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Abstract

We address the problem of the automatic synthesis of concurrent programs within a frame-
work based on Answer Set Programming (ASP). Every concurrent program to be synthesized
is specified by providing both the behavioural and the structural properties it should satisfy.
Behavioural properties, such as safety and liveness properties, are specified by using formulas of
the Computation Tree Logic, which are encoded as a logic program. Structural properties, such
as the symmetry of processes, are also encoded as a logic program. Then, the program which
is the union of these two encoding programs, is given as input to an ASP system which returns
as output a set of answer sets. Finally, each answer set is decoded into a synthesized program
that, by construction, satisfies the desired behavioural and structural properties.
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1. Introduction

We consider concurrent programs consisting of finite sets of processes which interact with each
other by using a shared variable ranging over a finite domain. The interaction protocol is realized
in a distributed manner, that is, every process includes some instructions which operate on the
shared variable.

Even for a small number of processes, interaction protocols which guarantee a desired be-
haviour of the concurrent programs may be hard to design and prove correct. Thus, people
have been looking for methods for the automatic synthesis of concurrent programs from the
formal specification of their behaviour. Among those methods we recall the ones proposed by
Clarke and Emerson [7], Manna and Wolper [24], and Attie and Emerson [2, 3], which use
tableau- based algorithms, and those proposed by Pnueli and Rosner [28], and Kupferman and
Vardi [22], which use automata-based algorithms.

In contrast with those approaches we do not present an ad-hoc algorithm for synthesizing
concurrent programs and, instead, we propose a framework based on logic programming by
which we reduce the problem of synthesizing concurrent programs to the problem of computing
models of a logic program encoding a given specification. We assume that behavioural properties
of concurrent programs, such as safety or liveness properties, are specified by using formulas
of the Computation Tree Logic (CTL), which is a very popular propositional temporal logic
over branching time structures [7, 8]. This temporal, behavioural specification ϕ is encoded
as a logic program Πϕ. We also assume that the processes to be synthesized satisfy suitable
structural properties, such as symmetry properties, which specify that all processes follow the
same cycling pattern of possible actions. Such structural properties cannot be easily specified by
using CTL formulas and, in order to overcome this difficulty, we use, instead, a simple algebraic
structure which can be specified in predicate logic and encoded as a logic program Πσ. Thus, the
specification of a concurrent program to be synthesized consists of a logic program Π=Πϕ∪Πσ

which encodes both the behavioural and the structural properties that the concurrent program
should enjoy.

In order to construct models of the program Π, we use logic programming with the answer
set semantics and we show that every answer set of Π encodes a concurrent program satisfying
the given specification. Thus, by using an Answer Set Programming (ASP) solver, such as the
ones presented in [11, 12, 19, 21, 23, 30], which computes the answer sets of logic programs, we
can synthesize concurrent programs which enjoy the desired behavioural and structural prop-
erties. We have performed some synthesis experiments and, in particular, we have synthesized
some protocols which are guaranteed to enjoy behavioural properties such as mutual exclusion,
starvation freedom, and bounded overtaking, and also suitable symmetry properties. However,
the synthesis framework we propose is general and it can be applied to many other classes of
concurrent systems and properties besides those mentioned above.

The paper is structured as follows. In Section 2 we recall some preliminary notions and
terminology. In Section 3 we present our framework for synthesizing concurrent programs and
we define the notion of a symmetric concurrent program. In Section 4 we describe our synthesis
procedure and the logic program used for the synthesis and we also prove that this procedure has
optimal time complexity. Then, in Section 5 we present some examples of synthesis of symmetric
concurrent programs and we compare the results obtained by using different state-of-the-art ASP
solvers. Finally, in Section 6 we discuss related work and, in particular, we compare our results
with those obtained by the ASP-based procedure for the synthesis from temporal specifications
introduced by Heymans, Van Nieuwenborgh and Vermeir in [20]. In the Appendix we show the
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proofs of the results presented in the paper, and the ASP source code of our synthesis procedure.

2. Preliminaries

Let us recall some basic notions and terminology we will use. We will present: (i) the syntax
of (a variant of) the guarded commands [10], which we use for defining concurrent programs,
(ii) some basic notions of group theory, which are required for defining symmetric concurrent
programs, and (iii) some fundamental concepts of Computation Tree Logic and of Answer Set
Programming, which we use for our synthesis method.

2.1. Guarded commands

The guarded commands we consider are defined from the following two basic sets: (i) variables,
v in Var , each ranging over a finite domain Dv, and (ii) guards, g in Guard , of the form: g ::=
true | false | v= d | ¬ g | g1 ∧∧ g2, with v∈Var and d∈Dv. We also have the following derived
sets whose definitions are mutually recursive: (iii) commands, c in Command , of the form:
c ::= skip | v := d | c1 ; c2 | if gc fi | do gc od , where ‘;’ denotes the sequential composition
of commands which is associative, and (iv) guarded commands, gc in GCommand , of the form:
gc ::= g→c | gc1 8 gc2 , where ‘8’ denotes the parallel composition of guarded commands which
is associative and commutative.

The operational semantics of commands can be described in an informal way as follows. skip
does nothing. v :=d stores the value d in the location of the variable v. In order to execute c1; c2
the command c1 is executed first, and then the command c2 is executed. In order to execute
if gc1 8 . . . 8 gcn fi, with n ≥ 1, one of the guarded commands g→ c in {gc1, . . . , gcn} whose
guard g evaluates to true, is chosen, and then c is executed; otherwise, if no guard of a guarded
command in {gc1, . . . , gcn} evaluates to true, then the whole command if . . . fi terminates
with failure. In order to execute do gc1 8 . . . 8 gcn od, with n ≥ 1, one of the guarded commands
g → c in {gc1, . . . , gcn} whose guard g evaluates to true, is chosen, then c is executed and
the whole command do . . . od is executed again; otherwise, if no guard of a guarded command
in {gc1, . . . , gcn} evaluates to true, then the execution proceeds with the next command. The
formal semantics of commands will be given in the next section.

2.2. Groups

A group G is a pair 〈S , ◦〉, where S is a set and ◦ is a binary operation on S satisfying the
following axioms: (i) ∀x, y ∈ S. x◦y ∈ S, (ii) ∀x , y , z ∈ S . (x ◦y)◦z =x ◦(y◦z ), (iii) ∃e∈S.∀x∈S.
e◦x=x◦e=x, and (iv) ∀x∈S.∃y ∈ S. x◦y=y◦x = e. The element e is the identity of the group
G and the cardinality of S is the order of the group G. For any x ∈ S, for any n ≥ 0, we write
xn to denote the term x◦. . .◦x with n occurrences of x. We stipulate that x0 is e.

A group G = 〈S , ◦〉 is said to be cyclic iff there exists an element x∈ S, called a generator,
such that S = {xn | n ≥ 0}. We denote by Perm(S) the set of all permutations on the set S,
that is, the set of all bijections from S to S. Perm(S) is a group whose operation ◦ is function
composition and the identity e is the identity permutation, denoted id. Given a finite set S, the
order of a permutation p in Perm(S) is the smallest natural number n such that pn = id .
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2.3. Computation Tree Logic

Computation Tree Logic (CTL) is a propositional branching time temporal logic [8]. The un-
derling time structure is a tree of states. Every state denotes an instant in time and may have
many successor states. There are quantifiers over paths of the tree: A (for all paths) and E (for
some path), which are used for specifying properties that hold for all paths or for some path,
respectively. Together with these quantifiers, there are temporal operators such as: X (next
state), F (eventually), G (globally), and U (until), which are used for specifying properties that
hold in the states along paths of the tree. Their formal semantics will be given below.

Given a finite nonempty set Elem of elementary propositions ranged over by p, the syntax of
CTL formulas ϕ is as follows:

ϕ ::= p | ϕ1 ∧∧ ϕ2 | ¬ϕ | EXϕ | EGϕ | E[ϕ1 Uϕ2]

We introduce the following abbreviations:

(i) true for ϕ∨∨¬ϕ, where ϕ is any CTL formula,

(ii) false for ¬true,

(iii) ϕ1 ∨∨ ϕ2 for ¬(¬ϕ1 ∧∧¬ϕ2),

(iv) EFϕ for E[true Uϕ]

(v) AGϕ for ¬EF¬ϕ,

(vi) AFϕ for ¬EG¬ϕ,

(vii) A[ϕ1Uϕ2] for ¬E[¬ϕ2 U (¬ϕ1 ∧∧ ¬ϕ2)] ∧∧ AFϕ2, and

(viii) AXϕ for ¬EX¬ϕ.

The semantics of CTL is provided by a Kripke structure K = 〈S,S0,R, λ〉, where: (i) S is a
finite set of states, (ii) S0 ⊆ S is a set of initial states, (iii) R ⊆ S × S is a total transition
relation (thus, ∀u∈S. ∃v∈S. 〈u, v〉 ∈R), and (iv) λ :S →P(Elem) is a total labelling function
that assigns to every state s ∈ S a subset λ(s) of the set Elem. A path π in K from a state s0
is an infinite sequence 〈s0, s1, . . .〉 of states such that, for all i ≥ 0, 〈si, si+1〉 ∈ R. The fact that
a CTL formula ϕ holds in a state s of a Kripke structure K will be denoted by K, s � ϕ. For
any CTL formula ϕ and state s, we define the relation K, s � ϕ as follows:

K,s �p iff p∈λ(s)
K,s �¬ϕ iff K,s�ϕ does not hold
K,s �ϕ1 ∧∧ ϕ2 iff K,s �ϕ1 and K,s �ϕ2

K,s �EXϕ iff there exists 〈s, t〉 ∈ R such that K,t �ϕ
K,s �E[ϕ1Uϕ2] iff there exists a path 〈s0,s1,s2,. . .〉 in K with s0 =s such that

for some i≥0, K,si�ϕ2 and for all 0≤j<i, K,sj �ϕ1

K,s �EGϕ iff there exists a path 〈s0,s1,s2,. . .〉 in K with s0 =s such that for all i≥0,
K,si�ϕ.

Thus, in particular we have that: (i) K,s �EXϕ holds iff in K there exists a successor of state s
which satisfies ϕ, (ii) K,s �E[ϕ1Uϕ2] holds iff there exists a path in K starting at s along which
there exists a state where ϕ2 holds and ϕ1 holds in every preceding state, and (iii) K,s �EGϕ
holds iff in K there exists a path starting at s where ϕ holds in every state along that path.

2.4. Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based on logic programs
and their answer set semantics. Now we recall some basic definitions of ASP and for those not
recalled here the reader may refer to [4, 5, 13, 17, 18, 32]. A term t is either a variable X or
a function symbol f of arity n (≥ 0) applied to n terms f(t1, . . . , tn). If n= 0 then f is called
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a constant. An atom is a predicate symbol p of arity n (≥ 0) applied to n terms p(t1, . . . , tn).
A rule is an implication of the form:

a1 ∨∨ . . . ∨∨ ak ← ak+1 ∧∧ . . . ∧∧ am ∧∧ notam+1 ∧∧ . . . ∧∧ not an

where a1, . . . , ak, ak+1, . . . , an (for k≥0, n≥k) are atoms and ‘not’ denotes negation as failure.
A rule with k > 1 is said to be a disjunctive rule and each atom in {a1, . . . , ak} is called a
disjunct. A rule with k=1 is called normal. A rule with k=0 is called an integrity constraint. A
rule with k = n is called a fact. A logic program Π is a set of rules. It is said to be a disjunctive
logic program if there exists a disjunctive rule and it is said to be a normal logic program if for
every rule k≤1.

Given a rule r, we define the following sets: H (r) = {a1, . . . , ak}, B+(r) = {ak+1, . . . , am},
B−(r)={am+1, . . . , an}, and B(r)=B+(r)∪B−(r) and we introduce the following abbreviations:
head(r) =

∨

a∈H(r) a, pos(r) =
∧

a∈B+(r) a, neg(r)=
∧

a∈B−(r) not a, and body(r)=pos(r)∧∧neg(r).

Given two logic programs Π1 and Π2, we say that Π1 is independent of Π2, denoted Π2 ✄ Π1,
if for each rule r2 in Π2, for each predicate symbol p occurring in H(r2), there is no rule r1 in
Π1 such that p occurs in B(r1).

A term, or an atom, or a rule, or a program is said to be ground if no variable occurs in it. A
ground instance of a term, or an atom, or a rule, or a program is obtained by replacing every
variable occurrence by a ground term constructed by using function symbols appearing in Π.
The set of all the ground instances of the rules of a program Π is denoted by ground(Π). Note
that if a program Π has function symbols with positive arity, then ground(Π) may be infinite.
However, as indicated at the beginning of Section 5, for our purposes we only need a finite subset
of that infinite set.

An interpretation I of a program Π is a (finite or infinite) set of ground atoms. By
←−
I we denote

the set {p←| p∈I} of facts. The Gelfond-Lifschitz transformation of ground(Π) with respect to
an interpretation I is the program ground(Π)I ={head(r)←pos(r) | r∈ground(Π) and B−(r)∩
I = ∅}. For any rule r∈ground(Π), we say that I satisfies r if (B+(r) ⊆ I and B−(r) ∩ I = ∅)
implies H(r) ∩ I 6= ∅. An interpretation I is said to be an answer set of Π if I is a minimal
model of ground(Π)I , that is, I is a minimal set (with respect to set inclusion) which satisfies
all rules in ground(Π)I . The answer set semantics assigns to every program Π the set ans(Π) of
its answer sets.

Given a program Π = Π1 ∪ Π2, the following fact holds [13]: if Π2 ✄ Π1, then ans(Π) =
⋃

M∈ans(Π1)
ans(
←−
M ∪Π2).

3. Specifying Concurrent Programs

A concurrent program consists of a finite set of processes that are executed in parallel in a
shared-memory environment, that is, processes that interact with each other through a shared
variable. We assume that the shared variable ranges over a finite domain. With every process we
associate a distinct local variable ranging over a finite domain which is the same for all processes.
Every process may test and modify the shared variable and its own local variable by executing
guarded commands.

Definition 1 (k-process concurrent program) For k > 1, let x1, . . . , xk be local variables
ranging over a finite domain L and let y be a shared variable ranging over a finite domain D.
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For i=1, . . . , k, a process Pi is a guarded command of the form:

Pi : true → if gc1 8 . . . 8 gcni
fi

where every guarded command gc in gc1 8 . . . 8 gcni
is of the form:

gc : xi= l ∧∧ y=d → xi := l′; y :=d′

with 〈l, d〉 6= 〈l′, d′〉. We assume that, for i=1, . . . , k, the guards (that is, the expressions to the
left of →) of any two guarded commands of process Pi are mutually exclusive, that is, for all
pairs 〈l, d〉, there is at most one occurrence of the guard ‘xi= l ∧∧ y=d’ in process Pi.

A k -process concurrent program C is a command of the form:

C : x1 := l1; . . . ; xk := lk; y :=d; do P1 8 . . . 8 Pk od

The (k + 1)-tuple 〈l1, . . . , lk, d〉 is said to be the initialization of C. �

Example 1. Let L be {t, u} and D be {0, 1}. A 2-process concurrent program C is:

x1 := t; x2 := t; y := 0 ; do P1 8 P2 od

where P1 and P2 are defined as follows:

P1 : true → if P2 : true → if
x1=t ∧∧ y=0→ x1 :=u; y :=0 x2=t ∧∧ y=1→ x2 :=u; y :=1

8 x1=u ∧∧ y=0→ x1 :=t; y :=1 8 x2=u ∧∧ y=1→ x2 :=t; y :=0

fi fi

This program realizes a protocol which ensures mutual exclusion between the two processes P1

and P2. For i = 1, 2, process Pi either ‘uses a resource’ in its critical section, that is, the value
of xi is u, or ‘thinks’ in its noncritical section, that is, the value of xi is t. The shared variable
y gives the processes P1 and P2 the turn to enter the critical section: if y=0, process P1 enters
the critical section (x1 =u), while if y=1, process P2 enters the critical section (x2 =u).

Note that in a real concurrent program, while Pi is in its noncritical (or critical) section it
may execute arbitrary commands not affecting the values of the local and the shared variables.
However, for the sake of simplicity, we omit such arbitrary commands and we will consider only
those commands which are relevant to the interaction between processes. (A similar approach
is taken in [7] where synchronization skeletons are considered.) �

Now we introduce the semantics of k -process concurrent programs by using Kripke structures.
Given a k-process concurrent program C, a state of C is any (k+1)-tuple 〈l1, . . . , lk, d〉, where:
(i) the first k components are values for the local variables x1, . . . , xk of C, one local variable
for each process Pi, and (ii) d is a value for the shared variable y of C. Given any state s, by
s(xi) we denote the value of the local variable of process Pi in state s and, similarly, by s(y) we
denote the value of the shared variable in state s.

Definition 2 (Reachability) Let C be a k -process concurrent program. We say that state s2
is one-step reachable from state s1, and we write Reach(s1, s2), if there exists a process Pi, for
some i ∈ {1, . . . , k}, with a guarded command of the form: xi = s1(xi) ∧∧ y = s1(y) → xi :=
s2(xi); y := s2(y), and for all j ∈ {1, . . . , k} different from i, s1(xj) = s2(xj). We say that s2 is
reachable from s1 if Reach∗(s1, s2), where by Reach∗ we denote the reflexive, transitive closure
of Reach. �

Note that our definition of the transition relation Reach formalizes the interleaving semantics
of guarded commands.
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Definition 3 (Kripke structure associated with a k-process concurrent program) Let
C be a k -process concurrent program of the form

C : x1 := l1; . . . ; xk := lk; y :=d; do P1 8 . . . 8 Pk od

Let Reach be the reachability relation associated with C which we assume to be total. The
Kripke structure K associated with C is the 4-tuple 〈S,S0,R, λ〉, where:

(i) S = {s | Reach∗(s0, s)} ⊆ L
k ×D is the set of reachable states,

(ii) S0 = {s0}={〈l1, . . . , lk, d〉},

(iii) R = Reach ⊆ S×S, and

(iv) for all 〈l1, . . . , lk, d〉 ∈ S, λ(〈l1, . . . , lk, d〉)={local (P1, l1), . . . , local(Pk, lk), shared(d)}, where
for i=1, . . . , k, the elementary proposition local (Pi, li) denotes that the local variable xi of
process Pi has value li, and analogously, the elementary proposition shared (d) denotes that
the shared variable y has value d.

The set Elem of the elementary propositions is {local(Pi, li) | i=1, . . . , k}∪{shared(d) | d ∈ D}. �

Note that, since every state has a successor state, every concurrent program is a nonterminating
program.

For every given state s, for every i ∈ {1, . . . , k}, if (xi = l ∧∧ y = d → xi := l′; y := d′) is a
guarded command in Pi such that l=s(xi) and d=s(y), then we say that Pi is enabled in s and
the guard xi= l ∧∧ y=d holds in s.

Example 2. Given the 2-process concurrent program C of Example 1, the associated Kripke
structure is depicted in Figure 1. We depict it as a graph whose nodes are the reachable
states from the initial state s0 = 〈t, t, 0〉. Each transition from state s to state t is associated
with the guarded command whose guard holds in s. For the initial state s0, we have that
λ(s0) = {local(P1 , t), local(P2, t), shared(0)} and, similarly, for the values of λ for the other
states. �

〈u, t, 0〉

〈t, t, 0〉 〈t, t, 1〉

〈t, u, 1〉

x1=t ∧∧ y=0→ x1 :=u; y :=0 x1=u ∧∧ y=0→ x1 :=t; y :=1

x2=t ∧∧ y=1→ x2 :=u; y :=1x2=u ∧∧ y=1→ x2 :=t; y :=0

Figure 1: The graph representing the transition relation Reach of the Kripke structure associated
with the concurrent program of Example 1. Each arc is labelled by the guarded command which
causes that transition according to Definition 2. The initial state is s0 = 〈t, t, 0〉.

Definition 4 (Satisfaction relation for a k-process concurrent program) Let C be a k -
process concurrent program with initialization s0, K be the Kripke structure associated with C,
and ϕ be a CTL formula. We say that C satisfies ϕ, denoted C � ϕ, if K, s0 � ϕ. �
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Example 3. Let us consider the 2-process concurrent program C defined in Example 1. The fact
that the critical section associated with the value u of the local variable is executed in a mutually
exclusive way, is formalized by the CTL formula ϕ =def AG¬(local(P1, u) ∧∧ local(P2, u)). We
have that C |= ϕ holds because for the Kripke structure K of Example 2 (see Figure 1), we have
that K, s0 |= ϕ. Indeed, there is no path starting from the initial state 〈t, t, 0〉 which leads to
either the state 〈u, u, 0〉 or the state 〈u, u, 1〉. �

In the literature (see, for instance, [2, 8, 15]) it is often considered the case where concur-
rent programs consist of similar processes, the similarity being determined by the fact that all
processes follow the same cycling pattern of possible actions.

In this paper we formalize some structural properties which extend the notion of similarity.
In particular, for any two distinct processes Pi and Pj in a concurrent program, we assume that
process Pj can be obtained from process Pi by permuting the values of the shared variable y.
For instance, in Example 1 the guarded commands in P2 can be obtained from those in P1 by
interchanging 0 and 1. Moreover, it is often the case that all processes of a given concurrent
program C also share additional structural properties, such as the fact that the tests and the
assignments performed on the local variables are the same for all processes in C. For instance,
in Example 1 we have that both processes P1 and P2 may change state by changing the value
of their local variables from t to u or from u to t.

Now we formalize those structural properties by introducing the k-symmetric program struc-
tures.

Definition 5 (k-symmetric program structure) For k>1, let L be a finite domain for the
local variables x1, . . . , xk, and D be a finite domain for the shared variable y. A k-symmetric
program structure σ = 〈f, T, l0, d0〉 over L and D consists of: (i) a k-generating function
f ∈Perm(D), which is either the identity function id or a generator of a cyclic group {id , f, f2,. . .,
fk−1} of order k, (ii) a local transition relation T ⊆ L×L which is total over L, (iii) an element
l0 ∈ L, and (iv) an element d0 ∈ D. �

Definition 6 (k-process symmetric concurrent program) For any k>1, let σ= 〈f, T, l0,
d0〉 be a k-symmetric program structure. A k -process concurrent program is said to be symmetric
w.r.t. σ if it is of the form x1:= l0; . . . ; xk := l0; y :=d0; do P18. . .8Pk od and, for all i ∈ {1, . . . , k},
for all guarded commands gc of the form xi= l ∧∧ y=d→ xi := l′; y :=d′, we have that:

(i) 〈l, l′〉 ∈ T and

(ii) gc is in Pi iff
(

x(imod k)+1= l∧∧y=f(d)→ x(imod k)+1 := l′; y :=f(d′)
)

is in P(imod k)+1. �

Example 4. Let us consider the 2-process concurrent program C of Example 1. The group
Perm(D) of permutations over D = {0, 1} consists of the following two permutations: id =
{〈0, 0〉, 〈1, 1〉} (that is, the identity permutation) and f = {〈0, 1〉, 〈1, 0〉}. The program C is
symmetric w.r.t. the 2-symmetric program structure 〈f, T, t, 0〉, where the local transition rela-
tion T is {〈t, u〉, 〈u, t〉}. Indeed, its initialization is: x1:= t; x2 := t; y := 0, and processes P1

and P2 are as follows:

P1 : true → if P2 : true → if
x1=t ∧∧ y=0→ x1 :=u; y :=0 x2=t ∧∧ y=f(0)→ x2 :=u; y :=f(0)

8 x1=u ∧∧ y=0→ x1 :=t; y :=1 8 x2=u ∧∧ y=f(0)→ x2 :=t; y :=f(1)
fi fi �
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4. Synthesizing Concurrent Programs

Now we present our method based on Answer Set Programming for synthesizing a k-process
symmetric concurrent program from a CTL formula encoding a given behavioural property and
a k-symmetric program structure encoding a given structural property.

Definition 7 (The synthesis problem) Given a CTL formula ϕ and a k-symmetric program
structure σ over the finite domains L and D, the synthesis problem consists in finding a k-process
concurrent program C such that C �ϕ and C is symmetric with respect to σ. �

The synthesis problem can be solved by applying the following two-step procedure: (Step 1) we
generate a k-process symmetric concurrent program C, and (Step 2) we verify whether or not C
satisfies a given behavioural property ϕ. By Definition 6, from any process Pi, with i=1, . . . , k,
we derive process P(imod k)+1 by applying the k-generating function f to the guarded commands
of Pi, thereby deriving the guarded commands of P(imod k)+1. Thus, Step 1 can be performed by
generating process P1 and using f for generating the other k−1 processes. Then Step 2 reduces
to the test of the satisfiability relation K, s0 � ϕ, where: (i) K is the Kripke structure associated
with C, and (ii) state s0 is the initial state of K corresponding to the initialization of C.

We present a solution to the synthesis problem in a purely declarative manner by reducing
it to the problem of computing the answer sets of a logic program Π encoding an instance of
the synthesis problem. The logic program Π is the union of a program Πσ which encodes a
structural property σ and a program Πϕ which encodes a behavioural property ϕ.

In Theorem 4.1 we will prove that every answer set of Π encodes a k-process concurrent
program satisfying ϕ and which is symmetric w.r.t. σ. We have that Πσ is independent of
Πϕ (that is, Πϕ ✄ Πσ) and, thus, we can first compute the answer sets of Πσ and then use
those answer sets, together with program Πϕ, to test whether or not the encoded k-symmetric
concurrent program satisfies ϕ.

Programs Πσ and Πϕ are introduced by the following Definitions 8 and 9, respectively.

Definition 8 (Logic program encoding a structural property) Let σ = 〈f, T, l0, d0〉 be
a k-symmetric program structure over the finite domains L and D and s0 be the (k+1)-tuple
〈l0, . . . , l0, d0〉. The logic program Πσ is as follows:

1.1 enabled(1,X1, Y ) ∨∨ disabled(1,X1, Y )← reachable(〈X1, . . . ,Xk, Y 〉)
1.2 enabled(2,X, Y )← gc(2,X, Y,X ′, Y ′)

...
1.k enabled(k,X, Y )← gc(k,X, Y,X ′, Y ′)
2.1 gc(1,X, Y,X1, Y1)∨∨ . . . ∨∨gc(1,X, Y,Xm, Ym)← enabled(1,X, Y ) ∧∧

candidates(X,Y, [〈X1, Y1〉, . . . , 〈Xm, Ym〉])
2.2 gc(2,X,Z,X ′ , Z ′)← gc(1,X, Y,X ′, Y ′) ∧∧ perm(Y,Z) ∧∧ perm(Y ′, Z ′)

...
2.k gc(k,X,Z,X ′ , Z ′)← gc(k−1,X, Y,X ′, Y ′) ∧∧ perm(Y,Z) ∧∧ perm(Y ′, Z ′)
3.1 reachable(s0)←
3.2 reachable(〈X1, . . . ,Xk, Y 〉)← tr (〈X ′

1, . . . ,X
′
k, Y

′〉, 〈X1, . . . ,Xk, Y 〉)
4.1 tr(〈X1, . . . ,Xk, Y 〉,〈X

′
1, . . . ,Xk, Y

′〉)←reachable(〈X1, . . . ,Xk, Y 〉)∧∧ gc(1,X1, Y,X
′
1, Y

′)
...

4.k tr(〈X1, . . . ,Xk, Y 〉,〈X1, . . . ,X
′
k, Y

′〉)←reachable(〈X1, . . . ,Xk, Y 〉)∧∧ gc(k,Xk, Y,X
′
k, Y

′)
5. ← reachable(〈X1, . . . ,Xk, Y 〉) ∧∧ not enabled(1,X1, Y )∧∧ . . . ∧∧ not enabled(k,Xk, Y )
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together with the following two sets of ground facts:

(i) {candidates(l, d, L(l, d)) ← | l∈L ∧∧ d ∈D},where L(l, d) is any list representing the set of
pairs {〈l′, d′〉 | 〈l, l′〉∈T ∧∧ d′∈D ∧∧ 〈l, d〉 6=〈l′, d′〉}

(ii) {perm(d, d′)← | d, d′∈D ∧∧ f(d) = d′}. �

In this program, for i=1, . . . , k, the predicate gc(i, l, d, l′, d′) holds iff in process Pi there exists
the guarded command xi= l∧∧y=d→ xi := l′; y :=d′ (see also Definition 10).

Rule 1.1 states that in every reachable state, process P1 is either enabled (that is, one of its
guards holds) or disabled. Rule 1.1 is used to derive atoms either of the form enabled(1,X1, Y )
or of the form disabled(1,X1, Y ). If an atom of the form enabled(1,X1, Y ) is derived, then a
guarded command for process P1 (that is, an atom of the form gc(1,X, Y,Xi, Yi)) is generated
by using Rule 2.1. Note that, without Rule 1.1, no atom for the predicates enabled and gc could
be generated and, therefore, no concurrent program would be synthesized.

Rules 1.i, with i = 2, . . . , k, state that any process Pi is enabled in state s if Pi has a guarded
command of the form xi =X ∧∧ y= Y → xi :=X ′; y := Y ′, for some values of X ′ and Y ′, such
that X=s(xi) and Y =s(y).

The disjunctive Rule 2.1 generates a guarded command for process P1 by first enumerating
all candidate guarded commands for that process (through the predicate candidates) and then
selecting one candidate which corresponds to a disjunct of its head. Each guarded command
consists of the guard x1 = X ∧∧ y = Y , encoded by using the atom enabled(1,X, Y ), and a
command x1 :=Xi; y :=Yi, encoded by a pair 〈Xi, Yi〉 in the list which is the third argument of
candidates(X,Y,L(l, d)).

The number m of pairs 〈Xi, Yi〉 in the list L(l, d) is uniquely determined by the values l and d
of the variables X and Y , respectively, in enabled(1,X, Y ). (It can be shown that |D|−1≤m≤
|L|·|D|−1.) Thus, Rule 2.1 actually stands for a set of rules, one rule for each value of m, and
this set of rules can effectively be derived only when the set of facts for the predicate candidates
is computed.

For instance, let us consider the sets T = {〈a, b〉, 〈a, a〉, 〈b, a〉} and D= {0, 1}. For X = b,
Y =0, we have that candidates(b, 0, [〈a, 0〉, 〈a, 1〉]) holds (recall that a guarded command should
change either the value of the local variable or the value of the shared variable), and for X=a,
Y =0, we have that candidates(a, 0, [〈a, 1〉, 〈b, 0〉, 〈b, 1〉]) holds. Hence, when Y =0, we have two
instances of Rule 2.1, one for m=2 and one for m=3.

Rules 2.2–2.k realize Definition 6. In particular, it allows us to derive the guarded command
for processes P2, . . . , Pk from the guarded commands generated for process P1. Note that, due
to our definition of a symmetric program structure, the subscript of the process used for the
initial choice (1 in our case) is immaterial, in the sense that any other choice for that subscript
produces a solution satisfying the same behavioural and structural properties.

Rules 3.1, 3.2, and 4.1–4.k define, in a mutually recursive way, the reachability relation (en-
coded by the predicate reachable) and the transition relation R (encoded by the predicate tr)
of the Kripke structure associated with the concurrent program to be synthesized.

Rule 5 is an integrity constraint enforcing that any answer set of Πσ is a model of Πσ−{Rule 5}
which does not satisfy the body of Rule 5. Thus, Rule 5 guarantees that the transition relation R
is total, that is, in every reachable state there exists at least one enabled process.

Now let us present the logic program Πϕ which encodes a given behavioural property ϕ. Note
that program Πϕ depends on program Πσ for the definition of the transition relation tr(S, T )
and for the initial state s0, which is assumed to be the (k+1)-tuple 〈l0, . . . , l0, d0〉.
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Definition 9 (Logic program encoding a behavioural property) Let ϕ be a CTL for-
mula. The logic program Πϕ encoding ϕ is as follows:

1. ← not sat(s0, ϕ)
2. sat(S,F )← elem(S,F )
3. sat(S,not(F ))← not sat(S,F )
4. sat(S, and(F1, F2))← sat(S,F1) ∧∧ sat(S,F2)
5. sat(S, ex (F ))← tr(S, T ) ∧∧ sat(T, F )
6. sat(S, eu(F1, F2))← sat(S,F2)
7. sat(S, eu(F1, F2))← sat(S,F1) ∧∧ tr (S, T ) ∧∧ sat(T, eu(F1, F2))
8. sat(S, eg(F ))← satpath(S, T, F ) ∧∧ satpath(T, T, F )
9. satpath(S, T, F )← sat(S,F ) ∧∧ tr(S, T )

10. satpath(S, V, F )← sat(S,F ) ∧∧ tr(S, T ) ∧∧ satpath(T, V, F )

together with the following two sets of ground facts:

(i) {elem(s, local (Pi, l))← | 1≤ i≤k ∧∧ s∈Lk×D ∧∧ s(xi)= l}

(ii) {elem(s, shared (d))← | s∈Lk×D ∧∧ s(y)=d}. �

Note that in the ground facts defining elem, for i = 1, . . . , k, by s(xi) we denote the i-th
component of s and by s(y) we denote the (k + 1)-th component of s (see Section 3 for this
notational convention). In Rule 1 of program Πϕ, by abuse of language, we use ϕ to denote
the ground term representing the CTL formula ϕ. In particular, in the ground term ϕ we use
the function symbols not , and , ex , eu and eg to denote the operators ¬, ∧∧ , EX, EU, and EG,
respectively.

Rules 2–10, taken from [26], encode the semantics of CTL formulas as follows: (i) sat(s, ψ)
holds iff the formula ψ holds in state s, and (ii) satpath(s, t, ψ) holds iff there exists a path from
state s to state t such that every state in that path (except possibly the last one) satisfies the
formula ψ. Rule 1 is an integrity constraint enforcing that any answer set of Π is a model of
(Πϕ ∪Πσ)− {Rule 1} satisfying sat(s0, ϕ).

Now we establish the correctness (that is, the soundness and completeness) of our synthesis
procedure. It relates the k-process symmetric (w.r.t. σ) concurrent programs satisfying ϕ with
the answer sets of the logic program Πϕ ∪Πσ. Let us first introduce the following definition.

Definition 10 (Encoding of a k-process concurrent program) Let C be a k-process con-
current program of the form x1 := l1; . . . ; xk := lk; y :=d; do P1 8 . . . 8 Pk od. Let M be a set of
ground atoms. We say that M encodes C if, for all i, l, d, l′, d′, the following holds:

gc(i, l, d, l′, d′) ∈M iff
(

xi= l∧∧y=d→ xi := l′; y :=d′
)

is a guarded command in Pi. �

Theorem 4.1 (Soundness and completeness of synthesis) Let ϕ be a CTL formula and
σ be a k-symmetric program structure over the finite domains L and D. Then, there exists a
k-process concurrent program C such that (i) C � ϕ and (ii) C is symmetric w.r.t. σ iff there
exists an answer set M ∈ans(Πϕ ∪Πσ) such that M encodes C. �

The following theorem establishes the complexity of our synthesis procedure as a function of
the synthesis parameters, that is, (i) the number k of processes, (ii) the size |ϕ| of the CTL
behavioural property ϕ defined to be the number of operators and elementary propositions
occurring in ϕ, and (iii) the cardinalities of L and D which are the domains of f and T ,
respectively. When we state the complexity result with respect to one parameter, we assume
that the others remain constant.
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Theorem 4.2 (Complexity of synthesis) For any number k > 1 of processes, for any sym-
metric program structure σ over L and D, and for any CTL formula ϕ, an answer set of the logic
program Πϕ ∪ Πσ can be computed in (i) exponential time w.r.t. k, (ii) linear time w.r.t. |ϕ|,
and (iii) nondeterministic polynomial time w.r.t. |L| and w.r.t. |D|. �

It is known (see, for instance, [22]) that the problem of synthesis from a CTL specification ϕ is
EXPTIME-complete w.r.t. |ϕ|. In order to compare the complexity of our synthesis procedure
with that of other techniques which can be found in the literature [2, 3, 7, 22, 20], note that the
parameters of our synthesis procedure are not mutually independent. In particular, as we will see
in the following section, the usual behavioural properties considered for the mutual exclusion
problem, determine a CTL specification whose size depends on the number k of processes.
However, since our ASP synthesis procedure has time complexity which is exponential w.r.t. k,
it turns out that our translation yields a synthesis procedure which still belongs to the EXPTIME
class and, thus, it matches the complexity of the synthesis problem.

5. Synthesizing Concurrent Programs using ASP solvers

In this section we present some experimental results obtained by applying our procedure for the
synthesis of various mutual exclusion protocols.

In order to compute the answer sets of a logic program P with an ASP solver, we should first
construct the set ground(P ). This set is constructed by a grounder which is either a standalone
tool, such as gringo [12] or lparse [31], independent of the ASP solver, or is a built-in module
of the ASP solver, as in the DLV system [23].

If a logic program P has function symbols with positive arity, then ground(P ) is infinite.
Thus, in particular, ground(Π) is infinite. However, in order to compute the answer sets of Π,
we only need some finite subsets of ground(Π). These subsets are constructed by most grounders
by means of the so called domain predicates, which specify the finite domains over which the
variables should range [12, 23, 31].

In our case, a finite set of ground rules is obtained from program Πϕ by introducing in the
body of each of the Rules 2–10 a domain predicate so that terms representing CTL formulas are
restricted to range over subterms of ϕ. (Here and in what follows, when we refer to a subterm,
we mean a non necessarily proper subterm.) In particular, a rule of the form sat(S,ψ)← Body
is replaced by sat(S,ψ) ← Body ∧∧ d(ψ), where d is the domain predicate defined by the set
{d(ψ)← | ψ is a subterm of ϕ} of ground facts. The correctness of this replacement relies on
the fact that, in order to prove sat(s0, ϕ) by using Rules 2–10, it is sufficient to consider only
the instances of these rules where subterms of ϕ occur.

Note that, by using a grounder after the introduction of domain predicates, we get a set of
ground instances of Rules 2–10 whose cardinality is linear in the number of subterms of ϕ and,
hence, in the size of ϕ. This fact is relevant for the complexity results stated in Theorem 4.2.

5.1. Synthesis examples

In our synthesis experiments, in order to define the k-symmetric program structures of the
programs to be synthesized, we have made the following choices for: (i) the domain L of the
local variables xi’s, (ii) the domain D of the shared variable y, (iii) the k-generating function f ,
(iv) the set T , (v) the value of l0∈L, and (vi) the value of d0∈D.

We have taken the domain L to be {t, w, u}, where t represents the noncritical section, w

represents the waiting section, and u represents the critical section.
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We have taken the domain D to be {0, 1, . . . , n}, where n depends on: (i) the number k of
the processes in the concurrent program to be synthesized, and (ii) the properties that the
concurrent program should satisfy. At the beginning of every synthesis experiment we have
taken n=1 and, if the synthesis failed, we have increased the value of n by one unity at a time,
hoping for a successful synthesis with a larger value of n.

We have taken the k -generating function f to be either (i) the identity function id, or (ii) a
permutation among the |D|!/

(

k · (|D| − k)!
)

permutations of order k defined over D.

We have taken the local transition relation T to be {〈t, w〉, 〈w, w〉, 〈w, u〉, 〈u, t〉}. The pair 〈t, w〉
denotes that, once the noncritical section t has been executed, a process may enter the waiting
section w. The pairs 〈w, w〉 and 〈w, u〉 denote that a process may repeat (possibly an unbounded
number of times) the execution of its waiting section w and then may enter its critical section u.
The pair 〈u, t〉 denotes that, once the critical section u has been executed, a process may enter
its noncritical section t.

Finally, we have taken l0 to be t and d0 to be 0.

For k = 2, . . . , 6, we have synthesized (see Column 1 of Table 1) various k-process symmetric
concurrent programs of the form x1 :=t; . . . ; xk :=t; y :=0; do P1 8 . . . 8 Pk od, which satisfies
some behavioural properties among those defined by the following CTL formulas (see Column 2
of Table 1).

(i) Mutual Exclusion, that is, it is not the case that process Pi is in its critical section (xi =u),
and process Pj is in its critical section (xj =u) at the same time: for all i, j in {1, . . . , k}, with
i 6= j,

AG¬(local(Pi, u) ∧∧ local(Pj, u)) (ME)

(ii) Progression and Starvation Freedom, that is, (progression) every process Pi which is in the
noncritical section, may enter its waiting section (that is, modify the local variable xi from t

to w), thereby requesting to enter the critical section, and (starvation freedom) if a process Pi

is in waiting section (xi =w), then after a finite amount of time, it will enter its critical section
(xi=u): for all i in {1, . . . , k},

AG ((local(Pi, t)→ EX local(Pi, w)) ∧∧ (local(Pi, w)→ AF local(Pi, u))) (SF )

(iii) Bounded Overtaking, that is, while process Pi is in its waiting section, every other process
Pj leaves its critical section at most once, that is, Pj should not be in its critical section u and
then in its waiting section w and then again in its critical section u, while Pi is always in its
waiting section w (see the underlined subformulas): for all i, j in {1, . . . , k}, with i 6= j,

AG¬
[

local(Pi, w) ∧∧ local(Pj , u) ∧∧

E
[

local(Pi, w)U
(

local(Pi, w) ∧∧ local(Pj, w) ∧∧ (BO)

E
[

local(Pi, w)U (local(Pi, w) ∧∧ local(Pj, u))
])]]

(iv) Maximal Reactivity, that is, if process Pi is in its waiting section and all other processes are
in their noncritical sections, then in the next state Pi will be in its critical section: for all i in
{1, . . . , k},

AG ((local(Pi, w) ∧∧
∧

j∈{1,...,k}−{i} local(Pj , t))→ EX local(Pi, u)) (MR)

First, we have synthesized a simple protocol, called 2-mutex -1, for two processes enjoying the
mutual exclusion property (see row 1 of Table 1), and then we synthesized various other protocols
for two or more processes which enjoy other properties. In that table the identifier k-mutex -p
occurring in the first column, denotes the synthesized protocol for k processes satisfying the
p (≥ 1) behavioural properties listed in the second column Properties. For instance, program
2-mutex -4 is the synthesized protocol for 2 processes which enjoys the four behavioural properties
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ME ,SF ,BO , and MR. In each row of Table 1 we have shown the minimal cardinality (in
Column |D|) and the k-generating function (in Column f) for which the synthesis of the program
of that row succeeds.

The synthesis of program 2-mutex -1 succeeds with |D|=2 and both the identity function and
the permutation f1 = {〈0, 1〉, 〈1, 0〉} (see rows 1 and 2). The syntheses of programs 2-mutex -2
and 2-mutex -3 fail for |D| = 2 and the identity function, but they succeed for |D|= 2 and f1
(see rows 3 and 4). The synthesis of 2-mutex -4 fails for |D|=2 and any choice of a 2-generating
function. Thus, we increased |D| from 2 to 3. For |D|=3 and the identity function the synthesis
fails, but it succeeds for the permutation f2 = {〈0, 1〉, 〈1, 0〉, 〈2, 2〉} of order 2 (see row 5). If
we use different permutations of order 2, instead of f2, we get programs which are equal to the
program 2-mutex -4 (presented in Figure 2), modulo a permutation of the values of the shared
variable y.

The synthesis of 3-mutex -1 succeeds for |D|= 2 and the identity function (see row 6). The
synthesis of 3-mutex -2 fails for |D|=2 (the only choice for the 3-generating function is the identity
function) and, thus, we increased |D| from 2 to 3. By using |D|= 3 and the identity function,
the synthesis fails, but it succeeds for |D|= 3 and the permutation f3 = {〈0, 1〉, 〈1, 2〉, 〈2, 0〉} of
order 3 (see row 7). This synthesis succeeds also by using different permutations of order 3, and
in all these cases we get programs which are equal to 3-mutex -2, modulo a permutation of the
values of the shared variable y.

The synthesis of 3-mutex -3 (see row 8) is analogous to that of 3-mutex -2 to which row 7 refers.

The synthesis of 3-mutex -4 fails for |D|= 4, 5, and 6, while it succeeds for |D| = 7 and the
permutation f4 = {〈0, 1〉, 〈1, 2〉, 〈2, 0〉, 〈3, 4〉, 〈4, 5〉, 〈5, 3〉, 〈6, 6〉} which is of order 3 (see row 9).

The last rows 10, 11, and 12 of Table 1 refer, respectively, to the programs 4-mutex -1,
5-mutex -1, and 6-mutex -1 whose syntheses succeed for |D|=2 and the identity function.

Table 1: Column ‘Program’ shows the names of the synthesized programs. k-mutex -p is the
name of the k-process program satisfying the p behavioural properties shown in column ‘Prop-
erties’. Column |D| shows the cardinality of the domain {0, 1, . . . , n} of the shared variable y.
Column f shows the k -generating function used for the synthesis. Column |ans(Π)| shows the
number of answer sets of Π = Πϕ ∪ Πσ. Column ‘Time’ shows the time expressed in seconds
(unless otherwise specified) to generate all answer sets of Π, by using the ASP solver claspD [12].

Program Properties |D| f |ans(Π)| Time

(1) 2-mutex -1 ME 2 id 10 0.01

(2) 2-mutex -1 ME 2 f1 10 0.01

(3) 2-mutex -2 ME ,SF 2 f1 2 0.03

(4) 2-mutex -3 ME ,SF ,BO 2 f1 2 0.05

(5) 2-mutex -4 ME ,SF ,BO ,MR 3 f2 2 0.17

(6) 3-mutex -1 ME 2 id 9 0.05

(7) 3-mutex -2 ME ,SF 3 f3 6 3.49

(8) 3-mutex -3 ME ,SF ,BO 3 f3 4 4.32

(9) 3-mutex -4 ME ,SF ,BO ,MR 7 f4 2916 ≈ 4.4 hours

(10) 4-mutex -1 ME 2 id 9 0.35

(11) 5-mutex -1 ME 2 id 9 2.89

(12) 6-mutex -1 ME 2 id 9 20.43
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In Figure 2 we have presented the synthesized program, called 2-mutex -4, for the 2-process
mutual exclusion problem described in Example 3. In Figure 3 we present the transition rela-
tion of the associated Kripke structure. Program 2-mutex -4 is basically the same as Peterson
algorithm [27], but, instead of using three shared variables, each of which ranges over a domain
of two values, program 2-mutex -4 uses two local variables x1 and x2 which range over {t, w, u},
and a single shared variable y which ranges over {0, 1, 2}.

The comparison between Peterson algorithm and our program 2-mutex -4 is illustrated in
Figure 4, where we have presented in the upper part the original Peterson algorithm for two
processes and in the lower part our synthesized Peterson-like algorithm derived by hand from
the transition relation of program 2-mutex -4 depicted Figure 3. Note that in Peterson algorithm
the three shared variables are assigned constant values, while in our algorithm we pay the price
of using a single shared variable y by the need of performing some operations on that variable.

However, in Peterson algorithm if a process, say P1, is in its waiting section and the other
process P2 fails after assigning to q and never does the assignment to s, then P1 cannot enter
its critical section. This problem can be avoided by assuming that the sequence of assignments
to q and s is atomic. In our algorithm this problem does not arise simply because we have not
a sequence of assignments, but a single assignment to y.

Let us briefly explain our hand derivation of the Peterson-like algorithm from the algorithm
described by guarded commands in Figure 2. Let us consider process P1. We have that:

(i) when P1 enters the waiting section or leaves the critical section, y is modified as follows:

y := if y=2 then 1 else 2 (see the guarded commands (1), (2), (3), (6), and (7)), and

(ii) when P1 enters the critical section, y should be different from 1 and the value of y is not
modified (see the guarded commands (4) and (5)).

For process P2 we replace 1 by 0.

As indicated in Figure 4 the two assignments to y (that is, y := if y = 2 then 1 else 2, and
y := if y = 2 then 0 else 2) can be expressed as assignments in Kleene 3-valued logic whose
values are 0, 1, and 2. In that logic we have that:

(i) ¬x =def 2− x,

(ii) x ∧ y =def min(x, y),

(iii) x ∨ y =def max(x, y), and

(iv) x→ y =def if x ≤ y then 2 else 0.

Note that in that logic x→ y 6= ¬x ∨ y.

P1 : true → if P2 : true → if

(1) x1=t ∧∧ y=0→ x1 :=w; y :=2 x2=t ∧∧ y=0→ x2 :=w; y :=2

(2) 8 x1=t ∧∧ y=1→ x1 :=w; y :=2 8 x2=t ∧∧ y=1→ x2 :=w; y :=2

(3) 8 x1=t ∧∧ y=2→ x1 :=w; y :=1 8 x2=t ∧∧ y=2→ x2 :=w; y :=0

(4) 8 x1=w ∧∧ y=0→ x1 :=u; y :=0 8 x2=w ∧∧ y=1→ x2 :=u; y :=1

(5) 8 x1=w ∧∧ y=2→ x1 :=u; y :=2 8 x2=w ∧∧ y=2→ x2 :=u; y :=2

(6) 8 x1=u ∧∧ y=2→ x1 :=t; y :=1 8 x2=u ∧∧ y=2→ x2 :=t; y :=0

(7) 8 x1=u ∧∧ y=0→ x1 :=t; y :=2 8 x2=u ∧∧ y=1→ x2 :=t; y :=2

fi fi

Figure 2: The two processes P1 and P2 of the synthesized 2-process concurrent program
2-mutex -4 of the form x1 := t; x2 := t; y := 0; do P1 8 P2 od . It enjoys the properties
ME , SF , BO , and MR.
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〈w, t, 2〉〈t, w, 2〉

〈u, t, 2〉〈w, w, 0〉〈w, w, 1〉〈t, u, 2〉

〈t, t, 0〉 〈w, u, 1〉 〈u, w, 0〉 〈t, t, 1〉

1.12.1 1.52.31.32.5

1.62.31.42.42.6 1.3

2.7 1.7

1.22.2

Figure 3: The transition relation of the Kripke structure associated with the 2-process concurrent

program 2-mutex -4 of Figure 2. An arc s
i.n
−→ t indicates that the guarded command (n) of

process Pi (see Figure 2) causes the transition from state s to state t. The initial state is
〈t, t, 0〉.

5.2. Comparison of ASP solvers on the synthesis examples

We have implemented our synthesis procedure by using the following ASP solvers:

• clasp [11] (http://potassco.sourceforge.net/)

• claspD [12] (http://potassco.sourceforge.net/)

• cmodels [19] (http://www.cs.utexas.edu/~tag/cmodels/)

• DLV [23] (http://www.dlvsystem.com/dlvsystem/index.php/DLV)

• GnT [21] (http://www.tcs.hut.fi/Software/gnt/)

• smodels [30] (http://www.tcs.hut.fi/Software/smodels/)

The ground instances of Π given as input to clasp, claspD, cmodels, GnT, and smodels, have
been generated by gringo (http://potassco.sourceforge.net/). All experiments have been
performed on an Intel Core 2 Duo E7300 2.66GHz under the Linux operating system. In order
to compare the performance of the ASP solvers listed above, we have implemented the synthesis
procedure by using the following encodings of Πσ (i.e., the program which generates the guarded
commands): (i) Disjunctive Logic Program (ΠDLP

σ ), (ii) Normal Logic Program (ΠNLP
σ ), and

(iii) Stratified Choice Integrity constraint Program (ΠSCI
σ ) [25], and we have executed each solver

on each example with a 600 second timeout. All times required to generate the first solution
and all solutions are reported in Tables 2, 3, and 4, for ΠDLP

σ , ΠNLP
σ , and ΠSCI

σ , respectively
(each table includes only the ASP solvers which are able to deal with the considered encoding).

The experimental results reported in Table 2 show that claspD is the ASP solver with the best
performances on all synthesis examples obtained by using the ΠDLP

σ encoding. Regarding the
other solvers we have that cmodels provides better timings than GnT, but the former crashes
when exercised on Programs (2), (6), and (7) where GnT succeed.

Concerning the results obtained by using the ΠNLP
σ encoding (Table 3), we observe that clasp

and claspD, which is an extension of clasp for solving disjunctive logic programs, are the tools
that perform better on almost all examples. We also have that they provide approximately the
same performances on small instances (i.e., the number of processes) of the synthesis problem
(Programs (1) to (6)). However, the performance gap between clasp and claspD increases as
the size of the instance of the synthesis problem increases (Programs (10) and (11)). Despite
of worse timing results, cmodels, GnT and smodels succeed in synthesizing Program (12) where

http://potassco.sourceforge.net/
http://potassco.sourceforge.net/
http://www.cs.utexas.edu/~tag/cmodels/
http://www.dlvsystem.com/dlvsystem/index.php/DLV
http://www.tcs.hut.fi/Software/gnt/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
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Peterson Algorithm for the 2 processes P1 and P2 [27]

q1 := false; q2 := false; s := 1;

P1 : while true do P2 : while true do
l1 : non-critical section 1; m1 : non-critical section 2;
l2 : q1 := true; s := 1; m2 : q2 := true; s := 2;
l3 : await (¬q2) ∨ (s = 2); m3 : await (¬q1) ∨ (s = 1);
l4 : critical section 1; m4 : critical section 2;
l5 : q1 := false; od m5 : q2 := false; od

Synthesized Peterson-like Algorithm for the 2 processes P1 and P2 (2-mutex -4)

y := 0;

P1 : while true do P2 : while true do
l1 : non-critical section 1; m1 : non-critical section 2;
l2 : y := (y→1)∨1; m2 : y := (y→1);
l3 : await y 6= 1; m3 : await y 6= 0;
l4 : critical section 1; m4 : critical section 2;
l5 : y := (y→1)∨1; od m5 : y := (y→1); od

Figure 4: The original Peterson algorithm for 2 processes (above) compared with our synthesized
Peterson-like algorithm for 2 processes 2-mutex -4 (below) derived by hand from the transition
relation of Figure 3. Implication and disjunctions are performed in Kleene 3-valued logic.

both clasp and claspD fail (we want also to point out that, however, claspD is able to synthesize
all solutions for Program (12) in 20.43 second if we consider the disjunctive logic program
encoding).

Finally, concerning the results obtained by using ΠSCI
σ (4) we have that clasp is the ASP solver

which performs better and, on large instances (Programs (7)-(12)) it outperforms smodels.

6. Related Work and Concluding Remarks

We have proposed a framework based on Answer Set Programming (ASP) for the synthesis of
concurrent programs satisfying some given behavioural and structural properties. Behavioural
properties are specified by formulas of the Computational Tree Logic (CTL) and structural
properties are specified by simple algebraic structures. The desired behavioural and structural
properties are encoded as logic programs which are given as input to an ASP solver which, then,
computes the answer sets of those programs. Every answer set encodes a concurrent program
satisfying the given properties.

Pioneering works on the synthesis of concurrent programs from temporal specifications are
those by Clarke and Emerson [7] and Manna and Wolper [24]. In both these works the authors
reduce the synthesis problem to the satisfiability problem of the given temporal specifications.
Their synthesis methods exploit the finite model property for propositional temporal logics which
asserts that if a given formula is satisfiable, then it is satisfiable in a finite model (whose size
depends on the size of the formula).
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Table 2: Synthesis times using ΠDLP
σ . Numbers in column ‘Program’ refer to the synthesized

programs listed in Table 1. Column ‘First’ and column ‘All’ show the time expressed in second
to generate, respectively, the first answer set and all answer sets of Π = ΠDLP

σ ∪ Πϕ. ∞ means
‘no answer within 600 second’. e means ‘tool crashes’.

Program
claspD cmodels DLV GnT

First All First All First All First All

(1) 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.04

(2) 0.01 0.01 0.02 e 0.01 0.09 0.02 0.05

(3) 0.03 0.03 0.06 0.08 0.21 1.18 0.12 0.18

(4) 0.03 0.05 0.07 0.09 0.16 3.19 0.13 0.23

(5) 0.14 0.17 0.26 0.57 ∞ ∞ 0.84 5.92

(6) 0.04 0.05 e e 0.40 ∞ 0.12 0.37

(7) 2.57 3.49 e e ∞ ∞ 12.65 308.06

(8) 2.82 4.32 4.82 8.14 ∞ ∞ 14.01 361.50

(9) 460.39 ∞ 544.03 ∞ ∞ ∞ ∞ ∞

(10) 0.29 0.35 0.61 3.27 73.50 ∞ 1.17 3.65

(11) 2.07 2.89 3.10 106.04 ∞ ∞ 10.90 71.22

(12) 12.39 20.43 18.37 ∞ ∞ ∞ 376.87 ∞

In [7] Clarke and Emerson propose the following three-phase method for the synthesis of
concurrent programs for a shared-memory model of execution: Phase 1 consists in providing
the CTL specification of the concurrent program; Phase 2 consists in applying the tableau-
based decision procedure for the satisfiability of CTL formulas to obtain a model of the CTL
specification; and Phase 3 consists in extracting the synchronization skeletons from the model
of the CTL specification.

Similarly, in [24] Manna and Wolper present a method that uses a tableau-based decision
procedure for linear temporal logic (LTL) for the synthesis of synchronization instructions for
processes in a message-passing model of execution.

However, the approaches proposed in [7, 24] have some drawbacks. In particular, they suffer
from the state space explosion problem in that the models from which the synchronization
instructions are extracted, have sizes which are exponential with respect to the number of
processes. Moreover, the synthesized instructions work for models of computation which require
further refinements for their use in a realistic architecture. Extensions of the synthesis methods
of [7, 24] have been proposed by Attie and Emerson in [2] to deal with the state space explosion
problem and allow an arbitrarily large number of processes by exploiting similarities among
them. Also Attie and Emerson in [3] present an extension of their synthesis method to deal
with a finer, more realistic atomicity of instructions so that only read and write operations are
required to be atomic.

The papers we have considered so far refer to the synthesis of the so called closed systems,
that is, the synthesis of programs whose processes are all specified by some given formulas. A
different approach to the synthesis of concurrent programs has been presented by Pnueli and
Rosner in [28]. These authors propose a method for synthesizing reactive modules of so called
open systems, that is, systems in which the designer has no control over the inputs which come
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Table 3: Synthesis times using ΠNLP
σ . Numbers in column ‘Program’ refer to the synthesized

programs listed in Table 1. Column ‘First’ and column ‘All’ show the time expressed in seconds
to generate, respectively, the first answer set and all answer sets of Π = ΠNLP

σ ∪Πϕ. ∞ means
‘no answer within 600 second’.

Program
clasp claspD cmodels DLV GnT smodels

First All First All First All First All First All First All

(1) 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.02

(2) 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.04 0.02 0.03 0.01 0.01

(3) 0.03 0.04 0.03 0.04 0.06 0.08 0.09 0.15 0.09 0.09 0.04 0.04

(4) 0.04 0.04 0.04 0.04 0.08 0.08 0.13 0.20 0.11 0.11 0.50 0.60

(5) 0.13 0.16 0.15 0.19 0.24 0.31 ∞ ∞ 0.93 1.06 0.26 0.31

(6) 0.05 0.07 0.04 0.06 0.06 0.09 0.77 ∞ 0.12 0.17 0.07 0.09

(7) 2.11 3.08 3.34 4.38 2.94 12.21 ∞ ∞ 32.90 36.51 5.56 18.86

(8) 4.90 6.23 3.30 6.29 7.18 18.90 ∞ ∞ 89.79 96.79 12.76 61.22

(9) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

(10) 0.29 1.39 0.31 0.70 0.47 0.74 126.21 ∞ 0.84 1.61 0.63 1.27

(11) 2.48 40.57 2.34 12.60 3.07 6.57 ∞ ∞ 11.84 41.63 18.74 31.10

(12) ∞ ∞ ∞ ∞ 18.23 55.18 ∞ ∞ 158.02 442.69 359.58 596.53

Table 4: Synthesis times using ΠSCI
σ . Numbers in column ‘Program’ refer to the synthesized

programs listed in Table 1. Column ‘First’ and column ‘All’ show the time expressed in seconds
to generate, respectively, the first answer set and all answer sets of Π = ΠSCI

σ ∪ Πϕ. ∞ means
‘no answer within 600 second’. ⊥ means ‘no models at all’. (*) means ‘GnT is able to generate
one out of two models’. e means ‘tool crashes’.

Program
clasp claspD cmodels GnT smodels

First All First All First All First All First All

(1) 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.06 0.01 0.04

(2) 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.06 0.01 0.04

(3) 0.04 0.05 0.03 0.04 0.06 0.07 ⊥ ⊥ 0.04 0.04

(4) 0.04 0.04 0.06 0.06 0.07 0.08 0.16 0.21 0.05 0.06

(5) 0.13 0.17 0.13 0.18 0.25 0.58 0.36 (*) 0.72 4.27

(6) 0.05 0.04 0.05 0.06 0.06 0.12 ⊥ ⊥ 0.90 0.13

(7) 1.33 2.10 2.35 3.83 3.17 e ⊥ ⊥ 135.63 267.07

(8) 2.66 4.28 3.61 5.69 e e ⊥ ⊥ 406.59 ∞
(9) 444.14 ∞ ∞ ∞ 262.45 ∞ ∞ ∞ ∞ ∞

(10) 0.30 0.34 0.30 1.70 0.48 3.20 1.60 4.49 0.95 1.59

(11) 2.40 2.89 2.25 26.45 3.19 106.34 22.15 91.42 20.76 105.15

(12) 22.62 25.61 18.71 406.76 19.28 ∞ 598.60 ∞ 499.96 ∞
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from an external environment. They introduce an automata-based synthesis procedure from
a specification given as a linear temporal logic formula. The synthesis of open systems has
also been studied by Kupferman and Vardi in [22]. Also the method they propose is based on
automata-theoretical techniques. Paper [22] is important because it also presents some basic
complexity results for the synthesis problems when specifications are given by CTL formulas or
LTL formulas.

Our synthesis procedure follows the lines of [2, 7, 24] and considers concurrent programs to
be closed systems. The advantage of our method resides in the fact that we solve the synthesis
problem in a purely declarative manner. We reduce the problem of synthesizing a concurrent
program to the problem of finding the answer sets of a logic program without the need for any
ad hoc algorithm. Moreover, besides temporal properties, we can specify for the programs to be
synthesized, some structural properties, such as various symmetry properties. Then, our ASP
program automatically synthesizes concurrent programs which satisfy the desired properties. In
order to reduce the search space when solving the synthesis problem, we have used the notion
of symmetric concurrent programs which is similar to the one which was introduced in [2] to
overcome the state space explosion problem. Our notion of symmetry is formalized within group
theory, similarly to what has been done in [15] for the problem of model checking.

To the best of our knowledge, there is only one paper [20] by Heymans, Nieuwenborgh and
Vermeir who make use, as we do, of Answer Set Programming for the synthesis of concurrent
programs. The authors of [20] have extended the ASP paradigm by adding preferences among
models and they have realized an answer set system, called OLPS. They perform the synthesis of
concurrent programs following the approach proposed in [7] and, in particular, they use OLPS for
Phase 2 of the synthesis procedure, having reduced the satisfiability problem of CTL formulas to
the problem of constructing the answer sets of logic programs. The encoding proposed by [20]
yields a synthesis procedure with NEXPTIME time complexity and, thus, it is not optimal
because the complexity of the problem of CTL satisfiability is EXPTIME [14].

On the contrary, our technique for reducing the satisfiability problem to the construction
of the answer sets of logic programs, does not require any extension of the ASP paradigm.
Indeed, we use standard ASP solvers, such as claspD [12], and every phase of our synthesis
procedure is fully automatic. In particular, from any answer set we can mechanically derive the
guarded commands which, by construction, guarantee that the synthesized program satisfies the
given behavioural and structural properties. Moreover, we show that our method has optimal
time complexity because it has EXPTIME complexity with respect to the size of the temporal
specification.

In practice our approach works for synthesizing k -process concurrent programs with a limited
number k of processes because the grounding phase needed to compute the answer sets, requires
very large memory space for large values of k. As a future work we plan to explore various
techniques for reducing both the search space of the synthesis procedure and the impact of the
grounding phase on the memory requirements. Among these techniques we envisage to apply
those used in the compositional model checking technique [9].
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A. Proofs

We first introduce the following notions which will be used in the proofs.

A nonempty set I of ground atoms is elementary [16] for a program ground(Π) if for all
nonempty proper subsets S of I there exists a rule r in ground(Π) such that: (i) H(r) ∩ S 6=∅,
(ii) B+(r)∩ (I−S) 6=∅, (iii) H(r)∩ (I−S)=∅, and (iv) B+(r)∩ S =∅. A program ground(Π) is
said to be Head Elementary set Free (HEF, for short) if, for every rule r in ground(Π), there is no
elementary set Z for ground(Π) such that |H(r)∩Z| > 1. We say that Π is HEF if ground(Π) is
HEF. With any given HEF program Π we associate a normal logic program Πn obtained from Π
by replacing every rule r of Π of the form:

a1 ∨∨ . . . ∨∨ ak ← ak+1 ∧∧ . . . ∧∧ am ∧∧ not am+1 ∧∧ . . . ∧∧ notan
for some k>1, by the following k normal rules:

aj ←
∧

i∈{1,...,k}−{j} not ai ∧∧ ak+1 ∧∧ . . . ∧∧ am ∧∧ notam+1 ∧∧ . . . ∧∧ not an

for j=1, . . . , k. It can be shown that ans(Π) = ans(Πn ) [16].

The following Proposition A.1 is required for the proofs of Theorem 4.1 and Theorem 4.2.

Proposition A.1. The logic program Πσ is Head Elementary set Free.

Proof 1. We assume by contradiction that there exists a rule r in ground(Πσ) and there exists
a set Z which is an elementary set for ground(Πσ) such that |H(r) ∩ Z|>1. If |H(r) ∩ Z|>1,
then either:

(i) r is an instance of Rule 1.1 of Definition 8 and there exist l ∈L, d∈D such that

{enabled(1, l, d), disabled(1, l, d)}⊆Z, or

(ii) r is an instance of Rule 1.2 of Definition 8 and there exist l, l′, l′′∈L, d, d′, d′′∈D such that

{gc(1, l, d, l′, d′), gc(1, l, d, l′′, d′′)}⊆Z.

Let us consider Case (i). Let S be a nonempty proper subset of Z such that {enabled(1, l, d)}∈S
and {disabled (1, l, d)} 6∈ S. Clearly, H(r) ∩ (Z−S) 6= ∅. This contradicts Condition (iii) for Z
to be an elementary set for ground(Πσ).

Case (ii) is analogous to Case (i). Thus, we get that ground(Πσ) is HEF and, by definition,
also Πσ is HEF.

By this proposition and the fact that the transformation from Π into Πn presented above,
preserves the answer set semantics when applied to HEF programs [16], we have that ans(Πσ) =
ans(Πn

σ), where program Πn
σ is obtained from program Πσ as follows:

(i) Rule 1.1 of program Πσ is replaced by the following two normal rules:

enabled(1,X1, Y )← not disabled(1,X1, Y )∧∧reachable(〈X1, . . . ,Xk, Y 〉)
disabled(1,X1, Y )← not enabled(1,X1, Y )∧∧reachable(〈X1, . . . ,Xk, Y 〉), and

(ii) Rule 1.2 of program Πσ is replaced by m normal rules, for i= 1, . . . ,m, each of which is of
the form:

gc(1,X, Y,Xi, Yi)←
∧

j∈{1,...,m}−{i} not gc(1,X, Y,Xj , Yj) ∧∧ enabled(1,X, Y ) ∧∧

candidates(X,Y, [〈X1, Y1〉, . . . , 〈Xm, Ym〉]).

From the fact that Πϕ ✄ Πσ and ans(Πσ)=ans(Πn
σ), we get that (see end of Section 2):

ans(Π)=ans(Πϕ ∪Πσ)=
⋃

M∈ans(Πσ)
ans(Πϕ ∪

←−
M)=

⋃

M∈ans(Πn
σ
) ans(Πϕ ∪

←−
M)=ans(Πϕ ∪Πn

σ).

Therefore, in order to compute all answer sets of program Πϕ ∪ Πσ, we can give Πϕ ∪ Πn
σ as

input to an answer set solver which does not support disjunctive logic programs.
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Proof of Theorem 4.1

In order to prove Theorem 4.1 we first introduce the following Lemma A.2 stating the correctness
of the logic program Πϕ (see Definition 9).

Let K = 〈S,S0,R, λ〉 be a Kripke structure. We introduce the program PK, called encoding of
K, consisting of ground(Πϕ − {Rule 1}) ∪ {tr(s, t)←| 〈s, t〉 ∈ R}. �

Note that, PK is a locally stratified normal program, and thus it has a unique stable model [1]
which coincides with its unique answer set M |{sat ,satpath ,elem,tr}.

Lemma A.2 (Correctness of Πϕ) Let K = 〈S,S0,R, λ〉 be a Kripke structure and PK be
the encoding of K. For all states s ∈ S and CTL formulas ϕ we have that: K, s � ϕ iff
sat(s, ϕ) ∈M(PK) �

Proof of A.2

The proof is by structural induction on ϕ. By induction hypothesis we assume that, for all
states s ∈ D and for all proper subformulas ψ of ϕ

K, s |= ψ iff sat(s, ψ) ∈M(PK) (†)

Now we consider the following cases.

Case 1. (ϕ is an elementary proposition e of the form local (Pi, l) or of the form shared (d))

For all states s ∈ S we have that:
K, s |= e
iff s(xi) = l (or s(y) = d) (by Point (iv) of Def. 3)
iff elem(s, e) ∈M(PK) (by Points (i) and (ii) of Def. 9 and def. of M(PK))
iff sat(s, e) ∈M(PK) (by Rule 2 of Πϕ and def. of M(PK))

Case 2. (ϕ is ¬ψ)
For all states s ∈ S we have that:
K, s |= ¬ψ
iff K, s |= ψ does not hold (by def. of K, s |= ¬ψ, see Sect. 2.3)
iff sat(s, ψ) 6∈M(PK) (by (†))
iff sat(s,¬ψ) ∈M(PK) (M(PK) is an answer set of PK)

Case 3. (ϕ is ψ1 ∧ ψ2)
For all states s ∈ S we have that:
K, s |= ψ1 ∧ ψ2

iff K, s |= ψ1 and K, s |= ψ2 (by def. of K, s |= ψ1 ∧ ψ2, see Sect. 2.3)

iff sat(s, ψ1) ∈M(PK) and sat(s, ψ2) ∈M(PK) (by (†))
iff sat(s, ψ1 ∧ ψ2) ∈M(PK) (by Rule 4 of Πϕ and M(PK) is an answer set of PK)

Case 4. (ϕ is EXψ)
For all states s ∈ S we have that:

K, s |= EXψ
iff there exists a state s′ ∈ S such that
〈s, s′〉 ∈ R and K, s′ |= ψ (by def. of K, s � EXψ, see Sect. 2.3)

iff there exists a state s′ ∈ S such that:
(i) tr(s, s′) ∈M(PK), and
(ii) sat(s′, ψ) ∈M(PK) (by def. of PK and (†))
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iff there exist a state s′ ∈ S and

a clause of the form sat(s, ex(ψ))← t(s, s′) ∧ sat(s′, ψ) in PK such that:
(i) t(s, s′) ∈M(PK), and
(ii) sat(s′, ψ) ∈M(PK) (by def. of PK)

iff sat(s, ex(ψ)) ∈M(PK) (by Rule 5 of PK and M(PK) is an answer set of PK)

Case 5. (ϕ is EU[ψ1, ψ2])

For any set Y of states, let τEU(Y ) denote the set {s ∈ S |K, s |= ψ2} ∪ ({s ∈ S | K, s |= ψ1}∩
{s ∈ S | ∃s′ ∈ S such that 〈s, s′〉 ∈ R and s′ ∈ Y }). From [8] we have that K, s |= EU[ψ1, ψ2]
holds iff s ∈ lfp(τEU), where lfp(τEU) = τω

EU
Thus, we have to show that, for all states s ∈ S,

s ∈ lfp(τEU) iff sat(s, eu(ψ1, ψ2)) ∈M(PK). Let PEU be ground({Rule 6, Rule 7})∪{sat (s, ψ1) ∈
M(PK) | s ∈ S} ∪ {sat(s, ψ2) ∈ M(PK) | s ∈ S} ∪ {tr(s, t) ∈ M(PK) | s, t ∈ S}, and T h

EU

be the immediate consequence operator [1]. We proceed by induction on h: for all h ≥ 0, for
all s ∈ S, s ∈ τh

EU
(∅) iff sat(s, eu(ψ1, ψ2)) ∈ T h

EU
(∅). The base case trivially holds because

τ0
EU

(∅) = ∅ = τh
EU

(∅). Now, we assume the following inductive hypothesis:

for all s ∈ S, s ∈ τh
EU

(∅) iff sat(s, eu(ψ1, ψ2)) ∈ T h
EU

(∅) (††)

and we prove that, for all s ∈ S, s ∈ τh+1
EU

(∅) iff sat(s, eu(ψ1, ψ2)) ∈ T h
EU

(∅).
We have that:
s ∈ τh+1

EU
(∅)

iff either K, s |= ψ2 (by def. of τEU)
or K, s |= ψ1 and there exists a state s′ ∈ S such that

〈s, s′〉 ∈ R and s′ ∈ τh
EU

(∅) (by def. of τEU)

iff either sat(s, ψ2) ∈ T h
EU

(∅) (by (††))
or sat(s, ψ1) ∈ T h

EU
(∅) and there exists a state s′ ∈ S such that

〈s, s′〉 ∈ R and sat(s′, eu(ψ1, ψ2) ∈ T h
EU

(∅) (by (††))
iff there exists a clause γ ∈ PK such that:

either
(i) γ is of the form sat(s, eu(ψ1, ψ2))← sat(s, ψ2), and
(ii) sat(s, ψ2) ∈ T h

EU
(∅) (T h

EU
(∅) is a model of PEU)

or there exists a state s′ ∈ S such that:
(i) γ is of the form sat(s, eu(ψ1, ψ2))← sat(s, ψ1) ∧ t(s, s′) ∧ sat(s′, eu(ψ1, ψ2)),
(ii) sat(s, ψ1) ∈ T h

EU
(∅),

(iii) t(s, s′) ∈ T h
EU

(∅), and
(iv) sat(s′, eu(ψ1, ψ2)) ∈ T h

EU
(∅) (by def. of PEU and T h

EU
(∅) is a model of PEU)

iff sat(s, eu(ψ1, ψ2)) ∈ T h
EU

(∅) (T h
EU

(∅) is a model of PEU)

Case 6. (ϕ is EG(ψ))
In order to prove this case we make use of the following Proposition A.3 [8]. Let K = 〈S,S0,R, λ〉
be a Kripke structure and K′ = 〈S ′,S ′0,R

′, λ′〉 be the Kripke structure obtained from K as
follows: S ′ = {s ∈ S | K, s � ψ}, S ′0 = {s ∈ S0 | K, s � ψ}, R

′ = R |S′×S′ , and λ′ = λ |S′ .

Proposition A.3. K, s � EGψ iff (i) s1 ∈ S
′, and (ii) there exists a path in K′ that leads from

s1 to some node sk in a nontrivial strongly connected component of the graph 〈S ′,R′〉.

Now, let us consider the program PK constructed as indicated at the beginning of this section.
We prove that conditions (i) and (ii) of Lemma A.3 hold iff sat(s, eg(ψ)) ∈M(PK):

sat(s1, eg(ψ)) ∈M(PK) iff (by Rule 8)
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there exists a state sk ∈ S
′ such that

{ satpath(s1, sk, ψ), satpath(sk, sk, ψ) } ⊆M(PK) iff (by def. of PK)
{ satpath(s1, sk, ψ)← sat(s1, ψ) ∧∧ tr(s1, s2) ∧∧ satpath(s2, sk, ψ),

satpath(s2, sk, ψ)← sat(s2, ψ) ∧∧ tr(s2, s3) ∧∧ satpath(s3, sk, ψ),
· · ·

satpath(sk−2, sk, ψ)← sat(sk−2, ψ) ∧∧ tr (sk−2, sk−1) ∧∧ satpath(sk−1, sk, ψ),
satpath(sk−1, sk, ψ)← sat(sk−1, ψ) ∧∧ tr (sk−1, sk) } ⊆ PK iff

the following conditions holds:
(a) { sat(s1, ψ), sat (s2, ψ), . . . , sat(sk−1, ψ) } ⊆M(PK) (by (†))
(b) { tr(s1, s2), . . . , tr (sk−1, sk) } ⊆M(PK) (by def. of PK)
(c) { satpath(sk, sk, ψ) } ⊆M(PK′)

iff the following conditions holds:
(a) { sat(s1, ψ), sat (s2, ψ), . . . , sat(sk−1, ψ) } ⊆M(PK) (by (†))
(b) { tr(s1, s2), . . . , tr (sk−1, sk) } ⊆M(PK) (by def. of PK)
(c) { satpath(sk, sk, ψ)← sat(sk, ψ) ∧∧ tr(sk, sk1) ∧∧ satpath(sk1 , sk, ψ),

satpath(sk1 , sk, ψ)← sat(sk1 , ψ) ∧∧ tr (sk1 , sk2) ∧∧ satpath(sk2 , sk, ψ),
· · ·

satpath(skn−2
, sk, ψ)← sat(skn−2

, ψ) ∧∧ tr(skn−2
, skn−1

) ∧∧ satpath(skn−1
, sn, ψ),

satpath(skn−1
, sk, ψ)← sat(skn−1

, ψ) ∧∧ tr(skn−1
, sk) } ⊆ PK

iff the following conditions holds:
(a) { sat(s1, ψ), sat (s2, ψ), . . . , sat(sk−1, ψ) } ⊆M(PK) (by (†))
(b) { tr(s1, s2), . . . , tr (sk−1, sk) } ⊆M(PK) (by def. of PK)
(c’) { sat(sk1 , ψ), sat (sk2 , ψ), . . . , sat(skn−1

, ψ) } ⊆M(PK) (by (†))
(c”) { tr(sk, sk1), tr (sk1 , sk2), . . . , tr(skn−1

, sk) } ⊆M(PK) (by def. of PK)
iff there exists a path π = s1, . . . , sk of length k ≥ 1 and sk belongs to a nontrivial strongly

connected component of 〈S ′,R′〉. �

Now we prove Theorem 4.1.

Let Π be the program Πϕ ∪ Πσ. We need the following notation. Given a set P of predicate
symbols and a set M of atoms, we define M |P to be the set {A ∈ M | the predicate of A is in
P}.
(if. Soundness) Let M be an answer set of Π. Recall that σ is of the form 〈f, T, l0, d0〉. Let us
consider a command C of the form: x1 := l0; . . . ; xk := l0; y :=d0; do P1 8 . . . 8 Pk od, where for
i = 1, . . . , k,

(

xi= l∧∧y=d→ xi := l′; y :=d′
)

is in Pi iff gc(i, l, d, l′, d′) ∈M .
We have the following two properties of C.

(CP1) For i = 1, . . . , k, every guarded command in Pi is of the form xi = l ∧∧ y= d → xi := l′;
y := d′ with 〈l, d〉 6= 〈l′, d′〉. Indeed, M is a model of Πσ and, in particular, of the ground facts
defining the predicate candidates (see Definition 8).

(CP2) For i = 1, . . . , k, the guards of any two guarded commands of process Pi are mutually
exclusive. Indeed, the following holds. By Proposition A.1, Πσ is HEF. Hence, by Rule 2.1, for
every l ∈ L and d ∈ D, at most one atom of the form gc(1, l, d, l′, d′) belongs to M . Since M
is a supported model [6], by Rule 2.i, for i = 2, . . . , k, we get that gc(i, l, f(d), l′, f(d′)) ∈M iff
gc(i − 1, l, d, l′, d′) ∈ M . By using this fact we get that, for i = 1, . . . , k, for every l ∈ L and
d ∈ D, at most one atom of the form gc(i, l, d, l′, d′) belongs to M .

By Properties (CP1) and (CP2), C is a k-process concurrent program (see Definition 1).

Now, we prove that: (i) C satisfies ϕ and (ii) C is symmetric w.r.t. σ.
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Point (i). Let K = 〈S,S0,R, λ〉 be the Kripke structure associated with C, constructed as
indicated in Definition 3 and PK be the encoding of K. We have that:
M is an answer set of Π
iff M is an answer set of Π− {← not sat(s0, ϕ)} and sat(s0, ϕ) ∈M

(by def. of integrity constraint)
iff M = M(Πϕ − {← not sat(s0, ϕ)} ∪M |{gc,enabled ,disabled ,reachable,tr ,candidates,perm})

(by def. of Πϕ ∪Πσ)
iff M = M(Pk) ∪M |{gc,enabled ,disabled ,reachable,tr ,candidates,perm})

(by def. of PK)
iff M |{sat ,satpath,tr ,elem}= M(Pk).

Since sat(s, ϕ) ∈M , we obtain that sat(s, ϕ) ∈M(Pk) and, thus, K, s � ϕ.

Point (ii). By construction, C is of the form x1:= l0; . . . ; xk := l0; y :=d0; do P1 8 . . . 8 Pk od. Let
us now prove that Conditions (i) and (ii) of Definition 6 hold.

For all gc(i, l, d, l′, d′) ∈M we have that the pair 〈l′, d′〉 belongs to the list L which is the third
argument of candidates(l, d, L). By Point (i) of Definition 8, for every pair 〈l′, d′〉 in L we have
that 〈l, l′〉 ∈ T and, therefore, C satisfies Condition (i) of Definition 6.

Since M is a supported model of ground(Π)M and Rule 1.i, for 1 < i ≤ k, is the only rule
in Π whose head is unifiable with gc(i, l, d, l′, d′) we have that gc(i − 1, l, d, l′, d′) ∈ M iff
gc(i, l, f(d), l′, f(d′)) ∈ M . Thus, Condition (ii) of Definition 6 holds for C because f is a
permutation of order k.

(only if. Completeness) Let C be a k-process concurrent program which satisfies ϕ and is sym-
metric w.r.t. σ, and K be the Kripke structure 〈S,S0,R, λ〉 associated with C whose processes
are P1, . . . , Pk. We have to prove that there exists an answer set M ∈ ans(Πϕ ∪ Πσ) which
encodes C. Let M be defined as follows.

M = {reachable(s) | s∈S} (M.1)
∪ {tr(s, s′) | 〈s, s′〉 ∈ R} (M.2)
∪ {gc(i, l, d, l′, d′) |

(

xi= l ∧∧ y=d→ xi := l′; y :=d′
)

is in Pi ∧∧ 1≤ i≤k} (M.3)
∪ {enabled(i, l, d) | ∃ l′, d′

(

xi= l ∧∧ y=d→ xi := l′; y :=d′
)

is in Pi ∧∧ 1≤ i≤k} (M.4)
∪ {disabled(1, s(x1), s(y)) | s ∈ S ∧∧ ¬∃ c

(

x1=s(x1) ∧∧ y=s(y)→ c
)

is in P1} (M.5)
∪ {sat(s, ψ) | s∈S ∧∧ K, s � ψ} (M.6)
∪ {satpath(s0, sn, ψ) | ∃ 〈s0, . . . , sn〉 ∀i (0≤ i≤n→ K,si � ψ) } (M.7)
∪ {elem(p, s) | s∈S ∧∧ p∈λ(s)} (M.8)
∪ {perm(d, d′) | d, d′∈D ∧∧ f(d) = d′} (M.9)
∪ {candidates(l, d, L(l, d)) ← | l∈L ∧∧ d ∈D} (M.10)

where L(l, d) is any list representing the set {〈l′, d′〉 | 〈l, l′〉 ∈T ∧∧ d′ ∈D ∧∧ 〈l, d〉 6= 〈l′, d′〉} of
pairs.

By M.3 and Definition 4.4 we have that M encodes C. Now we prove that M is an answer set
of Π, that is, (i) M is a model of ground(Πϕ ∪Πσ)M and (ii) M is a minimal such model.

(i) We prove that for every rule r ∈ ground(Πϕ ∪Πσ)M if B+(r) ⊆M then H(r) ∩M 6= ∅. We
proceed by cases. Let us first consider the rules in ground(Πσ).

(Rule 1.1) Assume that r is enabled(1, l1, d) ∨∨ disabled(1, l1, d) ← reachable(〈l1, . . . ,lk, d〉). If
reachable(〈l1, . . . , lk, d〉) ∈M then, by M.1, we have that 〈l1, . . . ,lk, d〉 ∈ S. Since R is a total
relation, either P1 is enabled in 〈l1, . . . ,lk, d〉 and consequently, by M.4, enabled(1, l1, d)∈M , or
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it is not enabled and thus, by M.5, disabled(1, l1, d)∈M .

(Rule 1.i, i > 1) Assume that r is enabled(i, l, d)← gc(i, l, d, l′, d′). If gc(i, l, d, l′, d′)∈M then,
by M.3,

(

xi= l∧∧y=d→xi := l′; y :=d′
)

is in Pi, and consequently, by M.4, enabled(i, l, d)∈M .

(Rule 2.1) Assume that r is of the form gc(1, l, d, l1, d1)∨∨ . . . ∨∨gc(1, l, d, lm, dm)←enabled(1, l, d) ∧∧

candidates(l, d, [〈l1, d1〉, . . . , 〈lm, dm〉]) for some m≥1. If enabled(1, l, d)∈M then, by M.4, there
exists in P1 a guarded command whose guard is x1 = l ∧∧ y = d and the associated command is en-
coded as a pair 〈l′, d′〉 occurring in the third argument of candidates(l, d, [〈l1, d1〉, . . . , 〈lm, dm〉]).
Hence, by M.3, we have that gc(1, l, d, l′, d′)∈M .

(Rule 2.i, i > 1) Assume that r is gc(i, l, e, l′, e′)← gc(i−1, l, d, l′, d′) ∧∧ perm(d, e) ∧∧ perm(d′, e′),
with i > 1. By Definition 6 we have that

(

xi = l ∧∧ y = f(d)→ xi := l′; y := f(d′)
)

is in Pi iff
(

xi−1 = l∧∧y=d→xi−1 := l′; y :=d′
)

is in Pi−1 and, therefore, if gc(i−1, l, d, l′, d′)∈M , f(d) = e,
and f(d′) = e′ then, by M.3, gc(i, l, e, l′, e′)∈M .

(Rule 3.1) Assume that r is reachable(s0)← . Since s0 ∈ S, we have that by M.1, reachable(s0)∈
M .

(Rule 3.2) Assume that r is reachable(〈l1, . . . ,lk, d〉)← tr (〈l′1, . . . ,l
′
k, d

′〉, 〈l1, . . . ,lk, d〉). If we have
that tr(〈l′1, . . . ,l

′
k, d

′〉, 〈l1, . . . ,lk, d〉)∈M then, by M.2, 〈〈l′1, . . . ,l
′
k, d

′〉, 〈l1, . . . ,lk, d〉〉 ∈ R. Thus,
〈l1, . . . ,lk, d〉 ∈ S and consequently, by M.1, reachable(〈l1, . . . ,lk, d〉)∈M .

(Rule 4.1–4.k) Assume that r is tr (s, t)← reachable(s)∧∧ gc(i, l, d, l′, d′), with s(xi) = l, s(y) =d,
t(xi) = l′, and t(y) = d′. If {reachable(s), gc(i, l, d, l′, d′)} ⊆ M then s ∈ S and there exists a
guarded command of the form

(

xi = l ∧∧ y = d→ xi := l′; y := d′
)

in Pi. Thus, by Definition 2,
〈s, t〉 ∈ R and consequently, by M.2, we get that tr(s, t)∈M .

(Rule 5) Assume that r is ← reachable(〈l1, . . . ,lk, d〉). We show that reachable(〈l1, . . . ,lk, d〉) 6∈
M . Let us assume, by contradiction, that reachable(〈l1, . . . ,lk, d〉) ∈ M and, thus, by M.1,
〈l1, . . . ,lk, d〉 ∈ S. Since R is total, for every reachable state s, there exists a process Pi which
is enabled in s, that is, by M.4, enabled(i, li, d) ∈ M , contradicting the hypothesis that r ∈
ground(Πσ)M , that is, for all i ∈ {1, . . . , k}, enabled(i, li, d) 6∈M .

Now we consider the rules in ground(Πϕ).

(Rule 1) Since C satisfies ϕ, by M.6, sat(s0, ϕ) ∈ M and, hence, {← not sat(s0, ϕ)}M = ∅.
Thus, no rule of ground(Πϕ)M is obtained from Rule 1 by the Gelfond-Lifschitz transformation.

(Rules 2-8) Let PK be the encoding of K. By definition M.6 = {sat(s, ψ) | s∈ S ∧∧ K, s � ψ}.
Moreover, by Lemma A.2 we have that, for all s ∈ S and CTL formulas ψ, if K, s � ψ then
sat(s, ψ) ∈M(PK). Thus, M.2 ∪M.6 ∪M.7 ∪M.8 = M(PK) is a model of Rules 2-8.

(Rule 9) Assume that r is satpath(s, t, ψ)←sat (s, ψ)∧∧ tr(s, t). Assume that {sat(s, ψ), tr (s, t)} ⊆
M . Then, K, s � ψ and 〈s, t〉 ∈ R hold. Hence, by M.7, we have that satpath(s, t, ψ) ∈M .

(Rule 10) Assume that r is satpath(u0, un, ψ) ← sat(u0, ψ) ∧∧ tr (u0, u1) ∧∧ satpath(u1, un, ψ).
Assume that {sat(u0, ψ), tr(u0, u1), satpath(u1, un, ψ)} ⊆ M . Then, K, u0 � ψ, 〈u0, u1〉 ∈ R,
and there exists a finite path 〈u1, . . . , un〉, with n>1, such that for all 1≤ i≤n, K, ui � ψ. Thus,
by M.7, satpath(u0, un, ψ)∈M .

(ii) We have to prove that M is a minimal (w.r.t. set inclusion) model of ground(Π)M . We prove
it by contradiction. Let us assume that M ′ is a model of ground(Π)M such that M ′⊂M . Let z
be a ground atom in M−M ′. We proceed by cases.

(Case A) Assume that z is gc(i, l, d, l′, d′). Thus, by M.3, there exists a guarded command in C
whose encoding does not belong to M ′, and consequently, M ′ does not encode C.
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(Case B) For every s ∈ S, we define h(s) to be the least integer k≥ 0 such that Reachk(s0, s)
holds. Assume that z is reachable(s). Without loss of generality, we may assume that s is a
state such that ∀r ∈ S if reachable(r) ∈ M−M ′, then h(r)≥ h(s). We have the following two
cases.

(Case B.1) s = s0. We get a contradiction from the fact that M ′ is a model of ground(Π)M and,
thus, M ′ satisfies Rule 3.1.

(Case B.2) s 6= s0. We have that there exists no t ∈ S such that tr(t, s) ∈ M ′ (otherwise,
since M ′ satisfies Rule 3.2, we would have reachable(s) ∈ M ′). Take any t ∈ S such that
Reachh(s)−1(s0, t). Since M ′ satisfies Rules 4.1–4.k and tr(t, s) 6∈ M ′, one of the following two
facts holds.

Either (B.2.1) reachable(t) 6∈M ′. By M.1 we have that reachable(t) ∈M , and thus, reachable(t) ∈
M −M ′. Since h(t) < h(s), we get a contradiction with the assumption that ∀r ∈ S if
reachable(r) ∈M−M ′, then h(r)≥h(s).

Or (B.2.2) there exists no process i such that gc(i, t(xi), t(y), s(xi), s(y)) ∈ M ′. Therefore, the
proof proceeds as in Case (A).

(Case C) Assume that z is enabled(i, l, d). Since M ′ satisfies Rule 1.i, there exist no l′ and d′,
such that gc(i, l, d, l′, d′) ∈M ′. Therefore, the proof proceeds as in Case (A).

(Case D) Assume that z is disabled(1, l, d). By M.4 and M.5, we have that enabled(1, l, d) 6∈M .
Since M ′ satisfies Rule 1.1, one of the following two facts hold.

Either (D.1) No atom of the form reachable(〈l, l2, . . . , lk, d〉) belongs to M ′. Therefore, the proof
proceeds as in Case (B).

Or (D.2) enabled(1, l, d) belongs to M ′. Therefore, we get a contradiction with the facts that
M ′ ⊂M and enabled(1, l, d) 6∈M .

(Case E) Assume that z is tr (t, s). Since M ′ satisfies Rules 4.1–4.k, one of the following two
facts hold.

Either (E.1) reachable(t) 6∈M ′. Therefore, the proof proceeds as in Case (B).

Or (E.2) There is no process i such that gc(i, t(xi), t(y), s(xi), s(y)) ∈M ′. Therefore, the proof
proceeds as in Case (A).

(Case F) Assume that z is of one of the forms sat(s, ψ), or satpath(s, t, ψ), or elem(s, p). By
M.6, M.7, M.8, and Lemma A.2, we have that M |{sat ,satpath ,elem,tr} is the least Herbrand model

of ground(Πϕ)M ∪
←−−−−
M |{tr}. Now, since M ′ is an Herbrand model of ground(Πϕ)M ∪

←−−−−
M |{tr}, we

get that M |{sat ,satpath,elem,tr} ⊆M
′, thereby contradicting the assumption that z ∈M−M ′. ✷

Proof of Theorem 4.2

Let |ground(Π)| denote the size (that is, the number of rules) of ground(Π). We have that
|ground(Π)| is O(|L|3k · |D|3 · |ϕ|), where k > 1. Moreover, since program Πσ is an HEF (see
Proposition A.1) logic program, Πσ can be transformed into a normal logic program Πn

σ such
that ans(Πσ) = ans(Πn

σ). We have that |ground(Πn
σ)| = α1 + α2 + |ground(Πσ)|, where α1

depends on the number of the ground instances of Rule 1.1 and α2 depends on the number of
the ground instances of Rule 2.1. Now we have that: (i) α1 is at most |L|k · |D| (indeed, the
ground instances of Rule 1.1 are at most |L|k · |D|), and (ii) α2 is O(|L|2 · |D|2) (indeed, the
ground instances of Rule 2.1 are at most |L| · |D|, and in any instance of Rule 2.1 the value of
m is at most |L| · |D|). Thus, α1 + α2 is O(|L|k · |D|2) and |ground(Πn)| is O(|L|3k · |D|3 · |ϕ|).

Given a set I of ground atoms, (i) to compute ground(Πn)I takes linear time w.r.t. |ground(Πn)|,
(ii) to generate the minimal model M of ground(Πn)I takes linear time w.r.t. |ground(Πn)I |,
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and (iii) to check whether or not I =M also takes linear time w.r.t. |ground(Πn)I | (for more
information on these results the reader may refer to [29]). Hence, to verify whether or not a
given set of ground atoms is an answer set of Π takes linear time w.r.t. |ground(Πn)|. Thus, the
verification that I is an answer set of Π takes exponential time w.r.t. k, linear time w.r.t. |ϕ|,
and polynomial time w.r.t. L and w.r.t. D.

Now, the choice of a candidate answer set I can be done by: (i) choosing, for each 〈l, d〉 ∈ L×D,
at most one ground atom in the set {gc(1, l, d, l′, d′) | 〈l, l′〉 ∈ T ∧∧ d′ ∈ D ∧∧ 〈l, d〉 6= 〈l′, d′〉},
(ii) computing in O(k) time a ground atom of the form gc(i, . . .), for i = 2, . . . , k, (iii) computing
in O(|L|3k · |D|3 · |ϕ|) time the ground instances of the rules in Π, where the truth values of the
gc atoms are fixed as indicated at Steps (i) and (ii), thereby obtaining a stratified program, and
(iv) finally, computing in O(|L|3k · |D|3 · |ϕ|) the unique stable model of that stratified program.

Since Step (i) can be done in nondeterministic polynomial time w.r.t. |L| × |D|, we get the
thesis. ✷

B. Source code

In this section we list the source code used to synthesize 2-mutex -1 with claspD (Program (2)
in Table 1).

B.1. The (disjunctive) logic program ΠDLP
σ encoding a structural property

enabled(1,X1,Y) | disabled(1,X1,Y):- reachable(X1,X2,Y).

enabled(2,X2,Y) :- gc(2,X2,Y,X2p,Yp).

gc(1,t,Y,w,0) | gc(1,t,Y,w,1) | gc(1,t,Y,w,2):- enabled(1,t,Y).

gc(1,w,0,w,1) | gc(1,w,0,w,2) |

gc(1,w,0,u,0) | gc(1,w,0,u,1) | gc(1,w,0,u,2):- enabled(1,w,0).

gc(1,w,1,w,0) | gc(1,w,1,w,2) |

gc(1,w,1,u,0) | gc(1,w,1,u,1) | gc(1,w,1,u,2):- enabled(1,w,1).

gc(1,w,2,w,0) | gc(1,w,2,w,1) |

gc(1,w,2,u,0) | gc(1,w,2,u,1) | gc(1,w,2,u,2) - enabled(1,w,2).

gc(1,u,Y,t,0) | gc(1,u,Y,t,1) | gc(1,u,Y,t,2):- enabled(1,u,Y).

gc(2,X2,Z,X2p,Zp) :- gc(1,X2,Y,X2p,Yp), perm(Y,Z), perm(Yp,Zp).

reachable(X1,X2,Y) :- s0(X1,X2,Y).

reachable(X1p,X2p,Yp) :- reachable(X1,X2,Y), tr(X1,X2,Y,X1p,X2p,Yp).

tr(X1,X2,Y,X1p,X2,Yp):- reachable(X1,X2,Y), gc(1,X1,Y,X1p,Yp).

tr(X1,X2,Y,X1,X2p,Yp):- reachable(X1,X2,Y), gc(2,X2,Y,X2p,Yp).

:- reachable(X1,X2,Y), not enabled(1,X1,Y), not enabled(2,X2,Y).

where: (i) variables X1, X2, X1p, and X2p range over L = {t, w, u}, (ii) variables Y, Yp, and Z

range over L = {0, 1, 2}, (iii) the 2-generating function f2 = {〈0, 1〉, 〈1, 0〉, 〈2, 2〉} is encoded
by the following facts perm(0,1), perm(1,0) and perm(2,2). (iv) the initial state is encoded
by s0(t, t, 0). Note that the local transition relation T = {〈t, w〉, 〈w, w〉, 〈w, u〉, 〈u, t〉} is directly
embedded into the guarded commands for process P1.
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B.2. The logic program Πϕ encoding a behavioural property

sat(X1,X2,Y,local(p1,X1)) :- elem(local(p1,X1),X1,X2,Y).

sat(X1,X2,Y,local(p2,X2)) :- elem(local(p2,X2),X1,X2,Y).

sat(X1,X2,Y,shared(Y)) :- elem(shared(Y),X1,X2,Y).

sat(X1,X2,Y,n(F)) :- not sat(X1,X2,Y,F), dp(n(F)), l(X1), l(X2), d(Y).

sat(X1,X2,Y,o(F,G)) :- sat(X1,X2,Y,F), dp(o(F,G)).

sat(X1,X2,Y,o(F,G)) :- sat(X1,X2,Y,G), dp(o(F,G)).

sat(X1,X2,Y,a(F,G)) :- sat(X1,X2,Y,F), sat(X1,X2,Y,G), dp(a(F,G)).

sat(X1,X2,Y,ex(F)) :- tr(X1,X2,Y,X1p,X2p,Yp), sat(X1p,X2p,Yp,F), dp(ex(F)).

sat(X1,X2,Y,eu(F,G)) :- sat(X1,X2,Y,G), dp(eu(F,G)).

sat(X1,X2,Y,eu(F,G)) :- sat(X1,X2,Y,F), tr(X1,X2,Y,X1p,X2p,Y),

sat(X1p,X2p,Y,eu(F,G)), dp(eu(F,G)).

sat(X1,X2,Y,ef(F)) :- sat(X1,X2,Y,F), dp(ef(F)).

sat(X1,X2,Y,ef(F)) :- tr(X1,X2,Y,X1p,X2p,Yp), sat(X1p,X2p,Yp,ef(F)), dp(ef(F)).

sat(X1,X2,Y,eg(F)) :- satpath(X1,X2,Y,X1p,X2p,Yp,F),

satpath(X1p,X2p,Yp,X1p,X2p,Yp,F), dp(eg(F)).

satpath(X1,X2,Y,X1p,X2p,Yp,F) :- sat(X1,X2,Y,F), tr(X1,X2,Y,X1p,X2p,Yp),

dp(eg(F)).

satpath(X1,X2,Y,X1p,X2p,Yp,F) :- sat(X1,X2,Y,F), tr(X1,X2,Y,X1pp,X2pp,Ypp),

satpath(X1pp,X2pp,Ypp,X1p,X2p,Yp,F), dp(eg(F)).

where: (i) variables X1, X1p, X1pp, X2, and X2p range over L = {t, w, u}, (ii) variables Y, Yp, and Z

range over L = {0, 1, 2}, (iii) variables F and G range over the term encoding the formula ϕ and
its subterms, and (iv) predicate dp encodes the domain predicate which restricts the domain of
variables F and G.

As an example we list: (i) the domain predicates (lines 1-5), (ii) the elementary properties
(lines 8-9), and (iii) the integrity constraint (line 10) needed to ensure that processes P1 and P2,
obtained by using Π = ΠDLP

σ ∪Πϕ, enjoy the mutual execution property.

dp(n(ef(n(n(a(local(p1,u),local(p2,u))))))).

dp(ef(n(n(a(local(p1,u),local(p2,u)))))).

dp(n(n(a(local(p1,u),local(p2,u))))).

dp(n(a(local(p1,u),local(p2,u)))).

dp(a(local(p1,u),local(p2,u))).

elem(local(p1,u),u,X2,Y) :- l(X2), d(Y).

elem(local(p2,u),X1,u,Y) :- l(X1), d(Y).

:- not sat(X1,X2,Y,n(ef(n(n(a(local(p1,u),local(p2,u))))))), s0(X1,X2,Y).
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