
Verifying Programs via Iterated Specialization

Emanuele De Angelis,
Fabio Fioravanti

University G. D’Annunzio,
Pescara, Italy

{deangelis,fioravanti}@sci.unich.it

Alberto Pettorossi
University Rome Tor Vergata,

Rome, Italy
pettorossi@disp.uniroma2.it

Maurizio Proietti
CNR-IASI,
Rome, Italy

proietti@iasi.cnr.it

Abstract
We present a method for verifying properties of imperative pro-
grams by using techniques based on the specialization of constraint
logic programs (CLP). We consider a class of C programs with
integer variables and we focus our attention on safety properties,
stating that no error configuration can be reached from the initial
configurations. We encode the interpreter of the language asa CLP
programI , and we also encode the safety property to be verified as
the negation of a predicateunsafedefined inI . Then, we specialize
the CLP programI with respect to the given C program and the
given initial and error configurations, with the objective of deriving
a new CLP programIsp which either contains the factunsafe(and
in this case the C program is proved unsafe) or contains no clauses
with headunsafe(and in this case the C program is proved safe).
If Isp does not enjoy this property we iterate the specialization pro-
cess with the objective of deriving a CLP program where we can
prove unsafety or safety. During the various specializations we may
apply different strategies for propagating information (either prop-
agating forward from an initial configuration, or propagating back-
ward from an error configuration) and different operators (such as
widening and convex hull operators) for generalizing predicate def-
initions. Due to the undecidability of program safety, the iterated
specialization process may not terminate. By an experimental eval-
uation carried out on a set of examples taken from the literature, we
show that our method is competitive with respect to state-of-the-art
software model checkers.

Categories and Subject Descriptors I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation, Program ver-
ification; F.3.1 [Logic and Meaning of Programs]: Semantics of
Programming Languages—Partial evaluation, Program analysis;
F.3.2 [Logic and Meaning of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Mechanical verification;
F.4.1 [Mathematical Logic and Formal Languages]: Mathemati-
cal Logic—Logic and constraint programming; D.2.4 [Software
Engineering]: Software/Program Verification—Formal methods,
Model checking

General Terms Languages, Theory, Verification

Keywords Software model checking, constraint logic program-
ming, program specialization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’13, January 21–22, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1842-6/13/01. . . $15.00

1. Introduction
Formal verification of software products is gaining more andmore
attention as a promising methodology for increasing the reliability
and reducing the cost of software production (see [25] for some
case studies). In particular,software model checkinghas the goal of
performing formal software verification by combining and extend-
ing techniques developed in the fields of static program analysis
and model checking (a recent survey is presented in [20]).

In this paper we consider programs acting on integer variables
which belong to a subset of CIL, the C Intermediate Language [26],
calledCore CIL. Then we address the problem of verifyingsafety
properties, stating that when executing a program, an unsafe con-
figuration cannot be reached from any initial configuration.

Since safety is an undecidable problem for programs that act
on integer numbers, many program analysis techniques follow ap-
proaches based onabstraction[5], by which the integer data do-
main is mapped to an abstract domain so that reachability is pre-
served, that is, if a concrete configuration is reachable, then the cor-
responding abstract configuration is reachable. By a suitable choice
of the abstract domain one can design reachability algorithms that
terminate and, whenever they prove that an abstract unsafe config-
uration is not reachable from an abstract initial configuration, then
the program is proved to be safe (see [20] for a general abstract
reachability algorithm). Notable abstractions are those based on
convex polyhedra, that is, conjunctions of linear inequalities (also
calledconstraintshere).

Constraint Logic Programming (CLP) is a very suitable frame-
work for the analysis of imperative programs, because it provides
a very convenient way of representing symbolic program execu-
tions and also, by using constraints, program abstractions(see, for
instance, [17, 19, 28, 29]). In the context of CLP-based program
analysis, program specialization has been proposed as a means for
translating an imperative program to CLP [28]. By followingthe
approach presented in [28], the semantics of an imperative lan-
guage is defined by means of a CLP program which is the inter-
preterI of that language. Then, the interpreterI is specialized with
respect to the input programP whose safety property should be
checked. The result of this specialization is a CLP programIsp and,
since program specialization preserves semantic equivalence, for
proving properties of the imperative programP , we can analyze
the CLP programIsp by applying the above mentioned techniques
based on polyhedral abstractions.

It has also been pointed out that program specialization canbe
used as a technique for software model checking on its own [9]. In-
deed, by specializingIsp with respect to the constraints character-
izing the input values ofP (that is, the precondition ofP), in some
cases one can derive a new programI ′

sp whose least modelM(I ′

sp)
can be computed in finite time becauseI ′

sp can be represented by a

finite set of constraints. Thus, in these cases it is possibleto verify
whether or notP is safe by simply inspecting that model.

However, due to the undecidability of safety, it is impossible
to devise a specialization technique which always terminates and
produces a specialized program whose least model can be finitely
computed.

In order to mitigate this limitation, in this paper we propose a
method based on the repeated application of program specializa-
tions, called hereiterated specialization.

By repeated program specializations we can produce a sequence
of programs of the formI, Isp, I

1
sp, I

2
sp, Each program special-

ization step terminates and has the effect of modifying the structure
of the program and explicitly adding new constraints that denote
invariants of the computation. Thus, the effect of iteratedspecial-
ization is the propagation of these constraints from one program
version to the next, and iterated specialization terminates when a
program with finite least model is generated. In general, we have
no guarantee that iterated specialization terminates.

The paper is organized as follows.
In Section 2 we describe the syntax of the Core CIL language

and the CLP interpreter which defines its operational semantics. In
Section 3 we specify the problem of proving program safety we
want to address. In Section 4 we outline our software model check-
ing approach to establish program safety by presenting a simple
example. In Section 5 we describe the overall strategy of iterated
specialization, and also some specific strategies for performing sin-
gle specialization steps. In Section 6 we report on some experi-
ments we have performed by using a prototype implementation
based on the MAP transformation system [24]. We also compare
the results we have obtained using the MAP system with the results
we have obtained using state-of-the-art software model checking
systems such as ARMC [29], HSF(C) [13], and TRACER [18]. Fi-
nally, in Section 7 we discuss the related work and, in particular,
we compare our approach with other existing methods of software
model checking.

2. A CLP Interpreter for the Language CIL
We assume that the programs to be verified are written in a subset
of CIL, called Core CIL. Here is its syntax, where: (i)Vars is a set
of variable identifiers, (ii)Ids is a set of identifiers for types, and
(iii) Z is the set of integers which denote the constants of the basic
types (such as the integer constants, the character constants, etc.)
x, y, . . . ∈ Vars (variable identifiers)
f, g, . . . ∈ Function identifiers
ℓ, ℓ1, . . . ∈ Labels
id ∈ Ids (identifiers of types)
const ∈ Z (integer constants, character constants,. . .)
basic ∈ Basic types (int, char, . . .)
uop, bop ∈ Unary and binary operators (+, -, <=, . . .)

prog ::= typedef∗ decl∗ fundef∗

typedef ::= typedef type id
decl ::= type id | type id [const]
type ::= basic | id
fundef ::= type f (decl∗) {decl∗ lab cmd+}
lab cmd ::= ℓ : cmd
cmd ::= halt | x=exp | x=f (exp∗)

| if (exp) ℓ1 else ℓ2
| goto ℓ | return exp

exp ::= const | x | uopexp
| exp bopexp | (type) exp

For reasons of brevity, we will feel free to say ‘command’, instead
of ‘labelled command’. The elements of a sequence denoted byan
expression of the forme∗ or e+ will be separated by semicolons.
Note thatwhile commands can be replaced, as usual, by suitable

if-else andgoto commands. We assume that every label occurs
in every program at most once. The sequencefundef∗ of function
definitions is usually not empty and it contains the definition of the
functionmain.

Now we give the semantics of Core CIL. For that purpose let us
first introduce the following auxiliary functions and data structures.
We also assume that: (i) every variable occurrence is eitherglobal
or local to a function definition, (ii) in every given programfor ev-
ery variable occurrencex, one may statically determine whetherx
is a global variable or a local variable, and (iii) there is only one
level of locality (that is, there are no blocks and thus, no nested
levels of locality).

A global environmentδ:Vars → Z is a function which maps
global variables to their integer values. Likewise, alocal environ-
mentσ:Vars →Z maps function parameters and local variables to
their integer values.

An activation frameis a 3-tuple〈ℓ, y, σ〉, where: (i) ℓ is the
label where to jump after returning from a function call, (ii) y is the
variable where to store the value returned by a function call, and
(iii) σ is the local environment to be initialized when making a call
binding the function parameters and local variables.

A configurationis a 3-tuple of the form〈〈c, δ, τ 〉〉 where: (i)c is
a labelled command, (ii)δ is a global environment, and (iii)τ is
a list of activation frames. We operate on the listτ by the usual
head(hd) and tail(tl) functions and the right-associative construc-
tor cons(:). The empty list is denoted by[]. By update(f, x′, v′)
we denote the functionf ′ such that ifx = x′ thenf ′(x) = v′ else
f ′(x)=f(x). For any programP , for any labelℓ, (i) at(ℓ) denotes
the command inP with labelℓ, and (ii) nextlab(ℓ) denotes the la-
bel of the command inP which is writtenimmediately afterthe
command with labelℓ. Given a function identifierf , at(f) denotes
the first labelled command of the definition of the functionf . For
any expressione, global environmentδ, and local environmentσ,
JeKδσ is the integer value ofe. We assume that the evaluation of
expressions has no side effects.

The operational semantics (that is, the interpreter) of theCore
CIL language is given as a transition relation=⇒ between config-
urations according to the following rulesR1–R5. Notice that no
rules are given for the commandℓ :halt. Thus, no new configura-
tion is constructed when the command of the configuration at hand
is halt.
(R1). Assignment. Let hd(τ) be〈ℓ′, y, σ〉 andv beJeKδσ.
If x is a global variable:
〈〈ℓ :x=e, δ, τ 〉〉 =⇒ 〈〈at(nextlab(ℓ)), update(δ, x, v), τ 〉〉

If x is a local variable:
〈〈ℓ :x=e,δ,τ 〉〉=⇒〈〈at(nextlab(ℓ)), δ, 〈ℓ′, y,update(σ, x, v)〉: tl(τ)〉〉

Informally, an assignment updates either the global environment or
the local environment of the topmost activation frame.
(R2). Function call. Lethd(τ) be〈ℓ′, y, σ〉. Let{x1, . . . , xk} and
{y1, . . . , yh} be the set of the formal parameters and the set of the
local variables, respectively, of the definition of the function f .
〈〈ℓ :x=f(e1,. . . ,ek), δ, τ 〉〉 =⇒ 〈〈at(f), δ, 〈nextlab(ℓ), x, σ〉 :τ 〉〉

whereσ is a set of bindings of the form:
σ = {〈x1, Je1Kδσ〉, . . . , 〈xk, JekKδσ〉, 〈y1, n1〉, . . . , 〈yh, nh〉}

for some valuesn1, . . . , nh in Z (indeed, when we declare the local
variables we do not initialize them). Note that since the values of
theni’s are left unspecified, this transition is nondeterministic.

Informally, a function call creates a new activation frame with
the label where to jump after returning from the call, the variable
where to store the returned value, and the new local environment.
(R3).Return. Let τ be〈ℓ′, y, σ〉 :〈ℓ′′, z, σ′〉 :τ ′′ andv beJeKδσ.
If y is a global variable:

〈〈ℓ :return e, δ, τ 〉〉 =⇒ 〈〈at(ℓ′), update(δ, y, v), tl(τ)〉〉

If y is a local variable:
〈〈ℓ :return e, δ, τ 〉〉=⇒〈〈at(ℓ′), δ, 〈ℓ′′, z,update(σ′, y, v)〉 :τ ′′〉〉

Informally, a return command erases the topmost activationframe
and updates either the global or the local environment of thenew
topmost activation frame.

(R4). Goto. 〈〈ℓ :goto ℓ′, δ, τ 〉〉 =⇒ 〈〈at(ℓ′), δ, τ 〉〉

(R5). If-then-else. Let hd(τ) be〈ℓ′, y, σ〉.

If JeKδσ= true:
〈〈ℓ : if (e) ℓ1 else ℓ2, δ, τ 〉〉 =⇒ 〈〈at(ℓ1), δ, τ 〉〉

If JeKδσ= false:
〈〈ℓ : if (e) ℓ1 else ℓ2, δ, τ 〉〉 =⇒ 〈〈at(ℓ2), δ, τ 〉〉

The initial configuration is the 3-tuple (without loss of generality,
we assume that the functionmain has no arguments):

〈〈ℓinit : z0 =main(), δinit , []〉〉
where:
(i) ℓinit is a fresh new label such thatnextlab(ℓinit) is a fresh new

labelℓhalt whose associated command ishalt (indeed, no com-
mand should be executed after the function call:z0 =main()),

(ii) z0 is a fresh new global variable (whose type should comply
with those of the expressions in thereturn commands of the
functionmain()), and

(iii) δinit is the initial global environment which is of the form:
{〈z1, n1〉, . . . , 〈zr, nr〉}, wherez1, . . . , zr are the global vari-
ables of the given program andn1, . . . , nr are some given val-
ues inZ.

Note that initially the list of activation frames is empty and the first
activation frame is constructed when executing the initialfunction
call: z0 =main(). That frame is of the form:〈ℓhalt , z0, σ〉, whereσ
is a local environment binding the local variables of the definition
of the functionmain().

The semantics we have given above can be extended to a larger
subset of CIL which includes in particular array and structure types.

Let us now recall some notions and terminology concerning
constraint logic programming. For more details the reader may
refer to [16]. If p1 andp2 are linear polynomials whose variables
and coefficients are of typeint, thenp1=p2, p1≥p2, andp1>p2
areatomic constraints. A constraint is eithertrue, or false, or an
atomic constraint, or aconjunctionof constraints. A CLP program
is a finite set of clauses of the formA:- c,B, whereA is an atom,
c is a constraint, andB is a (possibly empty) conjunction of atoms.
The clauseA:- c is called aconstrained fact.

The semantics of a CLP programP is defined to be theleast
modelof P , denotedM(P), which agrees with the standard inter-
pretation on the integers for the constraints.

The CLP interpreter for our Core CIL language is given by
the following clauses for the binary predicatetr which relates
old configurations to new configurations and defines the transition
relation=⇒.

1. tr(cf(cmd(L, asgn(X, E)), D, T), cf(cmd(L1, C), D1, T)) :-
loc env(T, S), aeval(E, D, S, V), update(D, X, V, D1),
nextlab(L, L1), at(L1, C).

2. tr(cf(cmd(L, ite(E, L1, L2)), D, T), cf(cmd(L1, C), D, T)) :-
loc env(T, S), beval(E, D, S), at(L1, C).

3. tr(cf(cmd(L, ite(E, L1, L2)), D, T), cf(cmd(L2, C), D, T)) :-
loc env(T, S), beval(not(E), D, S), at(L2, C).

4. tr(cf(cmd(L, goto(L1)), D, T), cf(cmd(L1, C), D, T)) :-
at(L1, C).

The termasgn(X, E) encodes the assignment to a global vari-
able of the formx = e. Similarly, the termsite(E, L1, L2) and
goto(L) encode the conditionalif (e) ℓ1 else ℓ2 and the jump
goto ℓ, respectively. The termcmd(L, C) encodes the commandC
with label L. The predicateloc env extracts the local environ-
ment from the topmost activation frame in a configuration. The

predicateaeval(E, D, S, V) computes the valueV of the arith-
metic expressionE in the global environmentD and the local en-
vironmentS. Likewise the predicatebeval(E, D, S) holds if the
boolean expressionE is true in the global environmentD and the lo-
cal environmentS. The predicateupdate(D, X, V, D1) updates the
global environmentD, thereby constructing the new global envi-
ronmentD1, by binding the variableX to the valueV. The predi-
cateat(L, C) binds toC the command with labelL. The predicate
nextlab(L, L1) binds toL1 the label of the command which is
written immediately after the command with labelL.

We have listed the clauses for the cases of: (i) assignment to
global variables (clause 1), (ii)if-else (clauses 2 and 3), and
(iii) goto commands (clause 4), because they are the only cases of
interest in our examples below. The definition oftr for the cases of
assignment to local variables, function call andreturn are similar.

Notice that the CLP clauses 1–4 for the predicatetr have no
constraints in their bodies. However, constraints are usedin the
definitions of the predicatesaeval andbeval.

3. The safety problem
In this paper we consider the problem of verifying thesafetyof
program fragments. Then, safety of programs will be defined in
terms of safety of program fragments. Aprogram fragmentis a
(possibly empty) program followed by a non-empty sequence of
labelled commands. Thus,

prog fragm ::= prog labcmd+ (†)
The problem of verifying the safety of a program fragmentP is the
problem of checking whether or not, starting from an initialconfig-
uration, the execution ofP leads to a so called error configuration.
This problem is formalized by defining anunsafety tripleof the
form: {{ϕinit (z1, . . . , zr)}} P {{ϕerror (z1, . . . , zr)}}, where:
(i) P is a program fragment with global variablesz1, . . . , zr,
(ii) ϕinit (z1, . . . , zr) is adisjunctionof constraints that character-

izes the values of the global variables in the initial configura-
tions, and

(iii) ϕerror (z1, . . . , zr) is adisjunctionof constraints that charac-
terizes the values of the global variables in the error configu-
rations.

Without loss of generality, we assume that the last command of P
is ℓh :halt and no otherhalt command occurs inP .

We say that a program fragmentP is unsafewith respect to
a set of initial configurations satisfyingϕinit (z1, . . . , zr) and a
set of error configurations satisfyingϕerror (z1, . . . , zr) or simply,
P is unsafewith respect toϕinit andϕerror , if there exist global
environmentsδinit andδh such that:
(i) ϕinit (δinit (z1), . . . , δinit (zr)) holds and
(ii) 〈〈ℓ0 :c0, δinit , []〉〉 =⇒∗ 〈〈ℓh :halt, δh, []〉〉 and
(iii) ϕerror (δh(z1), . . . , δh(zr)) holds,
whereℓ0 : c0 is the first command in the sequence labcmd+ of
labelled commands at the right end ofP (see(†) above).

A program fragment is said to besafewith respect toϕinit and
ϕerror iff it is not unsafe with respect toϕinit andϕerror .

We define the unsafety (and safety) of a programP ′ with respect
to the formulasϕinit andϕerror as the unsafety (and safety, respec-
tively) of the program fragment obtained fromP ′ by: (i) deleting
the functionmain(), and (ii) adding at the right end ofP ′ the se-
quence of labelled commands of the functionmain(), where the
commandreturn e has been replaced byℓh : halt (note that,
without loss of generality, we may assume that inP ′ there is a sin-
glereturn command).

When ambiguity does not arise, we will feel free to say ‘pro-
gram’, instead of ‘program fragment’.

An unsafety triple can be encoded as a CLP program. We show
how to do this encoding through the following example. The exten-

sion to the general case is straightforward and will be omitted. Let
us consider the unsafety triple:

{{ϕinit (x, y, n)}} P {{ϕerror (x, y, n)}} where

ϕinit (x, y, n) is x=0 ∧ y=0
P is ℓ0: while (x<n) {x = x+1; y = x+y; };

ℓh: halt
ϕerror (x, y, n) is x>y

(In this program fragmentP we have an empty program followed
by the above two commandswhile andhalt.)

First, we replace thewhile command by the following se-
quence of Core CIL commands:

ℓ0: if (x<n) ℓ1 else ℓh

ℓ1: x = x+1
ℓ2: y = x+y
ℓ3: goto ℓ0
ℓh: halt

Then, this sequence of commands is translated into the following
CLP facts:
1. at(0, ite(less(int(x), int(n)), 1, h)).
2. at(1, asgn(int(x), plus(int(x), int(1)))).
3. at(2, asgn(int(y), plus(int(x), int(y)))).
4. at(3, goto(0)).
5. at(h, halt).
We also have the following clauses that specify the reachability
relation from the initial configuration to the error configuration:
6. unsafe :- initConf(X), reach(X).
7. reach(X) :- tr(X, X1), reach(X1).
8. reach(X) :- errorConf(X).

In our case the predicatesinitConf anderrorConf specifying
the initial and the error configurations, respectively, aredefined by
the followingconstrained facts:
9. initConf(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])) :- X=0, Y=0.
10.errorConf(cf(cmd(h, halt),

[[int(x), X], [int(y), Y], [int(n), N]], [])) :- X>Y.

In the initial configuration (see clause 9) we have the initial com-
mandcmd(0, ite(less(int(x), int(n)), 1, h)) and the initial list
of activation frames which is empty. In clauses 9 and 10 the global
environment (that is, the second component of the configuration)
has been encoded by the list[[int(x), X], [int(y), Y], [int(n), N]]
which gives the bindings of the variablesx, y, andn, respectively.

The CLP program consisting of clauses 1–10 above, together
with the clauses that define the predicatetr (see clauses 1–4 of
Section 2), is called theCLP encodingof the given unsafety triple
{{ϕinit (x, y, n)}} P {{ϕerror (x, y, n)}}.

THEOREM 1. (Correctness of CLP Encoding)Let I be the CLP
encoding of the unsafety triple{{ϕinit}} P {{ϕerror}}. The program
P is safe with respect toϕinit andϕerror iff unsafe /∈M(I).

4. The Software Model Checking Method in
Action

In this section we present an application of our software model
checking method based oniterated specialization, which performs
a sequenceof program specializations, rather than one specializa-
tion only. The formal presentation of the method will be given in
the next section.

In the example we will consider theiteration of program spe-
cializations plays a crucial role and is required for the proof of pro-
gram safety.

Let us consider the unsafety triple of the previous section.We
want to show that the program fragmentP is safe with respect to
ϕinit (x, y, n) andϕerror (x, y, n).

Our method for proving program safety consists of three spe-
cialization steps: (i) the removal of the interpreter (thisstep is com-
mon to other specialization-based techniques for the verification
of imperative programs [9, 28]), (ii) the propagation of thecon-
straints of the initial configuration, and (iii) the propagation of the
constraints of the error configuration.

First Specialization: Removal of the interpreter

We start off from the CLP clauses 1–10 associated with the given
program fragmentP (see Section 3), and the CLP clauses for the
predicatetr (clauses 1–4 of Section 2) which define the interpreter
of the Core CIL language. At the end of this first specialization
we will derive a CLP program (see programP1 below) which
evaluates the predicateunsafe without evaluating the predicatetr.
In this sense we say that this first specialization realizes the removal
of the interpreter.

In order to get such a CLP program we specialize clauses 6–8
with respect to the given definitions of the predicatesinitConf,
errorConf, tr, andat. This specialization is performed by fol-
lowing the usualunfold-definition-fold cycleof the rule-based spe-
cialization strategies [11]. In particular, we will followthe Special-
ization procedure presented in Figure 2 of Section 5.

The various specialization steps are performed in an automatic
way by our MAP system [24].

We start off by unfolding clause 6 with respect to the atom
initConf(X) and we get:

11.unsafe :- X=0, Y=0,
reach(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

We introduce the new predicate definition:

12.new1(X, Y, N) :-
reach(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

We fold clause 11 and we get:

11.f unsafe :- X=0,Y=0, new1(X, Y, N).

Then we unfold clause 12 and we get the two clauses:

13.new1(X, Y, N) :-
tr(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], []), X1),
reach(X1).

14.new1(X, Y, N) :-
errorConf(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

From clause 13, after a few unfolding steps which perform the
symbolic evaluation of theif-then command using the clause for
the predicatetr, we get the following two clauses:

15.new1(X, Y, N) :- X<N,
reach(cf(cmd(1, asgn(int(x), plus(int(x), int(1)))),

[[int(x), X], [int(y), Y], [int(n), N]], [])).
16.new1(X, Y, N) :- X≥N,

reach(cf(cmd(h, halt),
[[int(x), X], [int(y), Y], [int(n), N]], [])).

(Note that the test on the conditionless(int(x), int(n)) in the
command in clause 13 generates two constraints:X<N andX≥N.)
Then, we delete clause 14 because by unfolding it, we do not get
any clause (indeed, the termcmd(0, . . .) does not unify with the
termcmd(h, . . .)).
From clause 15, after two unfolding steps, we get:

17.new1(X, Y, N) :- X<N,
tr(cf(cmd(1, asgn(int(x), plus(int(x), int(1)))),

[[int(x), X], [int(y), Y], [int(n), N]], []), X1)),
reach(X1).

From clause 16, after two unfolding steps, we get:

18.new1(X, Y, N) :- X≥N,
errorConf(cf(cmd(h, halt),

[[int(x), X], [int(y), Y], [int(n), N]], [])).

At this point the program at hand is made out of clauses 11.f, 17,
and 18. Then, by unfolding clause 17, we get:

19.new1(X, Y, N) :- X<N, X1=X+1,
reach(cf(cmd(2, asgn(int(y), plus(int(x), int(y)))),

[[int(x), X1], [int(y), Y], [int(n), N]], [])).

By unfolding clause 18 we get:

20.new1(X, Y, N) :- X≥N, X>Y.

From clause 19, after two unfolding steps, we get:

21.new1(X, Y, N) :- X<N, X1=X+1,
tr(cf(cmd(1, asgn(int(y), plus(int(x), int(y)))),

[[int(x), X1], [int(y), Y], [int(n), N]], []), X2)),
reach(X2).

By unfolding clause 21 we get:

22.new1(X, Y, N) :- X<N, X1=X+1, Y1=X1+Y,
reach(cf(cmd(3, goto(0)),

[[int(x), X1], [int(y), Y1], [int(n), N]], [])).

The sequence of clauses 12, 15, 19, and 22, which we have ob-
tained by unfolding, mimics the execution of the sequence ofthe
four commands: (i)ℓ0 : if (x < n) ℓ1 else ℓh, (ii) ℓ1 :x=x+1,
(iii) ℓ2 :y=x+y, and (iv) ℓ3 : goto ℓ0 (note in those clauses the
atomsreach(cf(cmd(i, ...), ..., ...)), for i = 0, 1, 2, 3). Indeed, in
general, by unfolding, one is able to perform the symbolic execu-
tion of the commands of any given program. The conditions that
should hold so that a particular commandcmd(i, ...) is executed,
are given by the constraints in the clause in whose body the atom
reach(cf(cmd(i, ...), ..., ...)) occurs.

From clause 22, after a few more unfolding steps, we get:

23.new1(X, Y, N) :- X<N, X1=X+1, Y1=X1+Y,
reach(cf(cmd(0, ite(less(int(x), int(n)), 1, h)),

[[int(x), X1], [int(y), Y1], [int(n), N]], [])).

By folding clause 23 using clause 12, we get:

23.f new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).

Note that this folding step using the definition for the predicate
new1 is possible because the execution of the program returned
to the command to which the definition ofnew1 refers. The final,
specialized programP1 is as follows:

11.f unsafe :- X=0, Y=0, new1(X, Y, N).
23.fnew1(X,Y,N) :- X<N,X1=X+1, Y1=X1+Y, new1(X1,Y1,N).
20.new1(X,Y,N) :- X≥N, X>Y.

The derived programP1 has a constrained fact fornew1 (see
clause 20 and, by repeatedly using clause 23.f, from that con-
strained fact, we can derive infinitely many new constrainedfacts
which belong to the least model ofP1. Hence, we cannot show
that new1 does not hold forX=Y=0, and thus we cannot show
thatunsafe does not hold (see clause 11.f).

In order to show program safety, now we perform two more spe-
cialization steps. First, we specialize programP1 by with respect
to the constraints of the initial configuration, and then we special-
ize the residual program with respect to the constraints of the error
configuration. By iterated specialization we will derive a newempty
program allowing us to conclude thatunsafe does not hold.

Second Specialization: Propagation of the constraints of the
initial configuration
Now we perform our second program specialization starting from
the programP1 we have derived by removing the interpreter.

This specialization is based on the idea of propagating the con-
straintsX=0 andY=0 of the initial configuration which occur in
clause 11.f defining the predicateunsafe.

We begin by unfolding clause 11.f with respect to the atom with
predicatenew1 and we get:
24.unsafe :- X=0, Y=0, X≥N, X>Y.
25.unsafe :- N>0, X1=1, Y1=1, new1(X1, Y1, N).

Now clause 24 has an unsatisfiable constraint, and thus it is deleted.
In order to fold clause 25, we define the following new predicate:
26.new2(X, Y, N) :- N>0, X=1, Y=1, new1(X, Y, N).

By folding clause 25, we get:
25.f.unsafe :- N>0, X1=1, Y1=1, new2(X1, Y1, N).

Now we unfold the last definition which has been introduced
(clause 26) and we get two clauses of which the only one with
a satisfiable constraint is (after constraint simplification):
27.new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3,

new1(X1, Y1, N).

In order to fold this clause, we need the following new predicate:
28.new3(X, Y, N) :- N>1, X=2, Y=3, new1(X, Y, N).

The comparison between clauses 26 and 28 shows the risk of in-
troducing an infinite number of clauses (see, in particular,the con-
straintsX=1 andX=2), thereby making the specialization process
never to halt. Thus, we perform a generalization step (we usethe
wideningoperator [8]) between clauses 26 and 28, and we intro-
duce, instead of clause 28, the following clause 29 (where the con-
straintX≥1 is the widening ofX=1 andX=2):
29.new3(X, Y, N) :- N>0, X≥1, Y≥1, new1(X, Y, N).

We fold clause 27 using clause 29 and we get (after constraint
simplification):
27.f new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3,

new3(X1, Y1, N).

Note that this folding step preserves equivalence between clauses 27
and 27.f, even ifnew3 is a generalization ofnew1, because the
atomsnew1(X1, Y1, N) andnew3(X1, Y1, N) are equivalent in a con-
text where the constraintN>1, X1=2, Y1=3 holds.

By continuing our specialization process following the usual
unfold-definition-fold cycle according to the Specialization proce-
dure of Figure 2, we eventually get the specialized programP2:
25.f unsafe :- N>0, X1=1, Y1=1, new2(X1, Y1, N).
27.f new2(X, Y, N) :- X=1, Y=1, N>1, X1=2, Y1=3,

new3(X1, Y1, N).
30. new3(X, Y, N) :- X1≥1, Y1≥X1, X1≤N,

X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
31. new3(X, Y, N) :- Y≥1, N>0, X≥N, X>Y.

Again, as after the removal of the interpreter, in this final program
the presence of a constrained fact for the predicatenew3 (see
clause 31), does not allow us to conclude thatP2 has an empty
least model, and hence the safety of our program.

Program Reversal
At this point the novel strategy we propose in this paper iterates the
specialization process by starting from the derived program P2,
and propagates the constraints of the error configuration (not those
of the initial configuration, as it has been done in our second
specialization above). We perform one more specialization, starting
from programP2rev obtained by reversing programP2 as we
now indicate (the general technique will be presented in thenext
section).

First, programP2 can be viewed as a program of the form:
s1. unsafe :- a(U), r1(U).
s2. r1(U) :- trans(U, V), r1(V).
s3. r1(U) :- b(U).

if we define the predicatesa, trans, and b as follows (round
parentheses make a single argument out of a tuple of arguments):

s4.a((new2, X1, Y1, N)) :- N>0, X1=1, Y1=1.
s5.trans((new2, X, Y, N), (new3, X1, Y1, N)):-X=1, Y=1,N>1,

X1=2, Y1=3.
s6.trans((new3, X, Y, N), (new3, X1, Y1, N)):-X1≥1, Y1≥X1,

X1≤N, X1=X+1, Y1=X1+Y.
s7.b((new3, X, Y, N)) :- Y≥1, N>0, X≥N, X>Y.

Indeed,P2 can be obtained from s1–s7 by (i) unfolding clauses s1–
s3 with respect toa(U), trans(U, V), andb(U), and then (ii) rewrit-
ing the atoms of the formr1((new2, X, Y, N)) andr1((new3, X, Y, N))
asnew2(X, Y, N) andnew3(X, Y, N), respectively. (The occurrences
of the predicate symbolsnew2 andnew3 in the arguments ofr1
should be considered as individual constants.)

Then, the reversed programP2rev is given by the following
clauses:

r1. unsafe :- b(U), r2(U).
r2. r2(V) :- trans(U, V), r2(U).
r3. r2(U) :- a(U).

together with clauses s4–s7. For our proof of program safety, the
correctness of this program reversal which produces program P2rev

from programP2, is established by the fact thatunsafe ∈ M(P2)
iff unsafe ∈ M(P2rev).

The idea behind program reversal is best understood by consid-
ering the reachability relation in the (possibly infinite) transition
graph whose transitions are defined by the (instances of) clauses s5
and s6. ProgramP2 checks the reachability of a configurationc2
satisfyingb from a configurationc1 satisfyinga, by moving for-
ward from c1 to c2. ProgramP2rev checks the reachability ofc2
from c1, by moving backward from c2 to c1. Thus, in the case
wherea andb are predicates that characterize the initial and final
configurations, respectively, the reversal transformation derives a
program that checks the reachability of an error configuration from
an initial configuration by movingbackwardfrom the error config-
uration. In particular, in the body of the clause forunsafe in P2rev

the constraintb(U) contains, among others, the constraintX>Y
characterizing the error configuration and, by specializing P2rev,
we will propagate the constraints of the error configuration.

Third Specialization: Propagation of the constraints of the
error configuration
Let us then specialize programP2rev. We start from the clauses
r1–r3 and s4–s7. We unfold the clause forunsafe (clause r1) with
respect to the leftmost atomb(U) and we get:

32. unsafe :- Y≥1, N>0, X≥N, X>Y, r2((new3, X, Y, N)).

In order to fold clause 32 we introduce the definition:

33. new4(X, Y, N) :- Y≥1, N>0, X≥N, X>Y, r2((new3, X, Y, N)).

We fold clause 32, thereby getting:

32.f unsafe :- Y≥1, N>0, X≥N, X>Y, new4(X, Y, N).

Then we unfold the last definition we have introduced (clause33)
and we get:

34. new4(X, Y, N) :- Y≥1, N>0, X≥N, X>Y, a((new3, X, Y, N)).
35. new4(X1, Y1, N) :- Y1≥1, N>0, X1≥N, X1>Y1,

trans(U, (new3, X1, Y1, N)), r2(U).

By unfolding, clause 34 is deleted because the head of clauses4 is
not unifiable witha(new3, X, Y, N), and by unfolding clause 35 with
respect totrans(U, (new3, X1, Y1, N)) we get two clauses each of
which has an unsatisfiable constraint in its body. Thus, we are left
with clause 32.f only. Since clause 32.f is not a constrainedfact, its
least model is empty, and thusunsafe does not hold and we may
conclude our program verification by stating that the given program
is safe with respect toϕinit andϕerror .

Thus, in this example we have seen that by iterating the spe-
cializations which propagate the constraints occurring inthe initial
configuration and in the error configuration, we have been able to
show safety of the given program. It can be shown that, if we per-
form our specializations by taking into account only the constraints
of the initial configurationor only the constraints of the error con-
figuration, it isnotpossible to show program safety in our example.
Thus, as advocated in this paper, if we perform a sequence of pro-
gram specializations, we may gain an extra power when we haveto
prove program properties. This is confirmed by the experiments we
have performed on various examples taken from the literature. We
will report on those experiments in Section 6.

In the next section we will formally present our method for
iterated specialization, where the propagation of the constraints
of the initial and the error configurations can be alternatedin any
order.

5. Iterated Specialization
The strategy for iterated specialization we propose in thispaper for
directing the specialization steps, is depicted in Figure 1.

Input: A CLP programI encoding an unsafety triple.
Output: ProgramIsp such thatunsafe ∈ M(I) iff unsafe ∈
M(Isp).

SpecializeRemove(I, Isp);
while there exists a clause inIsp of the form:unsafe :- G, where
G is not the empty goaldo

eitherIrev :=Isp or Reverse(Isp, Irev);
SpecializeProp(Irev, Isp);

end-while

Figure 1. The Iterated Specialization strategy.

The Iterated Specialization strategy takes as input the CLPpro-
gram I which encodes an unsafety triple as shown is Section 3.
Thus, given the unsafety triple{{ϕinit}} P {{ϕerror}}, programI
is made out of: (i) the CLP facts associated with the Core CIL
program fragmentP , (ii) the clauses for the interpretertr that
encodes the transition relation=⇒, (iii) the clauses for the pred-
icatesunsafe andreach (see clauses 5–7 of Section 3), (iv) the
clauses forinitConf anderrorConf encoding the formulasϕinit

andϕerror , respectively.
The input programI is specialized by applying the procedure

SpecializeRemovewhich implements the removal of the interpreter as
illustrated in the example of Section 4. As shown in that example,
SpecializeRemoveunfolds away the relationtr and introduces new
predicate definitions corresponding to (some of the) program points
of the original Core CIL program.

Then the strategy iterates the two proceduresReverse(which
may be skipped) andSpecializeProp and, if it terminates, it derives
a specialized program which either contains the factunsafe or
contains no clauses with headunsafe. In the former case the
unsafety property encoded byI holds and the given Core CIL
program is unsafe, while in the latter case the unsafety property
does not hold and the given Core CIL program is safe.

The Specialize Procedure

TheSpecializeRemoveandSpecializeProp procedures are two specific
versions of the genericSpecializeprocedure presented in Figure 2.

Assume that the programI taken as input by theSpecialize
procedure containsj≥1 clauses defining the predicateunsafe:

unsafe :- c1(X), p1(X), . . . , unsafe :- cj(X), pj(X)

where c1(X),...,cj(X) are either atoms or constraints, and
p1(X),...,pj(X) are atoms. For instance, whenI is the initial

version of the interpreter for the subset of CIL considered in this
paper, we have thatj is 1, c1(X) is initConf(X), andp1(X) is
reach(X).

The Specializeprocedure modifies the initial programI by
propagating the information encoded byc1(X),...,cj(X), which
characterize the initial or the error configurations, depending on the
number of applications of theReverseprocedure. In particular, by
unfolding we may be able to discover thatunsafe has a successful
derivation, and hence the given Core CIL program fragment is
unsafe. Alternatively, by unfolding we may add constraintsthat are
inconsistent with the ones occurring in the constrained facts, and
by folding we may derive mutually recursive predicates, andhence
these predicates will have no constrained facts and we infersafety.

TheSpecializeprocedure makes use of two functions:Unf and
Gen, for controlling unfolding and generalization, respectively.

Given a clauseC of the form H :- c, L, A, R, whereH and A
are atoms,c is a constraint, andL and R are (possibly empty)
conjunctions of atoms, let{Ki :- ci,Bi | i = 1, . . . , m} be the
set of the (renamed apart) clauses in programI such that, for
i = 1, . . . , m, A is unifiable withKi via the most general unifierϑi.
We define the following function:

Unf(C, A) = {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . , m}

Each clause inUnf(C, A) is said to be derived byunfolding C
w.r.t. A. In order to perform unfolding during specialization, we
assume that atoms occurring in bodies of clauses are annotated as
eitherunfoldableor not unfoldable. This annotation is based on an
analysis of programI which ensures that any sequence of clauses
constructed by unfolding w.r.t. unfoldable atoms is finite.We refer
to [23] for a survey of techniques for controlling unfoldingthat
guarantee this finiteness property.

TheSpecializeprocedure makes use of the functionGen, called
generalization operatorfor introducing new predicate definitions.
Given a clauseE: newp(X) :- e(X,X1), p(X1) and the setDefsof
clauses that define the new predicates introduced up to a given point
by the specialization algorithm,Gen(E, Defs) returns a clauseG:
newr(X) :- g(X), p(X) such that: (i)newr is a new predicate
symbol, and (ii)e(X, X1) ⊑ g(X1), where⊑ denotesentailmentbe-
tween constraints. Then,E is foldedby usingG, thereby deriving
the new clausenewp(X) :- e(X,X1), newr(X1). By the correct-
ness of the folding rule this transformation step preservesequiva-
lence with respect to the least model semantics. Indeed,newr(X1)
is equivalent to the conjunctiong(X1),p(X1) by definition and the
conjunctione(X,X1),g(X1) is equivalent toe(X,X1).

The generalization operator used in theSpecializeRemove pro-
cedure returns a clauseG: newr(X) :-p(X) (that is, g(X) is
the constrainttrue). The generalization operators used in the
SpecializeProp procedure is based onwidening, convex hull, and
well-quasi orderingsrelations which have been introduced for an-
alyzing and specializing constraint logic programs [8, 12,27]. For
lack of space we do not present here the definitions of the general-
ization operators, and for more details the reader may referto [12],
where it is also shown that these operators guarantee that during
specialization only a finite number of new predicates is introduced.

In the Specializeprocedure we also use the following notions.
A clause of the formH :- c, B is subsumedby the constrained fact
H :- d if c⊑d. We say that a predicatep in a programP isuselessif
for all predicatesq such thatp depends onq there is no constrained
fact for q in P , where thedependency relationbetween predicates
is defined as usual.

Termination and Correctness of Specialization

The correctness of theSpecializeprocedure with respect to the
least model semantics directly follows from the correctness of the
transformation rules [10].

Input: ProgramI .
Output: ProgramIsp such thatunsafe ∈ M(I) iff unsafe ∈
M(Isp).

INITIALIZATION :
Isp := ∅;
InCls := {unsafe:- c1(X),p1(X), . . . , unsafe:- cj(X),pj(X)};
Defs:= ∅;

while in InCls there is a clauseC which is not a constrained factdo

UNFOLDING:

SpC := Unf(C,A), whereA is the leftmost atom in the body
of C;

while in SpCthere is a clauseD whose body contains an occur-
rence of a unfoldable atomA do
SpC:= (SpC− {D}) ∪ Unf(D, A)

end-while;

CLAUSE REMOVAL :
while in SpCthere are two distinct clausesE andF such thatE

subsumesF or there is a clauseF whose body contains an
unsatisfiable constraintdo
SpC:= SpC− {F}

end-while;

DEFINITION-INTRODUCTION& FOLDING:
while in SpCthere is a clauseE of the form:

H :- e(X,X1),p(X1)
whereH is eitherunsafe or an atom of the formnewp(X), and
e(X,X1) is a constraintdo

if in Defsthere is a clauseD of the form:
newq(X) :- c(X), p(X)

wherec(X) is a constraint such thate(X,X1) ⊑ c(X1)

then SpC:= (SpC− {E})∪ {H :- e(X,X1), newq(X1)};

else let Gen(E, Defs) benewr(X) :- g(X), p(X)
where: (i)newr is a predicate symbol not occurring
in I ∪ Defs, and (ii)g(X) is a constraint such that
e(X,X1)⊑g(X1);
Defs:= Defs∪ {Gen(E, Defs)};
InCls := InCls∪ {Gen(E, Defs)};
SpC:= (SpC− {E}) ∪ {H :- e(X,X1), newr(X1)}

end-while;

InCls := InCls− {C};
Isp := Isp∪ SpC;

end-while;

REMOVAL OF USELESSCLAUSES:
Remove fromIsp all clauses whose head predicate is useless.

Figure 2. TheSpecializeProcedure.

As mentioned above, the termination of the unfolding phase of
theSpecializeprocedure is guaranteed by a suitable annotation of
the atoms in the body of the clauses. Moreover, whenGenis defined
as one of the generalization operators presented in [12], afinite set
of new predicates are introduced during theSpecializeprocedure,
and hence the procedure terminates.

Thus, we have the following result.
THEOREM2. (Termination and Correctness of Specialization)
(i) The Specialize procedure terminates.(ii) Let program Isp be the
output of the Specialize procedure applied on the input program I .
Thenunsafe ∈ M(I) iff unsafe ∈ M(Isp).

The Reverse Transformation

The Reverseprocedure implements a transformation that reverses
the flow of computation: the top-down evaluation (that is, from the

head to the body of a clause) of the transformed program corre-
sponds to the bottom-up evaluation (that is, from the body tothe
head) of the initial program. In particular, if theReverseproce-
dure is applied to a program that checks the reachability of the er-
ror configurations from the initial configurations by exploring the
transition graph forward from the initial configurations, then the
transformed program checks reachability by exploring the transi-
tion graph backward from error configurations. Vice versa, from a
program that checks reachability by a backward explorationof the
transition graph,Reversederives a program that checks reachability
by a forward exploration of the transition graph.

The output of theSpecializeprocedure, and hence the input of
theReverseprocedure, is a programIsp of the form:

unsafe :- a1(X), newp1(X).
· · ·

unsafe :- ak(X), newpk(X).
newq1(X) :- t1(X,X1), newr1(X1).

· · ·
newqm(X) :- tm(X,X1), newrm(X1).
news1(X) :- b1(X).

· · ·
newsn(X) :- bn(X).

where: (i) a1(X), . . . , ak(X), t1(X, X1), . . . , tm(X, X1), b1(X), . . . ,
bn(X) are constraints, and (ii) the (possibly non-distinct) predicate
symbolsnewpi’s, newqi’s, newri’s, andnewsi’s are the new predi-
cate symbols introduced by the generalization operatorGen.

TheReverseprocedure transforms programIsp in two steps as
follows.
Step1. ProgramIsp is transformed into a programI ′

sp of the fol-
lowing form:

unsafe :- a(U), r1(U).
r1(U) :- trans(U,V), r1(V).
r1(U) :- b(U).
a((newp1,X)) :- a1(X).

· · ·
a((newpk,X)) :- ak(X).
trans((newq1,X),(newr1,X1)) :- t1(X,X1).

· · ·
trans((newqm,X),(newrm,X1)) :- tm(X,X1).
b((news1,X)) :- b1(X).

· · ·
b((newsn,X)) :- bn(X).

The correctness of the transformation fromIsp to I ′

sp relies on the
fact that by unfolding the clauses ofI ′

sp w.r.t. a(U), trans(U, V),
andb(U), and then rewriting all atoms of the formr1((newpred, Z))
into newpred(Z), we get backIsp.
Step2. ProgramI ′

sp is transformed into a programIrev by replacing
the first three clauses ofI ′

sp by the following ones:
unsafe :- b(U), r2(U).
r2(V) :- trans(U,V), r2(U).
r2(U) :- a(U).

The correctness of this transformation can be proved as indicated
in [3], and thus we have the following result.

THEOREM 3. Let Irev be the program derived from programIsp

by the Reverse procedure. Thenunsafe ∈ M(Isp) iff unsafe ∈
M(Irev).

Finally, by using Theorems 1, 2, and 3, we get the following
soundness result.

THEOREM 4. (Soundness of the Software Model Checking method)
LetI be the CLP encoding of the unsafety triple{{ϕinit}}P {{ϕerror}}.
If the Iterated Specialization strategy terminates for theinput pro-
gram I , and Isp is the output of the strategy, thenP is safe with
respect toϕinit andϕerror iff unsafe /∈ Isp.

6. Experimental Evaluation
We have performed an experimental evaluation of our software
model checking method on benchmark programs taken from the
literature. The results of our experiments show that our approach is
competitive with state-of-the-art software model checkers.

Programssubstringand tracerP are taken from [21] and [17],
respectively, while programsre1 andsingleLoopare taken from [9].
ProgramselectSortis an encoding of the selection sort algorithm
where references to arrays have been replaced by using uninitial-
ized variables to perform array bounds checking. The other pro-
grams are taken from the benchmark set of DAGGER [14]. The
source code of all the programs we have considered is available at
http://map.uniroma2.it/smc/.

Our software model checker consists of three modules.
(i) A front-end module, based on CIL [26], which translates
a C program together with the initial and error configurations, into
a set of CLP facts. These facts, together with the clauses forthe
predicatestr, unsafe, and reach (and the predicates they de-
pend upon), are used during the first program specializationwhich
removes the interpreter.
(ii) A module for CLP program transformation which is used for
removing the interpreter and applying the iterated specialization
strategy. This module is implemented using the MAP system [24],
which is a tool for transforming constraint logic programs written
in SICStus Prolog. The MAP system operates on constraints over
the rational numbers by using theclpq library.
(iii) A module for inspecting the CLP programs obtained by spe-
cialization and checking whether they contain the factunsafe (in
which case the given C programs are proved unsafe) or they contain
no clauses with headunsafe (in which case the given C program
are proved safe).

We have also tested the following three state-of-the-art CLP-
based software model checkers for C programs: (i) ARMC [29],
(ii) HSF(C) [13], and (iii) TRACER [18]. ARMC and HSF(C)
are based on the Counter-Example Guided Abstraction Refinement
technique (CEGAR) [4, 20, 31], while TRACER uses a technique
based on approximated preconditions and approximated postcondi-
tions. We have compared the performance of those model checkers
on our benchmark programs with that of our model checker.

Table 1 reports the results of our experimental evaluation,which
has been performed on an Intel Core Duo E7300 2.66Ghz processor
with 4GB of memory under the GNU Linux operating system.

In the columns labelled with MAP(a) and MAP(b) we have re-
ported the time needed for the verification process using theMAP
system according to the method for iterated specializationpre-
sented in this paper. That time includes the time needed for remov-
ing the interpreter, which ranges from some tenths of milliseconds
to eight or nine seconds, for the most complex programs.

We have used the following sequences of program transforma-
tions (the exponent indicates the number of times the associated
subsequence has been applied):
for MAP(a):

SpecializeRemove; (Reverse; SpecializeProp)n, and
for MAP(b):

SpecializeRemove; SpecializeProp; (Reverse; SpecializeProp)n−1.
Thus, after the removal of the interpreter, the firstSpecializeProp of
MAP(a) propagates the constraints of theerror configuration(and
this corresponds to abackwardmove along the transition graph as-
sociated with the reachability relation), while the firstSpecializeProp

of MAP(b) propagates the constraints of theinitial configuration
(and this corresponds to aforwardmove along the transition graph).

In the subcolumns labelled withn we have reported the total
number of program specializations needed, after the removal of
the interpreter, before a successful verification or beforetimeout.

Program to be verified
MAP(a) MAP(b)

ARMC HSF(C)
TRACER

n n SPost WPre

barber 3 137.99 2 69.74 577.06 13.88 12.86 3.86
barber1 1 13.71 2 26.43 414.01 0.59 7.00 5.17
berkeleyNat 3 1.88 2 1.51 11.48 0.29 - 1.33
berkeley 1 1.57 2 1.53 11.28 0.26 - 1.00
efm 3 6.48 2 4.04 31.17 0.51 2.43 2.68
ex1 1 0.03 2 0.40 1.69 0.22 - 1.39
f1a 2 0.17 1 0.07 - 0.21 - 1.97
heapSort 1 8.16 2 13.51 39.66 0.35 - -
heapSort1 1 3.01 2 9.58 20.55 0.26 - -
interp 1 0.12 2 0.28 11.41 0.19 - 2.92
lifnat 3 23.13 2 20.20 228.96 7.19 - 72.12
lifo 1 20.56 2 15.59 126.54 0.54 - 7.45
p2 1 14.75 1 - - 0.77 - -
re1 1 0.23 1 0.08 - 0.19 - -
seesaw 1 2.09 2 3.04 - 0.27 - 34.16
selectSort 3 1.96 6 3.26 24.97 0.25 - -
singleLoop 3 0.35 2 0.28 - - - 56.57
substring 2 0.16 1 0.20 472.32 40.51 - -
swim 3 116.56 2 40.13 - 2.94 - 15.13
tracerP 1 0.01 1 0.07 - - 1.04 1.03

number of verified programs 20 (9) 19 (15) 13 18 4 14
total time 353.29 209.94 1971.10 69.42 23.33 206.78

Table 1. Time (in seconds) required for program verification. ‘-’ means ‘unable to verify within 10 minutes’. The subcolumns labelled byn
report the number ofSpecializeProp performed by the MAP system, that is, the number of specializations, after the removal of the interpreter.

The generalizations performed by the MAP system are done by
applying the widening and the convex hull operators.

In the remaining columns we have reported the results obtained
by ARMC, HSF(C), and TRACER using the strongest postcondi-
tion (SPost) and the weakest precondition (WPre) options, respec-
tively. The last two lines report the number of programs which have
been successfully verified and the total time needed for verification.
For the MAP system we also report, between parentheses, the num-
ber of programs which require more than one iteration (n > 1) to
be successfully verified. This number measures the effectiveness of
performing additional iterations of program specialization.

The experimental results show that our approach of iterating
program specialization, is indeed effective and determines an in-
crease of the number of successful verifications. Sometimesthe in-
crease is substantial.

On our set of examples, the MAP(a) system is able to verify 20
programs out of 20. It is followed by MAP(b) (19), HSF(C) (18),
TRACER using weakest precondition (14), ARMC (13), and
TRACER using strongest postcondition (4).

We observe that some of the examples are verified by the MAP
system using the transformation sequence MAP(a) withn = 1,
that is, by propagating the constraints of the error configuration
only. The examplesre1 andtracerPcan be verified by MAP(a) or
MAP(b) with n = 1, that is, by a single propagation of the con-
straints of either the error configuration or the initial configuration,
respectively.

Thus, in some of our benchmark programs the invariants which
are useful for their proofs, can be discovered by asingle propaga-
tion of the constraints of either the error configuration or the ini-
tial configuration. However, if we perform a preliminary additional
specialization by propagating the constraints of the otherconfig-

uration (that is, the initial configuration or the final configuration,
respectively), then we are still able to prove the property of interest
by requiring very little extra time. Actullay, sometimes (see, for in-
stance, thelifo andsubstringprograms) this additional preliminary
specialization can even reduce the total time because it prunes the
search space.

Looking at Table 1, we may conclude that the verification times
taken by our MAP-based software model checker is generally com-
parable with that of the other tools, and it is not much greater than
that of the fastest tools.

7. Related Work and Conclusions
The software model checking technique proposed in this paper is
an extension of the technique for the verification of simple imper-
ative programs presented in [9]. The main novelties introduced in
this work are the following: (i) we consider CIL programs (that
is, C programs transformed by using the CIL tool [26]), and (ii) we
define a general verification framework in which specialization of
constraint logic programs is repeatedly applied with the objective
of making a more effective use of the information dispersed through
the program to be verified (typically, the initial configurations and
the error configurations).

The use of constraint logic programming and program special-
ization for the verification of properties of imperative programs is
not novel. It has also been investigated, for instance, in [28]. In that
paper a CLP interpreter for the operational semantics of a simple
imperative language is specialized with respect to the input pro-
gram to be verified. Then, a static analyser for CLP programs is ap-
plied to the residual program for computing ‘invariants’ ofthe input
imperative program, which are used in the proof of the properties
of interest. Unlike [28], our verification approach does notrequire

any static analyzer and, instead, we discover program invariants
during the specialization process by means of suitable generaliza-
tion operators. They are defined in terms of operators and relations
on constraints such as widening, convex-hull, and well-quasi or-
ders [12]. As in [28], we also use program specialization to per-
form the removal of the interpreter, but in addition, we repeatedly
use specialization for propagating the information about the initial
configurations and the error configurations.

A popular technique for program verification is the so called
Counter-Example Guided Abstraction Refinement (CEGAR) [4,
20, 31], which is used by many software model checkers such as
BLAST [2], DAGGER [14], and SLAM [1]. In the CEGAR tech-
nique, given a programP and a safety property to be verified, one
automatically constructs an abstract model ofP which is used to
check whether or not an abstract error configuration is reachable
form an abstract initial configuration. If no abstract errorconfig-
uration can be reached, thenP satisfies the given safety property,
otherwise a counterexample, that is, a sequence of configurations
leading to an abstract error configuration, is generated andthen ana-
lyzed. If the counterexample corresponds to a concrete computation
of P , then the program is proved unsafe, otherwise the abstraction
needs to be refined because it was too coarse, and a new cycle of
the verification process is performed using that refined abstraction
in the hope of a successful proof.

In the field of static program analysis the idea of performing
backward and forward semantic analyses has been proposed in[6].
These analyses have been combined, for instance, in [7], to devise
a fixpoint-guided abstraction refinement algorithm which has been
proved to be at least as powerful as the CEGAR algorithm where
the refinement is performed by applying a backward analysis.An
enhanced version of that algorithm, which improves the abstract
state space exploration and makes use of disjunctive abstract do-
main, has been proposed in [30].

Our approach can be regarded as complementary to those based
on CEGAR. Indeed, we begin by making no abstraction at all, and
if the specialization process is deemed to diverge, then we perform
some generalization steps which plays a role similar to thatof
abstraction. (Note, however, that program specializationpreserves
program equivalence.) There are various generalization operators
that we can apply for that purpose and by varying those operators
we can tune the specialization process in the hope of making it
more effective for the proofs of the properties of interest.

Our preliminary experimental results show that our approach is
viable and competitive with state-of-the-art software model check-
ers, some of which follow the CEGAR approach.

As a future work, we would like to address the issue of the de-
sign of suitable heuristics that should guide the choice of the gen-
eralization operators in each iteration of the specialization process.
It will also be important to design suitable strategies for controlling
the number of clauses of the specialized programs. Indeed, if that
number is too high, then verification becomes inefficient.

8. Acknowledgments
We thank the anonymous referees for their constructive comments.

References
[1] T. Ball and V. Levin and S. K. Rajamani. A decade of software model

checking with SLAM. Commun. ACM, vol. 54, no. 7, 68–76, 2011.
[2] D. Beyer, T.A. Henzinger, R. Jhala and R. Majumdar. The software

model checker Blast: Applications to software engineering, Int. J.
Softw. Tools Technol. Transf., vol. 9, no. 5, 505–525. Springer, 2007.

[3] D. R. Brough and C. J. Hogger. Grammar-Related Transformations of
Logic Programs.New Generation Computing, 9 (1), 115–134, 1991.

[4] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counter-
example-Guided Abstraction Refinement. In:Proc. CAV’00, 154–169.
Springer, 2000.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction of approxima-
tion of fixpoints. In:Proc. POPL’77, 238–252. ACM Press, 1977.

[6] P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In:Proc. POPL’79, 269–282. ACM Press, 1979.

[7] P. Cousot, R. Ganty, and J.-F. Raskin. Fixpoint-Guided Abstraction
Refinements. In:Proc. SAS’07, LNCS 4634, 333–348. Springer, 2007.

[8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In:Proc. POPL’78, 84–96. ACM Press,
1978.

[9] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Branching
Preserving Specialization for Software Model Checking. In: Prelim-
inary Proc. LOPSTR’12, E. Albert, ed., Report CW 625, Katholieke
Universiteit Leuven, Belgium, 28–44, 2012.

[10] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theo-
retical Computer Science, 166:101–146, 1996.

[11] F. Fioravanti, A. Pettorossi, and M. Proietti, Automated strategies for
specializing constraint logic programs. In:Proc. LOPSTR’00, LNCS
2042, 125–146. Springer, 2001.

[12] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization
Strategies for the Verification of Infinite State Systems.Theory and
Practice of Logic Programming, 2012.

[13] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, andA. Ry-
balchenko. HSF(C): A Software Verifier based on Horn Clauses. In:
Proc. TACAS’12. To appear, 2012.

[14] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani.
Automatically Refining Abstract Interpretations. In:Proc. TACAS’08,
LNCS 4963, 443–458. Springer, 2008.

[15] N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verificationof real-
time systems using linear relation analysis.Formal Methods in System
Design, 11:157–185, 1997.

[16] J. Jaffar and M. Maher. Constraint logic programming: Asurvey.
Journal of Logic Programming, 19/20:503–581, 1994.

[17] J. Jaffar, J. A. Navas, and A. E. Santosa. Symbolic execution for
verification. Computing Research Repository, 2011.

[18] J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A Symbolic
Execution Tool for Verification, 2012.

[19] J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP
traversal. In:Proc. CP’09, LNCS 5732, 454–469. Springer, 2009.

[20] R. Jhala and R. Majumdar. Software model checking.ACM Comput-
ing Surveys, 41(4):21:1–21:54, 2009.

[21] R. Jhala and K. L. McMillan. A Practical and Complete Approach
to Predicate Refinement. In:Proc. TACAS’06, LNCS 3920, 459–473.
Springer, 2006.

[22] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

[23] M. Leuschel and M. Bruynooghe. Logic program specialisation
through partial deduction: Control issues.Theory and Practice of
Logic Programming, 2(4&5):461–515, 2002.

[24] The MAP transformation system.www.iasi.cnr.it/∼proietti
/system.html

[25] S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking
takes off.Commun. ACM, 53(2):58–64, 2010.

[26] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In Proc. CC’02, LNCS 2304, 209–265. Springer, 2002.

[27] J. C. Peralta, J. P. Gallagher. Convex Hull Abstractions in Specializa-
tion of CLP Programs. In:Proc. LOPSTR’02, LNCS 2664, 90–108.
Springer, 2003.

[28] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative
Programs through Analysis of Constraint Logic Programs. In: Proc.
SAS’98, LNCS 1503, 246–261. Springer, 1998.

[29] A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for
Software Model Checking with Abstraction Refinement. In:Proc.
PADL’07, LNCS 4354, 245–259. Springer, 2007.

[30] F. Ranzato, O. Rossi-Doria, and F. Tapparo. A forward-backward
abstraction refinement algorithm. InProc. VMCAI’08, LNCS 4905,
248–262. Springer, 2008.

[31] H. Saı̈di. Model checking guided abstraction and analysis. InProc.
SAS’00, LNCS 1824, 377–396. Springer, 2000.

