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Abstract
We present a method for the automated verification of temporal properties of infinite
state systems. Our verification method is based on the specialization of constraint logic
programs (CLP) and works in two phases: (1) in the first phase, a CLP specification of
an infinite state system is specialized with respect to the initial state of the system and
the temporal property to be verified, and (2) in the second phase, the specialized program
is evaluated by using a bottom-up strategy. The effectiveness of the method strongly
depends on the generalization strategy which is applied during the program specialization
phase. We consider several generalization strategies obtained by combining techniques
already known in the field of program analysis and program transformation, and we also
introduce some new strategies. Then, through many verification experiments, we evaluate
the effectiveness of the generalization strategies we have considered. Finally, we compare
the implementation of our specialization-based verification method to other constraint-
based model checking tools. The experimental results show that our method is competitive
with the methods used by those other tools.

KEYWORDS: Computational tree logic, constraint logic programs, generalization strate-
gies, infinite state systems, program specialization, program verification

1 Introduction

We consider the problem of verifying properties of reactive systems, that is, systems

which continuously react to inputs by changing their internal state and producing



outputs. One of the most challenging problems in this area is the extension of the

model checking technique (Clarke et al. 1999) from finite state systems to infinite

state systems. In infinite state model checking the evolution over time of a system is

modelled as a binary transition relation on an infinite set of states and the properties

of that evolution are specified by means of propositional temporal formulas. In

particular, in this paper we consider the Computation Tree Logic (CTL), which

is a branching time propositional temporal logic by which one can specify, among

others, the so-called safety and liveness properties (Clarke et al. 1999).

Unfortunately, the verification of CTL formulas for infinite state systems is, in

general, an undecidable problem. Thus, in order to cope with this limitation, var-

ious decidable subclasses of systems and formulas have been identified (see, for

instance, (Esparza 1997)). Other approaches to overcome the undecidability limi-

tation are based on the enhancement of finite state model checking by using either

deductive techniques (Pnueli and Shahar 1996; Sipma et al. 1999) or abstractions,

by which one can compute conservative approximations of sets of states (Abdulla

et al. 2009; Bultan et al. 1999; Clarke et al. 1994; Dams et al. 1997; Geeraerts et al.

2006; Godefroid et al. 2001).

Constraint logic programming (CLP) provides an excellent framework for spec-

ifying and verifying properties of reactive systems (Fribourg 2000). Indeed, the

fixpoint semantics of logic programming languages allows us to easily represent the

fixpoint semantics of various temporal logics (Delzanno and Podelski 2001; Nilsson

and Lübcke 2000; Ramakrishna et al. 1997) and constraints over the integers or the

reals can be used to provide finite representations of infinite sets of states (Delzanno

and Podelski 2001; Fribourg and Olsén 1997).

However, for programs that specify infinite state systems, the proof procedures

normally used in CLP, such as the extensions of SLDNF resolution and tabled res-

olution (Cui and Warren 2000), very often diverge when trying to check some given

temporal properties. This is due to the limited ability of these proof procedures

to cope with infinitely failed derivations. For this reason, instead of using direct

program evaluation, many logic programming-based verification systems make use

of reasoning techniques such as: (i) abstract interpretation (Banda and Gallagher

2010; Delzanno and Podelski 2001), and (ii) program transformation (Fioravanti

et al. 2001; Leuschel and Lehmann 2000; Leuschel and Massart 2000; Peralta and

Gallagher 2003; Roychoudhury et al. 2000). In the techniques based on abstract

interpretation one can construct approximations of the least and greatest fixpoints

of (the immediate consequence operator associated with) a CLP program and then

check the properties of interest on these approximations, while in the techniques

based on program transformation one can pre-process the specification of a given

system and a given property so that the verification itself becomes easier to perform.

This paper presents a verification method based on program specialization, a

transformation technique that improves a program by exploiting the knowledge

about the specific context where the program is used (Jones et al. 1993; Leuschel

and Bruynooghe 2002). Our verification method is an extension of the one first

proposed in (Fioravanti et al. 2001) and is applicable to the specification of a

CTL property of an infinite state system encoded as a CLP program with locally
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stratified negation, where the constraints are linear inequations over the rationals.

Our verification method works in two phases. In Phase (1) we specialize the CLP

program with respect to the initial state of the system and the temporal property

to be verified, and in Phase (2) we construct the perfect model of the specialized

program derived at the end of Phase (1), by applying a bottom-up evaluation

procedure. As we will demonstrate through many examples below, this bottom-up

procedure terminates in most cases without the need for abstractions.

The effectiveness of the verification method we propose, strongly depends on the

design of the generalization strategy which has to be applied during the program

specialization phase. Designing a good generalization strategy is not a trivial task:

it must guarantee the termination of the specialization phase, and it should also

provide a high precision and good performance. These requirements are often con-

flicting because, on the one hand, the use of a too coarse generalization strategy

may determine the non-termination of Phase (2) and, thus, prevent the verification

of many interesting properties and, on the other hand, a too specific generalization

strategy may lead to verification times which are too long.

In this paper we introduce some new generalization strategies and we also propose

various generalization strategies which are obtained by combining old techniques,

already considered in the field of program analysis and program transformation

(such as the well-quasi orders (Leuschel 2002; Leuschel et al. 1998; Sørensen and

Glück 1995) and the convex hull and widening operators (Cousot and Halbwachs

1978; Peralta and Gallagher 2003)).

Our verification method has been implemented on the MAP transformation sys-

tem (MAP 2011). We have evaluated the effectiveness of this method by present-

ing the results of the experiments we have performed on several infinite state

systems and temporal properties. We have also compared the implementation of

our verification method with the following constraint-based model checking tools:

(i) ALV (Yavuz-Kahveci and Bultan 2009), (ii) DMC (Delzanno and Podelski 2001),

and (iii) HyTech (Henzinger et al. 1997). The experiments we have performed show

that our method is effective and competitive with respect to the methods imple-

mented in those verification tools.

The paper is structured as follows. In Section 2 we recall how CTL properties of

infinite state systems can be encoded by using locally stratified CLP programs. In

Section 3 we present our two-phase verification method. In Section 4 we describe

various strategies that can be applied during Phase (1), that is, the specialization

phase, and in particular, the generalization strategies used for ensuring termination

of that phase. In Section 5 we report on some experiments we have performed by

using a prototype implemented on the MAP transformation system.

2 Specifying Reactive Systems and CTL Properties by CLP Programs

A reactive system is modelled as a Kripke structure K, denoted by a 4-tuple

〈S , I ,R,L〉, where S is a (possibly infinite) set of states, I ⊆ S is the set of initial

states, R is a total binary transition relation, and L is a labeling function that

associates with each state the set of elementary properties that hold in that state.
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A computation path in K is an infinite sequence of states s0 s1 . . . such that, for

every i≥0, si R si+1 holds. The state si+1 is called a successor of si . The properties

to be verified will be specified as formulas of the Computation Tree Logic (CTL),

whose syntax is:

ϕ ::= e | not(ϕ) | and(ϕ1, ϕ2) | ex (ϕ) | eu(ϕ1, ϕ2) | af (ϕ)

where e belongs to the set Elem of the elementary properties. Note that, in order

to be consistent with the syntax of constraint logic programs, we slightly depart

from the syntax of CTL given in (Clarke et al. 1999).

The operators ex , eu, and af have the following semantics. The formula ex (ϕ)

holds in a state s if there exists a successor s ′ of s such that ϕ holds in s ′. The

formula eu(ϕ1, ϕ2) holds in a state s if there exists a computation path π starting

from s such that ϕ1 holds in all states of a finite prefix of π and ϕ2 holds in the

first state of the rest of the path. The formula af (ϕ) holds in a state s if on every

computation path π starting from s there exists a state s ′ where ϕ holds. Formally,

the semantics of CTL is given by the satisfaction relation K, s |= ϕ, which tells us

when a formula ϕ holds in a state s of the Kripke structure K.

All CTL operators can be defined in terms of ex , eu, and af . For instance: (i) the

formula ef (ϕ) (which holds in a state s if there exists a computation path π starting

from s and a state on π where ϕ holds) is defined as eu(true, ϕ), and (ii) the formula

eg(ϕ) (which holds in a state s if there exists a computation path π starting from s

such that, for every state on π, ϕ holds) is defined as not(af (not(ϕ))).

In order to encode a Kripke structure and the satisfaction relation as a CLP

program we will consider a set C of constraints and an interpretation D for the

constraints in C. We assume that: (i) C contains a set of atomic constraints, among

which are true, false, and the equalities between terms, denoted by t1 = t2, (ii) C is

closed under conjunction (denoted by comma), and (iii) C is closed under projection.

The projection of a constraint c onto a tuple X of variables, denoted project(c,X ),

is a constraint such that D |= ∀X (project(c,X ) ↔ ∃Yc), where Y is the tuple of

variables occurring in c and not in X . We define a partial order ⊑ on C as follows:

for any two constraints c1 and c2 in C, c1 ⊑ c2 iff D |= ∀ (c1 → c2).

The semantics of a CLP program is defined as a D-model (Jaffar and Maher

1994), that is, a (possibly infinite) set of ground atoms whose truth implies the

truth of all clauses of the program. Similarly to the case of logic programs, every

locally stratified CLP program P has a unique perfect D-model (also called perfect

model, for short) which is denoted by M (P) (see, for instance, (Apt and Bol 1994)).

Now, a Kripke structure 〈S , I ,R,L〉 can be encoded by a CLP program as follows.

(1) A state in S is encoded by an n-tuple 〈t1, . . . , tn〉 of terms representing the

values of the variables of the reactive system. In what follows the variables X and

Y are assumed to range over S .

(2) An initial state X in I is encoded by a clause of the form initial (X ) ← c(X ),

where c(X ) is a constraint.

(3) The transition relation R is encoded by a set of clauses of the form t(X ,Y )←

c(X ,Y ), where c(X ,Y ) is a constraint. We also introduce a predicate ts such

that, for every state X , Ys is a list of all the successor states of X iff ts(X ,Ys)
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Figure 1. A reactive system. In any initial state we have that X1≤0 and X2 =0. The
transitions do not change the value of X1.

holds, that is, for every state X , the state Y belongs to the list Ys iff t(X ,Y )

holds. In (Fioravanti et al. 2007) the reader will find: (i) an algorithm for deriving

the clauses defining ts from the clauses defining t , and (ii) some conditions that

guarantee that Ys is a finite list.

(4) Each elementary property e associated with a state X is encoded by a clause

of the form elem(X , e)← c(X ), where c(X ) is a constraint.

The satisfaction relation |= can be encoded by a predicate sat defined by the

following clauses (Fioravanti et al. 2001) (see also (Leuschel and Massart 2000;

Nilsson and Lübcke 2000) for similar encodings):

1. sat(X ,F )← elem(X ,F )

2. sat(X ,not(F ))← ¬sat(X ,F )

3. sat(X , and(F1,F2))← sat(X ,F1), sat(X ,F2)

4. sat(X , ex (F ))← t(X ,Y ), sat(Y ,F )

5. sat(X , eu(F1,F2))← sat(X ,F2)

6. sat(X , eu(F1,F2))← sat(X ,F1), t(X ,Y ), sat(Y , eu(F1,F2))

7. sat(X , af (F ))← sat(X ,F )

8. sat(X , af (F ))← ts(X ,Ys), sat all (Ys, af (F ))

9. sat all ([ ],F )←

10. sat all ([X |Xs],F )← sat(X ,F ), sat all (Xs,F )

Suppose that we want to verify that a CTL formula ϕ holds for all initial states.

In order to do so we define a new predicate prop as follows:

prop ≡def ∀X (initial (X )→ sat(X , ϕ))

This definition can be encoded by the following two clauses:

γ1 : prop← ¬negprop γ2 : negprop← initial (X ), sat(X ,not(ϕ))

Let PK denote the constraint logic program consisting of clauses 1–10 together

with the clauses defining the predicates initial, t , ts, and elem. The program PK ∪

{γ1, γ2} is locally stratified and, hence, it has a unique perfect model denoted

M (PK ∪ {γ1, γ2}). The correctness of the encoding program PK ∪ {γ1, γ2} is stated

by the following Theorem 1 (its proof can be found in (Fioravanti et al. 2007)).

Theorem 1 (Correctness of Encoding)

Let K be a Kripke structure, let I be the set of initial states of K, and let ϕ be a

CTL formula. Then, for all states s∈I , K, s |= ϕ iff prop ∈ M (PK ∪ {γ1, γ2}).

Example 1

Let us consider the reactive system depicted in Figure 1, where a state 〈X1,X2〉,

which is a pair of rationals, is denoted by the term s(X1,X2).

The Kripke structure K which models that system, is defined as follows. The

initial states are given by the clause:
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11. initial (s(X1,X2))← X1≤0, X2 =0

The transition relation R is given by the clauses:

12. t(s(X1,X2), s(Y1,Y2))← X1≥1, Y1 =X1, Y2 =X2−1

13. t(s(X1,X2), s(Y1,Y2))← X1≤2, Y1 =X1, Y2 =X2+1

The predicate ts is given by the clauses:

14. ts(s(X1,X2), [s(Y1,Y2)])← X1<1, Y1 =X1, Y2 =X2+1

15. ts(s(X1,X2), [s(Y11,Y21), s(Y12,Y22)])← X1≥1, X1≤2,

Y11 =X1, Y21 =X2−1, Y12 =X1, Y22 =X2+1

16. ts(s(X1,X2), [s(Y1,Y2)])← X1>2, Y1 =X1, Y2 =X2−1

The elementary property negative is given by the clause:

17. elem(s(X1,X2),negative)← X2<0

Suppose that we want to verify the property that in every initial state s(X1,X2),

where X1 ≤ 0 and X2 = 0, the CTL formula not(eu(true,negative)) holds, that is,

from any initial state it is impossible to reach a state s(X ′
1,X

′
2) where X ′

2< 0. By

using the fact that every CTL formula of the form not(not(ϕ)) is equivalent to ϕ,

this property is encoded by the following two clauses:

γ1: prop← ¬negprop γ2: negprop← initial (X ), sat(X , eu(true,negative))

Note that, in this example, for the verification of prop the clauses defining the

predicate sat(X , af (F )) (that is, clauses 7 and 8 of program PK) are not needed.

Thus, clauses 14, 15, and 16, which define the predicate ts, are not needed either. �

Our encoding of the Kripke structure can easily be extended to provide witnesses

of formulas of the form eu(ϕ1, ϕ2) and counterexamples of formulas of the form

af (ϕ), as usual for model checkers of finite state systems (Clarke et al. 1999). Indeed,

in order to do so, it is sufficient to add to the predicate sat an extra argument that

recalls the sequence of states (or transitions) constructed during the verification of

a given formula. For details, the reader may refer to (Fioravanti et al. 2007).

3 Verifying Infinite State Systems by Specializing CLP Programs

In this section we present a method for checking whether or not prop ∈ M (PK ∪

{γ1, γ2}), where PK ∪ {γ1, γ2} is a CLP encoding of an infinite state system and

prop is a predicate encoding the satisfiability of a given CTL formula.

As already mentioned, the proof procedures normally used in constraint logic

programming, such as the extensions to CLP of SLDNF resolution and tabled

resolution, very often diverge when trying to check whether or not prop ∈ M (PK ∪

{γ1, γ2}) by evaluating the query prop. This is due to the limited ability of these

proof procedures to cope with infinite failure.

Also the bottom-up construction of the perfect model M (PK∪{γ1, γ2}) often di-

verges, because it does not take into account the information about the query prop to

be evaluated, the initial states of the system, and the formula to be verified. Indeed,

by a naive bottom-up evaluation, the clauses of PK may generate infinitely many

atoms of the form sat(s , ψ). For instance, given a state s0, an elementary property f
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that holds in s0, and an infinite sequence {si | i ∈N} of distinct states such that, for

every i ∈N, t(si+1, si) holds, clauses 5 and 6 generate by bottom-up evaluation the

infinitely many atoms sat(si , eu(true, f )), for every i ∈ N, and the infinitely many

atoms: (i) sat(s0, f ), (ii) sat(s0, eu(true, f )), (iii) sat(s0, eu(true, eu(true, f ))), . . .

We will show that the termination of the bottom-up construction of the per-

fect model can be improved by a prior application of program specialization. In

particular, we will present our verification algorithm which consists of two phases:

Phase (1), in which we specialize the program PK∪{γ1, γ2} with respect to the query

prop, thereby deriving a new program Ps whose perfect model M (Ps ), also de-

noted Ms , satisfies the following equivalence: prop ∈ M (PK∪{γ1, γ2}) iff prop ∈ Ms ,

and Phase (2), in which we construct Ms by a bottom-up evaluation. The specializa-

tion phase modifies the program PK∪{γ1, γ2} by incorporating into the specialized

program Ps the information about the initial states and the formula to be verified.

The bottom-up evaluation of Ps may terminate more often than the bottom-up

evaluation of PK ∪ {γ1, γ2} because: (i) it avoids the generation of an infinite set

of states that are unreachable from the initial states, and (ii) it generates only

specialized atoms corresponding to subformulas of the formula to be verified.

The Verification Algorithm

Input: The program PK ∪ {γ1, γ2}. Output: The perfect model Ms of a CLP

program Ps such that prop∈M (PK ∪ {γ1, γ2}) iff prop∈Ms.

(Phase 1) Specialize(PK ∪ {γ1, γ2},Ps);

(Phase 2) BottomUp(Ps,Ms)

The Specialize procedure of Phase (1) consists in the iterated application of two

subsidiary procedures: (i) the Unfold procedure, which applies the unfolding rule

and the clause removal rule, and (ii) the Generalize&Fold procedure, which applies

the definition introduction rule and the folding rule. These program transformation

rules are variants, tailored to program specialization, of the usual rules for logic

programs and constraint logic programs (see, for instance, (Etalle and Gabbrielli

1996; Seki 1991).

Procedure Specialize

Input: The program PK ∪ {γ1, γ2}. Output: A stratified program Ps such that

prop ∈ M (PK ∪ {γ1, γ2}) iff prop ∈ M (Ps ).

Ps := {γ1}; InDefs := {γ2}; Defs := ∅;

while there exists a clause γ in InDefs

do Unfold(γ,Γ);

Generalize&Fold(Defs,Γ,NewDefs,Φ);

Ps := Ps ∪Φ; InDefs := (InDefs− {γ})∪NewDefs; Defs := Defs∪NewDefs;

end-while

The Unfold procedure takes as input a clause γ ∈ InDefs and returns as output a

set Γ of clauses derived from γ by one or more applications of the unfolding rule. A

single application of this rule is encoded by the UnfoldOnce function defined below.
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We use the following notation. Given two atoms A and B , we denote by A=B the

constraint: (i) t1 = u1, . . . , tn = un , if A is of the form p(t1, . . . , tn) and B is of the

form p(u1, . . . , un), for some n-ary predicate symbol p, and (ii) false, otherwise.

Function UnfoldOnce(γ,A)

Let γ be a clause of the form H ← c,Q ,A,R, where A is an atom whose predicate

is defined in PK. Let {(Ki ← ci ,Bi) | i = 1, . . . ,m}, with m ≥ 0, be the set of

(renamed apart) clauses in program PK such that, for i = 1, . . . ,m, the constraint

(c, A=Ki , ci) is satisfiable.

UnfoldOnce(γ,A) = {(K ← c,A=Ki , ci ,Q ,Bi ,R) | i = 1, . . . ,m}

At the first application of the Unfold procedure, the input clause γ is the clause

γ2 : negprop ← initial (X ), sat(X ,not(ϕ)), where initial (X ) and ϕ encode the

initial states and the formula to be verified, respectively. The Unfold procedure

propagates the information about the initial states and the property to be verified

through the Kripke structure encoded by PK.

Procedure Unfold(γ,Γ)

Input: A clause γ in InDefs. Output: A set Γ of clauses.

Unfold:

Γ := UnfoldOnce(γ,A), where A is any atom in the body of γ;

while there exist a clause δ in Γ and an atom A in the body of δ, such that A is of one

of the following forms: (i) initial(s), (ii) t(s1, s2), (iii) ts(s , ss), (iv) elem(s , e),

(v) sat(s , e), where e is an elementary property, (vi) sat(s ,not(ψ1)),

(vii) sat(s , and(ψ1, ψ2)), (viii) sat(s , ex (ψ1)), (ix) sat all (ss, ψ1), where ss is

a non-variable list do Γ := (Γ− {δ}) ∪UnfoldOnce(δ,A)

end-while;

Remove Subsumed Clauses:

while in Γ there exist two distinct clauses δ: H ← c and η: H ← d ,G such that

d ⊑ c (that is, η is subsumed by δ) do Γ := Γ− {η}

end-while

Due to the structure of the clauses in PK, the Unfold procedure terminates for every

γ ∈ InDefs. In particular, in order to enforce termination, every atom of the form

sat(s , eu(ψ1, ψ2)) or sat(s , af (ψ1)) is selected at most once during each application

of the procedure.

The Generalize&Fold procedure takes as input the set Γ of clauses produced by

the Unfold procedure and introduces a set NewDefs of definitions, that is, clauses of

the form δ: newp(X )← d(X ), sat(X , ψ), where newp is a new predicate. Any such

clause δ represents a set of states X satisfying the constraint d(X ) and the CTL

property ψ, and incorporates the information which has been propagated by the

Unfold procedure, concerning the initial state and the property to be verified. All

definitions introduced by the Generalize&Fold procedure are stored in a set Defs

and can be used for folding during the current or the future applications of the
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procedure itself. By folding the clauses in Γ using the definitions in Defs∪NewDefs,

the procedure derives a new set Φ of clauses which are added to the specialized

program Ps . In the clauses of Ps , there is no reference to the predicates used in

PK ∪{γ1, γ2}, except for prop and negprop, that is, Ps provides a definition of prop

and negprop in terms of the new predicates introduced by the applications of the

Generalize&Fold procedure.

Unfortunately, an uncontrolled application of the Generalize&Fold procedure

may lead to the introduction of infinitely many new definitions, thereby causing the

nontermination of the Specialize procedure. In order to guarantee termination, the

Generalize&Fold procedure may introduce new definitions which are more general

than definitions introduced by previous applications of the procedure, where the

more general than relation between definitions is as follows: a definition newq(X )←

g(X ), sat(X , ψ) is more general than the definition newp(X ) ← b(X ), sat(X , ψ) if

b(X ) ⊑ g(X ). Thus, more general definitions correspond to larger sets of states.

In order to introduce generalized definitions in a suitable way, we will extend to

constraint logic programs some techniques which have been proposed for controlling

generalization in positive supercompilation (Sørensen and Glück 1995) and partial

deduction (Leuschel et al. 1998). The details of the Generalize&Fold procedure and

the results stating the correctness and the termination of the Specialize procedure

will be given in the next section.

In order to compute the perfect model Ms of Ps it is convenient to represent sets

of ground atoms by sets of facts, that is, sets of (possibly non-ground) clauses of the

form H ← c, where H is an atom and c is a constraint. A fact H ← c represents

the set of all the ground instances of H that satisfy c. The BottomUp procedure

constructs Ms by using the non-ground immediate consequence operator SPs , in-

stead of the usual immediate consequence operator TPs (Jaffar and Maher 1994).

Program Ps is stratified (see Theorem 2 below) and, thus, the BottomUp procedure

can process the strata of Ps from the lowest one to the highest one (that is, the

stratum where the predicate prop occurs). For each stratum the BottomUp proce-

dure computes the least fixpoint of the restriction of SPs to that stratum. Since this

fixpoint may be represented by an infinite set of facts, the BottomUp procedure may

not terminate, although there is only a finite number of strata in Ps . In Section 5

we will see that the BottomUp procedure, applied after the Specialize procedure,

terminates in many significant cases.

Example 2

Let us consider the program PK ∪ {γ1, γ2} and the query prop of Example 1. We

have that: (i) by using a traditional Prolog system, the evaluation of prop does

not terminate in PK ∪ {γ1, γ2} because negprop has an infinitely failed SLD tree,

(ii) by using the XSB tabled logic programming system, prop does not terminate

because infinitely many sat atoms are tabled, and (iii) the bottom-up construction

of M (PK ∪ {γ1, γ2}) does not terminate because of the presence of clauses 5 and 6

as we have indicated at the beginning of this section.

By applying the Specialize procedure to the program PK∪{γ1, γ2} (with a suitable
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generalization strategy, as illustrated in the next section), we derive the following

specialized program Ps :

γ1. prop← ¬negprop

γ′2. negprop← X1 ≤ 0, X2 = 0, new1(X1,X2)

γ3. new1(X1,X2)← X1 ≤ 0, X2 = 0, Y1 = X1, Y2 = 1, new2(Y1,Y2)

γ4. new2(X1,X2)← X1 ≤ 0, X2 ≥ 0, Y1 = X1, Y2 = X2 + 1, new2(Y1,Y2)

The Specialize procedure has propagated through the program Ps the constraint

X1 ≤ 0, X2 = 0 characterizing the initial states (see clause 11 of Example 1). This

constraint, in fact, occurs in clause γ3 and its generalization X1≤0,X2≥0 occurs in

clause γ4. The BottomUp procedure computes the perfect model of Ps , and we get

Ms ={prop} in a finite number of steps (indeed, starting from the lowest stratum,

we have that, for all X1,X2, new2(X1,X2), new1(X1,X2), and negprop are all false).

Thus, the property not(eu(true,negative)) holds in every initial state of K. �

4 Generalization Strategies

The design of a powerful generalization strategy should meet two conflicting re-

quirements. Such a strategy, in fact, should introduce new definitions which are

(i) as general as possible, so as to enforce the termination of the Specialize pro-

cedure, and (ii) as specific as possible, so as to retain the maximum information

about the initial state and the property to be verified, and produce a program Ps for

which the BottomUp procedure terminates. In this section we present several gener-

alization strategies for coping with those conflicting requirements. These strategies

combine various techniques used in the fields of program transformation and static

analysis, such as well-binary relations, well-quasi orderings, widening, and convex

hull operators, and variants thereof (Cousot and Halbwachs 1978; Leuschel 2002;

Leuschel et al. 1998; Peralta and Gallagher 2003; Sørensen and Glück 1995). All

these strategies guarantee the termination of the Specialize procedure. However,

since in general the verification problem is undecidable, the power and effective-

ness of the different generalization strategies can only be assessed by performing

experiments. The results of those experiments will be presented in the next section.

4.1 The Generalize&Fold Procedure

The Generalize&Fold procedure makes use of a tree of definitions, called Definition

Tree, whose nodes are labelled by the clauses in Defs∪{γ2}. By construction there

is a bijection between the set of nodes of the Definition Tree and Defs ∪ {γ2}

and, thus, we will identify each node with its label. The root of the Definition

Tree is labelled by clause γ2 (recall that {γ2} is the initial value of InDefs) and

the children of a clause γ in Defs ∪ {γ2} are the clauses NewDefs derived after

applying the procedures Unfold(γ,Γ) and Generalize&Fold(Defs,Γ,NewDefs,Φ).

Our Generalize&Fold procedure is based on the combined use of a firing relation

and a generalization operator. The firing relation determines when to generalize,

while the generalization operator determines how to generalize.
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Definition 1 (Well-Binary Relation ⊳ and Well-Quasi Ordering -)

A well-binary relation on a set S is a binary relation ⊳ such that, for every infinite

sequence e0e1 . . . of elements of S , there exist i and j such that i < j and ei ⊳ ej .

A well-quasi ordering (or wqo, for short) on a set S is a reflexive, transitive, well-

binary relation - on S . Given e1 and e2 in S , we write e1 ≈ e2 if e1 - e2 and

e2 - e1. A wqo - is thin iff for all e ∈ S , the set {e ′ ∈ S | e ≈ e ′} is finite.

Definition 2 (Firing Relation)

A firing relation is a well-binary relation on the set C of constraints.

The firing relation guarantees that generalization is eventually applied and, thus,

its role is similar to the one of the whistle algorithm (Sørensen and Glück 1995).

Definition 3 (Generalization Operator ⊖)

Let - be a thin wqo on the set C of constraints. A binary operator ⊖ on C is a

generalization operator with respect to - if, for all constraints c and d in C, we have:

(i) d ⊑ c ⊖ d , and (ii) c ⊖ d - c. (Note that, in general, ⊖ is not commutative.)

The use of a thin wqo in Definition 3 guarantees that during the Specialize pro-

cedure each definition can be generalized a finite number of times only and, thus,

the termination of the procedure is guaranteed. Definition 3 generalizes several

operators proposed in the literature, such as the most specific generalization op-

erator (Leuschel et al. 1998; Sørensen and Glück 1995) and the widening opera-

tor (Cousot and Halbwachs 1978).

Procedure Generalize&Fold

Input: (i) a set Defs of definitions, (ii) a set Γ of clauses obtained from a clause γ by

the Unfold procedure, (iii) a firing relation ⊳, and (iv) a generalization operator ⊖.

Output: (i) A set NewDefs of new definitions, and (ii) a set Φ of folded clauses.

NewDefs := ∅; Φ := Γ;

while in Φ there exists a clause η: H ← e,G1,L,G2, where L is either of the form

sat(X , ψ) or of the form ¬sat(X , ψ) do

Generalize:

Let ep(X ) be project(e,X ).

1. if in Defs there exists a clause δ: newp(X ) ← d(X ), sat(X , ψ) such that

ep(X ) ⊑ d(X ) (modulo variable renaming)

then NewDefs := NewDefs ;

2. elseif there exists a clause α in Defs such that:

(i) α is of the form newq(X )← b(X ), sat(X , ψ), and (ii) α is the most

recent ancestor of γ in the Definition Tree such that b(X ) ⊳ ep(X )

then NewDefs := NewDefs ∪ {newp(X )← b(X )⊖ ep(X ), sat(X , ψ)};

3. else NewDefs := NewDefs ∪ {newp(X )← ep(X ), sat(X , ψ)};

Fold:

Φ := (Φ− {η}) ∪ {H ← e,G1,M ,G2}, where M is newp(X ), if L is sat(X , ψ),

and M is ¬newp(X ), if L is ¬sat(X , ψ)

end-while

11



The following theorem establishes that the Specialize procedure always termi-

nates and preserves the perfect model semantics. The proof of this theorem is a

simple variant of the proof of Theorem 3 in (Fioravanti et al. 2007).

Theorem 2 (Termination and Correctness of the Specialize Procedure)

(i) For every input program PK ∪{γ1, γ2}, for every firing relation ⊳, and for every

generalization operator ⊖, the Specialize procedure terminates. (ii) Let Ps be the

output program of the Specialize procedure. Then (ii.1) Ps is stratified (and thus,

locally stratified), and (ii.2) prop ∈ M (PK) iff prop ∈ M (Ps ).

4.2 Firing Relations and Generalization Operators on Linear Constraints

In our verification experiments we will consider the set Link of constraints defined

as follows. Every constraint c ∈ Link is the conjunction of m (≥0) distinct atomic

constraints a1, . . . , am (and we will denote this fact by writing c ≡ a1, . . . , am)

where, for i = 1, . . . ,m, (1) ai is either of the form pi ≤ 0 or of the form pi < 0,

and (2) pi is a polynomial of the form q0 + q1X1 + . . . + qkXk , where X1, . . . ,Xk

are distinct variables and q0, q1, . . . , qk are integer coefficients. An equation r = s

stands for the conjunction of the two inequations r ≤ s and s≤ r . The constraints

in Link are interpreted over the rationals in the usual way.

Now we present four firing relations on the set Link . These firing relations are

called Always, Maxcoeff, Sumcoeff, and Homeocoeff. They are all wqo’s.

(F1) The wqo Always, denoted by -A, is the relation Link×Link .

(F2) The wqo Maxcoeff, denoted by -M , compares the maximum absolute values

of the coefficients occurring in polynomials. It is defined as follows. For any atomic

constraint a of the form p < 0 or p ≤ 0, where p is q0 + q1X1 + . . . + qkXk ,

we define maxcoeff(a) to be max {|q0|, |q1|, . . . , |qk |}. Given two atomic constraints

a1 of the form p1 < 0 and a2 of the form p2 < 0, we have that a1 -M a2 iff

maxcoeff(a1) ≤ maxcoeff(a2). Similarly, if we are given the atomic constraints a1 of

the form p1≤ 0 and a2 of the form p2≤ 0. Given two constraints c1 ≡ a1, . . . , am ,

and c2 ≡ b1, . . . , bn , we have that c1 -M c2 iff, for i = 1, . . . ,m, there exists

j ∈ {1, . . . ,n} such that ai -M bj .

(F3) The wqo Sumcoeff, denoted by -S , compares the sum of the absolute values of

the coefficients occurring in the polynomials. It is defined as follows. For any atomic

constraint a of the form p < 0 or p ≤ 0, where p is q0 +q1X1 + . . .+qkXk , we define

sumcoeff(a) to be
∑k

j=0
|qj |. Given two atomic constraints a1 of the form p1 < 0

and a2 of the form p2 < 0, we have that a1 -S a2 iff sumcoeff(a1)≤ sumcoeff(a2).

Similarly, if we are given the atomic constraints a1 of the form p1≤0 and a2 of the

form p2 ≤ 0. Given two constraints c1 ≡ a1, . . . , am , and c2 ≡ b1, . . . , bn , we have

that c1 -S c2 iff, for i = 1, . . . ,m, there exists j ∈ {1, . . . ,n} such that ai -S bj .

(F4) The wqo Homeocoeff, denoted by -H , compares sequences of absolute values of

coefficients occurring in polynomials. It is an adaptation to Link of the homeomor-

phic embedding operator (Leuschel 2002; Leuschel et al. 1998; Sørensen and Glück
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1995). The wqo -H takes into account the commutativity and the associativity of

addition and conjunction and it is defined as follows. Given two polynomials p1 of

the form q0 + q1X1 + . . .+ qkXk , and p2 of the form r0 + r1X1 + . . .+ rkXk , we have

that p1 -H p2 iff there exists a permutation 〈ℓ0, . . . , ℓk 〉 of the indexes 〈0, . . . , k〉

such that, for i =0, . . . , k , |qi | ≤ |rℓi
|. Given two atomic constraints a1 of the form

p1<0 and a2 of the form p2<0, we have that a1 -H a2 iff p1 -H p2. Similarly, if

we are given the atomic constraints a1 of the form p1≤0 and a2 of the form p2≤0.

Given two constraints c1 ≡ a1, . . . , am , and c2 ≡ b1, . . . , bn we have that c1 -H c2

iff there exist m distinct indexes ℓ1, . . . , ℓm , with m ≤ n, such that ai -H bℓi
, for

i = 1, . . . ,m.

Table 1 provides some examples of the firing relations and, in particular, it shows

that the relations Maxcoeff and Sumcoeff are not comparable. Figure 2(A) illus-

trates the containment relationships between the firing relations Always, Maxcoeff,

Sumcoeff, and Homeocoeff. (The numbers appearing under each firing relation and

Figure 2(B) will be explained in Section 5.) Note that a generalization operator is

applied less often if it is associated with a smaller firing relation.

(A) Firing Relations

Always

(191, 5450)

Maxcoeff

(193, 64050)

Sumcoeff

(193, 64050)

Homeocoeff

(166, 140210)

(B) Generalization Operators

T

16, 1930

CHM

(24, 39560)

CHS

(26, 41470)

W

(19, 5550)

CHWM

(26, 40600)

CHWS

(26, 43120)

WM

(27, 24140)

WS

(27, 27130)

p
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c
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io
n
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o
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Figure 2. Comparison of firing relations and generalization operators.
(A) An arrow p→q from firing relation p to firing relation q means p⊆q . For each firing
relation we have written the pair (m,n), where: (i) m is the number of properties verified
by using that firing relation in conjunction with all generalization operators, and (ii) n is
the sum of the specialization times, expressed in milliseconds, taken by using that firing
relation in conjunction with all generalization operators (see Section 5).
(B) An arrow g → h from generalization operator g to generalization operator h means
⊖g ⊑ ⊖h . For each generalization operator we have written the pair (m,n), where: (i) m

is the total number of properties verified (see Table 3), and (ii) n is the sum of the
specialization times, expressed in milliseconds (see Table 4).

Now we present some generalization operators on Link which we will use in the

verification examples of the next section. For defining these operators we will use

the relations -M , -S, and -H , which are thin wqo’s on Link . On the contrary, the

wqo -A is not thin and it cannot be used for defining generalization operators.

(G1) Given any two constraints c and d , the operator Top, denoted ⊖T , returns
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a1 a2 a1 -A a2 a1 -M a2 a1 -S a2 a1 -H a2

1−2X1 <0 3+X1 <0 yes yes yes yes

2−2X1+X2 <0 1+3X1 <0 yes yes no no

1+3X1 <0 2−2X1+X2 <0 yes no yes no

Table 1. Examples of firing relations -A, -M , -S, and -H .

true. It can be shown that Top is a generalization operator with respect to any of

the thin wqo’s -M , -S, and -H . Since the Top operator forgets all information

about its operands, it often performs an over-generalization and produces poorly

specialized programs (see the experimental evaluation in Section 5).

(G2) Given any two constraints c ≡ a1, . . . , am , and d , the operator Widen, denoted

⊖W , returns the constraint ai1, . . . , air , such that {ai1, . . . , air} = {ah | 1≤h≤m

and d⊑ah}. Thus, Widen returns all atomic constraints of c that are entailed by d

(see (Cousot and Halbwachs 1978) for a similar widening operator used in static

program analysis). The operator ⊖W is a generalization operator w.r.t. any of the

thin wqo’s -M , -S, and -H .

(G3) Given any two constraints c ≡ a1, . . . , am , and d ≡ b1, . . . , bn , the operator

WidenMax, denoted ⊖WM , returns the conjunction ai1, . . . , air , bj1, . . . , bjs , where:

(i) {ai1, . . . , air} = {ah | 1 ≤ h ≤ m and d ⊑ ah}, and (ii) {bj1, . . . , bjs} = {bk |

1≤ k ≤ n and bk -M c}. The operator WidenSum, denoted ⊖WS , is defined like

WidenMax, with -M replaced by -S . The operators ⊖WM and ⊖WS are general-

ization operators w.r.t. the thin wqo’s -M and -S , respectively.

The operators WidenMax and WidenSum are similar to Widen but, together with

the atomic constraints of c that are entailed by d , they also return the conjunction

of a subset of the atomic constraints of d . Note that the operator WidenHomeo,

denoted ⊖WH , which is defined like WidenMax, with -M replaced by -H , is not a

generalization operator w.r.t. -H . Indeed, the constraint c⊖WH d may contain more

atomic constraints than c and, thus, it may not be the case that (c ⊖WH d) -H c.

Next we define some generalization operators by using the convex hull operator,

which sometimes is used in the static program analysis (Cousot and Halbwachs

1978). The convex hull of two constraints c and d in Link , denoted by ch(c, d), is

the least (w.r.t. the ⊑ ordering) constraint h in Link such that c ⊑ h and d ⊑ h.

(Note that ch(c, d) is unique up to equivalence of constraints.)

(G4) Given any two constraints c and d , let ch(c, d) be of the form b1, . . . , bn . The

operator CHMax, denoted ⊖CHM , returns the conjunction bj1, . . . , bjs , such that

{bj1, . . . , bjs} = {bk | 1 ≤ k ≤ n and bk -M c}. The operator CHSum, denoted

⊖CHS , is defined like CHMax, with -M replaced by -S . The operators ⊖CHM and

⊖CHS are generalization operators w.r.t. the thin wqo’s -M and -S , respectively.

Both CHMax and CHSum return the conjunction of a subset of the atomic con-

straints of ch(c, d). Note that if in the definition of CHMax we replace -M by -H ,

we get an operator which is not a generalization operator.
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1 −X1≤0,−1 +X1≤0,
c −X1≤0, −2+X1≤0 1−X1≤0, −2+X1≤0

X2≤0, −X2≤0

X1≤0, −X1≤0,
d 2−X1≤0, 1−X2≤0 −X1≤0

2 −X2≤0, −2 +X2≤0

c ⊖W d −X1≤0 true −1 +X1≤0,−X2≤0

1 −X1≤0, −1 +X1≤0,
c ⊖WM d 2−X1≤0, 1−X2≤0 −X1≤0

−X2≤0

c ⊖CHM d −X1≤0 −X1≤0 −X2≤0

c ⊖CHWM d −X1≤0 −X1≤0 −1 +X1≤0,−X2≤0

Table 2. Examples of application of generalization operators.

(G5) Given any two constraints c and d , we define the operator CHWidenMax,

denoted ⊖CHWM , as follows: c⊖CHWM d = c⊖WM ch(c, d). Similarly, we define the

operator CHWidenSum, denoted ⊖CHWS , as follows: c ⊖CHWS d = c ⊖WS ch(c, d).

The operators ⊖CHWM and ⊖CHWS are generalization operators w.r.t. the thin

wqo’s -M and -S , respectively.

Both CHWidenMax and CHWidenSum return the conjunction of a subset of the

atomic constraints of c and a subset of the atomic constraints of ch(c, d).

Note that some other combinations of the widening and convex hull operators

would not yield new generalization operators. Indeed, for all constraints c and d ,

we have that: (i) c⊖T ch(c, d) = c⊖T d , (ii) c⊖W ch(c, d) = c⊖W d , (iii) c⊖CHM

ch(c, d) = c ⊖CHM d , and (iv) c ⊖CHS ch(c, d) = c ⊖CHS d .

It can be shown that the generalization operators defined at points (G1)–(G5)

above are pairwise distinct. Table 2 shows some examples of application of gener-

alization operators.

In order to compare our generalization operators we extend the ⊑ partial ordering

on constraints to a partial ordering, also denoted ⊑, on generalization operators, as

follows: ⊖1 ⊑ ⊖2 (and we say that ⊖1 is less general than ⊖2) iff, for all constraints

c and d , (c⊖1d) ⊑ (c⊖2d). Figure 2(B) shows the relationships between general-

ization operators. (The numbers appearing under each generalization operator will

be explained in Section 5.) The operators not connected by any sequence of arrows

are not comparable w.r.t. ⊑.

5 Experimental Evaluation

In this section we present the results of the experiments we have performed on sev-

eral examples of verification of infinite state reactive systems. We have implemented

the verification algorithm presented in Section 2 using MAP, an experimental sys-

tem for transforming constraint logic programs (MAP 2011). The MAP system
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is implemented in SICStus Prolog 3.12.8 and uses the clpq library to operate on

constraints.

We have considered the following mutual exclusion protocols and we have verified

some of their properties. (i) Bakery (Delzanno and Podelski 2001): we have verified

safety (that is, mutual exclusion) and liveness (that is, starvation freedom) in the

case of two processes, and safety in the case of three processes; (ii) MutAst (Lesens

and Säıdi 1997): we have verified safety in the case of two processes; (iii) Peter-

son (Bardin et al. 2008): we have verified safety in the case of N (≥2) processes by

considering a counting abstraction of the protocol (Delzanno 2003); and (iv) Ticket

(Delzanno and Podelski 2001): we have verified safety and liveness in the case of

two processes.

We have also verified safety properties of the following cache coherence protocols:

(v) Berkeley RISC, (vi) DEC Firefly, (vii) IEEE Futurebus+, (viii) Illinois Univer-

sity, (ix) MESI, (x) MOESI, (xi) Synapse N+1, and (xii) Xerox PARC Dragon. We

have considered parameterized versions of the protocols (v)–(xii), that is, protocols

designed for an arbitrary number of processors. We have applied our verification

method to the counting abstractions described in (Delzanno 2003).

Then we have verified safety properties of the following systems. (xiii) Bar-

ber (Bultan 2000): we have considered a parameterized version of this protocol with

a single barber process and an arbitrary number of customer processes;

(xiv) Bounded Buffer and Unbounded Buffer: we have considered protocols for two

producers and two consumers which communicate via a bounded and an unbounded

buffer, respectively (the encodings of these protocols are taken from (Delzanno

and Podelski 2001)); (xv) Consprodjava, which is (a counting abstraction of) a

producer–consumer Java program realized using threads: we have verified that for

any number of threads there is no deadlock (Bardin et al. 2008); (xvi) CSM is a cen-

tral server model described in (Delzanno et al. 1999); (xvii) Consistency, which is a

directory-based consistency protocol for client–server distributed systems (proposed

by Steven German) (Bardin et al. 2008): we have considered two versions of the

system and we have verified that mutual exclusion is preserved for any number of

processes; (xviii) Insertion Sort and Selection Sort: we have considered the problem

of checking array bounds of these two sorting algorithms, parameterized w.r.t. the

size of the array, as presented in (Delzanno and Podelski 2001); (xix) Office Light

Control (Yavuz-Kahveci and Bultan 2009) is a protocol for controlling how office

lights are switched on and off, depending on room occupancy; (xx) Reset Petri Net

is a Petri Net augmented with reset arcs: we have considered a reachability prob-

lem for a net which is a variant of one presented in (Leuschel and Lehmann 2000);

(xxi) Kanban is a Petri Net modelling a concurrent production system (Bardin

et al. 2008): we have verified that the value of certain control variables are bound

within some specified limits; (xxii) Train is an encoding of a control system for

speed regulation of subway trains (Bardin et al. 2008): we have verified that a train

is never too early or too late with respect to its expected arrival time.

Tables 3 and 4 show the results of running the MAP system on the above ex-

amples by using the firing relation Always in conjunction with each of the eight

generalization operators introduced in Section 4. In particular, Table 3 reports, for
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each example, the total verification time, that is, the time taken by the Verification

algorithm, if it terminates, and Table 4 reports the specialization time, that is, the

time taken by the Specialize procedure only. For a meaningful comparison between

total specialization times, we have omitted from Table 4 the times relative to the

Consprodjava example, for which the Specialize procedure does not terminate when

using some of the generalization operators.

T W CHM CHS CHWM CHWS WM WS

Bakery2 (safety) 80 150 30 30 40 50 30 20
Bakery2 (liveness) ∞ ∞ 110 100 130 120 90 60
Bakery3 (safety) 3940 4900 430 430 460 460 170 170
MutAst 2330 320 390 400 420 440 80 160
Peterson ∞ ∞ 860 870 1380 1410 190 220
Ticket (safety) 20 30 30 20 20 10 20 20
Ticket (liveness) 110 100 100 100 80 90 80 110

Berkeley RISC 30 30 180 170 210 200 30 30
DEC Firefly 70 130 200 130 310 320 20 30
IEEE Futurebus+ 16380 47570 ∞ 47120 75860 47630 110 2460
Illinois University 100 70 50 60 50 50 10 30
MESI 70 40 250 250 130 130 30 30
MOESI 100 150 330 170 120 170 40 60
Synapse N+1 10 20 10 30 30 30 20 20
Xerox PARC Dragon 50 60 220 220 280 270 30 30

Barber ∞ 28440 2000 2050 2530 2560 1160 1220
Bounded Buffer 30 360 9490 9570 5800 5840 3580 3580
Unbounded Buffer ∞ ∞ 410 400 420 420 3810 3810
Consprodjava ∞ ∞ ∞ ∞ ∞ ∞ 25300 ∞

CSM ∞ ∞ 3820 3880 4830 4860 6410 6540
Consistency v1 ∞ ∞ 410 450 780 780 70 60
Consistency v2 ∞ 70 110 130 220 260 40 60

Insertion Sort 80 70 130 120 160 170 100 90
Selection Sort ∞ ∞ ∞ 160 230 180 ∞ 180
Office Light Control 50 40 50 50 50 50 50 50
Reset Petri Net ∞ ∞ ∞ ∞ ∞ ∞ 20 20
Kanban ∞ ∞ 15630 15800 17790 18040 8130 8000
Train ∞ 1440 3420 6290 3680 6650 30900 57260

Table 3. Verification times for the MAP system. For each example we show the

total verification time (Phases 1 and 2) obtained by using the firing relation Always

in conjunction with the generalization operators: ⊖T , ⊖W , ⊖CHM , ⊖CHS, ⊖CHWM ,

⊖CHWS, ⊖WM , and ⊖WS . Times are expressed in milliseconds (ms). ‘∞’ means no

answer within 100 seconds.

Let us compare the various generalization operators with respect to precision,

that is, with respect to the number of properties verified. As expected, we have

that precision increases when we use less general generalization operators, that is,

precision is anti-monotonic with respect to the ⊑ relation (precision increases when

going down in Figure 2(B)). This anti-monotonicity is explained by the fact that

the use of less general generalization operators may produce specialized programs
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T W CHM CHS CHWM CHWS WM WS

Bakery2 (safety) 20 60 30 30 40 50 30 20
Bakery2 (liveness) 80 120 80 70 90 80 60 30
Bakery3 (safety) 690 610 410 410 440 440 160 160
MutAst 210 280 360 370 400 420 70 140
Peterson 20 250 850 870 1370 1400 190 220
Ticket (safety) 20 30 30 20 20 10 20 20
Ticket (liveness) 70 60 60 60 40 50 40 70

Berkeley RISC 20 20 150 140 180 170 30 30
DEC Firefly 20 60 100 70 150 160 20 30
IEEE Futurebus+ 30 230 1540 300 1110 290 110 250
Illinois University 30 50 40 50 50 50 10 30
MESI 20 30 150 150 120 120 30 30
MOESI 30 60 140 80 100 80 40 50
Synapse N+1 10 10 10 20 30 20 20 10
Xerox PARC Dragon 20 30 190 190 260 250 30 30

Barber 400 1590 1870 1920 2400 2430 1130 1190
Bounded Buffer 10 140 9480 9560 5790 5830 2070 2070
Unbounded Buffer 20 100 410 400 410 410 350 350
CSM 30 450 3810 3870 4820 4840 6350 6480
Consistency v1 20 90 410 450 770 770 70 60
Consistency v2 20 70 110 130 220 260 30 50

Insertion Sort 20 50 130 120 150 160 100 90
Selection Sort 30 70 190 160 220 180 780 170
Office Light Control 40 30 40 40 40 40 40 40
Reset Petri Net 10 10 10 10 10 10 10 10
Kanban 20 1000 15590 15750 17740 18010 8070 7940
Train 20 50 3370 6230 3630 6590 4280 7560

TOTAL 1930 5550 39560 41470 40600 43120 24140 27130

Table 4. Specialization times for the MAP system. For each example we show the

specialization time (Phases 1 only) obtained by using the firing relation Always in

conjunction with the generalization operators: ⊖T , ⊖W , ⊖CHM , ⊖CHS , ⊖CHWM ,

⊖CHWS, ⊖WM , and ⊖WS . Times are expressed in milliseconds (ms).

that better exploit the information about both the initial state and the property

to be verified.

Let us now compare the various generalization operators with respect to the spe-

cialization time. We have that specialization times increase when we use less general

generalization operators, that is, specialization time is anti-monotonic with respect

to the ⊑ relation (specialization time increases when going down in Figure 2(B)).

This is due to the fact that less general generalization operators may introduce

more definitions and, therefore, the specialization phase may take more time. Note

also that the generalization operators that use the convex hull operators (that is,

⊖CHM , ⊖CHS, ⊖CHWM , and ⊖CHWS) exhibit higher specialization times than the

ones that do not. This is due to the extra cost of computing the convex hull which,

however, does not always correspond to an increase of precision.

If we compare the various generalization operators by using them in conjunction

with each firing relation Maxcoeff, Sumcoeff, and Homeocoeff, instead of Always, we
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get similar anti-monotonicity results (not shown here) for precision and specializa-

tion times.

Let us now compare the firing relations Always, Maxcoeff, Sumcoeff, and Home-

ocoeff. We may expect that a firing relation that determines fewer generalization

steps, also determines the introduction of more definitions and, therefore, we may

expect that both precision and specialization time are anti-monotonic with respect

to ⊆ (they increase when going down in Figure 2(A)). This anti-monotonicity is,

in fact, observed in our experiments except for the case of the Homeocoeff firing

relation (see Figure 2(A)). This is explained by the fact that the specialization

times obtained by using the Homeocoeff firing relation are very high and, there-

fore, the execution of the Specialize procedure is often longer than the time limit

of 100 seconds we have assumed as a time out. Note also that the modest increase

of precision from Always to Maxcoeff or Sumcoeff (from 191 to 193) is paid by a

considerable increase of specialization time (from 5450 ms to 64050 ms).

In summary, if we consider the balance between precision and time, the gener-

alization strategies that use Always as firing relation and either ⊖WM or ⊖WS as

generalization operators, outperform all the others. In particular, the generaliza-

tion strategies based on the homeomorphic embedding as a firing relation (that

is, Homeocoeff ) and the convex hull operator (that is, ⊖CHM , ⊖CHS , ⊖CHWM , and

⊖CHWS) turn out not to be the best strategies in our examples.

In order to compare the implementation of our verification method using MAP

with other constraint-based model checking tools for infinite state systems available

in the literature, we have done the verification examples described in Table 3 on

the following systems as well: (i) ALV (Yavuz-Kahveci and Bultan 2009), which

combines BDD-based symbolic manipulation for boolean and enumerated types,

with a solver for linear constraints on integers, (ii) DMC (Delzanno and Podelski

2001), which computes (approximated) least and greatest fixpoints of CLP(R) pro-

grams, and (iii) HyTech (Henzinger et al. 1997), a model checker for hybrid systems

which handles constraints on reals. All experiments with the MAP, ALV, DMC, and

HyTech systems have been performed on an Intel Core 2 Duo E7300 2.66GHz under

the Linux operating system. Table 5 reports the results obtained by using various

options available in those verification systems.

Table 5 indicates that, in terms of precision, MAP with either the WM or the WS

generalization operator is the best system (27 properties verified out of 28), followed

by ALV with the default option (20 out of 28), DMC with the A (abstraction) option

(19 out of 28), and HyTech with the Bw (backward reachability) option (18 out

of 28).

In order to compare the systems in terms of verification times, now we consider

the options that give the best precision, that is, MAP with WM, ALV with default,

DMC with A, and HyTech with Bw. Then we compare MAP to every other system

by computing the average verification time over the set of examples where the

systems terminate. We have that MAP has better average time than ALV (2343 ms

and 9816 ms average time, respectively, over the 20 examples where both systems

terminate), and MAP has also better average time than DMC (298 ms and 819 ms,

respectively, over 19 examples). However, MAP has a slightly worse average time
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than HyTech (519 ms and 331 ms, respectively, over 18 examples). This is explained

by the fact that HyTech with the Bw option tries to verify a safety property with

a very simple strategy, that is, by constructing the reachability set backwards from

the property to be verified, while MAP applies much more sophisticated techniques.

Note also that the average verification times are affected by the peculiar behaviour

on some specific examples. For instance, in the Bounded Buffer and the Barber

examples the MAP system has longer verification times with respect to HyTech,

because these examples can be easily verified by backward reachability and, thus,

the MAP specialization phase, which propagates the information about the initial

state, is redundant. On the opposite side, MAP is more efficient than HyTech in

the IEEE Futurebus+ and Bakery3 examples.

6 Conclusions

This paper extends earlier work presented in (Fioravanti et al. 2001; Fioravanti

et al. 2011). We have presented a specialization-based method for the verification

of CTL properties of infinite state reactive systems. Our method consists of two

phases: in Phase (1) a CLP specification of the reactive system is specialized with

respect to the initial state and the temporal property to be verified, and in Phase (2)

the perfect model of the specialized program is constructed in a bottom-up way.

For Phase (1) we have focused on the generalization strategy which is applied

during program specialization and which often determines the quality of the spe-

cialized program. We have considered various generalization strategies that employ

different firing relations, for deciding when to apply generalization, and generaliza-

tion operators, for deciding how to generalize. The notions of firing relation and

generalization operator extend to CLP the notions of whistle algorithm and most

specific generalization operator, respectively, which have been proposed for positive

supercompilation (Sørensen and Glück 1995) and partial deduction (Leuschel et al.

1998). For defining firing relations we have extended well-binary relations already

considered in the program specialization literature, such as the homeomorphic em-

bedding relation (Leuschel 2002; Leuschel et al. 1998; Sørensen and Glück 1995),

and for defining generalization operators we have adapted notions from the area of

static program analysis, such as the ones of widening and convex hull (Cousot and

Halbwachs 1978). We have also introduced some new notions based on maximal

coefficients and sums of coefficients of polynomials.

We have applied our verification method to several examples of infinite state

systems taken from the literature, and we have compared the results in terms of

precision and efficiency (that is, the number of properties which have been verified

and the time taken for verification). On the basis of our experimental results we have

found that some generalization strategies outperform all the others. In particular,

the strategies based on maximal coefficients and sums of coefficients appear to have

the best balance between precision and efficiency.

Then, we have applied other tools for the verification of infinite state systems (in

particular, ALV (Yavuz-Kahveci and Bultan 2009), DMC (Delzanno and Podelski

2001), and HyTech (Henzinger et al. 1997)) to the same set of examples. The exper-
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MAP ALV DMC HyTech

EXAMPLE WM WS default A F L noAbs Abs Fw Bw

Bakery2 (safety) 30 20 20 30 90 30 10 30 ∞ 20

Bakery2 (liveness) 90 60 30 30 90 30 60 70 × ×

Bakery3 (safety) 170 170 580 570 ∞ 600 460 3090 ∞ 360

MutAst 80 160 1460 1000 220 1510 150 1370 70 130

Peterson N 190 220 71690 ⊥ ∞ ∞ ∞ ∞ 70 ∞

Ticket (safety) 20 20 ∞ 80 30 ∞ ∞ 60 ∞ ∞

Ticket (liveness) 80 110 ∞ 230 40 ∞ ∞ 220 × ×

Berkeley RISC 30 30 10 ⊥ 20 60 30 30 ∞ 20

DEC Firefly 20 20 10 ⊥ 20 80 50 80 ∞ 20

IEEE Futurebus+ 110 2460 320 ⊥ ∞ 670 4670 9890 ∞ 380

Illinois University 10 30 10 ⊥ ∞ 140 70 110 ∞ 20

MESI 30 30 10 ⊥ 20 60 40 60 ∞ 20

MOESI 40 60 10 ⊥ 40 100 50 90 ∞ 10

Synapse N+1 20 20 10 ⊥ 10 30 10 10 ∞ 10

Xerox PARC Dragon 30 30 20 ⊥ 40 340 70 120 ∞ 20

Barber 1160 1220 340 ⊥ 90 360 140 230 ∞ 90

Bounded Buffer 3580 3580 10 10 ∞ 20 20 30 ∞ 10

Unbounded Buffer 3810 3810 10 10 40 40 ∞ ∞ ∞ 20

Consprodjava 25300 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

CSM 6410 6540 79490 ⊥ ∞ ∞ ∞ ∞ ∞ ∞

Consistency v1 70 60 ∞ ⊥ ∞ ∞ ∞ ∞ ∞ 2030

Consistency v2 40 60 ∞ ⊥ 40 ∞ ∞ ∞ ∞ 2790

Insertion Sort 100 90 40 60 ∞ 70 30 80 ∞ 10

Selection Sort ∞ 180 ∞ 390 ∞ ∞ ∞ ∞ ∞ ∞

Office Light Control 50 50 20 20 30 20 10 10 ∞ ∞

Reset Petri Net 20 20 ∞ ⊥ ∞ 10 10 10 ∞ 10

Kanban 8130 8000 ∞ ∞ ∞ ∞ ∞ ∞ 700 ∞

Train 30900 57260 42240 ⊥ ∞ 30 ∞ ∞ ∞ ∞

no. of verified properties 27 27 20 11 15 19 17 19 3 18

Table 5. Comparison of the MAP, ALV, DMC, and HyTech verification sys-

tems. Times are expressed in milliseconds (ms). (i) ‘⊥’ means termination with

the answer: ‘Unable to verify’. (ii) ‘∞’ means ‘No answer’ within 100 seconds.

(iii) ‘×’ means that the test has not been performed (HyTech has no built-in for

checking liveness). For the MAP system we show the total verification times with

the WM and WS generalization operators (see the last two columns of Table 3). For

the ALV system we show the times for four options: default, A (with approximate

backward fixpoint computation), F (with approximate forward fixpoint computa-

tion), and L (with computation of loop closures for accelerating reachability). For

the DMC system we show the times for two options: noAbs (without abstraction)

and Abs (with abstraction). For the HyTech system we show the times for two

options: Fw (forward reachability) and Bw (backward reachability).
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iments show that our specialization-based verification system is quite competitive,

especially in terms of precision.

Our approach is closely related to other verification methods for infinite state

systems based on the specialization of (constraint) logic programs (Leuschel and

Lehmann 2000; Leuschel and Massart 2000; Peralta and Gallagher 2003). How-

ever, unlike the approach proposed in (Leuschel and Lehmann 2000; Leuschel and

Massart 2000) we use constraints, which give us very powerful ways for dealing

with infinite sets of states. The specialization-based verification method presented

in (Peralta and Gallagher 2003) consists of one phase only, incorporating top-down

query directed specialization and bottom-up answer propagation. That method is

restricted to definite constraint logic programs and makes use of a generalization

technique which combines widening and convex hull computations for ensuring ter-

mination. However, in (Peralta and Gallagher 2003) only two examples of verifica-

tion have been presented (the Bakery protocol and a Petri net) and no verification

times are reported and, thus, it is hard to make an experimental comparison of that

method with our method.

Another approach based on program transformation for verifying parameterized

systems has been presented in (Roychoudhury et al. 2000). It is an approach based

on unfold/fold transformations which are more general than the ones used by us.

However, the strategy for guiding the unfold/fold rules proposed in (Roychoudhury

et al. 2000) works in fully automatic mode in a small set of examples only.

Finally, we would like to mention that our verification method can be regarded

as complementary with respect to the methods for the verification of infinite state

systems based on abstraction (Abdulla et al. 2009; Banda and Gallagher 2010;

Clarke et al. 1994; Dams et al. 1997; Delzanno and Podelski 2001; Geeraerts et al.

2006; Godefroid et al. 2001). These methods work by constructing approximations

of the set of reachable states that satisfy a given property. In contrast, the special-

ization technique applied during Phase (1) of our method, transforms the program

for computing sets of states, but it does not change the set of states satisfying the

property of interest. Moreover, during Phase (2) we perform an exact computation

of the perfect model of the transformed program.

Further enhancements of infinite state verification could be achieved by com-

bining program specialization and abstraction. In particular, an extension of our

method could be done by replacing the bottom-up, exact computation of the per-

fect model performed in Phase (2), by an approximated computation in the style

of (Banda and Gallagher 2010; Delzanno and Podelski 2001). However, this ex-

tension would require the computation of both over-approximations and under-

approximations of models, because of the presence of negation. An interesting di-

rection for future research is the study of how to combine in the best way, both

in terms of precision and efficiency, the verification techniques based on program

specialization and the ones based on abstraction.
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