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Abstract. We address the problem of the automatic synthesis of concurrent programs within a
framework based on Answer Set Programming (ASP). Every concurrent program to be synthesized
is specified by providing both the behavioural and the structural properties it should satisfy. Be-
havioural properties, such as safety and liveness properties, are specified by using formulas of the
Computation Tree Logic, which are encoded as a logic program. Structural properties, such as the
symmetry of processes, are also encoded as a logic program. Then, the program which is the union
of these two encoding programs, is given as input to an ASP system which returns as output a set of
answer sets. Finally, each answer set is decoded into a synthesized program that, by construction,
satisfies the desired behavioural and structural properties.
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1. Introduction

We consider concurrent programs consisting of finite sets of processes which interact with each other by
using a shared variable ranging over a finite domain. The interaction protocol is realized in a distributed
manner, that is, every process includes some instructions which operate on the shared variable.

Even for a small number of processes, interaction protocols which guarantee a desired behaviour
of the concurrent programs may be hard to design and prove correct. Thus, people have been looking
for methods for the automatic synthesis of concurrent programs from the formal specification of their
behaviour. Among those methods we recall the ones proposed by Clarke and Emerson [7], Manna and
Wolper [22], and Attie and Emerson [2, 3], which use tableau- based algorithms, and those proposed by
Pnueli and Rosner [25], and Kupferman and Vardi [20], which use automata-based algorithms.

In contrast with those approaches we do not present an ad-hoc algorithm for synthesizing concurrent
programs and, instead, we propose a framework based on logic programming by which we reduce the
problem of synthesizing concurrent programs to the problem of computing models of a logic program
encoding a given specification. We assume that behavioural properties of concurrent programs, such
as safety or liveness properties, are specified by using formulas of the Computation Tree Logic (CTL),
which is a very popular propositional temporal logic over branching time structures [7, 8]. This temporal,
behavioural specification ϕ is encoded as a logic program Πϕ. We also assume that the processes to be
synthesized satisfy suitable structural properties, such as symmetry properties, which specify that all
processes follow the same cycling pattern of possible actions. Such structural properties cannot be easily
specified by using CTL formulas and, in order to overcome this difficulty, we use, instead, a simple
algebraic structure which can be specified in predicate logic and encoded as a logic program Πσ. Thus,
the specification of a concurrent program to be synthesized consists of a logic program Π = Πϕ∪Πσ

which encodes both the behavioural and the structural properties that the concurrent program should
enjoy.

In order to construct models of the program Π, we use logic programming with the answer set se-
mantics and we show that every answer set of Π encodes a concurrent program satisfying the given
specification. Thus, by using an Answer Set Programming (ASP) solver, such as claspD [11], DLV [21]
or GNT [19], which computes the answer sets of logic programs, we can synthesize concurrent programs
which enjoy the desired behavioural and structural properties. We have performed some synthesis exper-
iments and, in particular, we have synthesized some protocols which are guaranteed to enjoy behavioural
properties such as mutual exclusion, starvation freedom, and bounded overtaking, and also suitable sym-
metry properties. However, the synthesis framework we propose is general and it can be applied to many
other classes of concurrent systems and properties besides those mentioned above.

The paper is structured as follows. In Section 2 we recall some preliminary notions and terminology.
In Section 3 we present our framework for synthesizing concurrent programs and we define the notion
of a symmetric concurrent program. In Section 4 we describe our synthesis procedure and the logic
program used for the synthesis and we also prove that this procedure has optimal time complexity. Then,
in Section 5 we present some examples of synthesis of symmetric concurrent programs. Finally, in
Section 6 we discuss related work and, in particular, we compare our results with those obtained by
the ASP-based procedure for the synthesis from temporal specifications introduced by Heymans, Van
Nieuwenborgh and Vermeir in [18]. In the Appendix we show the proofs of the results presented in the
paper.
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2. Preliminaries

Let us recall some basic notions and terminology we will use. We will present: (i) the syntax of (a
variant of) the guarded commands [10], which we use for defining concurrent programs, (ii) some basic
notions of group theory, which are required for defining symmetric concurrent programs, and (iii) some
fundamental concepts of Computation Tree Logic and of Answer Set Programming, which we use for
our synthesis method.

Guarded commands. The guarded commands we consider are defined from the following two basic sets:
(i) variables, v in Var , each ranging over a finite domain Dv, and (ii) guards, g in Guard , of the form:
g ::= true | false | v = d | ¬ g | g1 ∧∧ g2, with v ∈ Var and d ∈ Dv. We also have the following
derived sets whose definitions are mutually recursive: (iii) commands, c in Command , of the form:
c ::= skip | v := d | c1 ; c2 | if gc fi | do gc od , where ‘;’ denotes the sequential composition
of commands which is associative, and (iv) guarded commands, gc in GCommand , of the form: gc ::=
g→c | gc1 8 gc2 , where ‘8’ denotes the parallel composition of guarded commands which is associative
and commutative.

The operational semantics of commands can be described in an informal way as follows. skip does
nothing. v := d stores the value d in the location of the variable v. In order to execute c1; c2 the
command c1 is executed first, and then the command c2 is executed. In order to execute if gc1 8
. . . 8 gcn fi, with n ≥ 1, one of the guarded commands g → c in {gc1, . . . , gcn} whose guard g
evaluates to true, is chosen, and then c is executed; otherwise, if no guard of a guarded command in
{gc1, . . . , gcn} evaluates to true, then the whole command if . . . fi terminates with failure. In order
to execute do gc1 8 . . . 8 gcn od, with n ≥ 1, one of the guarded commands g → c in {gc1, . . . , gcn}
whose guard g evaluates to true, is chosen, then c is executed and the whole command do . . . od is
executed again; otherwise, if no guard of a guarded command in {gc1, . . . , gcn} evaluates to true, then
the execution proceeds with the next command. The formal semantics of commands will be given in the
next section.

Groups. A group G is a pair 〈S , ◦〉, where S is a set and ◦ is a binary operation on S satisfying the
following axioms: (i) ∀x, y ∈ S. x◦y ∈ S, (ii) ∀x , y , z ∈ S . (x ◦y)◦z =x ◦(y◦z ), (iii) ∃e∈ S.∀x∈S.
e◦x=x◦e=x, and (iv) ∀x∈S.∃y ∈ S. x◦y=y◦x = e. The element e is the identity of the group G and
the cardinality of S is the order of the group G. For any x ∈ S, for any n ≥ 0, we write xn to denote the
term x◦. . .◦x with n occurrences of x. We stipulate that x0 is e.

A group G = 〈S , ◦〉 is said to be cyclic iff there exists an element x∈S, called a generator, such that
S = {xn | n ≥ 0}. We denote by Perm(S) the set of all permutations on the set S, that is, the set of all
bijections from S to S. Perm(S) is a group whose operation ◦ is function composition and the identity e
is the identity permutation, denoted id. Given a finite set S, the order of a permutation p in Perm(S) is
the smallest natural number n such that pn = id .

Computation Tree Logic. Computation Tree Logic (CTL) is a propositional branching time temporal
logic [8]. The underling time structure is a tree of states. Every state denotes an instant in time and may
have many successor states. There are quantifiers over paths of the tree: A (for all paths) and E (for some
path), which are used for specifying properties that hold for all paths or for some path, respectively.
Together with these quantifiers, there are temporal operators such as: X (next state), F (eventually),
G (globally), and U (until), which are used for specifying properties that hold in the states along paths of
the tree. Their formal semantics will be given below.
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Given a finite nonempty set Elem of elementary propositions ranged over by p, the syntax of CTL
formulas ϕ is as follows:

ϕ ::= p | ϕ1 ∧∧ ϕ2 | ¬ϕ | EXϕ | EGϕ | E[ϕ1 Uϕ2]

We introduce the following abbreviations: (i) true for ϕ ∨∨ ¬ϕ, where ϕ is any CTL formula, (ii) false
for ¬true , (iii) ϕ1 ∨∨ ϕ2 for ¬(¬ϕ1 ∧∧¬ϕ2), (iv) EFϕ for E[true Uϕ] (v) AGϕ for ¬EF¬ϕ, (vi) AFϕ for
¬EG¬ϕ, (vii) A[ϕ1Uϕ2] for ¬E[¬ϕ2 U (¬ϕ1 ∧∧ ¬ϕ2)] ∧∧ AFϕ2, and (viii) AXϕ for ¬EX¬ϕ.

The semantics of CTL is provided by a Kripke structure K=〈S,S0,R, λ〉, where: (i) S is a finite set
of states, (ii) S0 ⊆ S is a set of initial states, (iii)R ⊆ S × S is a total transition relation (thus, ∀u∈S.
∃v∈S. 〈u, v〉 ∈ R), and (iv) λ : S → P(Elem) is a total labelling function that assigns to every state
s ∈ S a subset λ(s) of the set Elem . A path π in K from a state s0 is an infinite sequence 〈s0, s1, . . .〉
of states such that, for all i ≥ 0, 〈si, si+1〉 ∈ R. The fact that a CTL formula ϕ holds in a state s of
a Kripke structure K will be denoted by K, s � ϕ. For any CTL formula ϕ and state s, we define the
relation K, s � ϕ as follows:

K,s �p iff p∈λ(s)

K,s �¬ϕ iff K,s�ϕ does not hold
K,s �ϕ1 ∧∧ ϕ2 iff K,s �ϕ1 and K,s �ϕ2

K,s �EXϕ iff there exists 〈s, t〉 ∈ R such that K,t �ϕ
K,s �E[ϕ1Uϕ2] iff there exists a path 〈s0,s1,s2,. . .〉 in K with s0 =s such that

for some i≥0, K,si�ϕ2 and for all 0≤j<i, K,sj �ϕ1

K,s �EGϕ iff there exists a path 〈s0,s1,s2,. . .〉 in K with s0 =s such that for all i≥0, K,si�ϕ.

Thus, in particular we have that: (i) K,s � EXϕ holds iff in K there exists a successor of state s which
satisfies ϕ, (ii) K,s � E[ϕ1Uϕ2] holds iff there exists a path in K starting at s along which there exists
a state where ϕ2 holds and ϕ1 holds in every preceding state, and (iii) K,s � EGϕ holds iff in K there
exists a path starting at s where ϕ holds in every state along that path.

2.1. Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based on logic programs and
their answer set semantics. Now we recall some basic definitions of ASP and for those not recalled here
the reader may refer to [4, 5, 12, 16, 17, 28]. A term t is either a variable X or a function symbol f of
arity n (≥0) applied to n terms f(t1, . . . , tn). If n=0 then f is called a constant. An atom is a predicate
symbol p of arity n (≥0) applied to n terms p(t1, . . . , tn). A rule is an implication of the form:

a1 ∨∨ . . . ∨∨ ak ← ak+1 ∧∧ . . . ∧∧ am ∧∧ not am+1 ∧∧ . . . ∧∧ not an
where a1, . . . , ak, ak+1, . . . , an (for k≥0, n≥k) are atoms and ‘not’ denotes negation as failure. A rule
with k>1 is said to be a disjunctive rule and each atom in {a1, . . . , ak} is called a disjunct. A rule with
k= 1 is called normal. A rule with k= 0 is called an integrity constraint. A rule with k = n is called
a fact. A logic program Π is a set of rules. It is said to be a disjunctive logic program if there exists a
disjunctive rule and it is said to be a normal logic program if for every rule k ≤ 1. Given a rule r, we
define the following sets: H (r) = {a1, . . . , ak}, B+(r) = {ak+1, . . . , am}, B−(r) = {am+1, . . . , an},
and B(r) = B+(r) ∪ B−(r) and we introduce the following abbreviations: head(r) =

∨
a∈H(r) a,

pos(r) =
∧
a∈B+(r) a, neg(r) =

∧
a∈B−(r) not a, and body(r) = pos(r) ∧∧ neg(r). Given two logic

programs Π1 and Π2, we say that Π1 is independent of Π2, denoted Π2 B Π1, if for each rule r2 in Π2,



E. De Angelis, A. Pettorossi, M. Proietti / Synthesizing Concurrent Programs using Answer Set Programming 5

for each predicate symbol p occurring in H(r2), there is no rule r1 in Π1 such that p occurs in B(r1).
A term, or an atom, or a rule, or a program is said to be ground if no variable occurs in it. A ground
instance of a term, or an atom, or a rule, or a program is obtained by replacing every variable occurrence
by a ground term constructed by using function symbols appearing in Π. The set of all the ground
instances of the rules of a program Π is denoted by ground(Π). Note that if a program Π has function
symbols with positive arity, then ground(Π) may be infinite. However, as indicated at the beginning of
Section 5, for our purposes we only need a finite subset of that infinite set.

An interpretation I of a program Π is a (finite or infinite) set of ground atoms. By
←−
I we denote

the set {p ←| p ∈ I} of facts. The Gelfond-Lifschitz transformation of ground(Π) with respect to an
interpretation I is the program ground(Π)I ={head(r)←pos(r) | r∈ground(Π) and B−(r) ∩ I = ∅}.
For any rule r ∈ ground(Π), we say that I satisfies r if (B+(r) ⊆ I and B−(r) ∩ I = ∅) implies
H(r)∩I 6= ∅. An interpretation I is said to be an answer set of Π if I is a minimal model of ground(Π)I ,
that is, I is a minimal set (w.r.t. set inclusion) which satisfies all rules in ground(Π)I . The answer set
semantics assigns to every program Π the set ans(Π) of its answer sets.

Given a program Π = Π1 ∪ Π2, the following fact holds [12]: if Π2 B Π1, then ans(Π) =⋃
M∈ans(Π1) ans(

←−
M ∪Π2).

3. Specifying Concurrent Programs

A concurrent program consists of a finite set of processes that are executed in parallel in a shared-memory
environment, that is, processes that interact with each other through a shared variable. We assume that
the shared variable ranges over a finite domain. With every process we associate a distinct local variable
ranging over a finite domain which is the same for all processes. Every process may test and modify the
shared variable and its own local variable by executing guarded commands.

Definition 3.1. (k-process concurrent program)
For k>1, let x1, . . . , xk be local variables ranging over a finite domain L and let y be a shared variable
ranging over a finite domain D. For i=1, . . . , k, a process Pi is a guarded command of the form:

Pi : true → if gc1 8 . . . 8 gcni fi

where every guarded command gc in gc1 8 . . . 8 gcni is of the form:

gc : xi= l ∧∧ y=d → xi := l′; y :=d′

with 〈l, d〉 6= 〈l′, d′〉. We assume that, for i = 1, . . . , k, the guards (that is, the expressions to the left
of →) of any two guarded commands of process Pi are mutually exclusive, that is, for all pairs 〈l, d〉,
there is at most one occurrence of the guard ‘xi= l ∧∧ y=d’ in process Pi.
A k-process concurrent program C is a command of the form:

C : x1 := l1; . . . ; xk := lk; y :=d; do P1 8 . . . 8 Pk od

The (k + 1)-tuple 〈l1, . . . , lk, d〉 is said to be the initialization of C. �

Example 3.1. Let L be {t, u} and D be {0, 1}. A 2-process concurrent program C is:

x1 := t; x2 := t; y := 0 ; do P1 8 P2 od

where P1 and P2 are defined as follows:
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P1 : true → if P2 : true → if

x1 =t ∧∧ y=0→ x1 :=u; y :=0 x2 =t ∧∧ y=1→ x2 :=u; y :=1

8 x1 =u ∧∧ y=0→ x1 :=t; y :=1 8 x2 =u ∧∧ y=1→ x2 :=t; y :=0

fi fi

This program realizes a protocol which ensures mutual exclusion between the two processes P1 and P2.
For i = 1, 2, process Pi either ‘uses a resource’ in its critical section, that is, the value of xi is u, or
‘thinks’ in its noncritical section, that is, the value of xi is t. The shared variable y gives the processes
P1 and P2 the turn to enter the critical section: if y= 0, process P1 enters the critical section (x1 = u),
while if y=1, process P2 enters the critical section (x2 =u).

Note that in a real concurrent program, while Pi is in its noncritical (or critical) section it may execute
arbitrary commands not affecting the values of the local and the shared variables. However, for the sake
of simplicity, we omit such arbitrary commands and we will consider only those commands which are
relevant to the interaction between processes. (A similar approach is taken in [7] where synchronization
skeletons are considered.) �

Now we introduce the semantics of k-process concurrent programs by using Kripke structures. Given
a k-process concurrent program C, a state of C is any (k+1)-tuple 〈l1, . . . , lk, d〉, where: (i) the first k
components are values for the local variables x1, . . . , xk of C, one local variable for each process Pi, and
(ii) d is a value for the shared variable y of C. Given any state s, by s(xi) we denote the value of the
local variable of process Pi in state s and, similarly, by s(y) we denote the value of the shared variable
in state s.

Definition 3.2. (Reachability)
Let C be a k-process concurrent program. We say that state s2 is one-step reachable from state s1, and
we write Reach(s1, s2), if there exists a process Pi, for some i ∈ {1, . . . , k}, with a guarded command
of the form: xi = s1(xi) ∧∧ y = s1(y)→ xi := s2(xi); y := s2(y), and for all j ∈ {1, . . . , k} different
from i, s1(xj) = s2(xj). We say that s2 is reachable from s1 if Reach∗(s1, s2), where by Reach∗ we
denote the reflexive, transitive closure of Reach . �

Note that our definition of the transition relation Reach formalizes the interleaving semantics of
guarded commands.

Definition 3.3. (Kripke structure associated with a k-process concurrent program)
Let C be a k-process concurrent program of the form

C : x1 := l1; . . . ; xk := lk; y :=d; do P1 8 . . . 8 Pk od
Let Reach be the reachability relation associated with C which we assume to be total. The Kripke
structure K associated with C is the 4-tuple 〈S,S0,R, λ〉, where:
(i) S = {s | Reach∗(s0, s)} ⊆ Lk ×D is the set of reachable states,
(ii) S0 = {s0}={〈l1, . . . , lk, d〉},
(iii) R = Reach ⊆ S×S, and
(iv) for all 〈l1, . . . , lk, d〉 ∈ S , λ(〈l1, . . . , lk, d〉) = {local(P1, l1), . . . , local(Pk, lk), shared(d)}, where

for i = 1, . . . , k, the elementary proposition local(Pi, li) denotes that the local variable xi of pro-
cess Pi has value li, and analogously, the elementary proposition shared(d) denotes that the shared
variable y has value d.

The set Elem of the elementary propositions is {local(Pi, li) | i=1, . . . , k} ∪ {shared(d) | d ∈ D}. �
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Note that, since every state has a successor state, every concurrent program is a nonterminating program.
For every given state s, for every i∈{1, . . . , k}, if (xi= l ∧∧ y=d → xi := l′; y :=d′) is a guarded

command in Pi such that l = s(xi) and d = s(y), then we say that Pi is enabled in s and the guard
xi= l ∧∧ y=d holds in s.

Example 3.2. Given the 2-process concurrent program C of Example 3.1, the associated Kripke struc-
ture is depicted in Figure 1. We depict it as a graph whose nodes are the reachable states from the initial
state s0 = 〈t, t, 0〉. Each transition from state s to state t is associated with the guarded command whose
guard holds in s. For the initial state s0, we have that λ(s0) = {local(P1, t), local(P2, t), shared(0)}
and, similarly, for the values of λ for the other states. �

〈u, t, 0〉

〈t, t, 0〉 〈t, t, 1〉

〈t, u, 1〉

x1=t ∧∧ y=0 → x1 :=u; y :=0 x1=u ∧∧ y=0 → x1 :=t; y :=1

x2=t ∧∧ y=1 → x2 :=u; y :=1x2=u ∧∧ y=1 → x2 :=t; y :=0

Figure 1. The graph representing the transition relation Reach of the Kripke structure associated with the concur-
rent program of Example 3.1. Each arc is labelled by the guarded command which causes that transition according
to Definition 3.2. The initial state is s0 = 〈t, t, 0〉.

Definition 3.4. (Satisfaction relation for a k-process concurrent program)
Let C be a k-process concurrent program with initialization s0, K be the Kripke structure associated
with C, and ϕ be a CTL formula. We say that C satisfies ϕ, denoted C � ϕ, if K, s0 � ϕ. �

Example 3.3. Let us consider the 2-process concurrent program C defined in Example 3.1. The fact that
the critical section associated with the value u of the local variable is executed in a mutually exclusive
way, is formalized by the CTL formula ϕ =def AG¬(local(P1, u) ∧∧ local(P2, u)). We have that C |= ϕ
holds because for the Kripke structureK of Example 3.2 (see Figure 1), we have thatK, s0 |= ϕ. Indeed,
there is no path starting from the initial state 〈t, t, 0〉 which leads to either the state 〈u, u, 0〉 or the state
〈u, u, 1〉. �

In the literature (see, for instance, [2, 8, 14]) it is often considered the case where concurrent programs
consist of similar processes, the similarity being determined by the fact that all processes follow the same
cycling pattern of possible actions.

In this paper we formalize some structural properties which extend the notion of similarity. In
particular, for any two distinct processes Pi and Pj in a concurrent program, we assume that process Pj
can be obtained from process Pi by permuting the values of the shared variable y. For instance, in
Example 3.1 the guarded commands in P2 can be obtained from those in P1 by interchanging 0 and 1.
Moreover, it is often the case that all processes of a given concurrent program C also share additional
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structural properties, such as the fact that the tests and the assignments performed on the local variables
are the same for all processes in C. For instance, in Example 3.1 we have that both processes P1 and P2

may change state by changing the value of their local variables from t to u or from u to t.
Now we formalize those structural properties by introducing the k-symmetric program structures.

Definition 3.5. (k-symmetric program structure)
For k > 1, let L be a finite domain for the local variables x1, . . . , xk, and D be a finite domain for the
shared variable y. A k-symmetric program structure σ = 〈f, T, l0, d0〉 over L and D consists of: (i) a
k-generating function f ∈Perm(D), which is either the identity function id or a generator of a cyclic
group {id , f, f2, . . . , fk−1} of order k, (ii) a local transition relation T ⊆ L×L which is total over L,
(iii) an element l0 ∈ L, and (iv) an element d0 ∈ D. �

Definition 3.6. (k-process symmetric concurrent program)
For any k>1, let σ=〈f, T, l0, d0〉 be a k-symmetric program structure. A k-process concurrent program
is said to be symmetric w.r.t. σ if it is of the form x1:= l0; . . . ; xk := l0; y :=d0; do P1 8 . . . 8 Pk od and,
for all i ∈ {1, . . . , k}, for all guarded commands gc of the form xi = l ∧∧ y= d → xi := l′; y := d′, we
have that:

(i) 〈l, l′〉 ∈ T and
(ii) gc is in Pi iff

(
x(imod k)+1 = l∧∧y=f(d)→ x(imod k)+1 := l′; y :=f(d′)

)
is in P(imod k)+1. �

Example 3.4. Let us consider the 2-process concurrent program C of Example 3.1. The group Perm(D)
of permutations over D={0, 1} consists of the following two permutations: id={〈0, 0〉, 〈1, 1〉} (that is,
the identity permutation) and f = {〈0, 1〉, 〈1, 0〉}. The program C is symmetric w.r.t. the 2-symmetric
program structure 〈f, T, t, 0〉, where the local transition relation T is {〈t, u〉, 〈u, t〉}. Indeed, its initial-
ization is: x1:=t; x2 :=t; y :=0, and processes P1 and P2 are as follows:

P1 : true → if P2 : true → if

x1 =t ∧∧ y=0→ x1 :=u; y :=0 x2 =t ∧∧ y=f(0)→ x2 :=u; y :=f(0)

8 x1 =u ∧∧ y=0→ x1 :=t; y :=1 8 x2 =u ∧∧ y=f(0)→ x2 :=t; y :=f(1)

fi fi �

4. Synthesizing Concurrent Programs

Now we present our method based on Answer Set Programming for synthesizing a k-process symmetric
concurrent program from a CTL formula encoding a given behavioural property and a k-symmetric
program structure encoding a given structural property.

Definition 4.1. (The synthesis problem)
Given a CTL formula ϕ and a k-symmetric program structure σ over the finite domains L andD, the syn-
thesis problem consists in finding a k-process concurrent program C such that C�ϕ and C is symmetric
with respect to σ. �

The synthesis problem can be solved by applying the following two-step procedure: (Step 1) we generate
a k-process symmetric concurrent program C, and (Step 2) we verify whether or not C satisfies a given
behavioural property ϕ. By Definition 3.6, from any process Pi, with i = 1, . . . , k, we derive process
P(imod k)+1 by applying the k-generating function f to the guarded commands of Pi, thereby deriving
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the guarded commands of P(imod k)+1. Thus, Step 1 can be performed by generating process P1 and
using f for generating the other k−1 processes. Then Step 2 reduces to the test of the satisfiability
relation K, s0 � ϕ, where: (i) K is the Kripke structure associated with C, and (ii) state s0 is the initial
state of K corresponding to the initialization of C.

We present a solution to the synthesis problem in a purely declarative manner by reducing it to
the problem of computing the answer sets of a logic program Π encoding an instance of the synthesis
problem. The logic program Π is the union of a program Πσ which encodes a structural property σ and
a program Πϕ which encodes a behavioural property ϕ.

In Theorem 4.1 we will prove that every answer set of Π encodes a k-process concurrent program
satisfying ϕ and which is symmetric w.r.t. σ. We have that Πσ is independent of Πϕ (that is, Πϕ B Πσ)
and, thus, we can first compute the answer sets of Πσ and then use those answer sets, together with
program Πϕ, to test whether or not the encoded k-symmetric concurrent program satisfies ϕ.

Programs Πσ and Πϕ are introduced by the following Definitions 4.2 and 4.3, respectively.

Definition 4.2. (Logic program encoding a structural property)
Let σ = 〈f, T, l0, d0〉 be a k-symmetric program structure over the finite domains L and D and s0 be the
(k+1)-tuple〈l0, . . . , l0, d0〉. The logic program Πσ is as follows:

1.1 enabled(1, X1, Y ) ∨∨ disabled(1, X1, Y )← reachable(〈X1, . . . ,Xk, Y 〉)
1.2 gc(1, X, Y,X1, Y1)∨∨ . . . ∨∨gc(1, X, Y,Xm, Ym)← enabled(1, X, Y ) ∧∧

candidates(X,Y, [〈X1, Y1〉, . . . , 〈Xm, Ym〉])
2.1 gc(P,X,Z,X ′, Z ′)← gc(P−1, X, Y,X ′, Y ′) ∧∧ perm(Y, Z) ∧∧ perm(Y ′, Z ′) for P = 2, . . . , k

2.2 enabled(P,X, Y )← gc(P,X, Y,X ′, Y ′)
3.1 reachable(s0)←
3.2 reachable(〈X1, . . . ,Xk, Y 〉)← tr(〈X ′1, . . . ,X ′k, Y ′〉, 〈X1, . . . ,Xk, Y 〉)
4.1 tr(〈X1, . . . ,Xk, Y 〉,〈X ′1, . . . ,Xk, Y

′〉)←reachable(〈X1, . . . ,Xk, Y 〉)∧∧ gc(1, X1, Y,X
′
1, Y

′)
...

4.k tr(〈X1, . . . ,Xk, Y 〉,〈X1, . . . ,X
′
k, Y

′〉)←reachable(〈X1, . . . ,Xk, Y 〉)∧∧ gc(k,Xk, Y,X
′
k, Y

′)
5. ← reachable(〈X1, . . . ,Xk, Y 〉) ∧∧ not enabled(1, X1, Y )∧∧ . . . ∧∧ not enabled(k,Xk, Y )

together with the following two sets of ground facts:

(i) {candidates(l, d, L(l, d))← | l∈L ∧∧ d ∈D}, where L(l, d) is any list representing the set of pairs
{〈l′, d′〉 | 〈l, l′〉∈T ∧∧ d′∈D ∧∧ 〈l, d〉 6=〈l′, d′〉}

(ii) {perm(d, d′)← | d, d′∈D ∧∧ f(d) = d′}. �

In this program, for i = 1, . . . , k, the predicate gc(i, l, d, l′, d′) holds iff in process Pi there exists the
guarded command xi= l∧∧y=d→ xi := l′; y :=d′ (see also Definition 4.4).

Rule 1.1 states that in every reachable state, process P1 is either enabled (that is, one of its guards
holds) or disabled. Rule 1.1 is used to derive atoms either of the form enabled(1, X1, Y ) or of the
form disabled(1, X1, Y ). If an atom of the form enabled(1, X1, Y ) is derived, then a guarded command
for process P1 (that is, an atom of the form gc(1, X, Y,Xi, Yi)) is generated by using Rule 1.2. Note
that, without Rule 1.1, no atom for the predicates enabled and gc could be generated and, therefore, no
concurrent program would be synthesized.

The disjunctive Rule 1.2 generates a guarded command for process P1 by first enumerating all can-
didate guarded commands for that process (through the predicate candidates) and then selecting one
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candidate which corresponds to a disjunct of its head. Each guarded command consists of the guard
x1 =X ∧∧ y = Y , encoded by enabled(1, X, Y ), and a command x1 :=Xi; y := Yi, encoded by a pair
〈Xi, Yi〉 in the list which is the third argument of candidates(X,Y, L(l, d)).

The number m of pairs 〈Xi, Yi〉 in the list L(l, d) is uniquely determined by the values l and d of the
variables X and Y , respectively, in enabled(1, X, Y ). (It can be shown that |D|−1≤m≤|L|·|D|−1.)
Thus, Rule 1.2 actually stands for a set of rules, one rule for each value of m, and this set of rules can
effectively be derived only when the set of facts for the predicate candidates is computed.

For instance, let us consider the sets T ={〈a, b〉, 〈a, a〉, 〈b, a〉} and D={0, 1}. For X=b, Y =0,
we have that candidates(b, 0, [〈a, 0〉, 〈a, 1〉]) holds (recall that a guarded command should change either
the value of the local variable or the value of the shared variable), and for X = a, Y = 0, we have that
candidates(a, 0, [〈a, 1〉, 〈b, 0〉, 〈b, 1〉]) holds. Hence, when Y = 0, we have two instances of Rule 1.2,
one for m=2 and one for m=3.

Rule 2.1 realizes Definition 3.6. In particular, it allows us to derive the guarded command for pro-
cesses P2, . . . , Pk from the guarded commands generated for process P1. Note that, due to our definition
of a symmetric program structure, the subscript of the process used for the initial choice (1 in our case)
is immaterial, in the sense that any other choice for that subscript produces a solution satisfying the same
behavioural and structural properties.

Rule 2.2 states that any process Pi is enabled in state s if Pi has a guarded command of the form
xi=X ∧∧ y=Y → xi :=X ′; y :=Y ′, for some values of X ′ and Y ′, such that X=s(xi) and Y =s(y).

Rules 3.1, 3.2, and 4.1–4.k define, in a mutually recursive way, the reachability relation (encoded
by the predicate reachable) and the transition relation R (encoded by the predicate tr ) of the Kripke
structure associated with the concurrent program to be synthesized.

Rule 5 is an integrity constraint enforcing that any answer set of Πσ is a model of Πσ − {Rule 5}
which does not satisfy the body of Rule 5. Thus, Rule 5 guarantees that the transition relationR is total,
that is, in every reachable state there exists at least one enabled process.

Now let us present the logic program Πϕ which encodes a given behavioural property ϕ. Note that
program Πϕ depends on program Πσ for the definition of the transition relation tr(S, T ) and for the
initial state s0, which is assumed to be the (k+1)-tuple〈l0, . . . , l0, d0〉.
Definition 4.3. (Logic program encoding a behavioural property)
Let ϕ be a CTL formula. The logic program Πϕ encoding ϕ is as follows:

1. ← not sat(s0, ϕ)
2. sat(S, F )← elem(F, S)
3. sat(S,not(F ))← not sat(S, F )
4. sat(S, and(F1, F2))← sat(S, F1) ∧∧ sat(S, F2)
5. sat(S, ex (F ))← tr(S, T ) ∧∧ sat(T, F )
6. sat(S, eu(F1, F2))← sat(S, F2)
7. sat(S, eu(F1, F2))← sat(S, F1) ∧∧ tr(S, T ) ∧∧ sat(T, eu(F1, F2))
8. sat(S, eg(F ))← satpath(S, T, F ) ∧∧ satpath(T, T, F )
9. satpath(S, T, F )← sat(S, F ) ∧∧ tr(S, T )

10. satpath(S, V, F )← sat(S, F ) ∧∧ tr(S, T ) ∧∧ satpath(T, V, F )

together with the following two sets of ground facts:
(i) {elem(local(Pi, l), s)← | 1≤ i≤k ∧∧ s∈Lk×D ∧∧ s(xi)= l}
(ii) {elem(shared(d), s)← | s∈Lk×D ∧∧ s(y)=d}. �
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Note that in the ground facts defining elem , for i=1, . . . , k, by s(xi) we denote the i-th component
of s and by s(y) we denote the (k + 1)-th component of s (see Section 3 for this notational convention).
In Rule 1 of program Πϕ, by abuse of language, we use ϕ to denote the ground term representing the
CTL formula ϕ. In particular, in the ground term ϕ we use the function symbols not , and , ex , eu and
eg to denote the operators ¬, ∧∧ , EX, EU, and EG, respectively.

Rules 2–10, taken from [23], encode the semantics of CTL formulas as follows: (i) sat(s, ψ) holds
iff the formula ψ holds in state s, and (ii) satpath(s, t, ψ) holds iff there exists a path from state s to
state t such that every state in that path (except possibly the last one) satisfies the formula ψ. Rule 1 is
an integrity constraint enforcing that any answer set of Π is a model of (Πϕ ∪Πσ)−{Rule 1} satisfying
sat(s0, ϕ).

Now we establish the correctness (that is, the soundness and completeness) of our synthesis proce-
dure. It relates the k-process symmetric (w.r.t. σ) concurrent programs satisfying ϕ with the answer sets
of the logic program Πϕ ∪Πσ. Let us first introduce the following definition.

Definition 4.4. (Encoding of a k-process concurrent program)
Let C be a k-process concurrent program of the form x1 := l1; . . . ; xk := lk; y :=d; do P1 8 . . . 8 Pk od.
Let M be a set of ground atoms. We say that M encodes C if, for all i, l, d, l′, d′, the following holds:

gc(i, l, d, l′, d′) ∈M iff
(
xi= l∧∧y=d→ xi := l′; y :=d′

)
is a guarded command in Pi. �

Theorem 4.1. (Soundness and completeness of synthesis)
Let ϕ be a CTL formula and σ be a k-symmetric program structure over the finite domains L and D.
Then, there exists a k-process concurrent program C such that (i) C � ϕ and (ii) C is symmetric w.r.t. σ
iff there exists an answer set M ∈ans(Πϕ ∪Πσ) such that M encodes C. �

The following theorem establishes the complexity of our synthesis procedure as a function of the
synthesis parameters, that is, (i) the number k of processes, (ii) the size |ϕ| of the CTL behavioural
property ϕ defined to be the number of operators and elementary propositions occurring in ϕ, and (iii) the
cardinalities of L and D which are the domains of f and T , respectively. When we state the complexity
result with respect to one parameter, we assume that the others remain constant.

Theorem 4.2. (Complexity of synthesis)
For any number k > 1 of processes, for any symmetric program structure σ over L and D, and for any
CTL formula ϕ, an answer set of the logic program Πϕ ∪ Πσ can be computed in (i) exponential time
w.r.t. k, (ii) linear time w.r.t. |ϕ|, and (iii) nondeterministic polynomial time w.r.t. |L| and w.r.t. |D|. �

It is known (see, for instance, [20]) that the problem of synthesis from a CTL specification ϕ is
EXPTIME-complete w.r.t. |ϕ|. In order to compare the complexity of our synthesis procedure with that
of other techniques which can be found in the literature [2, 3, 7, 20, 18], note that the parameters of
our synthesis procedure are not mutually independent. In particular, as we will see in the following
section, the usual behavioural properties considered for the mutual exclusion problem, determine a CTL
specification whose size depends on the number k of processes. However, since our ASP synthesis
procedure has time complexity which is exponential w.r.t. k, it turns out that our translation yields a
synthesis procedure which still belongs to the EXPTIME class and, thus, it matches the complexity of
the synthesis problem.
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5. Experimental Results

In this section we present some experimental results obtained by applying our procedure for the synthesis
of various mutual exclusion protocols.

In order to compute the answer sets of a logic program P with an ASP solver, we should first con-
struct the set ground(P ). This set is constructed by a grounder which is either a standalone tool, such
as gringo [11] or lparse [27], independent of the ASP solver, or is a built-in module of the ASP solver,
as in the DLV system [21].

If a logic program P has function symbols with positive arity, then ground(P ) may be infinite and,
in particular, ground(Π) is infinite. However, in order to compute the answer sets of Π, we only need
a finite subset of ground(Π). Many grounders construct this subset by means of the so called domain
predicates, which specify the finite domains over which the variables should range [11, 21, 27].

In our case, a finite set of ground rules is obtained from program Πϕ by introducing in the body of
each of the Rules 2–10 a domain predicate so that terms representing CTL formulas are restricted to range
over subterms of ϕ. (Here and in what follows, when we refer to a subterm, we mean a non necessarily
proper subterm.) In particular, a rule of the form sat(S, ψ) ← Body is replaced by sat(S, ψ) ←
Body ∧∧ d(ψ), where d is the domain predicate defined by the set {d(ψ)← | ψ is a subterm of ϕ} of
ground facts. The correctness of this replacement relies on the fact that, in order to prove sat(s0, ϕ) by
using Rules 2–10, it is sufficient to consider only the instances of these rules where subterms of ϕ occur.

Note that, by using a grounder after the introduction of domain predicates, we get a set of ground
instances of Rules 2–10 whose cardinality is linear in the number of subterms of ϕ and, hence, in the
size of ϕ. This fact is relevant for the complexity results stated in Theorem 4.2.

All experiments have been performed by using the grounder gringo and the ASP solver claspD [11]
running on an Intel Core 2 Duo E7300 2.66GHz under the Linux operating system.

In our synthesis experiments, in order to define the k-symmetric program structures of the programs
to be synthesized, we have made the following choices for: (i) the domain L of the local variables xi’s,
(ii) the domain D of the shared variable y, (iii) the k-generating function f , (iv) the set T , (v) the value
of l0∈L, and (vi) the value of d0∈D.

We have taken the domain L to be {t, w, u}, where t represents the noncritical section, w represents
the waiting section, and u represents the critical section.

We have taken the domain D to be {0, 1, . . . , n}, where n depends on: (i) the number k of the
processes in the concurrent program to be synthesized, and (ii) the properties that the concurrent program
should satisfy. At the beginning of every synthesis experiment we have taken n=1 and, if the synthesis
failed, we have increased the value of n by one unity at a time, hoping for a successful synthesis with a
larger value of n.

We have taken the k-generating function f to be either (i) the identity function id, or (ii) a permutation
among the |D|!/

(
k · (|D| − k)!

)
permutations of order k defined over D.

We have taken the local transition relation T to be {〈t, w〉, 〈w, w〉, 〈w, u〉, 〈u, t〉}. The pair 〈t, w〉
denotes that, once the noncritical section t has been executed, a process may enter the waiting section w.
The pairs 〈w, w〉 and 〈w, u〉 denote that a process may repeat (possibly an unbounded number of times)
the execution of its waiting section w and then may enter its critical section u. The pair 〈u, t〉 denotes
that, once the critical section u has been executed, a process may enter its noncritical section t.

Finally, we have taken l0 to be t and d0 to be 0.
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For k = 2, . . . , 6, we have synthesized (see Column 1 of Table 1) various k-process symmetric
concurrent programs of the form x1 :=t; . . . ; xk :=t; y :=0; do P1 8 . . . 8 Pk od, which satisfies some
behavioural properties among those defined by the following CTL formulas (see Column 2 of Table 1).
(i) Mutual Exclusion, that is, it is not the case that process Pi is in its critical section (xi=u), and process
Pj is in its critical section (xj =u) at the same time: for all i, j in {1, . . . , k}, with i 6= j,

AG¬(local(Pi, u) ∧∧ local(Pj , u)) (ME )

(ii) Progression and Starvation Freedom, that is, (progression) every process Pi which is in the noncrit-
ical section, may enter its waiting section (that is, modify the local variable xi from t to w), thereby
requesting to enter the critical section, and (starvation freedom) if a process Pi is in waiting section
(xi=w), then after a finite amount of time, it will enter its critical section (xi=u): for all i in {1, . . . , k},

AG ((local(Pi, t)→ EX local(Pi, w)) ∧∧ (local(Pi, w)→ AF local(Pi, u))) (SF )

(iii) Bounded Overtaking, that is, while process Pi is in its waiting section, every other process Pj leaves
its critical section at most once, that is, Pj should not be in its critical section u and then in its waiting
section w and then again in its critical section u, while Pi is always in its waiting section w (see the
underlined subformulas): for all i, j in {1, . . . , k}, with i 6= j,

AG¬
[
local(Pi, w) ∧∧ local(Pj , u) ∧∧

E
[
local(Pi, w)U

(
local(Pi, w) ∧∧ local(Pj , w) ∧∧ (BO)

E
[
local(Pi, w)U (local(Pi, w) ∧∧ local(Pj , u))

])]]
(iv) Maximal Reactivity, that is, if process Pi is in its waiting section and all other processes are in their
noncritical sections, then in the next state Pi will be in its critical section: for all i in {1, . . . , k},

AG ((local(Pi, w) ∧∧
∧
j∈{1,...,k}−{i} local(Pj , t))→ EX local(Pi, u)) (MR)

First, we have synthesized a simple protocol, called 2-mutex-1, for two processes enjoying the mutual
exclusion property (see row 1 of Table 1), and then we synthesized various other protocols for two or
more processes which enjoy other properties (see the other rows of Table 1). In that table the identifier
k-mutex-p occurring in the first column, denotes the synthesized protocol for k processes satisfying the
p (≥ 1) behavioural properties listed in the second column Properties. For instance, program 2-mutex-4
is the synthesized protocol for 2 processes which enjoys the four behavioural properties ME ,SF ,BO ,
and MR.

In each row of Table 1 we have shown the minimal cardinality (in Column |D|) and the k-generating
function (in Column f ) for which the synthesis of the program of that row succeeds. In particular, the
synthesis of program 2-mutex -1 succeeds with |D|=2 and both the identity function and the permutation
f1 = {〈0, 1〉, 〈1, 0〉} (see rows 1 and 2). The syntheses of programs 2-mutex -2 and 2-mutex -3 fail for
|D|= 2 and the identity function, but they succeed for |D|= 2 and f1 (see rows 3 and 4). The synthesis
of 2-mutex -4 fails for |D| = 2 and any choice of a 2-generating function. Thus, we increased |D|
from 2 to 3. For |D|=3 and the identity function the synthesis fails, but it succeeds for the permutation
f2 = {〈0, 1〉, 〈1, 0〉, 〈2, 2〉} of order 2 (see row 5). If we use different permutations of order 2, instead
of f2, we get programs which are equal to the program 2-mutex -4 (presented in Figure 2), modulo a
permutation of the values of the shared variable y.

The synthesis of 3-mutex -1 succeeds for |D|=2 and the identity function (see row 6). The synthesis
of 3-mutex -2 fails for |D| = 2 (the only choice for the 3-generating function is the identity function)
and, thus, we increased |D| from 2 to 3. By using |D|= 3 and the identity function, the synthesis fails,
but it succeeds for |D|= 3 and the permutation f3 = {〈0, 1〉, 〈1, 2〉, 〈2, 0〉} of order 3 (see row 7). This
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Table 1. Column Program shows the names of the synthesized programs. k-mutex -p is the name of the k-process
program satisfying the p behavioural properties shown in column Properties. Column |D| shows the cardinality
of the domain {0, 1, . . . , n} of the shared variable y. Column f shows the k-generating function used for the
synthesis. Column |ans(Π)| shows the number of answer sets of Π = Πϕ ∪ Πσ . Column first and Column all
show the time expressed in seconds (unless otherwise specified) to generate, respectively, the first answer set of Π
and all answer sets of Π, by using the ASP solver claspD [11].

Program Properties |D| f |ans(Π)| Time in seconds
first all

(1) 2-mutex -1 ME 2 id 10 0.010 0.011

(2) 2-mutex -1 ME 2 f1 10 0.010 0.012

(3) 2-mutex -2 ME ,SF 2 f1 2 0.030 0.032

(4) 2-mutex -3 ME ,SF ,BO 2 f1 2 0.030 0.045

(5) 2-mutex -4 ME ,SF ,BO ,MR 3 f2 2 0.140 0.150

(6) 3-mutex -1 ME 2 id 9 0.040 0.050

(7) 3-mutex -2 ME ,SF 3 f3 6 2.570 3.490

(8) 3-mutex -3 ME ,SF ,BO 3 f3 4 2.820 4.320

(9) 3-mutex -4 ME ,SF ,BO ,MR 7 f4 2916 ≈ 7.5 minutes ≈ 4.4 hours

(10) 4-mutex -1 ME 2 id 9 0.270 0.380

(11) 5-mutex -1 ME 2 id 9 2.110 2.890

(12) 6-mutex -1 ME 2 id 9 12.390 20.200

synthesis succeeds also by using different permutations of order 3, and in all these cases we get programs
which are equal to 3-mutex -2, modulo a permutation of the values of the shared variable y.

The synthesis of 3-mutex -3 (see row 8) is analogous to that of 3-mutex -2 to which row 7 refers.

The synthesis of 3-mutex -4 fails for |D| = 4, 5, and 6, while it succeeds for |D| = 7 and the
permutation f4 = {〈0, 1〉, 〈1, 2〉, 〈2, 0〉, 〈3, 4〉, 〈4, 5〉, 〈5, 3〉, 〈6, 6〉} which is of order 3 (see row 9).

The last rows 10, 11, and 12 of Table 1 refer, respectively, to the programs 4-mutex -1, 5-mutex -1,
and 6-mutex -1 whose syntheses succeed for |D|=2 and the identity function.

In Figure 2 we have presented the synthesized program, called 2-mutex-4, for the 2-process mutual
exclusion problem described in Example 3.3. In Figure 3 we present the transition relation of the associ-
ated Kripke structure. Program 2-mutex-4 is basically the same as Peterson algorithm [24], but, instead
of using three shared variables, each of which ranges over a domain of two values, program 2-mutex-4
uses two local variables x1 and x2 (which range over {t, w, u}) and a single shared variable y (which
ranges over {0, 1, 2}).
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P1 : true → if P2 : true → if

(1) x1 =t ∧∧ y=0→ x1 :=w; y :=2 x2 =t ∧∧ y=0→ x2 :=w; y :=2

(2) 8 x1 =t ∧∧ y=1→ x1 :=w; y :=2 8 x2 =t ∧∧ y=1→ x2 :=w; y :=2

(3) 8 x1 =t ∧∧ y=2→ x1 :=w; y :=1 8 x2 =t ∧∧ y=2→ x2 :=w; y :=0

(4) 8 x1 =w ∧∧ y=0→ x1 :=u; y :=0 8 x2 =w ∧∧ y=1→ x2 :=u; y :=1

(5) 8 x1 =w ∧∧ y=2→ x1 :=u; y :=2 8 x2 =w ∧∧ y=2→ x2 :=u; y :=2

(6) 8 x1 =u ∧∧ y=2→ x1 :=t; y :=1 8 x2 =u ∧∧ y=2→ x2 :=t; y :=0

(7) 8 x1 =u ∧∧ y=0→ x1 :=t; y :=2 8 x2 =u ∧∧ y=1→ x2 :=t; y :=2

fi fi

Figure 2. The two processes P1 and P2 of the synthesized 2-process concurrent program 2-mutex -4 of the form
x1 :=t; x2 :=t; y :=0; do P1 8 P2 od . It enjoys the properties ME ,SF ,BO , and MR.

〈w, t, 2〉〈t, w, 2〉

〈u, t, 2〉〈w, w, 0〉〈w, w, 1〉〈t, u, 2〉

〈t, t, 0〉 〈w, u, 1〉 〈u, w, 0〉 〈t, t, 1〉

1.12.1 1.52.31.32.5

1.62.31.42.42.6 1.3

2.7 1.7
1.22.2

Figure 3. The transition relation of the Kripke structure associated with the 2-process concurrent program

2-mutex -4 of Figure 2. An arc s i.n−→ t indicates that the guarded command (n) of process Pi (see Figure 2)
causes the transition from state s to state t. The initial state is 〈t, t, 0〉.

6. Related Work and Concluding Remarks

We have proposed a framework based on Answer Set Programming (ASP) for the synthesis of concur-
rent programs satisfying some given behavioural and structural properties. Behavioural properties are
specified by formulas of the Computational Tree Logic (CTL) and structural properties are specified
by simple algebraic structures. The desired behavioural and structural properties are encoded as logic
programs which are given as input to an ASP solver which, then, computes the answer sets of those
programs. Every answer set encodes a concurrent program satisfying the given properties.

Pioneering works on the synthesis of concurrent programs from temporal specifications are those
by Clarke and Emerson [7] and Manna and Wolper [22]. In both these works the authors reduce the
synthesis problem to the satisfiability problem of the given temporal specifications. Their synthesis
methods exploit the finite model property for propositional temporal logics which asserts that if a given
formula is satisfiable, then it is satisfiable in a finite model (whose size depends on the size of the
formula).

In [7] Clarke and Emerson propose the following three-phase method for the synthesis of concurrent
programs for a shared-memory model of execution: Phase 1 consists in providing the CTL specification



16 E. De Angelis, A. Pettorossi, M. Proietti / Synthesizing Concurrent Programs using Answer Set Programming

of the concurrent program; Phase 2 consists in applying the tableau-based decision procedure for the sat-
isfiability of CTL formulas to obtain a model of the CTL specification; and Phase 3 consists in extracting
the synchronization skeletons from the model of the CTL specification.

Similarly, in [22] Manna and Wolper present a method that uses a tableau-based decision proce-
dure for linear temporal logic (LTL) for the synthesis of synchronization instructions for processes in a
message-passing model of execution.

However, the approaches proposed in [7, 22] have some drawbacks. In particular, they suffer from
the state space explosion problem in that the models from which the synchronization instructions are
extracted, have sizes which are exponential with respect to the number of processes. Moreover, the
synthesized instructions work for models of computation which require further refinements for their use
in a realistic architecture. Extensions of the synthesis methods of [7, 22] have been proposed by Attie
and Emerson in [2] to deal with the state space explosion problem and allow an arbitrarily large number
of processes by exploiting similarities among them. Also Attie and Emerson in [3] present an extension
of their synthesis method to deal with a finer, more realistic atomicity of instructions so that only read
and write operations are required to be atomic.

The papers we have considered so far refer to the synthesis of the so called closed systems, that is, the
synthesis of programs whose processes are all specified by some given formulas. A different approach
to the synthesis of concurrent programs has been presented by Pnueli and Rosner in [25]. These authors
propose a method for synthesizing reactive modules of so called open systems, that is, systems in which
the designer has no control over the inputs which come from an external environment. They introduce an
automata-based synthesis procedure from a specification given as a linear temporal logic formula. The
synthesis of open systems has also been studied by Kupferman and Vardi in [20]. Also the method they
propose is based on automata-theoretical techniques. Paper [20] is important because it also presents
some basic complexity results for the synthesis problems when specifications are given by CTL formulas
or LTL formulas.

Our synthesis procedure follows the lines of [2, 7, 22] and considers concurrent programs to be closed
systems. The advantage of our method resides in the fact that we solve the synthesis problem in a purely
declarative manner. We reduce the problem of synthesizing a concurrent program to the problem of find-
ing the answer sets of a logic program without the need for any ad hoc algorithm. Moreover, besides
temporal properties, we can specify for the programs to be synthesized, some structural properties, such
as various symmetry properties. Then, our ASP program automatically synthesizes concurrent programs
which satisfy the desired properties. In order to reduce the search space when solving the synthesis prob-
lem, we have used the notion of symmetric concurrent programs which is similar to the one which was
introduced in [2] to overcome the state space explosion problem. Our notion of symmetry is formalized
within group theory, similarly to what has been done in [14] for the problem of model checking.

To the best of our knowledge, there is only one paper [18] by Heymans, Nieuwenborgh and Vermeir
who make use, as we do, of Answer Set Programming for the synthesis of concurrent programs. The
authors of [18] have extended the ASP paradigm by adding preferences among models and they have re-
alized an answer set system, called OLPS. They perform the synthesis of concurrent programs following
the approach proposed in [7] and, in particular, they use OLPS for Phase 2 of the synthesis procedure,
having reduced the satisfiability problem of CTL formulas to the problem of constructing the answer sets
of logic programs. The encoding proposed by [18] yields a synthesis procedure with NEXPTIME time
complexity and, thus, it is not optimal because the complexity of the problem of CTL satisfiability is
EXPTIME [13].
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On the contrary, our technique for reducing the satisfiability problem to the construction of the answer
sets of logic programs, does not require any extension of the ASP paradigm. Indeed, we use standard
ASP solvers, such as claspD [11], and every phase of our synthesis procedure is fully automatic. In par-
ticular, from any answer set we can mechanically derive the guarded commands which, by construction,
guarantee that the synthesized program satisfies the given behavioural and structural properties. More-
over, we show that our method has optimal time complexity because it has EXPTIME complexity with
respect to the size of the temporal specification.

In practice our approach works for synthesizing k-process concurrent programs with a limited num-
ber k of processes because the grounding phase needed to compute the answer sets, requires very large
memory space for large values of k. As a future work we plan to explore various techniques for reducing
both the search space of the synthesis procedure and the impact of the grounding phase on the memory
requirements. Among these techniques we envisage to apply those used in the compositional model
checking technique [9].
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[19] T. Janhunen and I. Niemelä. GNT – A Solver for Disjunctive Logic Programs. In Logic Programming and
Nonmonotonic Reasoning, Lecture Notes in Computer Science 2923, pages 331–335. Springer, 2004.

[20] O. Kupferman and M. Y. Vardi. Synthesis with incomplete information. In D. M. Gabbay, editor, Applied
Logic #16: Advances in Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.

[21] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system for knowledge
representation and reasoning. ACM Transaction on Computational Logic, 7:499–562, 2006.

[22] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 6(1):68–93, 1984.
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A. Proofs

We first introduce the following notions which will be used in the proofs.
A nonempty set I of ground atoms is elementary [15] for a program ground(Π) if for all nonempty

proper subsets S of I there exists a rule r in ground(Π) such that: (i)H(r)∩S 6=∅, (ii)B+(r)∩(I−S) 6=∅,
(iii) H(r) ∩ (I−S)=∅, and (iv) B+(r) ∩ S =∅. A program ground(Π) is said to be Head Elementary
set Free (HEF, for short) if, for every rule r in ground(Π), there is no elementary set Z for ground(Π)
such that |H(r) ∩ Z| > 1. We say that Π is HEF if ground(Π) is HEF. With any given HEF program Π
we associate a normal logic program Πn obtained from Π by replacing every rule r of Π of the form:

a1 ∨∨ . . . ∨∨ ak ← ak+1 ∧∧ . . . ∧∧ am ∧∧ not am+1 ∧∧ . . . ∧∧ not an
for some k>1, by the following k normal rules:

aj ←
∧
i∈{1,...,k}−{j} not ai ∧∧ ak+1 ∧∧ . . . ∧∧ am ∧∧ not am+1 ∧∧ . . . ∧∧ not an

for j=1, . . . , k. It can be shown that ans(Π) = ans(Πn) [15].
The following Proposition A.1 is required for the proofs of Theorem 4.1 and Theorem 4.2.

Proposition A.1. The logic program Πσ is Head Elementary set Free.

Proof:
We assume by contradiction that there exists a rule r in ground(Πσ) and there exists a set Z which is an
elementary set for ground(Πσ) such that |H(r) ∩ Z|>1. If |H(r) ∩ Z|>1, then either:
(i) r is an instance of Rule 1.1 of Definition 4.2 and there exist l ∈L, d∈D such that
{enabled(1, l, d), disabled(1, l, d)}⊆Z, or

(ii) r is an instance of Rule 1.2 of Definition 4.2 and there exist l, l′, l′′∈L, d, d′, d′′∈D such that
{gc(1, l, d, l′, d′), gc(1, l, d, l′′, d′′)}⊆Z.

Let us consider Case (i). Let S be a nonempty proper subset of Z such that {enabled(1, l, d)} ∈S and
{disabled(1, l, d)} 6∈ S. Clearly, H(r) ∩ (Z−S) 6= ∅. This contradicts Condition (iii) for Z to be an
elementary set for ground(Πσ).

Case (ii) is analogous to Case (i). Thus, we get that ground(Πσ) is HEF and, by definition, also Πσ

is HEF. ut
By this proposition and the fact that the transformation from Π into Πn presented above, preserves

the answer set semantics when applied to HEF programs [15], we have that ans(Πσ) = ans(Πn
σ), where

program Πn
σ is obtained from program Πσ as follows:

(i) Rule 1.1 of program Πσ is replaced by the following two normal rules:
enabled(1, X1, Y )← not disabled(1, X1, Y )∧∧reachable(〈X1, . . . ,Xk, Y 〉)
disabled(1, X1, Y )← not enabled(1, X1, Y )∧∧reachable(〈X1, . . . ,Xk, Y 〉), and

(ii) Rule 1.2 of program Πσ is replaced by m normal rules, for i = 1, . . . ,m, each of which is of the
form:

gc(1, X, Y,Xi, Yi)←
∧
j∈{1,...,m}−{i} not gc(1, X, Y,Xj , Yj) ∧∧ enabled(1, X, Y ) ∧∧

candidates(X,Y, [〈X1, Y1〉, . . . , 〈Xm, Ym〉]).
From the fact that Πϕ BΠσ and ans(Πσ)=ans(Πn

σ), we get that (see end of Section 2):
ans(Π)=ans(Πϕ ∪Πσ)=

⋃
M∈ans(Πσ) ans(Πϕ ∪

←−
M)=

⋃
M∈ans(Πn

σ) ans(Πϕ ∪
←−
M)=ans(Πϕ ∪Πn

σ).
Therefore, in order to compute all answer sets of program Πϕ ∪ Πσ, we can give Πϕ ∪ Πn

σ as input
to an answer set solver which does not support disjunctive logic programs.
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Proof of Theorem 4.1

Let Π be the program Πϕ ∪Πσ. We need the following notation. Given a set P of predicate symbols and
a set M of atoms, we define M |P to be the set {A ∈M | the predicate of A is in P}.
(if. Soundness) Let M be an answer set of Π. Recall that σ is of the form 〈f, T, l0, d0〉. Let us consider
a command C of the form: x1 := l0; . . . ; xk := l0; y :=d0; do P1 8 . . . 8 Pk od, where for i = 1, . . . , k,(
xi= l∧∧y=d→ xi := l′; y :=d′

)
is in Pi iff gc(i, l, d, l′, d′) ∈M .

We have the following two properties of C.

(CP1) For i = 1, . . . , k, every guarded command in Pi is of the form xi= l ∧∧ y=d → xi := l′; y :=d′

with 〈l, d〉 6= 〈l′, d′〉. Indeed, M is a model of Πσ and, in particular, of the ground facts defining the
predicate candidates (see Definition 4.2).

(CP2) For i = 1, . . . , k, the guards of any two guarded commands of process Pi are mutually exclusive.
Indeed, the following holds. By Proposition A.1, Πσ is HEF. Hence, by Rule 1.2, for every l ∈ L and
d ∈ D, at most one atom of the form gc(1, l, d, l′, d′) belongs to M . Since M is a supported model [6],
by Rule 2.1 we get that, for i = 2, . . . , k, gc(i, l, f(d), l′, f(d′)) ∈ M iff gc(i − 1, l, d, l′, d′) ∈ M . By
using this fact we get that, for i = 1, . . . , k, for every l ∈ L and d ∈ D, at most one atom of the form
gc(i, l, d, l′, d′) belongs to M .

By Properties (CP1) and (CP2), C is a k-process concurrent program (see Definition 3.1).

Now, we prove that: (i) C satisfies ϕ and (ii) C is symmetric w.r.t. σ.

Point (i). Let K = 〈S,S0,R, λ〉 be the Kripke structure associated with C, constructed as indicated
in Definition 3.3. By construction, the following equalities hold: S = {s | reachable(s) ∈ M},
S0 = {s0}, R = {〈s, t〉 | tr(s, t) ∈ M}, and for every s ∈ S , λ(s) = {p | elem(p, s) ∈ M}.
Now, since ground(Πϕ − {Rule 1}) ∪ ←−−−−M |{tr} (see Section 2.1 for the definition of

←−
(·)) is a locally

stratified normal program, it has a unique stable model [1] which coincides with its unique answer set
M |{sat ,satpath,elem,tr}. By Theorem 2 of [23], for every state s ∈ S and CTL formula ψ, sat(s, ψ) ∈
M |{sat ,satpath,elem,tr} iff K, s � ψ. Moreover, M |{sat ,satpath,elem,tr} is a model of Rule 1 of Πϕ and,
hence, we have that sat(s0, ϕ) ∈M |{sat ,satpath,elem,tr}. Thus, K, s0 � ϕ.

Point (ii). By construction, C is of the form x1:= l0; . . . ; xk := l0; y := d0; do P1 8 . . . 8 Pk od. Let us
now prove that Conditions (i) and (ii) of Definition 3.6 hold.

For all gc(i, l, d, l′, d′) ∈M we have that the pair 〈l′, d′〉 belongs to the list L which is the third argument
of candidates(l, d, L). By Point (i) of Definition 4.2, for every pair 〈l′, d′〉 in L we have that 〈l, l′〉 ∈ T
and, therefore, C satisfies Condition (i) of Definition 3.6.

SinceM is a supported model of ground(Π)M and Rule 2.1 is the only rule in Π whose head is unifiable
with gc(i, l, d, l′, d′), for 1 < i ≤ k, we have that gc(i−1, l, d, l′, d′) ∈M iff gc(i, l, f(d), l′, f(d′))∈M .
Thus, Condition (ii) of Definition 3.6 holds for C because f is a permutation of order k.

(only if. Completeness) Let C be a k-process concurrent program which satisfies ϕ and is symmetric
w.r.t. σ, and K be the Kripke structure 〈S,S0,R, λ〉 associated with C whose processes are P1, . . . , Pk.
We have to prove that there exists an answer set M ∈ans(Πϕ∪Πσ) which encodes C. Let M be defined
as follows.
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M = {reachable(s) | s∈S} (M.1)
∪ {tr(s, s′) | 〈s, s′〉 ∈ R} (M.2)
∪ {gc(i, l, d, l′, d′) |

(
xi= l ∧∧ y=d→ xi := l′; y :=d′

)
is in Pi ∧∧ 1≤ i≤k} (M.3)

∪ {enabled(i, l, d) | ∃ l′, d′
(
xi= l ∧∧ y=d→ xi := l′; y :=d′

)
is in Pi ∧∧ 1≤ i≤k} (M.4)

∪ {disabled(1, s(x1), s(y)) | s ∈ S ∧∧ ¬∃ c
(
x1 =s(x1) ∧∧ y=s(y)→ c

)
is in P1} (M.5)

∪ {sat(s, ψ) | s∈S ∧∧ K, s � ψ} (M.6)

∪ {satpath(s0, sn, ψ) | ∃ 〈s0, . . . , sn〉 ∀i (0≤ i≤n→ K,si � ψ) } (M.7)

∪ {elem(p, s) | s∈S ∧∧ p∈λ(s)} (M.8)

∪ {perm(d, d′) | d, d′∈D ∧∧ f(d) = d′} (M.9)

∪ {candidates(l, d, L(l, d))← | l∈L ∧∧ d ∈D} (M.10)

where L(l, d) is any list representing the set {〈l′, d′〉 | 〈l, l′〉∈T ∧∧ d′∈D ∧∧ 〈l, d〉 6=〈l′, d′〉} of pairs.
By M.3 and Definition 4.4 we have that M encodes C. Now we prove that M is an answer set of Π, that
is, (i) M is a model of ground(Πϕ ∪Πσ)M and (ii) M is a minimal such model.

(i) We prove that for every rule r ∈ ground(Πϕ ∪ Πσ)M if B+(r) ⊆ M then H(r) ∩M 6= ∅. We
proceed by cases. Let us first consider the rules in ground(Πσ).

(Rule 1.1) Assume that r is enabled(1, l1, d) ∨∨ disabled(1, l1, d)←reachable(〈l1, . . . ,lk, d〉). If reach-
able(〈l1, . . . , lk, d〉)∈M then, by M.1, we have that 〈l1, . . . ,lk, d〉∈S . SinceR is a total relation, either
P1 is enabled in 〈l1, . . . ,lk, d〉 and consequently, by M.4, enabled(1, l1, d)∈M , or it is not enabled and
thus, by M.5, disabled(1, l1, d)∈M .

(Rule 1.2) Assume that r is of the form gc(1, l, d, l1, d1)∨∨ . . . ∨∨gc(1, l, d, lm, dm)←enabled(1, l, d) ∧∧
candidates(l, d, [〈l1, d1〉, . . . , 〈lm, dm〉]) for some m≥ 1. If enabled(1, l, d) ∈M then, by M.4, there
exists in P1 a guarded command whose guard is x1 = l ∧∧ y = d and the associated command is encoded
as a pair 〈l′, d′〉 occurring in the third argument of candidates(l, d, [〈l1, d1〉, . . . , 〈lm, dm〉]). Hence, by
M.3, we have that gc(1, l, d, l′, d′)∈M .

(Rule 2.1) Assume that r is gc(i, l, e, l′, e′) ← gc(i−1, l, d, l′, d′) ∧∧ perm(d, e) ∧∧ perm(d′, e′), with
i > 1. By Definition 3.6 we have that

(
xi= l∧∧y=f(d)→xi := l′; y :=f(d′)

)
is in Pi iff

(
xi−1 = l∧∧y=

d→ xi−1 := l′; y := d′
)

is in Pi−1 and, therefore, if gc(i−1, l, d, l′, d′)∈M , f(d) = e, and f(d′) = e′

then, by M.3, gc(i, l, e, l′, e′)∈M .

(Rule 2.2) Assume that r is enabled(i, l, d)← gc(i, l, d, l′, d′). If gc(i, l, d, l′, d′) ∈M then, by M.3,(
xi= l∧∧y=d→xi := l′; y :=d′

)
is in Pi, and consequently, by M.4, enabled(i, l, d)∈M .

(Rule 3.1) Assume that r is reachable(s0)← . Since s0 ∈ S, we have that by M.1, reachable(s0)∈M .

(Rule 3.2) Assume that r is reachable(〈l1, . . . ,lk, d〉)← tr(〈l′1, . . . ,l′k, d′〉, 〈l1, . . . ,lk, d〉). If we have
that tr(〈l′1, . . . ,l′k, d′〉, 〈l1, . . . ,lk, d〉) ∈ M then, by M.2, 〈〈l′1, . . . ,l′k, d′〉, 〈l1, . . . ,lk, d〉〉 ∈ R. Thus,
〈l1, . . . ,lk, d〉 ∈ S and consequently, by M.1, reachable(〈l1, . . . ,lk, d〉)∈M .

(Rule 4.1–4.k) Assume that r is tr(s, t)← reachable(s) ∧∧ gc(i, l, d, l′, d′), with s(xi) = l, s(y) = d,
t(xi) = l′, and t(y) = d′. If {reachable(s), gc(i, l, d, l′, d′)} ⊆ M then s∈S and there exists a guarded
command of the form

(
xi = l ∧∧ y= d→ xi := l′; y := d′

)
in Pi. Thus, by Definition 3.2, 〈s, t〉 ∈ R and

consequently, by M.2, we get that tr(s, t)∈M .
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(Rule 5) Assume that r is ← reachable(〈l1, . . . ,lk, d〉). We show that reachable(〈l1, . . . ,lk, d〉) 6∈ M .
Let us assume, by contradiction, that reachable(〈l1, . . . ,lk, d〉) ∈ M and, thus, by M.1, 〈l1, . . . ,lk, d〉 ∈
S. Since R is total, for every reachable state s, there exists a process Pi which is enabled in s, that
is, by M.4, enabled(i, li, d) ∈M , contradicting the hypothesis that r ∈ ground(Πσ)M , that is, for all
i ∈ {1, . . . , k}, enabled(i, li, d) 6∈M .

Now we consider the rules in ground(Πϕ).

(Rule 1) Since C satisfies ϕ, by M.6, sat(s0, ϕ) ∈M and, hence, {← not sat(s0, ϕ)}M = ∅. Thus, no
rule of ground(Πϕ)M is obtained from Rule 1 by the Gelfond-Lifschitz transformation.

(Rule 2) Assume that r is sat(s, p)←elem(p, s). Assume that elem(p, s)∈M . Then, by M.8, p∈λ(s).
Thus, K, s |= p. By M.6, we get sat(s, p)∈M .

(Rule 3) If sat(s, ψ) ∈M then no rule in ground(Πϕ)M is obtained from the instance sat(s,not(ψ))←
not sat(s, ψ) of Rule 3 by the Gelfond-Lifschitz transformation. Otherwise, if sat(s, ψ) 6∈ M , then
sat(s,not(ψ))← is in ground(Πϕ)M . We have to show that sat(s,not(ψ))∈M . Indeed, if sat(s, ψ) 6∈
M then K, s � ψ does not hold. Thus, K, s � ¬ψ holds and, by M.6, sat(s,not(ψ))∈M .

(Rule 4) Assume that r is sat(S, and(ψ1, ψ2)) ← sat(s, ψ1) ∧∧ sat(s, ψ2). Assume that {sat(s, ψ1),
sat(s, ψ2)} ⊆ M . Then, by M.6, both K, s � ψ1 and K, s � ψ2 hold. Thus, K, s � ψ1 ∧∧ ψ2 and, by
M.6, sat(s, and(ψ1, ψ2)) ∈M .

(Rule 5) Assume that r is sat(s, ex (ψ))← tr(s, t) ∧∧ sat(t, ψ). Assume that {tr(s, t), sat(t, ψ)} ⊆M .
Then, by M.2, 〈s, t〉∈R and K, t � ψ. Hence, K, s � EXψ and, by M.6, sat(S, ex (ψ))∈M .

(Rule 6) Assume that r is sat(s, eu(ψ1, ψ2)) ← sat(s, ψ2). Assume that sat(s, ψ2) ∈ M . Then,
K, s � ψ2 and K, s � [ψ1Uψ2]. Thus, by M.6, sat(s, eu(ψ1, ψ2)) ∈M .

(Rule 7) Assume that r is sat(s, eu(ψ1, ψ2))← sat(s, ψ1) ∧∧ tr(s, t) ∧∧ sat(t, eu(ψ1, ψ2)). Assume that
{sat(s, ψ1), tr(s, t), sat(t, eu(ψ1, ψ2))} ⊆ M . Then, K, s � ψ1, 〈s, t〉 ∈ R, and K, t � E[ψ1Uψ2]
hold. Thus, K, s |= E[ψ1Uψ2] and, by M.6, sat(s, eu(ψ1, ψ2)) ∈M .

(Rule 8) Assume that r is sat(s,eg(ψ))←satpath(s,t,ψ)∧∧satpath(t,t,ψ). Assume that {satpath(s,t,ψ),
satpath(t, t, ψ)} ⊆M . Then, by M.7, (a) there exists a finite path which leads from s to t along with ψ
holds at every state, and (b) there exists a path of length greater than 0, in which ψ holds at every state.
Hence, K,s �EGψ holds and thus, by M.6, sat(S, eg(ψ))∈M .

(Rule 9) Assume that r is satpath(s, t, ψ)←sat(s, ψ)∧∧ tr(s, t). Assume that {sat(s, ψ), tr(s, t)} ⊆M .
Then, K, s � ψ and 〈s, t〉 ∈ R hold. Hence, by M.7, we have that satpath(s, t, ψ) ∈M .

(Rule 10) Assume that r is satpath(u0, un, ψ)← sat(u0, ψ)∧∧ tr(u0, u1) ∧∧ satpath(u1, un, ψ). Assume
that {sat(u0, ψ), tr(u0, u1), satpath(u1, un, ψ)} ⊆ M . Then, K, u0 � ψ, 〈u0, u1〉 ∈ R, and there
exists a finite path 〈u1, . . . , un〉, with n > 1, such that for all 1 ≤ i ≤ n, K, ui � ψ. Thus, by M.7,
satpath(u0, un, ψ)∈M .

(ii) We have to prove that M is a minimal (w.r.t. set inclusion) model of ground(Π)M . We prove it by
contradiction. Let us assume that M ′ is a model of ground(Π)M such that M ′⊂M . Let z be a ground
atom in M−M ′. We proceed by cases.

(Case A) Assume that z is gc(i, l, d, l′, d′). Thus, by M.3, there exists a guarded command in C whose
encoding does not belong to M ′, and consequently, M ′ does not encode C.
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(Case B) For every s ∈ S, we define h(s) to be the least integer k ≥ 0 such that Reachk(s0, s) holds.
Assume that z is reachable(s). Without loss of generality, we may assume that s is a state such that
∀r∈S if reachable(r) ∈M−M ′, then h(r)≥h(s). We have the following two cases.
(Case B.1) s = s0. We get a contradiction from the fact that M ′ is a model of ground(Π)M and, thus,
M ′ satisfies Rule 3.1.
(Case B.2) s 6= s0. We have that there exists no t ∈ S such that tr(t, s) ∈M ′ (otherwise, since M ′

satisfies Rule 3.2, we would have reachable(s) ∈ M ′). Take any t ∈ S such that Reachh(s)−1(s0, t).
Since M ′ satisfies Rules 4.1–4.k and tr(t, s) 6∈M ′, one of the following two facts holds.
Either (B.2.1) reachable(t) 6∈ M ′. By M.1 we have that reachable(t) ∈ M , and thus, reachable(t) ∈
M−M ′. Since h(t)<h(s), we get a contradiction with the assumption that ∀r ∈ S if reachable(r) ∈
M−M ′, then h(r)≥h(s).
Or (B.2.2) there exists no process i such that gc(i, t(xi), t(y), s(xi), s(y)) ∈ M ′. Therefore, the proof
proceeds as in Case (A).

(Case C) Assume that z is enabled(i, l, d). Since M ′ satisfies Rule 2.2, there exist no l′ and d′, such that
gc(i, l, d, l′, d′) ∈M ′. Therefore, the proof proceeds as in Case (A).

(Case D) Assume that z is disabled(1, l, d). By M.4 and M.5, we have that enabled(1, l, d) 6∈M . Since
M ′ satisfies Rule 1.1, one of the following two facts hold.
Either (D.1) No atom of the form reachable(〈l, l2, . . . , lk, d〉) belongs to M ′. Therefore, the proof pro-
ceeds as in Case (B).
Or (D.2) enabled(1, l, d) belongs to M ′. Therefore, we get a contradiction with the facts that M ′ ⊂ M
and enabled(1, l, d) 6∈M .

(Case E) Assume that z is tr(t, s). Since M ′ satisfies Rules 4.1–4.k, one of the following two facts hold.
Either (E.1) reachable(t) 6∈M ′. Therefore, the proof proceeds as in Case (B).
Or (E.2) There is no process i such that gc(i, t(xi), t(y), s(xi), s(y)) ∈ M ′. Therefore, the proof pro-
ceeds as in Case (A).

(Case F) Assume that z is of one of the forms sat(s, ψ), or satpath(s, t, ψ), or elem(s, p). By M.6,
M.7, M.8, and Theorem 2 in [23], we have that M |{sat ,satpath,elem,tr} is the least Herbrand model of

ground(Πϕ)M ∪←−−−−M |{tr}. Now, since M ′ is an Herbrand model of ground(Πϕ)M ∪←−−−−M |{tr}, we get that
M |{sat ,satpath,elem,tr} ⊆M ′, thereby contradicting the assumption that z ∈M−M ′. �

Proof of Theorem 4.2

Let |ground(Π)| denote the size (that is, the number of rules) of ground(Π). We have that |ground(Π)|
is O(|L|3k · |D|3 · |ϕ|), where k>1. Moreover, since program Πσ is an HEF (see Proposition A.1) logic
program, Πσ can be transformed into a normal logic program Πn

σ such that ans(Πσ) = ans(Πn
σ). We

have that |ground(Πn
σ)| = α1 + α2 + |ground(Πσ)|, where α1 depends on the number of the ground

instances of Rule 1.1 and α2 depends on the number of the ground instances of Rule 1.2. Now we have
that: (i) α1 is at most |L|k · |D| (indeed, the ground instances of Rule 1.1 are at most |L|k · |D|), and
(ii) α2 isO(|L|2 · |D|2) (indeed, the ground instances of Rule 1.2 are at most |L| · |D|, and in any instance
of Rule 1.2 the value of m is at most |L| · |D|). Thus, α1 + α2 is O(|L|k · |D|2) and |ground(Πn)| is
O(|L|3k · |D|3 · |ϕ|).

Given a set I of ground atoms, (i) to compute ground(Πn)I takes linear time w.r.t. |ground(Πn)|,
(ii) to generate the minimal modelM of ground(Πn)I takes linear time w.r.t. |ground(Πn)I |, and (iii) to
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check whether or not I =M also takes linear time w.r.t. |ground(Πn)I | (for more information on these
results the reader may refer to [26]). Hence, to verify whether or not a given set of ground atoms is an
answer set of Π takes linear time w.r.t. |ground(Πn)|. Thus, the verification that I is an answer set of Π
takes exponential time w.r.t. k, linear time w.r.t. |ϕ|, and polynomial time w.r.t. L and w.r.t. D.

Now, the choice of a candidate answer set I can be done by: (i) choosing, for each 〈l, d〉 ∈ L × D,
at most one ground atom in the set {gc(1, l, d, l′, d′) | 〈l, l′〉 ∈ T ∧∧ d′ ∈ D ∧∧ 〈l, d〉 6= 〈l′, d′〉},
(ii) computing in O(k) time a ground atom of the form gc(i, . . .), for i = 2, . . . , k, (iii) computing in
O(|L|3k · |D|3 · |ϕ|) time the ground instances of the rules in Π, where the truth values of the gc atoms are
fixed as indicated at Steps (i) and (ii), thereby obtaining a stratified program, and (iv) finally, computing
in O(|L|3k · |D|3 · |ϕ|) the unique stable model of that stratified program.

Since Step (i) can be done in nondeterministic polynomial time w.r.t. |L|× |D|, we get the thesis.�


