
Ontology-based Querying of Composite Services

Fabrizio Smith, Michele Missikoff, Maurizio Proietti,

National Research Council, IASI “Antonio Ruberti”, Viale Manzoni 30, 00185 Rome (Italy)

{smith, missikoff, proietti}@iasi.cnr.it

Abstract. Enterprises are evolving towards advanced forms of cooperation and

networking. This kind of tight cooperation requires the creation of global Busi-

ness Processes (i.e., cross-enterprise composite services) composed starting

from a set of existing local processes (exposed, in turn, as services) found in

different enterprises. To this end, in this chapter we present an ontology-based

approach for querying business process repositories for the retrieval of process

fragments to be reused in the composition of new business processes. The pro-

posed solution is based on a synergic use of a business process modelling

framework (BPAL) to represent the workflow logic of business processes, and

business ontologies, aimed at capturing the semantics of a business scenario.

Both components are grounded in logic programming and therefore it is possi-

ble to apply effective reasoning methods to query the knowledge base stemming

from the fusion of the two.

Keywords: Networked Enterprise, Business Process, Semantic Annotation, On-

tology, Query Language, Composite Service.

1 Introduction

In recent years there has been an acceleration towards new forms of cooperation

among enterprises, such as virtual enterprises, networked enterprises, or business

ecosystems. A networked enterprise integrates the resources and Business Processes

(BPs) of the participating organizations allowing them to pursue shared objectives in

a tightly coordinated fashion, operating as a unique (virtual) organization (see Chapter

1 of this volume for a discussion on the evolution of business trends and related re-

search challenges). In this context, the notions of a Service Oriented Architecture

(SOA), viewed as a design philosophy, and of a Web Service, viewed as a technologi-

cal approach, play a key role. SOA is the natural way of designing a software system

to provide services to either end-user applications or other services distributed in a

network, via published and discoverable interfaces [1]. The implementation of a SOA

by means of Web Services, allows packaged functionalities to be offered as a suite of

interoperable services, widely usable since their interfaces are defined independently

of the underlying technologies (see Chapter 8 of this volume, where the requirements

for building cross-organizational service-based applications are discussed).

http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Service_%28systems_architecture%29

In a Service Oriented Architecture an orchestration is described as a Business

Process schema, i.e., a workflow graph that specifies the planned order of operations

execution. A BP is hence built from a collection of services, possibly implemented

and deployed as web services, each of which performs a well-defined activity within

the process. Composite services can be defined by combining existing elementary

services, thereby yielding higher-level services or processes. Service-oriented compu-

ting offers a means for designing global BPs (i.e., cross-enterprise composite servic-

es) by assembling existing local BPs (exposed, in turn, as services) found in different

enterprises, to virtually form a single logical system. However, in practice this opera-

tion is not an easy one, since the semantic interoperability problem arises both at the

data level and at the process level. The local BPs are often built by using different

tools, according to different business logics, and using different labels and terminolo-

gy to denote activities and resources. To overcome this incompatibilities, the various

participating enterprises need to agree on a common view and vocabulary of the busi-

ness domain (e.g., represented by a Business Reference Ontology), and provide de-

scriptions of the local BPs according to such a common view. The potentials offered

by Reference Modeling for the substantial improvement of both the efficiency and

effectiveness in BP design have been widely recognized in literature (see, e.g., Chap-

ters 3 and 5 of this volume).

Much work has been done
1
 to semantically enrich BP management systems [2] by

means of well-established techniques from the area of the Semantic Web and, in par-

ticular, computational ontologies [3]. An enterprise ontology provides unambiguous

definitions of the entities occurring in the domain, and eases the interoperability be-

tween software applications and the reuse/exchange of knowledge between human

actors.

In this frame, we propose a semantic platform to be associated with the different

BP management tools adopted in the different enterprises to provide a unified, seman-

tically enriched view of the different local BPs. Our proposal is based on a Business

Process Knowledge Base (BPKB) that organizes and stores the conceptual knowledge

about the process-related knowledge of the enterprises, aiming at the leveraging of the

semantic heterogeneities inherent to the aggregation of independently authored re-

sources. Then, the BPKB can be queried to retrieve individual BPs, or fragments

therein. Figure 1 represents a view of the macro-architecture of the proposed frame-

work. The main components of the BPKB are the local BP repositories (LBPRi), the

common set of ontologies and vocabularies constituting the Reference Ontology and

the semantic annotation (Σi) relating the local enterprise resources to the reference

ontology. Then, the BP Engineer will be able to operate on the local BPs in a unified

fashion through the semantic model provided by the BPKB and, by using a number of

reasoning services (notably, the BP semantic query processing), will be able to com-

pose a cross-enterprise, global BP.

In particular, while providing a general view of our approach, in this chapter we

focus on the problem of querying repositories of semantically enriched BPs. This is

1 See, e.g., the SUPER (http://www.ip-super.org/), COIN (http://www.coin-ip.eu/) and PLUG-

IT (http://plug-it.org/) European projects.

http://www.ip-super.org/

achieved through the synergic use of a logic-based BP modeling language (BPAL [4])

to represent the workflow logic, and an ontological framework (OPAL [5]) aimed at

capturing the domain knowledge of a business scenario. Then, the semantic annota-

tion allows us to query process schemas in terms of the conceptualization provided by

the reference ontology, easing the retrieval of local BPs (or fragments therein) to be

reused in the composition of new BPs.

Fig. 1. Approach overview

The proposed approach provides a uniform and formal representation framework,

suited for automatic reasoning and equipped with a powerful inference mechanism

supported by the solutions developed in the area of Logic Programming (LP) [6]. At

the same time it has been conceived to be used in conjunction with the existing BP

management tools as an „add-on‟ facility, by supporting BPMN [7], in particular its

XPDL [8] linear form, as a modeling notation, and OWL [9], for the definition of the

reference ontologies.

The rest of the chapter is organized as follows. The knowledge representation

framework is presented in Section 2. Section 3 describes the query support and the

query language provided by the framework. Then, Section 4 describes the software

platform and Section 5 presents related works.

2 Knowledge Representation Framework

In this section we introduce the knowledge representation framework which is at the

basis of the querying approach that will be proposed in Section 3. Three different

perspectives will be taken into account to represent and reason about BPs: (1) the

structural specification, which directly descends from the workflow graph associated

with each BP; (2) the behavioral semantics, i.e., a formal description of the execution

semantics of a BP, which enables the analysis of the possible enactments of a BP; (3)

the domain knowledge, i.e., a conceptualization intended to capture the semantics of

the business scenario, used to describe each individual entity participating in a BP.

In Section 2.1 the workflow graph will be formally represented within the BPAL

language by defining the notion of a Business Process Schema (BPS) and its meta-

model. In Section 2.2 we will present the behavioral semantics of a BPS, which is

defined in terms of its execution traces. Finally, in Section 2.3 we will present our

method for defining a Business Reference Ontology and the semantic annotation

within the OPAL framework. The language QuBPAL defined in Section 3 will be

used to make complex queries that involve structural, behavioral, and domain-related

properties.

2.1 Introducing BPAL

The Business Process Abstract modeling Language (BPAL) [4] is a logic-based lan-

guage conceived to provide a declarative modeling method capable of fully capturing

procedural knowledge in a business process. BPAL constructs are common to the

most used and widely accepted BP modeling languages (e.g., BPMN, UML activity

diagrams, EPC) and, in particular, its core is based on the BPMN 2.0 specification [7].

For illustration, consider the BP depicted in Figure 2, where an orchestration specify-

ing the handling of a purchase order in an eProcurement scenario is represented using

the BPMN notation.

Fig. 2. A Business Process for handling purchase orders

Upon receiving the purchase order from a customer, a supplier initiates two tasks

concurrently, to verify the information provided by the customer and to check product

availability in the inventory. If the purchase order is accepted, then it is fulfilled. The

activity fulfill_po is a compound activity (modeled as a BPMN sub-process),

representing the invocation of the corresponding process, where the shipment and the

invoicing are executed by a logistics provider.

In Figure 3 the core elements of the BPAL meta-model are shown in a UML class

diagram for sake of readability, while the formalization, including the axiomatisation

of its semantics has been presented in [4] and [10] in an extended form.

Fig. 3. BPAL core meta-model

A business process consists of a set of elements and relations between elements

appearing in the workflow graph, and it is associated with a unique start event and a

unique end event that represent the entry point and the exit point, respectively, of the

process. An activity is the key element of the business process, representing a unit of

work performed within the process. A task represents an atomic activity (e.g.,

bill_client), i.e., no further decomposable, while a compound activity represents the

invocation of composite (possibly remote) process, and it is associated with a

workflow graph that provides the definition of its internal structure (e.g., fulfill_po). A

BPS can thus be viewed as a hierarchy of activities (e.g., the composite activity ful-

fill_po occurs in the process handle_po). The sequencing of flow elements is specified

by the sequence flow relation and, for branching flows, BPAL provides predicates

representing parallel (AND), exclusive (XOR), and inclusive (OR) branch-

ing/merging of the control flow (gateways). An item represents a physical or informa-

tion object (e.g., invoice) that is created and used during the execution of the process.

An item holds the values that are produced during the process enactment and, hence,

it is regarded as a variable. An item flow specifies that a flow element uses as input or

produces as output a particular item. An item related to an item flow originating in a

start event constitutes the input of the process (e.g., handle_po is triggered by receiv-

ing an order), while an item related to an item flow ending in an end event constitutes

the output of the process (e.g., handle_po ends by sending back a final report). Final-

ly, a participant is a generic notion representing a role within a company (e.g., em-

ployee), a department, or a business partner role (e.g., manufacturer) which is as-

signed to the execution of a collection of activities. It is worth noting that the seman-

tics of the notions of item and participant are left intentionally underspecified, since

an unambiguous definition of their meaning has to be provided in terms of a reference

ontology through the semantic annotation, as shown in the next section.

Formally a BPAL BP Schema (BPS) is specified by a set of ground facts (i.e.,

atomic assertions on individual constants) of the form p(c1,…,cn), where c1,…,cn are

constants denoting BPS elements (e.g., business activities, events, and gateways) and

p is a BPAL predicate. In Table 1 we list some of the BPAL predicates, while in Ta-

ble 2 we report the BPAL translation of the fulfill_po BPS depicted in Figure 2.

Table 1. Excerpt of the BPAL language

bp(p,s,e) p is a process, with entry-point s and exit-point e

task(a) a is a task, i.e., an atomic activity no further decomposable

comp_act(a,s,e) a is a compound activity with entry-point s and exit-point e

seq(e1,e2,p) a sequence flow relation is defined between e1 and e2 in p

par_branch (g) the execution of g enables all the successor flow elements

par_merge(g) g waits for the completion of all the predecessor flow elements

exc_branch(g) the execution of g enables one of the successor flow elements

exc_merge(g) g waits for the completion of one of the predecessor flow elements

inc_branch(g) the execution of g enables at least one of the successor flow elements

inc_merge(g) g waits for the completion of the predecessor flow elements that will be even-
tually executed

item(i) i is an item

input(a,i,p) the activity a uses as input the item i in the process p

output(a,i,p) the activity a uses as output the item i in the process p

participant(part) part is a participant

assigned(a,part,p) the activity a is assigned to the participant part in the process p

Table 2. BPAL representation of the fulfill_po process

comp_act(fulfill_po,s_fpo,e_fpo)

task(request_shipment)
task(calculate_invoice)

task(bill_client)

task(shipment)
par_branch(g5)

par_merge(g6)

seq(s_fpo,request_shipment,fulfill_po)
seq(request_shipment,g5,fulfill_po)

seq(g5,shipment,fulfill_po)

seq(g5,calculate_invoice,fulfill_po)
seq(calculate_invoice,bill_client,fulfill_po)

seq(shipment,g6,fulfill_po)

seq(bill_clientg,g6,fulfill_po)
seq(g6,e_fpo,fulfill_po)

item(order)

item(ship_details)
item(invoice)

output(s_fpo,order,fulfill_po)

input(request_shipment,order,fulfill_po)
output(request_shipment,ship_details,fulfill_po)

input(calculate_invoice,ship_details,fulfill_po)

input(shipment,ship_details,fulfill_po)
output(calculate_invoice,invoice,fulfill_po)

input(bill_client,invoice,fulfill_po)

participant(logistics_provider)
assigned(request_shipment,logistics_provider,fulfill_po)

assigned(calculate_invoice,logistics_provider,fulfill_po)

assigned(bill_client,logistics_provider,fulfill_po)
assigned(shipment,logistics_provider,fulfill_po)

BPAL Meta-Model. On top of the BPS modelling layer, we explicitly introduce a BP

meta-modelling layer, formalized by the meta-model theory M which defines a set of

structural properties of a BPS that at this level is regarded as a labeled graph. First of

all, M defines how the constructs provided by the BPAL language can be used to

build a well-formed BPS. Two categories of properties should be verified by a well-

formed BPS
2
:

 local properties related to the elementary components of the workflow graph. For

instance, every activity must have at most one incoming and at most one outgoing

sequence flow, i.e.,

 Y = Z ← activity(X) seq(X,Y,P) seq(X,Z,P)

 Y = Z ← activity(X) seq(Y,X,P) seq(Z,X,P)

 global properties related to the overall structure of the process. For instance, in this

work we assume that processes are structured, i.e., each branch point is matched

with a merge point of the same type, and such branch-merge pairs are also properly

nested. Such a property is formalized by a set of axioms including the ones listed

below (which deal with binary gateways), where wf_sub_proc(p,s,e) holds if the

sub process of p starting with s and ending with e is a structured block:

wf_sub_proc(P,X,X) ← task(X) occurs(X,P)

wf_sub_proc(P,X,X) ← comp_act(X,S,E) occurs(X,P) wf_sub_proc(X,S,E)

wf_sub_proc(P,X,Y)← wf_sub_proc(P,X,Z) seq(Z,W,P) wf_sub_proc(P,Z,Y)

wf_sub_proc(P,X,YM) ← branch(X) merge(Y) same_type(X,Y) seq(X,L,P)

 seq(X,R,P) seq(S,Y,P) seq(Z,Y,P) wf_sub_proc(P,L,Z)

 wf_sub_proc(P,R,S)

Finally, M defines other properties related to the notions of paths and reachability

between flow elements in the graph structure underlying a BPS. A non-exhaustive list

of the predicates defined in M is given in Table 3.

Table 3. Excerpt of the BPAL meta-model

wf_proc(p) the business process p is well-formed

wf_sub_proc(p,s,e) the sub-process of p starting with s and ending with e is well-formed

occurs(el,p) el occurs in (i.e., belongs to the set of flow elements of) the process p

occurs(el,p,s,e) el occurs in the sub-process of p starting with s and ending with e

reachable(el1,el2,p) there exists a path from el1 to el2 in p

2.2 Behavioral Semantics of Business Process Schemas

The behavioral semantics of a BPS is given in terms of the set of its correct traces,

and the explicit formalization of this notion is given by the trace theory TR. A trace

models an execution (or instance, or enactment) of a BPS as a sequence <s1, s2,…, sn>

of occurrences of activities (or events) called steps. The axioms constituting the

theory TR can be viewed as a set of rules for constructing the traces of a given BPS.

Hence, they have a double nature, since they can be used to check correctness of a

2 Hereafter when axioms are presented in the form of clauses (i.e., rules), we follow an LP-like

notation, with all variables intended as universally quantified and denoted by capital letters.

trace w.r.t. a given BPS, but also to generate the set of correct traces of a BPS. In

particular TR defines the predicates:

 trace(t,p), which holds if t is a correct trace of process p;

 sub_trace(t,p,s,e), which holds if t is a correct sub-trace of process p starting with s

and ending with e.

The notion of trace provides a natural means for the verification of properties re-

garding the possible executions of a BPS, such as dependency constraints (often re-

ferred to as compliance rules). Dependency constraints state that the execution of an

activity is dependent on the execution of another activity, i.e., two activities have to

occur together (or in mutual exclusion) in the process (possibly, in a given order). We

can define the semantics of dependency constraints as formulas universally quantified

over the set of the correct traces of a BPS. As an example we report the semantics of

the response dependency, represented by the predicate resp(a,b,p,s,e).

resp(a,b,p,s,e) ≡𝑑𝑒𝑓 ∀ t1,t2,s1,a1,e1 (step(s1,s) step(a1,a) step(e1,e)

sub_trace(t1,p,s1,a1) sub_trace(t2,p,a1,e1) → ∃ b1 (step(b1,b) member(b1,t2)))

where:

 step(a1,a) states that a1 is an occurrence of the flow element a in a possible execu-

tion of the process;

 the arguments s and e limit the scope of the constraint, considered in the sub-

process (possibly the whole process) of p starting with s and ending with e;

 member(s,t) holds if s is a step in t.

This definition states that for every correct trace t of the BPS p, if a step a1 of the

activity a occurs in t, then a step b1 of the activity b occurs in t after a1. In a structured

BPS, like the ones considered in this chapter, such constraint could be verified by an

exhaustive exploration of the set of correct traces. However, this approach would be

inefficient, especially when used for answering complex queries of the kind described

in Section 3. Thus, we follow a more efficient approach which is based on defining

such constraints by means of logic rules that infer the absence of a counterexample.

For instance, in the response case, this amounts to prove the absence of a correct trace

that leads from a step of activity a to a step of e and contains no step of b in between.

This approach is indeed more efficient because, in order to construct a counterexam-

ple, we can avoid to actually construct all possible interleavings of the traces generat-

ed by the execution of parallel sub-processes and, in fact, we only need to perform a

suitable traversal of the workflow graph. In [11] we have followed this approach,

based on the encoding of suitable traversals of the workflow graph by means of logic

rules, for defining the constraint templates discussed in [12]. The set of these rules

constitutes the dependency constraints theory D. In Table 4 we list some of the predi-

cates defined in D.

Table 4. Dependency Constraints

prec(a,b,p,s,e) if b is executed then a has been previously executed in the sub-process of p starting

with s and ending with e

resp(a,b,p,s,e) if a is executed then b will be executed in the sub-process of p starting with s and

ending with e

mutex(a,b,p,s,e) a and b are never both executed in the sub-process of p starting with s and ending

with e

coex(a,b,p,s,e) neither a nor b are executed, or they are both executed in the sub-process of p

starting with s and ending with e

2.3 Semantic Enrichment of Process Schemas

In order to provide an alignment of the terminology and conceptualization used in

different BPs, it is required to agree on a common view of the business domain, and

describe, through a semantic annotation, the local BPs according to such agreed

common view, represented by a Business Reference Ontology (BRO). For the design

of a BRO we consider as a reference framework the OPAL methodology [5], while

for its technical implementation we commit to OWL/RDF [9], a de facto standard for

ontology and meta-data sharing. Hereafter we present OWL expressions by means of

the ternary predicate t(s,p,o), representing a generalized RDF triple (with subject s,

predicate p, and object o), and assuming the usual prefixes owl and rdfs for the

OWL/RDF vocabulary.

Fig. 4. Exemplary business reference ontology excerpt

OPAL Business Reference Ontology. For the definition of the BRO we consider as

the reference framework OPAL (Object Process Actor Language), proposed in [5] as

an ontology representation methodology based on UML and OWL, aimed at building

business-oriented domain ontologies. OPAL organizes concepts in a number of con-

ceptual categories to support the domain expert in the conceptualization process, iden-

tifying active entities (actors), passive entities (objects), and transformations

(processes). Therefore, the top level concepts are: i) opal:Process, representing any

business activity or operation aimed at satisfying a business goal and operating on a

set of business objects; ii) opal:Actor, representing active elements of a business do-

main, able to activate, perform, or monitor a process; iii) opal:Object, representing

entities on which a business process operates. The development of an OPAL ontology

is guided by a use-case driven, iterative and incremental process, derived from the

large experience drawn in the software engineering area, with particular reference to

the UP software development framework. OPAL has been tested and validated in

several national and international projects and applications, showing its effectiveness

and high acceptance among business experts.

The adoption of OPAL as a "default" component of the proposed knowledge repre-

sentation framework is motivated by several reasons. First of all, OPAL is strongly

focused on describing the environment in which processes are carried out from the

organizations perspective, thus allowing to contextualize BPs within the enterprise

assets (e.g., people, departments, resources). Then, such a description is given in

terms of a limited number of high level categories (actor, object, process), which con-

stitute a suitable conceptual counterpart for the fundamental modeling constructs

identified in BPAL (i.e., participant, item, activity). Finally, a direct formalization

into OWL is given. By the way, the commitment to a particular conceptual model is

not a restrictive assumption. Other resources developed in the context of Enterprise

Modeling, can be adopted as well, given that a suitable representation in terms of a

formal language is provided.

Figure 4 shows an excerpt of an exemplary BRO related to the handle_po BPS,

where three concept hierarchies, having root in opal:Process, opal:Actor and

opal:Object respectively, are depicted.

Semantic Annotation. A Semantic Annotation 𝚺 defines a correspondence between

elements of the BPS and concepts of the BRO, in order to describe the meaning of the

former in terms of a suitable conceptualization of the domain of interest provided by

the latter. To establish a general semantic association between the linked entities inhe-

rent in their meaning, we define the relation 𝜎 ⊆ BpsEl × Concept, where BpsEl is an

element of a BPS, and Concept is either

 a named concept defined in the BRO, e.g. Shipper;

 a concept defined by a class expression, e.g. Shipper ⊓ InventoryManager.

We do not impose that every BPS element is annotated, nor that every concept is

involved in the annotation of some BPS element. On the other hand, different BPS

elements could be annotated with respect to the same concept, to provide an align-

ment of the heterogeneous terminologies and conceptualizations used in different BP

schemas, e.g., both the items order and po actually refer to the same notion, suitably

defined in BRO terms as PurchaseOrder.

Even though the conceptualization introduced in a BPS differs on scope and pur-

pose from the one provided by a reference domain ontology, some criteria may be

introduced to put them in relation. For instance, since the vocabulary introduced in a

BPS is intended to be a specialization of the one introduced in the reference ontology,

σ is preserved by the subsumption relation, i.e., 𝜎 (El,A) ← 𝜎 (El,C)

t(C,rdfs:subClassOf,A). Then, in order to relate the different kinds of BPAL elements

to the very general concepts introduced by the top-level categories of OPAL, the an-

notation is further constrained as follows: i) an activity has to be annotated with a sub-

class of opal:Process, i.e., t(C,rdfs:subClassOf,opal:Process) ← 𝜎(A,C) activity(A);

ii) an item has to be annotated with a sub-class of opal:Object, i.e.,

t(C,rdfs:subClassOf,opal:Object) ← 𝜎(I,C) item(I); iii) a participant has to be anno-

tated with a sub-class of opal:Actor, i.e., t(C,rdfs:subClassOf,opal:Actor) ← 𝜎(P,C)

participant(P). Axioms as the ones presented above are very general and domain

independent, and are intended as a starting point for further extensions where more

specific constraints are formulated to accommodate the requirements of the particular

addressed domain.

A semantically enriched business process is hence a BPS defined according to

BPAL, whose elements are linked to concepts defined in a reference ontology through

a semantic annotation. In order to ease the exchange of meta-data and their reuse, we

encode such semantic structure as an RDF model, as exemplified in the above listings,

which refer to the ontology in Figure 4. In the example we report an RDF description

related to the reject_po task, which is annotated with the complex concept bro:Refuse

⊓ ∃opal:content.bro:PurchaseOrder ⊓ ∃opal:receiver.bro:Customer, representing the

action of notifying to a customer the rejection of an issued order.

<rdf:Description rdf:about="reject_po">

 <rdf:type rdf:resource="bpal:Task"/>

 <bpal:input rdf:resource="client_details"/>

 <bpal:assigned rdf:resource="supplier"/>

 <bpal:occurs rdf:resource="handle_po"/>

 <bpal:sigma>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="bro:Refuse"/>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="opal:content"/>

 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="bro:PurchaseOrder"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="opal:receiver"/>

 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="bro:Customer"/>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </bpal:sigma>

 <bpal:model_ref> http://acme/ACME.xpdl#_123</bpal:model_ref>

</rdf:Description>

In this frame, other meta-data definitions can be easily handled, such as references

to WSDL operations describing concrete service implementations or to data types

defined in XML files. For instance, the above description also include a reference to

the BP fragment (model_ref) in the original process schema (e.g., an XPDL file) to

keep the link between the annotated BPS fragment and its annotation information, in

order to allow other systems to process this piece of information.

3 QuBPAL Query Platform

In this section we describe our querying approach, based on the knowledge represen-

tation framework described in the previous section. In this framework we are able to

define a Business Process Knowledge Base (BPKB) as a collection of logical theories

that formalize a repository of semantically enriched business process schemas. The

interpretation of these theories as logic programs presented in Section 3.1 provides a

powerful inference support, at the basis of the query language we will introduce in

Section 3.2 and 3.3.

3.1 Business Process Knowledge Base

In Section 2 we introduced the two main components of the Business Process Know-

ledge Base, namely i) a repository of BPs represented according to BPAL, ii) a busi-

ness reference ontology defined according to OPAL that, together with the semantic

annotation, provides a representation of the domain knowledge associated with the

BPs. In order to achieve a uniform and formal representation, suited for reasoning on

the above structures, we define a BPAL BPS repository BPR as a First Order Logic

theory of the form:

BPR = B M TR D

where: i) B is a set of BP schemas defined in BPAL, ii) M and TR are the BPAL core

theories formalizing the meta-model and the trace semantics, respectively, iii) D is the

dependency constraint theory, introduced with the purpose of efficiently verifying

properties regarding the possible executions of a BPS.

Table 5. Inference examples on a BPAL BPS repository

BPR ⊢ BPR ⊢ not
wf_proc(handle_po)

wf_sub_proc(handle_po,g1,g4)
occurs(bill_client,fulfill_po)

occurs(bill_client,handle_po)

occurs(bill_client,handle_po,g3,g4)
reachable(receive_po,shipment,handle_po)

prec(check_client,bill_client,handle_po)

resp(bill_client,close_order,handle_po)
mutex(reject_po,shipment,handle_po)

coex(shipment,bill_client,handle_po)

wf_sub_proc(handle_po,g1,g6)

occurs(reject_po,handle_po)
reachable(reject_po,shipment,handle_po)

prec(bill_client,close_order,handle_po,s_hpo,e_hpo)

resp(check_client,bill_client,handle_po,s_hpo,e_hpo)
mutex(check_client,shipment,handle_po,s_hpo,e_hpo)

coex(check_client,bill_client,handle_po,s_hpo,e_hpo)

A relevant property of the theory BPR is that it has a straightforward interpretation

as a logic program [3], providing an operational semantics which enables logical infe-

rence taking advantage of the tools developed in the area of logic programming (LP).

In this frame, all the properties defined in the aforementioned theories can be used for

querying the theory BPR. In particular, the predicates defined by the meta-model

theory M and by the BP schemas B allow us to query the schema level of a BP, veri-

fying properties regarding the elements occurring in it (e.g., activities, items, gate-

ways) and their relationships (e.g., sequence flows), while TR and D allow us to ex-

press queries about the behavior of a BP at execution time, i.e., verify properties re-

garding the execution semantics of a BPS. Table 5 presents some examples of infe-

rences regarding the handle_po BPS, where BPR ⊢ L means that L can be inferred by

BPR
3
.

For the representation of the business reference ontology we adopt a fragment of

OWL, falling within the OWL 2 RL [9] profile. OWL 2 RL is an OWL subset de-

signed for practical implementations using rule-based techniques. The semantics of

OWL 2 RL is defined through a partial axiomatisation of the OWL 2 RDF-Based

Semantics in the form of first-order implications (OWL 2 RL/RDF rules), and consti-

tutes an upward-compatible extension of RDF and RDFS. In the EKB, the semantic

resources encoded in OWL/RDF are represented by means of the ternary predicate

t(s,p,o), and reasoning is supported by including a set of FOL rules encoding the

OWL 2 RL/RDF rule-set.

Finally, a Business Process Knowledge Base is formalized by a logic program

BPKB, defined by putting together the theories introduced so far:

BPKB = BPR BRO 𝚺

where: i) BPR is a BPAL BP repository; ii) BRO is an OPAL Business Reference

Ontology, encoded as a set of assertions of the form t(s,p,o) and including the OWL 2

RL/RDF rule-set; iii) 𝚺 is a semantic annotation, including a set of assertions of the

form 𝜎(BpsEl,Concept).

Hence the logic program BPKB can be used for evaluating conjunctive queries,

formulated as clauses of the form:

q(𝑋) ← p1(𝑋 1) … pm(𝑋 m) not pm+1(𝑋 m+1) … not pn(𝑋 n)

where p1,…,pn are predicates defined in BPKB, q(𝑋) is the query to be evaluated by

the inference engine, 𝑋 1,…, 𝑋 n are vectors of variables such that every X occurring in

𝑋 occurs also in some 𝑋 i.

3.2 The QuBPAL Query Language

Having set the theoretical framework, we can now introduce QuBPAL, an expres-

sive language for querying a BPKB. It does not require the user to understand the

technicalities of the underlying logic programming platform, since QuBPAL queries

are automatically translated to logic programs and evaluated by using standards LP

engines (in particular, we refer to the XSB logic programming and deductive database

system
4
). More specifically, QuBPAL queries which do not involve predicates de-

fined in TR, i.e., queries that do not explicitly manipulate traces, are translated to

Datalog programs with stratified negation [14]. For this class of programs, proof pro-

cedures based on tabled resolution, such as the one implemented in the XSB system,

guarantee a polynomial sound and complete top-down evaluation.

3 Formally, L is true in the Perfect Model [13] of the stratified program BPR, i.e.,

Perf(BPR) ⊨ L.
4 The XSB Logic Programming System. Version 3.1, Aug. 2007, http://xsb.sourceforge.net

http://xsb.sourceforge.net/

In the queries we use question mark to denote variables (e.g., ?x), and we use the

notation ?x::c to indicate the semantic typing of a variable, i.e., 𝜎(X,c). A (well-

formed) BPS is denoted by <bpId>, where bpId is a business process identifier. A

(well-formed) sub-process is identified by <bpId,start,end>, where start and end are

the flow elements of the BPS bpId that start and end the sub-process, respectively.

Syntactically a query is an expression of the form:

SELECT ((<?bpId> | <?bpId,?start,?end >) ?x* | <>

FROM (<bpId> | <bpId,start,end>)
+

WHERE comparison_predicate

The SELECT statement defines the output of the query evaluation. A boolean query,

which evaluation returns either true or false, is specified by the symbol <>, and con-

tains no variables. Otherwise, as a target list, it can be specified:

 a BPS, denoted by <?bpId>;

 a well-formed sub-process, denoted by <?bpId,?start,?end>;

 a sequence (possibly empty) ?x* of variables occurring in the WHERE statement.

The FROM statement indicates the process(es) from which data is to be retrieved. If

it is omitted, the whole repository is considered, otherwise it can be specified:

 a sequence of BPS or sub-process identifiers (<bpId>|<bpId,start,end>)
+.

In the WHERE statement it can specified an expression that restricts the set of data

returned by the query. Here, complex properties combining structural, behavioral and

domain knowledge can be formulated. The comparison_predicate is a sentence built

from:

 the set of the predicates defined in the EKB;

 the connectives AND, OR, NOT, and the predicate = with the standard logic se-

mantics;

 another QuBPAL query, to allow nested queries.

The arguments of the predicates appearing in a query are:

 semantically typed variables. (i.e.: ?x::c);

 individual constants.

3.3 Compiling QuBPAL Queries into LP Queries

The BPAL Platform (see Section 4) provides a compiler that translates QuBPAL que-

ries into LP queries and also performs suitable query optimizations.

The translation of QuBPAL into LP clauses is similar to the translation of SQL into

Datalog [14], especially for the treatment of nested and disjunctive queries. In Figure

5 we describe in a pictorial way the translation, considering some specific cases for

the SELECT, FROM, and WHERE statements. The extension to the general case is

straightforward. In particular nested and disjunctive queries will be translated into

multiple clauses.

Besides translating QuBPAL queries into LP queries, the compiler also verifies

some syntactic correctness properties. Among these, the compiler checks that the

QuBPAL query is range-restricted [14], i.e., every variable in the SELECT statement

of the query also appears in a positive literal in the WHERE statement of the query.

Range-restriction ensures that every variable appearing in a clause also appears in a

positive literal in the premise of the clause and, therefore, only ground answers will

be returned. Then, the compiler re-orders literals in the premises of the target clause

so that every variable occurring in a negative literal also occurs in a positive literal on

its left. This re-ordering guarantees a safe evaluation of the query (i.e., only ground

negative queries are evaluated) by using the top-down, left-to-right strategy usually

implemented by LP engines. Finally, the compiler performs some simple transforma-

tions with the goal of optimizing the performance of query evaluation. These optimiz-

ing transformations include the re-ordering of literals and the insertion of the „!‟ (cut)

predicate to eliminate unproductive choices in the query evaluation tree.

Fig. 5. Translation of QuBPAL into LP queries

3.4 Query Examples

In this section we present some examples of queries over a BPKB. We provide a natu-

ral language description of the query, and the corresponding formulation according to

QuBPAL.

Ex. 1. The following query searches for processes where a purchase order is

processed and provides services for the invoicing and the delivering of goods. Consi-

dering our running example, both handle_po and fulfill_po are returned by the query

evaluation.

SELECT <?p>

WHERE occurs(?a1,?p) AND input(?a1,?po::bro:PurchaseOrder,?p) AND

occurs(?a2::bro:Invoicing,?p) AND occurs(?a3::bro:Delivering,?p)

Ex. 2. The following query is a refinement of the previous one. It searches for sub-

processes that i) start with an activity that processes a purchase order, and ii) both a

delivering and an invoicing are eventually executed (response dependency). Consider-

ing our running example, the sub-process starting with request_shipment and ending

with g6 is returned.

SELECT <?p,?s,?e>

WHERE input(?s,?po::bro:PurchaseOrder,?p) AND resp(?s,?a1::bro:Invoicing,?p,?s,?e)

AND resp(?s,?a2::bro:Delivering,?p,?s,?e)

Ex. 3. The following query searches for every sub-process that is executed as an al-

ternative to one where an invoicing and a delivering coexist in every possible execu-

tion. This example shows the use of negation and nested queries, delimited by curly

brackets. Considering our running example, the sub-process of handle_po constituted

by the activity reject_po only is returned.

SELECT <?p,?s,?e>

WHERE exc_branch(?b) AND seq(?b,?s,?p) AND seq(?e,?m,?p) AND exc_merge(?m)

AND seq(?b,?s1,?p) AND seq(?e1,?m,?p) AND NOT ?s1 = ?s AND

{SELECT <?p,?s1,?e1> WHERE coex(?x::bro:Invoicing,y::bro:Delivering,?p,?s1,?e1)}

Ex. 4. The following query retrieves every item representing a business document that

is processed on a path from the receiving of a purchase order to an invoicing. Consi-

dering our running example, all the items are returned, except for purchasing_report.

SELECT <?p> ?d

WHERE input(?a1,?po::bro:PurchaseOrder,?p) AND reachable(?a1,?a2,?p) AND

output(?a2,d::bro:Document,?p) AND reachable(?a2,?a3::bro:Invoicing,?p)

4 Implementation

This section describes the BPAL Platform, a tool implementing the proposed frame-

work. The BPAL Platform provides the BPKB Editor to assist the user through a

graphical interface in the definition of a BPKB, where semantically enriched BPs are

represented, and the BPAL Reasoner, based on a LP engine (XSB), able to operate on

the BPKB. A functional view of the application is depicted in Figure 6.

4.1 BPAL Reasoner

The BPAL Reasoner has been implemented as a Java application, interfaced with the

XSB logic programming engine. The main components of the application are shown

in Figure 6, and briefly described below.

- BPMN2BPAL. This module offers an interface to import BPAL process schemas

into the BPKB from BPMN process models. The input BPMN processes can be ac-

quired from both XPDL files (supported, e.g., by TIBCO
5
 and Enhydra Shark

6
) and

.bpmn files (supported, e.g., by Intalio Process Modeler
7
).

- RDF2LP. Reference ontologies and semantic annotations can be imported into the

BPKB from OWL/RDF files by means of the RDF2LP module. As discussed in Sec-

tion 2.3, semantic resources are represented in the BPKB through the predicate

t(s,p,o), encoding a generic RDF statement. This kind of encoding allows for dealing

5 http://developer.tibco.com/business_studio
6 http://www.together.at/prod/workflow/tws
7 http://www.intalio.com/process-designer

http://developer.tibco.com/business_studio/
http://www.together.at/prod/workflow/tws

indifferently with RDF, RDFS and OWL (restricted to the RL profile). The parsing of

OWL/RDF files is based on the Jena2 toolkit
8
.

- BPKB Manager. This module provides functionalities to populate and update a

BPKB, handling the interactions with the LP engine. During the set-up phase, when

the BPKB is built, it is responsible for feeding the XSB engine with the logic pro-

grams encoding the BPKB, i.e.: i) the BPAL BP schemas imported through the Im-

portBPS interface; ii) the semantic resources imported through the ImportRDF inter-

face; iii) the BPAL core theories (meta-model, trace and dependency constraints theo-

ries) discussed in Section 2; iv) the OWL 2 RL/RDF rule-set to support reasoning

over the semantic resources, as discussed in Section 3.1.

- XSB Prolog. The application is connected with the XSB system through the Inter-

prolog library
9
, a Java/Prolog interface. XSB extends conventional Prolog systems

with an operational semantics based on tabling, i.e., a mechanism for storing interme-

diate results and avoiding to prove sub-goals more than once. In our setting, XSB has

profound advantages over Prolog systems based on SLDNF-resolution: i) it allow us

to evaluate programs with negation according to the perfect model semantics, ii) tabl-

ing ensures the termination of query evaluation over a BPKB, since the sizes of sub-

goals and answers produced during an evaluation are always finite (bounded term-size

property), iii) for queries falling within the stratified Datalog fragment of LP, tabling

can achieve the optimal data complexity (i.e., polynomial time) for query evaluation,

guaranteeing at the same time a correct and complete evaluation.

- Query Manager. Having populated the BPKB, inference is essentially performed by

posing queries to the XSB engine. The QueryManager exposes functionalities to

translate QuBPAL queries into LP queries, evaluate them by means of the underlining

XSB engine, and collect the results. The latter can be exported both in a textual form

and as new XPDL files, for their further reuse in an external BPMS.

Fig. 6. Functional view of the BPAL Platform

8 http://jena.sourceforge.net/
9http://www.declarativa.com/interprolog

http://jena.sourceforge.net/
http://www.declarativa.com/interprolog

4.2 EKB Editor

The BPKB Editor is implemented as an Eclipse Plug-In
10

 which includes the BPAL

Reasoner. It provides functionalities for managing persistent resources and a graphical

user interface (GUI), where several widgets allow to define a BPKB and to interact

with the BPAL Reasoner to exploit the reasoning facilities. The graphical editor for

BPMN processes is based on the STP BPMN Modeler developed within the Eclipse

SOA Tools Platform
11

 which has been included as part of the plug-in.

A screen-shot of the GUI is depicted in Figure 7. The left panel (Figure 7.a) pro-

vides a tree view of the resources available in the workspace, including BP schemas

and ontologies. The central panel (Figure 7.b) is the BP editor, provided by the STP

BPMN Modeler, comprising an editor and a set of tools to model BP diagrams using

the BPMN notation. On the right (Figure 7.c), the ontology browser allows for the

visualization of OWL ontologies, published on the Internet or locally stored. The

bottom panel (Figure 7.d) is the annotation editor, for the annotation of BP elements

with respect to the reference ontology. The resulting semantic annotation can be saved

and loaded from RDF files. The top-central panel (Figure 7.e) is the query prompt,

that provides the users with a direct access to the BPAL reasoner through the query

mechanism. Results can be consulted in the „Result Panel‟, (Figure 7.f) and, when

process fragments are included in the query, the latter can be exported as a new

XPDL file for their further re-use.

Fig. 7. EKB Editor GUI

10 http://www.eclipse.org/
11 http://www.eclipse.org/bpmn/

http://www.eclipse.org/
http://www.eclipse.org/bpmn/

5 Related Work

A first body of related works proposes the extension to business process management

of techniques developed in the context of the semantic web. Within the SUPER

project
12

 several ontologies to model functional, organizational, informational, and

behavioral perspectives have been developed, and in [15] a querying framework

based on such ontologies is presented. The approach is limited to the use of semantic

annotations, which act as a sort of index, for the retrieval of processes and process

fragments (i.e., a subset of activities) related to a given ontology concept. No forms of

structural or behavioral reasoning is addressed in the queries. In [16] SPARQL que-

ries, formulated through a visual language, are evaluated against business processes

represented trough a BPMN meta-model ontology annotated with respect to domain

ontologies. Other approaches based on meta-model ontologies have been discussed,

e.g., [17,18]. Unlike the aforementioned works, where the behavioral aspects are hid-

den or abstracted away, properties defined in terms of the execution semantics can be

considered in a QuBPAL query as well (e.g., in the form of dependency constraints).

Hence, the BPKB provides a homogeneous framework where one can evaluate com-

plex queries that combine properties related to the ontological description, the

workflow structure, and the behavioral semantics of the modeled processes.

Relevant work regarding the semantic enrichment of Web Services has been done

within the OWL-S [19] and WSMO [20] initiatives. Both approaches provide service

definitions from two perspectives: from a functional perspective a service is described

as a black-box in terms of its functionality, pre-conditions and effects, input and out-

put; from a process perspective, the service internal behavior is modeled as a compo-

sition (or orchestration) of other services. Such solutions strongly differ from ours on

scope and purpose and can be considered complementary to our work. Indeed, al-

though they have been successfully exploited for discovering, composing (mainly

through AI planning and automated synthesis techniques) and invoking electronic

services over the Web, they do not provide semantics for orchestrations, or constraints

between component services and within single services.

Other approaches for BP querying are based on graph matching, through visual

languages [21,22] grounded in graph grammars. BP-QL [21] is based on an abstract

representation of the BPEL (Business Process Execution Language) standard, and

allows one to query the process structure (i.e. control and data flow) of a BPEL

process, ignoring the run-time semantics of certain constructs such as conditional or

parallel execution. Relevant features provided by this approach are the support for

hierarchical workflows and the possibility to control the granularity of the query,

considering certain components as black-boxes or exploring recursively their internal

structure. Similarly, BPMN-Q [22] is a visual language based on BPMN which sup-

ports graph-based query processing. Both approaches allow the user to query the

graph representation of a process workflow in an intuitive way, but they need to be

combined with external tools to reason about properties of the behavioral semantics.

For instance, BPMN-Q supports also some templates of behavioral constraints (e.g.,

12 http://www.ip-super.org/

http://www.ip-super.org/

precedence, response) which are verified by a model checker, fed by a temporal logic

query and a finite state machine obtained by the state space generation of a Petri net

equivalent to a given BPMN model. Our framework not only provides a method for

querying the structure of the workflow graph and its behavior, but, due to the logic-

based representation, it also integrates additional reasoning services avoiding the bur-

den of dealing with heterogeneous formalisms and tools. Indeed, a very relevant ad-

vantage of QuBPAL is the possibility of formulating queries involving the knowledge

represented in domain models formally encoded by means of ontologies. QuBPAL

queries can be posed in terms of the ontology vocabulary, which offers a “global

view” of the processes annotated with it, hence i) decoupling queries from specific

processes, ii) overcoming semantic heterogeneities deriving, e.g., from different ter-

minologies, iii) allowing queries to be posed at different generality levels by taking

advantage of the semantic relations defined in the ontology, such as subsumption.

Finally, [23,24] present other approaches based on logic programming for model-

ing and reasoning on workflows. Anyway, these works mainly focus on the verifica-

tion and on the enactment of BPs, while they have not been so far applied to the prob-

lem of querying.

6 Conclusions

In this chapter we presented a framework for querying repositories of semantically

enriched business processes, conceived to ease the retrieval of process fragments to be

used in the design of cross-enterprise composite services. The proposed solution is

based on the synergic use of BPAL, a logic-based language adopted for modeling the

structure and the behavior of business processes represented accordingly to a

workflow perspective, and business ontologies, providing a conceptualization of the

business scenario. Both components are seamlessly connected thanks to their ground-

ing in first order logic (in particular, logic programming) and therefore it is possible to

apply effective reasoning methods to query the knowledge base encompassing the

two. A preliminary evaluation of the implemented reasoning engine was conducted to

prove the feasibility of the approach [25]. In particular, the rule-based implementation

of the OWL reasoner and the effective goal-oriented evaluation mechanism of the LP

engine shown good response time and significant scalability.

To make our approach applicable in real-world scenarios, besides a sound formal

foundation we strive also for practical usability, by supporting widely used and ac-

cepted standards and technologies. We adopt BPMN as a graphical modeling nota-

tion, and its XML linear forms to import and manipulate BP models, possibly de-

signed through external BP Management Systems. For what concerns the ontology

representation, we have committed to OWL, the current de-facto standard for ontolo-

gy modeling and meta-data exchange. By doing this, we allow the already existing

and widespread technologies, like those based on BPMN, to be maintained, and we

propose a progressive approach where a business expert can start with the (commer-

cial) tool and notation of his/her choice and then enrich its functionalities with the

formal framework we provide.

We are working to extend the proposed knowledge representation framework in

several directions. First of all, we want to increase the expressivity of the approach by

supporting a larger number of workflow patterns [2], to ease its adoption in conjunc-

tion with commercial tools for BPMS. Then, the query evaluation process can be

strongly optimized through more elaborated transformations achieved by exploiting

sophisticated program transformation techniques [26]. On an engineering ground, we

are exploring the problem of manipulating, merging and aggregating a set of business

process fragments in the contexts of BP re-engineering and automatic process compo-

sition. Finally, we are working to improve the software platform, in particular on the

user interface and on the level of automation in supporting the semantic annotation of

BP schemas.

Acknowledgments. This work has been partly funded by the European Commission through

the ICT Project BIVEE: Business Innovation and Virtual Enterprise Environment (No. FoF-

ICT-2011.7.3-285746). The authors wish to acknowledge the Commission for its support. We

also wish to acknowledge our gratitude and appreciation to all BIVEE project partners for their

contribution during the development of various ideas and concepts presented in this paper.

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson. Prentice Hall, 2007.

2. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business

Process Automation: YAWL and its Support Environment. Springer, 2010.

3. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel., D.: Semantic Business Process

Management: a Vision Towards Using Semantic Web Services for Business Process Man-

agement. Proc. ICEBE 2005, pp. 535-540. IEEE Computer Society, 2005.

4. De Nicola, A., Missikoff, M., Proietti, M., Smith, F.: An Open Platform for Business

Process Modeling and Verification. Proc. DEXA 2010, LNCS 6261, pp. 66-90. Springer,

2010.

5. De Nicola A, Missikoff M, Navigli R: A Software Engineering Approach to Ontology

Building. Information Systems, 34:258-275, 2009.

6. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

7. OMG: Business Process Model and Notation, http://www.omg.org/spec/BPMN/2.0, 2010.

8. Workflow Management Coalition: XML Process Definition Language,

http://www.wfmc.org/xpdl.html, 2008.

9. Hitzler, P. et al.: OWL 2 Web Ontology Language. W3C Recommendation,

http://www.w3.org/TR/owl2-primer, 2009.

10. Missikoff, M., Proietti, M., Smith, F.: Linking Ontologies to Business Process Schemas.

IASI-CNR Technical Report, R. 10-20, 2010.

11. De Nicola, A., Missikoff, M., Smith, F.: Towards a Method for Business Process and In-

formal Business Rules Compliance. Journal of Software Maintenance and Evolution: Re-

search and Practice. Published online in Wiley Online Library, doi:10.1002/smr.553, 2011.

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-

state verification. Proc. ICSE'99, pp. 411-420. ACM, 1999.

13. Przymusinski, T. C.: On the Declarative Semantics of Deductive Databases and Logic

Programs. In: Jack Minker (Ed.): Foundations of Deductive Databases and Logic Pro-

gramming, pp. 193-216. Morgan Kaufmann, 1988.

14. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, 1995.

http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000029294
http://www.omg.org/spec/BPMN/2.0
http://www.wfmc.org/xpdl.html
http://www.w3.org/TR/owl2-primer

15. Markovic, I. Advanced Querying and Reasoning on Business Process Models. Proc. BIS

2008, LNBIP 7, pp.189-200. Springer, 2008.

16. Di Francescomarino, C., Tonella, P.: Crosscutting Concern Documentation by Visual

Query of Business Processes. Business Process Management Workshops 2008, LNBIP 17,

pp. 18-31. Springer, 2009.

17. Haller, A. Gaaloul, W., Marmolowski, M.: Towards an XPDL Compliant Process Ontolo-

gy. Proc. IEEE Congress on Services, pp.83-86. IEEE Computer Society, 2008.

18. Yun Lin. Semantic Annotation for Process Models: Facilitating Process Knowledge Man-

agement via Semantic Interoperability. PhD thesis, Norwegian University of Science and

Technology, 2008.

19. Burstein, M., et al.: OWL-S, Semantic Markup for Web Services. W3C Member Submis-

sion, http://www.w3.org/Submission/OWL-S/, 2004.

20. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology, 1(1): 77-

106. IOS Press, 2005.

21. Beeri, C., Eyal, A., Kamenkovich, S., and Milo, T.: Querying business processes with BP-

QL. Information Systems. 33(6):477-507, 2008.

22. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and explaining

their violations for business processes. Journal of Visual Languages and Computing, 22:30-

55, 2011.

23. Montali, M., et al: Verification from Declarative Specifications Using Logic Programming.

Proc. ICLP 2008, LNCS 5366, pp. 440–454. Springer, 2008.

24. Roman, D. and Kifer, M.: Reasoning about the Behavior of Semantic Web Services with

Concurrent Transaction Logic. Proc. VLDB 2007, pp. 627-638. VLDB Endowment, 2007.

25. Missikoff, M., Proietti, M., Smith, F.: Querying Semantically Enriched Business Processes.

Proc. DEXA 2011, LNCS 6861, pp. 294-103. Springer, 2011.

26. Pettorossi, A. and Proietti, M.: Transformation of Logic Programs: Foundations and Tech-

niques. Journal of Logic Programming 19:261-320, 1994.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tonella:Paolo.html
http://www.informatik.uni-trier.de/~ley/db/conf/bpm/bpmw2008.html#FrancescomarinoT08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gaaloul:Walid.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Marmolowski:Mateusz.html
http://www.w3.org/Submission/OWL-S/

