 obtained after the removal of the interpreter (see the pro-
gram derived at page 11..), by first propagating the constraints of the error configuration and
then the constraints of the initial configuration. That is, we apply the iterated specialization
method according to the strategy specified by the following sequence of procedure applications:
Reverse; SpecializeProp; Reverse; SpecializeProp. Note that, on the contrary, in Section 4, start-
ing from program P1, we have applied the sequence: SpecializeProp; Reverse; SpecializeProp.

In Appendix A.1 below we will show the program transformations due to the first subsequence:
Reverse; SpecializeProp. They end up with the program P2∗. Then, in Appendix A.2, starting
from that program P2∗, we wiil show the subsequent program transformations due to the second
subsequence: Reverse; SpecializeProp. They end up the final program P3∗.

Recall that program P1 is made out of the following clauses:

11.f unsafe :- X=0, Y=0, new1(X, Y, N).

23.f new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).

20. new1(X,Y,N) :- X≥N, X>Y.

We need the following notion.

An atom is said to be unfoldable iff its predicate symbol belongs to the set {trans, a, b}.

A.1. Second Specialization: Propagation of the constraints of the error configura-

tion

In order to apply the Reverse procedure, we have to view program P1 as a program of the form:

s1. unsafe :- a(U), r1(U).

s2. r1(U) :- trans(U,V), r1(V).

s3. r1(U) :- b(U).

where the predicates a, trans, and b should defined as follows:

s4. a((new1,X,Y,N)) :- X = 0, Y = 0.

s5. b((new1,X,Y,N)) :- X ≥ N, X > Y.

s6. trans((new1,X,Y,N),(new1,X1,Y1,N)) :- X<N, X1=X+1, Y1=X1+Y.

Indeed, P1 can be obtained from s1– s6 by: (i) unfolding clauses s1–s3 with respect to a(U),
trans(U, V), and b(U), and then (ii) rewriting the atom r1((new1, X, Y, N)) as new1(X, Y, N).

Then, the reversed program P1rev is given by the following clauses:

r1. unsafe :- b(U), r2(U).

r2. r2(V) :- trans(U,V), r2(U).

r3. r2(U) :- a(U).

together with the clauses s4– s6.

Now we show the execution of the procedure Specialize (see Figure 2) when it is given as input
the program P1rev. In what follows the outermost while-loop of the Specialize procedure will be
called the UDF-cycle (where UDF stands for Unfolding-Definition-Folding).

The Initialization procedure performs the assignments:

Isp := ∅, InCls := {s1}, and Defs := ∅.
Since InCls 6= ∅, Specialize enters the UDF-cycle. First, the Unfolding procedure executes the
assignment SpC :=Unf (r1,b(U)), which unfolds clause r1 w.r.t. the atom b(U). We get:

24.

24. unsafe :- X≥N, X>Y, r2((new1,X,Y,N)).

We have that in the body of clause 24 does not occur any unfoldable atom, thus, the Unfolding

procedure terminates with SpC = {24}. The application of Clause Removal returns SpC =
{24}. Then, the UDF-cycle continues by executing the Definition-Introduction & Folding

procedure. In order to fold clause 24 the following clause is introduced:

25. new2(X,Y,N) :- X≥N, X>Y, r2((new1,X,Y,N)).

By folding clause 24 with respect to the atom r2((new1,X,Y,N)) by using clause 25 we get:

24.f unsafe :- X≥N, X>Y, new2(X,Y,N).

Then, we get:
Defs := Defs ∪ {25} = {25}, InCls := InCls ∪ {25} = {r1, 25}, and
SpC := (SpC− {24})∪{24.f} = {24.f}.

The first execution of the UDF-cycle terminates by performing the following assignments:
InCls := InCls− {r1} = {25}, and Isp := Isp ∪ SpC = {24.f}.

Since InCls 6= ∅, we perform one more iteration of the UDF-cycle The Unfolding procedure
executes SpC := Unf (25, r2((new1,X,Y,N))), that is, it unfolds the leftmost atom in the body
of clause 25. We get:

26. new2(X,Y,N) :- X≥N, X>Y, a((new1,X,Y,N)).

27. new2(X,Y,N) :- X≥N, X>Y, trans(U,(new1,X,Y,N)), r2(U).

We have that both clauses 26 and 27 have an unfoldable atom in their bodies. These atoms are
a((new1,X,Y,N)) and trans(U,(new1,X,Y,N)), respectively.
The execution Unf (26, a((new1,X,Y,N))) returns the clause:

28. new2(X,Y,N) :- X≥N, X>Y, X=0, Y=0.

The execution of Unf (27, trans(U,(new1,X,Y,N))) returns the clause:

29. new2(X,Y,N) :- X≥N, X>Y, X1<N, X=X1+1, Y=X+Y1, r2((new1,X1,Y1,N)).

By simplifying the constraints of clause 29 we obtain:

30. new2(X,Y,N) :- X=X1+1, Y=X1+1+Y1, X1+1=N, Y1<0, r2((new1,X1,Y1,N)).

Thus, the execution of the Unfolding procedure returns the set of clauses SpC = {28, 30}. We
have that clause 28 is unsatisfiable (because of the constraint X > Y, X = 0, Y = 0). Hence, the
Clause Removal procedure removes that clause from the set SpC.
Now, we execute the Definition-Introduction & Folding procedure. We have that there

exists a variant of clause 30 in Defs (it is clause 25), and therefore clause Gen(30,Defs) must be
generated. This is done as follows. A so called candidate definition is first introduced. Its body
is the conjunction of: (i) the constraint obtained by projecting the constraint in clause 30 with
respect to the variables occurring in the atom r2((new1,X1,Y1,N)) of clause 30, and (ii) the
atom r2((new1,X1,Y1,N)). We get the following clause:

31. new3(X,Y,N) :- X1+1=N, Y1<0, r2((new1,X1,Y1,N)).

Now, the definition introduction proceeds by performing a generalization step involving the
constraints of clause 25 and clause 31 (the candidate definition):

25. new2(X,Y,N) :- X≥N, X>Y, r2((new1,X,Y,N)).

31. new3(X,Y,N) :- X+1=N, Y<0, r2((new1,X,Y,N)).

Then, instead of the candidate definition, the following definition is introduced (the constraints
of clauses 25 and 31 are generalized to true):

32. new4(X,Y,N) :- r2((new1,X,Y,N)).

25.

By folding clause 30 with respect to the atom r2((new1,X,Y,N)) by using clause 32 we get:

30.f new2(X,Y,N) :- X=X1+1, Y=X1+1+Y1, X1+1=N, Y1<0, new4(X1,Y1,N).

Then, Definition-Introduction & Folding performs the assignments:

Defs := Defs ∪ {32} = {25, 32}, InCls := InCls ∪ {32} = {25, 32},

and SpC := (SpC− {30})∪{30.f} = {30.f}.

The second execution of the UDF-cycle terminates by performing the assignments:

InCls := InCls− {25}={32}, and Isp := Isp ∪ SpC = {24.f, 30.f}.

We have that InCls 6= ∅, and we perform one more iteration of the UDF-cycle.

The Unfolding procedure executes the unfolding Unf (32, r2((new1,X,Y,N))). We get the
clauses:

33. new4(X,Y,N) :- a((new1,X,Y,N)).

34. new4(X,Y,N) :- trans(U,(new1,X,Y,N)), r2(U).

We have that both clauses 33 and 34 have an unfoldable atom in their bodies. They are
a((new1,X,Y,N)) and trans(U,(new1,X,Y,N)), respectively.

The execution of Unf (33, a((new1,X,Y,N))) returns the clause:

35. new4(X,Y,N) :- X=0, Y=0.

The execution of Unf (34, trans(U,(new1,X,Y,N))) returns the clause:

36. new4(X,Y,N) :- X1<N, X=X1+1, Y=1+X1+Y1, r2((new1,X1,Y1,N)).

None of the atoms in the body of clauses 35 and 36 is unfoldable, and thus the Unfolding

procedure terminates, and we get: SpC = {35, 36}. The Clause-Removal step returns SpC

unchanged. The Definition-Introduction & Folding procedure does not require us to
introduce any new definition to fold the clauses in SpC. Indeed, it is possible to fold clause 36
by using clause 32 in Defs and we get:

36.f new4(X,Y,N) :- X1<N, X=X1+1, Y =1+X1+Y1, new4(X1,Y1,N).

Thus, we have that: SpC := (SpC− {36})∪{36.f} = {35, 36.f}.

The third execution of the UDF-cycle terminates by performing the assignments:

InCls := InCls− {32} = ∅, and Isp := Isp ∪ SpC = {24.f, 30.f, 35, 36.f}.

Since InCls = ∅, the Specialize procedure terminates.

The final, specialized program P2∗ consists of the following set Isp of clauses:

24.f unsafe :- X≥N, X>Y, new2(X,Y,N).

30.f new2(X,Y,N) :- X=X1+1, Y=X1+1+Y1, X1+1=N, Y1<0, new4(X1,Y1,N).

35. new4(X,Y,N) :- X=0, Y=0.

36.f new4(X,Y,N) :- X1<N, X=X1+1, Y=1+X1+Y1, new4(X1,Y1,N).

In this program P2∗ the presence of a constrained fact for the predicate new4 (see clause 35),
does not allow us to conclude that P2∗ has an empty least model, and hence that the given
program is safe.

We perform one more specialization by applying the procedures Reverse and SpecializeProp as
indicated in the following Appendix A.2.

26.

A.2. Third Specialization: Propagation of the constraints of the initial configuration

The program P2∗ may be viewed as a program of the form:

r1. unsafe :- b(U), r2(U).

r2. r2(V) :- trans(U,V), r2(U).

r3. r2(U) :- a(U).

where the predicates a, trans, and b should defined as follows:

r4. a((new4,X,Y,N)) :- X=0, Y=0.

r5. b((new2,X,Y,N)) :- X≥N, X>Y.

r6. trans((new4,X,Y,N),(new2,X1,Y1,N)) :- X1=X+1, Y1=X+1+Y, X+1=N, Y<0.

r7. trans((new4,X,Y,N),(new4,X1,Y1,N)) :- X1<N, X1=X+1, Y1=1+X+Y.

Indeed, program P2∗rev can be obtained from r1–r7 by: (i) unfolding clauses r1–r3 with re-
spect to a(U), trans(U,V), and b(U), and then (ii) rewriting the atom r2((new2,X,Y,N)) and
r2((new4,X,Y,N)) as new2(X,Y,N) and new4(X,Y,N), respectively.

Then, the reversed program P2∗rev is given by the following clauses:

s1. unsafe :- a(U), r1(U).

s2. r1(U) :- trans(U,V), r1(V).

s3. r1(U) :- b(U).

together with clauses r4–r7. Now we perform the specialization of the derived program P2∗rev .

The Initialization procedure performs the assignments:

Isp := ∅, InCls := {s1}, and Defs := ∅.
Since InCls 6= ∅, Specialize enters the UDF-cycle. First, the Unfolding procedure performs
SpC := Unf (s1, a(U)), which unfolds clause s1 w.r.t. the leftmost atom a(U). We get:

37. unsafe :- X=0, Y=0, r1(new4,X,Y,N).

We have that no unfoldable atom occurs in the body of clause 37. Thus, the Unfolding proce-
dure terminates with SpC = {37}. The Clause-Removal returns SpC. Then, the UDF-cycle
continues by executing the procedure Definition-Introduction & Folding. In order to fold
clause 37, the following clause is introduced:

38. new5(X,Y,N) :- X=0, Y=0, r1((new4,X,Y,N)).

By folding clause 37 with respect to the atom r1((new4,X,Y,N)) by using clause 38 we get:

37.f unsafe :- X=0, Y=0, new5(X,Y,N).

We have that no other definition of clause introduction and folding operations are required,
hence the procedure Definition-Introduction & Folding terminates, and we get:

Defs := {38}, InCls := InCls ∪ {38} = {s1, 38}, and
SpC := (SpC− {37}) ∪ {37.f} = {37.f}.

The first execution of the UDF-cycle terminates by performing the assignments:

InCls := InCls− {r1} = {38}, and Isp := Is ∪ SpC = {37.f}.

Since InCls 6= ∅ we perform one more iteration of the UDF-cycle. The Unfolding procedure
executes SpC := Unf (38, r1((new4,X,Y,N))) and we get:

39. new5(X,Y,N) :- X=0, Y=0, b((new4,X,Y,N)).

40. new5(X,Y,N) :- X=0, Y=0, trans((new4,X,Y,N),V), r1(V).

We have that both clauses 39 and 40 have an unfoldable atom in their bodies. These atoms are
b((new4,X,Y,N)) and trans((new4,X,Y,N),V), respectively.

27.

The execution of Unf (39, b((new4,X,Y,N))) does not produce any clause since the atom
b((new4,X,Y,N)) does not unify with the head of any clause in P1rev . The execution of
Unf (40, trans((new4,X,Y,N),V)) returns:

41. new5(X,Y,N) :- X=0, Y=0, X1=X+1, Y1=X+1+Y, X+1=N, Y<0, r1((new2,X1,Y1,N)).

By simplifying the constraint of clause 41 we get:

42. new5(X,Y,N) :- X=0, Y=0, X1<N, X1=1, Y1=1, r1((new4,X1,Y1,N)).

The Unfolding procedure terminates by returning SpC = {42}. The Clause-Removal re-
turns SpC. Then, the UDF-cycle continues by executing the Definition-Introduction &

Folding procedure. We have that there exists a variant of clause 42 in Defs, i.e., clause 38,
and therefore clause Gen(42,Defs) is introduced. The candidate definition is:

43. new5(X,Y,N) :- X1<N, X1=1, Y1=1, r1((new4,X1,Y1,N)).

Now, the definition introduction proceeds with a generalization step performed between the
constraints of the clause 38 and clause 43 (the candidate definition), which are:

38. new5(X,Y,N) :- X=0, Y=0, r1((new4,X,Y,N)).

43. new5(X,Y,N) :- X1=1, Y1=1, X1<N, r1((new4,X1,Y1,N)).

Then, instead of the candidate definition, the following definition is introduced:

44. new6(X,Y,N) :- X≥0, Y≥0, r1((new4,X,Y,N)).

By folding clause 42 with respect to r1((new4,X1,Y1,N)) by using clause 44 we get:

42.f new5(X,Y,N) :- X=0, Y=0, X1<N, X1=1, Y1=1, new6(X,Y,N).

Then, the Definition-Introduction & Folding procedure performs the assignments:

Defs := Defs ∪ {44} = {38, 44}, InCls := InCls ∪ {44} = {38, 44}, and
SpC := (SpC− {42}) ∪ {42.f} = {39, 42.f}.

The second execution of the UDF-cycle terminates by performing the assignments:

InCls := InCls− {38} = {44}, and Isp := Isp ∪ SpC = {39, 42.f}.
Since InCls 6= ∅, the UDF-cycle is executed once more.

The Unfolding procedure performs the assignment SpC := Unf (44, r1(U)), and we get:

45. new6(X,Y,N) :- X≥0, Y ≥0, b((new4,X,Y,N)).

46. new6(X,Y,N) :- X≥0, Y≥0, trans((new4,X,Y,N),V), r1(V).

The execution of Unf (45, b((new4,X,Y,N))) does not produce any clause since b((new4, X, Y, N))
does not unify with the head of any clause in P2∗rev .

The execution of Unf (46, trans((new4,X,Y,N),V)) returns the clauses:

47. new6(X,Y,N) :- X≥0, Y≥0, X1=X+1, Y1=X+1+Y, X+1=N, Y<0, r1((new2,X1,Y1,N)).

48. new6(X,Y,N) :- X≥0, Y≥0, X1<N, X1=X+1, Y1=1+X+Y, r1((new4,X1,Y1,N)).

Then, we get: SpC = {47, 48}. Since the constraint of clause 47 is unsatisfiable, after the
Clause-Removal step we get SpC = {48}. In order to fold clause 48 there is no need to
introduce any new definition. Indeed, it is possible to fold clause 48 by using clause 44 in Defs:

48.f new6(X,Y,N) :- X≥0, Y≥0, X1<N, X1=X+1, Y1=1+X+Y, new6(X1,Y1,N).

Thus, we have that: SpC := (SpC− {48}) ∪ {48.f} = {48.f}.
The third execution of the UDF-cycle terminates by performing the assignments:

InCls := InCls− {44} = ∅, and Isp := Isp ∪ SpC = {37.f, 42.f, 48.f}.

Since InCls = ∅, the Specialize procedure terminates.

28.

The final, specialized program P3∗ consists of the set of the following set Isp of clauses:

37.f unsafe :- X=0, Y=0, new5(X,Y,N).

42.f new5(X,Y,N) :- X=0, Y=0, X1<N, X1=1, Y1=1, new6(X,Y,N).

48.f new6(X,Y,N) :- X≥0, Y≥0, X1<N, X1=X+1, Y1=1+X+Y, new6(X1,Y1,N).

Since the least model of program P3∗ is empty, unsafe does not hold and we conclude, as
desired, that the given program is safe with respect to ϕinit and ϕerror .

References

[1] T. Ball and V. Levin and S. K. Rajamani. A decade of software model checking with
SLAM. Commun. ACM, vol. 54, no. 7, 68–76, 2011.

[2] D. Beyer, T.A. Henzinger, R. Jhala and R. Majumdar. The software model checker Blast:
Applications to software engineering, Int. J. Softw. Tools Technol. Transf., vol. 9, no. 5,
505–525. Springer, 2007.

[3] D. R. Brough and C. J. Hogger. Grammar-Related Transformations of Logic Programs.
New Generation Computing, 9 (1), 115–134, 1991.

[4] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstrac-
tion Refinement. In: Proc. CAV’00, 154–169. Springer, 2000.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixpoints. In: Proc. POPL’77, 238–252.
ACM Press, 1977.

[6] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In: Proc.
POPL’79, 269–282. ACM Press, 1979.

[7] P. Cousot, R. Ganty, and J.-F. Raskin. Fixpoint-Guided Abstraction Refinements. In:
Proc. SAS’07, LNCS 4634, 333–348. Springer, 2007.

[8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of
a program. In: Proc. POPL’78, 84–96. ACM Press, 1978.

[9] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Branching Preserving Spe-
cialization for Software Model Checking. In: Preliminary Proc. LOPSTR’12, E. Albert,
ed., Report CW 625, Katholieke Universiteit Leuven, Belgium, 28–44, 2012.

[10] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer

Science, 166:101–146, 1996.

[11] F. Fioravanti, A. Pettorossi, and M. Proietti, Automated strategies for specializing con-
straint logic programs. In: Proc. LOPSTR’00, LNCS 2042, 125–146. Springer, 2001.

[12] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization Strategies for the
Verification of Infinite State Systems. Theory and Practice of Logic Programming, 2012.

[13] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko. HSF(C): A
Software Verifier based on Horn Clauses. In: Proc. TACAS’12. To appear, 2012.

29.

[14] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically Refining
Abstract Interpretations. In: Proc. TACAS’08, LNCS 4963, 443–458. Springer, 2008.

[15] N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11:157–185, 1997.

[16] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic Pro-

gramming, 19/20:503–581, 1994.

[17] J. Jaffar, J. A. Navas, and A. E. Santosa. Symbolic execution for verification. Computing

Research Repository, 2011.

[18] J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A Symbolic Execution Tool for
Verification, 2012.

[19] J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal. In: Proc.
CP’09, LNCS 5732, 454–469. Springer, 2009.

[20] R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys,
41(4):21:1–21:54, 2009.

[21] R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement.
In: Proc. TACAS’06, LNCS 3920, 459–473. Springer, 2006.

[22] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice Hall, 1993.

[23] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction:
Control issues. Theory and Practice of Logic Programming, 2(4&5):461–515, 2002.

[24] The MAP transformation system. www.iasi.cnr.it/∼proietti /system.html

[25] S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking takes off. Commun.

ACM, 53(2):58–64, 2010.

[26] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and
tools for analysis and transformation of C programs. In Proc. CC’02, LNCS 2304, 209–265.
Springer, 2002.

[27] J. C. Peralta, J. P. Gallagher. Convex Hull Abstractions in Specialization of CLP Programs.
In: Proc. LOPSTR’02, LNCS 2664, 90–108. Springer, 2003.

[28] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs through
Analysis of Constraint Logic Programs. In: Proc. SAS’98, LNCS 1503, 246–261. Springer,
1998.

[29] A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for Software Model Checking
with Abstraction Refinement. In: Proc. PADL’07, LNCS 4354, 245–259. Springer, 2007.

[30] F. Ranzato, O. Rossi-Doria, and F. Tapparo. A forward-backward abstraction refinement
algorithm. In Proc. VMCAI’08, LNCS 4905, 248–262. Springer, 2008.

[31] H. Säıdi. Model checking guided abstraction and analysis. In Proc. SAS’00, LNCS 1824,
377–396. Springer, 2000.

