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Abstract

We present a method for verifying properties of imperative- p
grams by using techniques based on the specialization sfreomt
logic programs (CLP). We consider a class of C programs with
integer variables and we focus our attention on safety pti@se
stating that no error configuration can be reached from thialin
configurations. We encode the interpreter of the languageCisP

Alberto Pettorossi

University Rome Tor Vergata,
Rome, Italy

pettorossi@disp.uniroma?2.it

Maurizio Proietti

CNR-IASI,
Rome, ltaly

proietti®@iasi.cnr.it

1. Introduction

Formal verification of software products is gaining more arate
attention as a promising methodology for increasing thial#ity
and reducing the cost of software production (see [25] foneso
case studies). In particulapftware model checkirftas the goal of
performing formal software verification by combining andexnd-
ing techniques developed in the fields of static programyaisl

programI, and we also encode the safety property to be verified as and model checking (a recent survey is presented in [20]).

the negation of a predicatmsafedefined in/. Then, we specialize
the CLP programl with respect to the given C program and the
given initial and error configurations, with the objectiviederiving

a new CLP progranisp which either contains the facinsafe(and

in this case the C program is proved unsafe) or contains nuseta
with headunsafe(and in this case the C program is proved safe).
If Isp does not enjoy this property we iterate the specialization p
cess with the objective of deriving a CLP program where we can
prove unsafety or safety. During the various specializative may
apply different strategies for propagating informatioith@r prop-
agating forward from an initial configuration, or propagatback-
ward from an error configuration) and different operatotsfsas
widening and convex hull operators) for generalizing prat# def-
initions. Due to the undecidability of program safety, therated
specialization process may not terminate. By an experiahentl-
uation carried out on a set of examples taken from the liteeatve
show that our method is competitive with respect to statthefart
software model checkers.

Categoriesand Subject Descriptors  1.2.2 [Artificial Intelligencéd:
Automatic Programming—Program transformation, Program v
ification; F.3.1 Logic and Meaning of ProgranisSemantics of
Programming Languages—Partial evaluation, Program aisaly
F.3.2 LLogic and Meaning of ProgranisSpecifying and Veri-
fying and Reasoning about Programs—Mechanical verifinatio
F.4.1 Mathematical Logic and Formal Languagedathemati-
cal Logic—Logic and constraint programming; D.23oftware
Engineering: Software/Program Verification—Formal methods,
Model checking

General Terms Languages, Theory, Verification

Keywords Software model checking, constraint logic program-
ming, program specialization
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In this paper we consider programs acting on integer vagabl
which belong to a subset of CIL, the C Intermediate Languagg [
calledCore CIL Then we address the problem of verifyisgfety
properties, stating that when executing a program, an arcai-
figuration cannot be reached from any initial configuration.

Since safety is an undecidable problem for programs that act
on integer numbers, many program analysis techniquesyvafn
proaches based aabstraction[5], by which the integer data do-
main is mapped to an abstract domain so that reachabilityeis p
served, that is, if a concrete configuration is reachabés the cor-
responding abstract configuration is reachable. By a deitdinice
of the abstract domain one can design reachability algostthat
terminate and, whenever they prove that an abstract uneafegy¢
uration is not reachable from an abstract initial configoratthen
the program is proved to be safe (see [20] for a general astra
reachability algorithm). Notable abstractions are thoaseld on
convex polyhedra, that is, conjunctions of linear inegiedi(also
calledconstraintshere).

Constraint Logic Programming (CLP) is a very suitable frame
work for the analysis of imperative programs, because ivides
a very convenient way of representing symbolic program @xec
tions and also, by using constraints, program abstrac{sees for
instance, [17, 19, 28, 29]). In the context of CLP-based m@naog
analysis, program specialization has been proposed asrasifwa
translating an imperative program to CLP [28]. By followitige
approach presented in [28], the semantics of an imperatine |
guage is defined by means of a CLP program which is the inter-
preter] of that language. Then, the interprefes specialized with
respect to the input prograi® whose safety property should be
checked. The result of this specialization is a CLP progfgrand,
since program specialization preserves semantic eqoa]eor
proving properties of the imperative prograf) we can analyze
the CLP prograns, by applying the above mentioned techniques
based on polyhedral abstractions.

It has also been pointed out that program specializatiorbean
used as a technique for software model checking on its owtr{9]
deed, by specializinds, with respect to the constraints character-
izing the input values oP (that is, the precondition aP), in some
cases one can derive a new progrEgwhose least model/ (Ig,)
can be computed in finite time becauggcan be represented by a



finite set of constraints. Thus, in these cases it is postiblerify
whether or notP is safe by simply inspecting that model.

However, due to the undecidability of safety, it is impossib
to devise a specialization technique which always terremaind
produces a specialized program whose least model can bayfinit
computed.

In order to mitigate this limitation, in this paper we propas
method based on the repeated application of program sjzeeial
tions, called heréerated specialization

By repeated program specializations we can produce a seguen
of programs of the fornd, I, Islp, Igp, .... Each program special-
ization step terminates and has the effect of modifying theture
of the program and explicitly adding new constraints thatade
invariants of the computation. Thus, the effect of iteragpdcial-
ization is the propagation of these constraints from oneaim
version to the next, and iterated specialization termmatben a
program with finite least model is generated. In general, axeh
no guarantee that iterated specialization terminates.

The paper is organized as follows.

In Section 2 we describe the syntax of the Core CIL language
and the CLP interpreter which defines its operational seicgnh
Section 3 we specify the problem of proving program safety we
want to address. In Section 4 we outline our software modstich
ing approach to establish program safety by presenting plsim
example. In Section 5 we describe the overall strategy odtieel
specialization, and also some specific strategies for paifig sin-

if-else andgoto commands. We assume that every label occurs
in every program at most once. The sequefigelef” of function
definitions is usually not empty and it contains the definitid the
functionmain.

Now we give the semantics of Core CIL. For that purpose let us
firstintroduce the following auxiliary functions and dateustures.
We also assume that: (i) every variable occurrence is egludal
or local to a function definition, (ii) in every given progrdor ev-
ery variable occurrence, one may statically determine whether
is a global variable or a local variable, and (iii) there idyoone
level of locality (that is, there are no blocks and thus, netee
levels of locality).

A global environmen$: Vars — Z is a function which maps
global variables to their integer values. Likewisdpeal environ-
mento: Vars — Z maps function parameters and local variables to
their integer values.

An activation frameis a 3-tuple(¢,y, o), where: (i)¢ is the
label where to jump after returning from a function call) fjiis the
variable where to store the value returned by a function ealdl
(i) o is the local environment to be initialized when making a call
binding the function parameters and local variables.

A configurationis a 3-tuple of the forn{c, 6, 7)) where: (i)c is
a labelled command, (i is a global environment, and (iii} is
a list of activation frames. We operate on the fisby the usual
head(hd) and tail(¢) functions and the right-associative construc-
tor cons(:). The empty list is denoted by. By update(f, z',v")

gle specialization steps. In Section 6 we report on somerexpe We denote the functiofi” such that ifz = =" then f(z) = v” else
ments we have performed by using a prototype implementation J/ (¢) = f(x). For any progran®’, for any label, (i) at(¢) denotes
based on the MAP transformation system [24]. We also compare the command inP with label/, and (i) nextla{¢) denotes the la-

the results we have obtained using the MAP system with thetees
we have obtained using state-of-the-art software modetkihe
systems such as ARMC [29], HSF(C) [13], and TRACER [18]. Fi-
nally, in Section 7 we discuss the related work and, in paldic
we compare our approach with other existing methods of soéw
model checking.

2. A CLP Interpreter for the Language CIL

We assume that the programs to be verified are written in asubs
of CIL, called Core CIL. Here is its syntax, where: Yiarsis a set
of variable identifiers, (ii}ds is a set of identifiers for types, and

(i) Z is the set of integers which denote the constants of the basic

types (such as the integer constants, the character cts)stm)

x,y,... € Vars (variable identifiers)

fy9,... € Function identifiers

l,¢1,... € Labels

id € lds (identifiers of types)

const € 7 (integer constants, character constants),
basic € Basic typesint, char, ...)

uop, bop € Unary and binary operators,(-, <=, ...)
prog = typedef™ decl” fundef™

typedef ::= typedef type id

decl = typeid | type id [const]

type = basic | id

fundef ::=type f (decl*) {decl* lab_cmd™}

lab_cmd ::= /:cmd

cmd = halt | x=exp | X=f(exp”)
| if (exp) (1 else {»
| gotol | returnexp
exp = const| X | uopexp

| expbopexp | (type)exp
For reasons of brevity, we will feel free to say ‘commandstead
of ‘labelled command’. The elements of a sequence denotethby
expression of the forma* or e™ will be separated by semicolons.

Note thatwhile commands can be replaced, as usual, by suitable

bel of the command irP which is writtenimmediately aftethe
command with labef. Given a function identifief, at(f) denotes
the first labelled command of the definition of the functifinFor
any expressiom, global environmen®, and local environment,
[e]do is the integer value of. We assume that the evaluation of
expressions has no side effects.

The operational semantics (that is, the interpreter) ofGbee
CIL language is given as a transition relaties> between config-
urations according to the following rulé’1-R5. Notice that no
rules are given for the commardhalt. Thus, no new configura-
tion is constructed when the command of the configuratioraatih
ishalt.

(R1). AssignmentLet hd(7) be (¢, y, o) andv be [e]do.

If = is a global variable:

(t:x=e,d,7) = (at(nextlab(?)), update (s, xz,v), T)

If z is a local variable:

(€:x=e,0,7)=(at(nextlab(¥)),d, (£, y,update(c,z,v)): tl(T))
Informally, an assignment updates either the global enwirent or
the local environment of the topmost activation frame.

(R2). Function call Lethd(7) be (¢, y, o). Let{z1,...,zs} and
{y1,...,yn} be the set of the formal parameters and the set of the
local variables, respectively, of the definition of the ftioo f.
(L:z=f(e1,....er),0,7) = {at(f), 9, (nextlakl),z,7):7)
wherez is a set of bindings of the form:

o= {<l‘1, [61]]60—>7 ) <xk7 [ekﬂ5g>7 <y17 n1>7 ey <yh7nh>}

for some valuesi, . .., n, in Z (indeed, when we declare the local
variables we do not initialize them). Note that since thaigalof
then;’s are left unspecified, this transition is nondeterministi

Informally, a function call creates a new activation frami¢hw
the label where to jump after returning from the call, theialale
where to store the returned value, and the new local envieotm
(R3).ReturnLetr be(¢,y,o):(¢", z,¢") : 7" andv be[e] do.

If 4 is a global variable:
(0:returne,§, 7) = (at(¢'), update(8,y,v), t1(T))



If y is a local variable:

(¢:returne, s, 7) = (at({"),d, (¢, z,update(c’,y,v)) : 7"")
Informally, a return command erases the topmost activdtanme
and updates either the global or the local environment ohtve
topmost activation frame.

(R4). Gota (¢: goto ', 5, 7) = (at({'),d,T)

(R5). If-then-elseLet hd(T) be (¢, y, o).

If [e]do = true:

{€:if (e) €1 else l2,0,7) = (at(€1),d,7T)

If [e]do = false:

(€: if (e) €1 else l2,0,7) = (at(l2),d,T)

Theinitial configurationis the 3-tuple (without loss of generality,

we assume that the functiaain has no arguments):

(Linit = zo=main(), Ginit, [])
where:

(1) init 1s a fresh new label such thatztlab (£ ) is a fresh new
label?,.;: whose associated commandig t (indeed, no com-
mand should be executed after the function calk=main()),

(i) zo is a fresh new global variable (whose type should comply
with those of the expressions in tlreturn commands of the
functionmain()), and

(i) d:ni is the initial global environment which is of the form:

{{z1,n1),...,{zr,nr)}, Wherezi, ..., z, are the global vari-
ables of the given program and, . . ., n, are some given val-
ues inZ.

Note that initially the list of activation frames is emptychthe first
activation frame is constructed when executing the inftiattion
call: zo =main(). That frame is of the form{¢j,q;, z0, &), wherez
is a local environment binding the local variables of therdgfin
of the functionmain().

The semantics we have given above can be extended to a large

subset of CIL which includes in particular array and streetypes.

Let us now recall some notions and terminology concerning

constraint logic programming. For more details the readay m
refer to [16]. If p1 andp, are linear polynomials whose variables
and coefficients are of typent, thenp: =p., p1 > p2, andp: > p»
areatomic constraintsA constraintis eithertrue, or false or an
atomic constraint, or aonjunctionof constraints. A CLP program
is a finite set of clauses of the forln- c,B, whereA is an atom,

c is a constraint, and is a (possibly empty) conjunction of atoms.

The clause\: - c is called aconstrained fact

The semantics of a CLP program is defined to be théeast
modelof P, denoted)M (P), which agrees with the standard inter-
pretation on the integers for the constraints.

The CLP interpreter for our Core CIL language is given by
the following clauses for the binary predicate which relates
old configurations to new configurations and defines the itians
relation—-.

1. tr(cf(cmd(L, asgn(X,E)),D, T), cf(cmd(L1,C),D1,T)) :-
loc_env(T,S), aeval(E,D,S,V), update(D, X, V,D1),
nextlab(L,L1), at(L1,C).

2.tr(cf(cmd(L, ite(E,L1,L2)),D, T), cf(cmd(L1,C),D, T)) : -
loc_env(T,S), beval(E,D,S), at(L1,C).

3.tr(cf(cmd(L, ite(E,L1,L2)),D, T), cf(cmd(L2,C),D, T)) : -
loc_env(T,S), beval(not(E),D,S), at(L2,C).

4.tr(cf(ecmd(L, goto(L1)),D, T), cf(cmd(L1,C),D, T)) : -
at(L1,C).

The termasgn(X,E) encodes the assignment to a global vari-

able of the formz = e. Similarly, the termsite(E,L1,L2) and

goto(L) encode the conditionaif (e) 1 else ¢2 and the jump
goto ¢, respectively. The termmd(L, C) encodes the commartd
with label L. The predicateloc_env extracts the local environ-
ment from the topmost activation frame in a configuratione Th

predicateaeval(E,D,S,V) computes the valug of the arith-
metic expressiorE in the global environmend and the local en-
vironments. Likewise the predicat®eval(E,D,S) holds if the
boolean expressidhis true in the global environmentand the lo-
cal environmens. The predicateipdate(D, X, V,D1) updates the
global environmenD, thereby constructing the new global envi-
ronmentD1, by binding the variabl& to the valuev. The predi-
cateat(L, C) binds toC the command with labdl. The predicate
nextlab(L,L1) binds toL1 the label of the command which is
written immediately after the command with lakel

We have listed the clauses for the cases of: (i) assignment to
global variables (clause 1), (inf-else (clauses 2 and 3), and
(iii) goto commands (clause 4), because they are the only cases of
interest in our examples below. The definitiontaffor the cases of
assignment to local variables, function call ardurn are similar.

Notice that the CLP clauses 1-4 for the predicatehave no
constraints in their bodies. However, constraints are usetie
definitions of the predicates:val andbeval.

3. The safety problem

In this paper we consider the problem of verifying thefetyof
program fragments. Then, safety of programs will be defimed i
terms of safety of program fragments. gkogram fragments a
(possibly empty) program followed by a non-empty sequerfce o
labelled commands. Thus,
progfragm ::= prog labcmd" (1)
The problem of verifying the safety of a program fragmexis the
problem of checking whether or not, starting from an initiahfig-
uration, the execution aP leads to a so called error configuration.
This problem is formalized by defining amsafety tripleof the
form: {init (21, - .., 2r) } P {@error (21, ..., 2-)}}, where:
r(i) P is a program fragment with global variables . . ., z,,
(i) @init(z1, ..., 2r) is adisjunctionof constraints that character-
izes the values of the global variables in the initial confegu

tions, and

(iii) werror(21,...,2r) is adisjunctionof constraints that charac-
terizes the values of the global variables in the error config
rations.

Without loss of generality, we assume that the last commérfd o
is ¢, :halt and no othehalt command occurs i .

We say that a program fragmeft is unsafewith respect to
a set of initial configurations satisfyingini: (21, ...,2») and a
set of error configurations satisfying.ror (21, - . ., 2-) Or Simply,
P is unsafewith respect topinir andgerror, if there exist global
environments,,;; andd;, such that:

(i) winit (dinit (21), - - ., Oinit (2)) holds and

(i) (€o:co,dinit,[]) =" (€n:halt,dp,[]) and

(iii) @error(0n(z1), -..,0n(2r)) holds,

where/ : ¢, is the first command in the sequence_tad"™ of
labelled commands at the right endBf(see(}) above).

A program fragment is said to tsafewith respect tap;,:;: and
Yerror 11f it IS NOt unsafe with respect t@;,;; andyerror -

We define the unsafety (and safety) of a progfahwith respect
to the formulasp;»:: andp...- as the unsafety (and safety, respec-
tively) of the program fragment obtained froRY by: (i) deleting
the functionmain(), and (ii) adding at the right end d?’ the se-
guence of labelled commands of the functiosin(), where the
commandreturn e has been replaced b4, : halt (note that,
without loss of generality, we may assume thaPinthere is a sin-
gle return command).

When ambiguity does not arise, we will feel free to say ‘pro-
gram’, instead of ‘program fragment’.

An unsafety triple can be encoded as a CLP program. We show
how to do this encoding through the following example. Thieex



sion to the general case is straightforward and will be @dittet
us consider the unsafety triple:
{Lpimt(x7y7n)} P {LPCTTGT(‘Tvyvn)} where
init(T,y,n)is x=0Ay=0
Pis lo:while (x<n) {z =2+1;y = z+y; };
{1 halt
Perror (T,y,n) IS T>Y
(In this program fragmenP we have an empty program followed
by the above two commanaaile andhalt.)
First, we replace thehile command by the following se-
quence of Core CIL commands:
Lo: if (z<n) L1 else ly
liix=x+1
lo:y = x4y
l3: goto lo
{1 halt
Then, this sequence of commands is translated into thexfioigp
CLP facts:
1.at(0, ite(less(int(x), int(n)), 1,h)).
2.at(1,asgn(int(x), plus(int(x), 1nt(1))))
3.at(2,asgn(int(y), plus(int(x), int(y)))).
4. at(3,goto(0)).
5.at(h,halt).
We also have the following clauses that specify the reatihabi
relation from the initial configuration to the error configtion:
6.unsafe :- initConf(X), reach(X).
7.reach(X) :- tr(X,X1),reach(X1).
8.reach(X) :- errorConf (X).
In our case the predicatésiitConf anderrorConf specifying
the initial and the error configurations, respectively, deéned by
the followingconstrained facts
9. initConf(cf(cmd(0, ite(less(int(x), int(n)), 1,h)),
[[int(x), X, [int(y), ¥], [int(n), N[}, [])) : - X=0, Y=0.
10. errorConf (cf(cmd(h, halt),
[[int(x), X], [int(y), Y], [int(n), N]], [])) - X>Y.
In the initial configuration (see clause 9) we have the ihit@am-
mandcmd(0, ite(less(int(x), int(n)), 1,h)) and the initial list
of activation frames which is empty. In clauses 9 and 10 thball
environment (that is, the second component of the configumat
has been encoded by the I[§int(x), X], [int(y), Y], [int(n), N]]
which gives the bindings of the variablesy, andn, respectively.

The CLP program consisting of clauses 1-10 above, together

with the clauses that define the predicate(see clauses 1-4 of
Section 2), is called thELP encodingof the given unsafety triple
{@171# (:E, Y, TL)H’ P {¢CTT0T (:E, Y, TL)H’

THEOREM1. (Correctness of CLP Encodinget I be the CLP
encoding of the unsafety triplpini } P {@error }- The program
P is safe with respect t9;,;: and @error iff unsafe ¢ M(1).

4. The Software Model Checking Method in
Action

In this section we present an application of our software ehod
checking method based derated specializationwhich performs

a sequencef program specializations, rather than one specializa-
tion only. The formal presentation of the method will be giva

the next section.

In the example we will consider theration of program spe-
cializations plays a crucial role and is required for theopwaf pro-
gram safety.

Let us consider the unsafety triple of the previous sectie.
want to show that the program fragmeRtis safe with respect to

Pinit (,y, 1) @A Perror (T, Y, 7).

Our method for proving program safety consists of three spe-
cialization steps: (i) the removal of the interpreter (&tisp is com-
mon to other specialization-based techniques for the eatifin
of imperative programs [9, 28]), (ii) the propagation of t@n-
straints of the initial configuration, and (iii) the propéiga of the
constraints of the error configuration.

First Specialization: Removal of the interpreter

We start off from the CLP clauses 1-10 associated with thengiv
program fragmenf (see Section 3), and the CLP clauses for the
predicatetr (clauses 1-4 of Section 2) which define the interpreter
of the Core CIL language. At the end of this first specialati
we will derive a CLP program (see programl below) which
evaluates the predicat@safe without evaluating the predicate.

In this sense we say that this first specialization realizesemoval

of the interpreter.

In order to get such a CLP program we specialize clauses 6-8
with respect to the given definitions of the predicat@stConf,
errorConf, tr, andat. This specialization is performed by fol-
lowing the usualinfold-definition-fold cyclef the rule-based spe-
cialization strategies [11]. In particular, we will follothie Special-
ization procedure presented in Figure 2 of Section 5.

The various specialization steps are performed in an adtoma
way by our MAP system [24].

We start off by unfolding clause 6 with respect to the atom
initConf(X) and we get:
11.unsafe :-X=0,Y=0,

reach(cf(cmd(0, ite(less(int(x), int(n)), 1,h)),
[[int(x), X, [int(y), Y], [int(n), N}, [])).
We introduce the new predicate definition:
12.new1(X,Y,N) :-
reach(cf(cmd(0, ite(less(int(x), int(n)), 1,h)),
[[int(x), X, [int(y), Y, [int (), N}, [])).
We fold clause 11 and we get:
11.funsafe :-X=0,Y=0, newl(X,Y,N).
Then we unfold clause 12 and we get the two clauses:
13.new1(X,Y,N) : -

tr(cf(cmd(0, ite(less(int(x), int(n)), 1,h)),
([int(x), X], [int(y), Y], [int(n), N}, []), X1),
reach(X1).

14.new1(X,Y,N) : -
errorConf (cf(cmd(0, ite(less(int(x), int(n)), 1,h)),
([int(x), X], [int(y), Y], [int(n), N]], [])).
From clause 13, after a few unfolding steps which perform the
symbolic evaluation of thef-then command using the clause for
the predicater, we get the following two clauses:
15.new1 (X, Y,N) : - X <N,
reach(cf(cmd(1, asgn(int(x), plus(int(x), int(1)))),
([int(x), X], [int(y), Y], [int(n), N}, [])).
16.newl(X,Y,N) :-X>N,
reach(cf(cmd(h, halt),
([int(x), X], [int(y), Y], [int(n), N]], [])).
(Note that the test on the conditidrss(int(x), int(n)) in the
command in clause 13 generates two constraitksN andX > N.)
Then, we delete clause 14 because by unfolding it, we do riot ge
any clause (indeed, the teramd(0,...) does not unify with the
termemd(h, .. .)).
From clause 15, after two unfolding steps, we get:

17.new1(X,Y,N) : - X <N,
tr(cf(cmd(l asgn(lnt( ), plus(int(x), int(1)))),

([int(x), X], [int(y), Y], [int(n), N}, []), X1)),

reach(X1).



From clause 16, after two unfolding steps, we get:
18.newl(X,Y,N) :-X>N,
errorConf (cf(cmd(h, halt),
([int(x), X], [int(y), Y], [int(n), N]], [])).
At this point the program at hand is made out of clauses 17,f, 1
and 18. Then, by unfolding clause 17, we get:
19.newl(X,Y,N) : - X<N, X1=X+1,
reach(cf(cmd(2, asgn(int(y), plus(int(x), int(y)))),
([int(x), X1], [int(y), Y], [int(n), N]], [])).
By unfolding clause 18 we get:
20.new1(X,Y,N) :=X>N, X>V.
From clause 19, after two unfolding steps, we get:
21.new1(X,Y,N) : - X<N, X1=X+1,
tr(cf(cmd(1, asgn(int(y), plus(int(x), int(y)))),
([int(x), X1], [int(y), Y], [int(n), N}, []), X2)),
reach(X2).
By unfolding clause 21 we get:
22.newl(X,Y,N) :- X <N, X1=X+1, Y1=X1+Y,

reach(cf(cmd(3, goto(0)),
[[int(x), X1], [int(y), Y1, [int(n), N}, []))-

This specialization is based on the idea of propagating tme c
straintsXx =0 andY =0 of the initial configuration which occur in
clause 11.f defining the predicaiasafe.

We begin by unfolding clause 11.f with respect to the atonmwit
predicatenew1 and we get:

24.unsafe :-X=0, Y=0, X>N, X>V.

25.unsafe :-N>0, X1=1, Y1=1, newl(X1,Y1,N).

Now clause 24 has an unsatisfiable constraint, and thusatesedi.

In order to fold clause 25, we define the following new prettica
26.new2(X,Y,N) :-N>0, X=1, Y=1, newl(X,Y,N).

By folding clause 25, we get:

25.f.unsafe :-N>0, X1=1, Y1=1, new2(X1,Y1,N).

Now we unfold the last definition which has been introduced

(clause 26) and we get two clauses of which the only one with
a satisfiable constraint is (after constraint simplifica}io

27.new2(X,Y,N) :-X=1,Y=1, N>1, X1=2, Y1=3,

newl(X1, Y1, N).
In order to fold this clause, we need the following new pratic
28.new3(X,Y,N) :-N>1, X=2, Y=3, newl(X,Y,N).
The comparison between clauses 26 and 28 shows the risk of in-
troducing an infinite number of clauses (see, in partictier,con-

The sequence of clauses 12, 15, 19, and 22, which we have ob-StraintsX =1 andX = 2), thereby making the specialization process

tained by unfolding, mimics the execution of the sequencthef
four commands: (iYo : if (x < n) ¢1 elsely, (i) l1:z=x+1,
(iii) l2:y=x+y, and (iv) 43 : goto £y (note in those clauses the
atomsreach(cf(emd(s, ...), ..., ...)), for ¢ = 0,1, 2, 3). Indeed, in
general, by unfolding, one is able to perform the symboliecex
tion of the commands of any given program. The conditions tha
should hold so that a particular commaaat (i, ...) is executed,
are given by the constraints in the clause in whose body tira at
reach(cf(cmd(i,...), ..., ...)) OCCUIS.

From clause 22, after a few more unfolding steps, we get:

23.new1(X,Y,N) :- X <N, X1=X+1, Y1=X1+Y,
reach(cf(cmd(0, ite(less(int(x), int(n)), 1,h)),
([int(x), X1], [int(y), Y1], [int(n), N]], [])).
By folding clause 23 using clause 12, we get:
23.fnewl(X,Y,N) :-X<N,X1=X+1,Y1=X1+4Y,newl(X1,Y1N).
Note that this folding step using the definition for the poadé

never to halt. Thus, we perform a generalization step (wethise
wideningoperator [8]) between clauses 26 and 28, and we intro-
duce, instead of clause 28, the following clause 29 (whezetm-
straintX > 1 is the widening ok =1 andx =2):
29.new3(X,Y,N) :-N>0, X>1, Y>1, newl(X,Y,N).
We fold clause 27 using clause 29 and we get (after constraint
simplification):
27 fnew2(X,Y,N) :-X=1,Y=1, N>1, X1=2, Y1=3,
new3(X1, Y1, N).

Note that this folding step preserves equivalence betweeises 27
and 27.f, even ifhew3 is a generalization ofiewl, because the
atomsnew1(X1, Y1, N) andnew3(X1, Y1, N) are equivalent in a con-
text where the constraimt> 1, X1 =2, Y1 =23 holds.

By continuing our specialization process following the alsu
unfold-definition-fold cycle according to the Specialipatproce-
dure of Figure 2, we eventually get the specialized progfam

newl is possible because the execution of the program returned 25-f unsafe :-N>0, X1=1, Y1 =1, new2(X1, Y1, N).

to the command to which the definition aéw1 refers. The final,
specialized progran®1 is as follows:

11.funsafe :-X=0, Y=0, newl(X,Y,N).
23.fnew1(X,Y,N) :-X<N,X1=X+1,Y1=X1+Y, newl(X1,Y1,N).
20.new1(X,Y,N) :-X>N, X>V.

The derived programP1 has a constrained fact fatew1 (see
clause 20 and, by repeatedly using clause 23.f, from that con
strained fact, we can derive infinitely many new constraifsets
which belong to the least model @1. Hence, we cannot show
that newl does not hold foXx=Y=0, and thus we cannot show
thatunsafe does not hold (see clause 11.f).

In order to show program safety, now we perform two more spe-
cialization steps. First, we specialize progrdhh by with respect
to the constraints of the initial configuration, and then wecsal-
ize the residual program with respect to the constrainte@gtror
configuration. By iterated specialization we will deriveeswrempty
program allowing us to conclude thaisafe does not hold.

Second Specialization: Propagation of the constraints ohie
initial configuration

Now we perform our second program specialization startiogf
the programP1 we have derived by removing the interpreter.

27.fnew2(X,Y,N) :-X=1, Y=1, N>1, X1=2, Y1=3,
new3(X1,Y1,N).

30. new3(X,Y,N) :- X1>1, Y1>X1, X1 <N,

X1=X+1, Y1=X1+Y, new3(X1, Y1, N).
31. new3(X,Y,N) :-Y>1, N>0, X>N, X>V.
Again, as after the removal of the interpreter, in this finagoam
the presence of a constrained fact for the predicate3 (see
clause 31), does not allow us to conclude tk& has an empty
least model, and hence the safety of our program.

Program Reversal

At this point the novel strategy we propose in this papeatts the
specialization process by starting from the derived pnogra2,
and propagates the constraints of the error configurationtflose
of the initial configuration, as it has been done in our second
specialization above). We perform one more specializasitamting
from program P2, obtained by reversing program®2 as we
now indicate (the general technique will be presented innine
section).

First, programP2 can be viewed as a program of the form:
sl. unsafe :- a(U), r1(U).
s2.r1(U) :-trans(U,V), r1(V).
s3.r1(U) :-b(U).



if we define the predicates, trans, andb as follows (round
parentheses make a single argument out of a tuple of argajnent

s4.a((new2,X1,Y1,N)) :-N>0, X1=1, Y1=1.

s5.trans((new2, X, Y,N), (new3,X1,Y1,N)):-X=1,Y=1,N>1,
X1=2,Y1=3.

s6.trans((new3, X, Y,N), (new3,X1,Y1,N)):-X1>1, Y1 > X1,
X1<N, XI1=X+1, YI=X1+Y.

S7.b((new3,X,Y,N)) :-Y>1, N>0, X>N, X>V.

Indeed,P2 can be obtained from s1-s7 by (i) unfolding clauses s1—
s3 with respect ta(U), trans(U, V), andb(U), and then (ii) rewrit-
ing the atoms of the form1((new2, X, Y, N)) andr1((new3, X, Y, N))
asnew2(X,Y,N) andnew3(X, Y, N), respectively. (The occurrences
of the predicate symbolsew2 andnew3 in the arguments of1
should be considered as individual constants.)

Then, the reversed prograifi2., is given by the following
clauses:

rl. unsafe :-b(U), r2(V).

r2. r2(V) :-trans(U,V), r2(U).

r3. r2(U) :-a(v).

together with clauses s4—s7. For our proof of program safle¢y
correctness of this program reversal which produces pno@t2.e,
from programP2, is established by the fact thaisafe € M (P2)
iff unsafe € M (P2ev).

The idea behind program reversal is best understood byatonsi
ering the reachability relation in the (possibly infinitearsition
graph whose transitions are defined by the (instances af$etas5
and s6. Progran®2 checks the reachability of a configuration
satisfyingb from a configuratiorcl satisfyinga, by movingfor-
ward from c1 to ¢2. ProgramP2., checks the reachability af2
from c1, by moving backwardfrom ¢2 to cl. Thus, in the case
wherea andb are predicates that characterize the initial and final
configurations, respectively, the reversal transfornmaderives a
program that checks the reachability of an error configonaftiom
an initial configuration by movingackwardfrom the error config-
uration. In particular, in the body of the clause farsafe in P2y
the constrain®b(U) contains, among others, the constraint Y
characterizing the error configuration and, by specializit®rey,
we will propagate the constraints of the error configuration

Third Specialization: Propagation of the constraints of the
error configuration

Let us then specialize prograi2.,. We start from the clauses
r1-r3 and s4-s7. We unfold the clausedasafe (clause rl) with
respect to the leftmost atob{u) and we get:

32.unsafe :-Y>1, N>0, X>N, X>VY, r2((new3,X,Y,N)).

In order to fold clause 32 we introduce the definition:
33.new4(X,Y,N) :-Y>1, N>0, X>N, X>Y, r2((new3,X,Y,N)).
We fold clause 32, thereby getting:

32.funsafe :-Y>1, N>0, X>N, X>Y, newd(X,Y,N).

Then we unfold the last definition we have introduced (cla@®e
and we get:

34.new4(X,Y,N) :-Y>1, N>0, X>N, X>VY, a((new3, X,Y,N)).
35.new4(X1,Y1,N) :- Y1>1, N>0, X1 >N, X1>V1,
trans(U, (new3, X1, Y1,N)), r2(U).

By unfolding, clause 34 is deleted because the head of cklise
not unifiable witha(new3, X, Y, N), and by unfolding clause 35 with
respect totrans(U, (new3, X1, Y1, N)) we get two clauses each of
which has an unsatisfiable constraint in its body. Thus, wdeft
with clause 32.f only. Since clause 32.f is not a constrafaet] its
least model is empty, and thuasafe does not hold and we may
conclude our program verification by stating that the giveagpam
is safe with respect t@;,;: andyerror-

Thus, in this example we have seen that by iterating the spe-
cializations which propagate the constraints occurringp@initial
configuration and in the error configuration, we have beea bl
show safety of the given program. It can be shown that, if we pe
form our specializations by taking into account only thestaaints
of the initial configuratioror only the constraints of the error con-
figuration, it isnot possible to show program safety in our example.
Thus, as advocated in this paper, if we perform a sequenceef p
gram specializations, we may gain an extra power when wetoave
prove program properties. This is confirmed by the experimer
have performed on various examples taken from the litezaivie
will report on those experiments in Section 6.

In the next section we will formally present our method for
iterated specialization, where the propagation of the tcaims
of the initial and the error configurations can be alternateany
order.

5. lIterated Specialization

The strategy for iterated specialization we propose inghjger for
directing the specialization steps, is depicted in Figure 1

Input A CLP program! encoding an unsafety triple.
Output ProgramIsp such thatunsafe € M(I) iff unsafe €
M(Isp)-
Specializg.movd L, Isp);
whilethere exists a clause i3, of the form:unsafe
G is not the empty goado
eitherIrey:= Isp or Reversélsp, liev);
Specializg g, (1rev; Isp);
end-while

:— G, where

Figure 1. The Iterated Specialization strategy.

The Iterated Specialization strategy takes as input the @bP
gram I which encodes an unsafety triple as shown is Section 3.
Thus, given the unsafety triplpini } P {@error }, programl
is made out of: (i) the CLP facts associated with the Core CIL
program fragmentP, (ii) the clauses for the interpreter that
encodes the transition relatiea=, (iii) the clauses for the pred-
icatesunsafe andreach (see clauses 5-7 of Section 3), (iv) the
clauses forinitConf anderrorConf encoding the formula®;y:
andyerror, respectively.

The input progrant is specialized by applying the procedure
Specializg.,,eWhich implements the removal of the interpreter as
illustrated in the example of Section 4. As shown in that exam
Specializg,,,cUnfolds away the relationr and introduces new
predicate definitions corresponding to (some of the) progvaints
of the original Core CIL program.

Then the strategy iterates the two proceduReversg(which
may be skipped) an8pecializg,,, and, if it terminates, it derives
a specialized program which either contains the faciafe or
contains no clauses with heathsafe. In the former case the
unsafety property encoded ki holds and the given Core CIL
program is unsafe, while in the latter case the unsafetyqutpp
does not hold and the given Core CIL program is safe.

The Specialize Procedure

The Specializg,,.and Specializg,,, procedures are two specific

versions of the generiBpecializeprocedure presented in Figure 2.
Assume that the program taken as input by th&pecialize

procedure containg> 1 clauses defining the predicatesafe:

unsafe :- c1(X), pi(X), ..., umsafe :- c;(X), p;(X)
where c1(X),...,c;(X) are either atoms or constraints, and
pi(X),...,p;(X) are atoms. For instance, whénis the initial



version of the interpreter for the subset of CIL considerethis
paper, we have thatis 1, ci1(X) is initConf (X), andpi(X) is
reach(X).

The Specializeprocedure modifies the initial prograth by
propagating the information encoded by(X) , . . ., c;(X), which
characterize the initial or the error configurations, delemon the
number of applications of thReverserocedure. In particular, by
unfolding we may be able to discover thaisafe has a successful
derivation, and hence the given Core CIL program fragment is
unsafe. Alternatively, by unfolding we may add constratht are
inconsistent with the ones occurring in the constrainetsfeand
by folding we may derive mutually recursive predicates, hadce
these predicates will have no constrained facts and we saffety.

The Specializgorocedure makes use of two functiotnf and
Gen for controlling unfolding and generalization, respeety

Given a clauseC' of the formH :-c,L, A, R, whereH and A
are atomsc is a constraint, and. and R are (possibly empty)
conjunctions of atoms, lefK; :-c;,B; | ¢« = 1,...,m} be the
set of the (renamed apart) clauses in prograreuch that, for
i =1,...,m, Ais unifiable withk; via the most general unifief;.
We define the following function:

unf(C,A) ={(H:-c,c,;,L,B;,R)¢; | i=1,...,m}

Each clause irUnf(C,A) is said to be derived bwynfolding C
w.r.t. A. In order to perform unfolding during specialization, we
assume that atoms occurring in bodies of clauses are aadatat
eitherunfoldableor not unfoldable This annotation is based on an
analysis of prograni which ensures that any sequence of clauses
constructed by unfolding w.r.t. unfoldable atoms is finidée refer

to [23] for a survey of techniques for controlling unfoldinigat
guarantee this finiteness property.

The Specializeprocedure makes use of the functiGen called
generalization operatofor introducing new predicate definitions.
Given a clausé’: newp(X) :-e(X,X1), p(X1) and the seDefsof
clauses that define the new predicates introduced up to a poiat
by the specialization algorithnGen E, Defg) returns a clausér:
newr (X) :-g(X), p(X) such that: (i)newr is a new predicate
symbol, and (iie(X, X1) C g(X1), whereC denotesntailmenbe-
tween constraints. The is foldedby usingG, thereby deriving
the new clausaewp (X) :-e(X,X1), newr (X1). By the correct-
ness of the folding rule this transformation step presee¢gsva-
lence with respect to the least model semantics. Indesed; (X1)
is equivalent to the conjunctiqgXX1) ,p(X1) by definition and the
conjunctione (X,X1) ,g(X1) is equivalent tee (X,X1).

The generalization operator used in t8pecializg,,,q,. Pro-
cedure returns a claus@: newr(X) :-p(X) (that is, g(X) is
the constrainttrue). The generalization operators used in the
Specializg,, procedure is based owidening convex hull and
well-quasi orderingselations which have been introduced for an-
alyzing and specializing constraint logic programs [8, 22, For
lack of space we do not present here the definitions of thergkne
ization operators, and for more details the reader may tef@2],
where it is also shown that these operators guarantee thiagdu
specialization only a finite number of new predicates iticed.

In the Specializeprocedure we also use the following notions.
A clause of the fornH : - c, B is subsumedby the constrained fact
H:-dif cCd. We say that a predicatein a programP is uselessf
for all predicates; such thap depends omr there is no constrained
fact forq in P, where thedependency relatiobetween predicates
is defined as usual.

Termination and Correctness of Specialization

The correctness of th8pecializeprocedure with respect to the
least model semantics directly follows from the correcsnefsthe
transformation rules [10].

Input Program/.

Output ProgramI,, such thatunsafe € M ([) iff unsafe €
M (Lsp)-

INITIALIZATION :

Isp =0;

InCls := {unsafe:- c1(X),p1(X),...,unsafe:- ¢;(X),p;(X) };
Defs:= 0;

whilein InClsthere is a claus€' which is not a constrained fadb
UNFOLDING:

SpC:= Unf(C, A), where A is the leftmost atom in the body
of ¢

whilein SpCthere is a claus® whose body contains an occur-
rence of a unfoldable atom do
SpC:= (SpC— {D}) U Unf(D, A)

end-while

CLAUSE REMOVAL:

whilein SpCthere are two distinct clausds and F' such thate/
subsumed” or there is a claus& whose body contains an
unsatisfiable constraiio
SpC:= SpC— {F'}

end-while

DEFINITION-INTRODUCTION& FOLDING:
while in SpCthere is a claus& of the form:
H:-e(X,X1),p(X1)
whereH is eitherunsafe or an atom of the formewp (X), and
e(X,X1) is a constraintdo
if in Defsthere is a claus® of the form:
newq(X) :-c(X), p(X)
wherec (X) is a constraint such that(X,X1) T c(X1)
then SpC= (SpC— {E}) U {H :-e(X,X1), newq(X1) };
else let Gen E, Defg benewr (X) :-g(X), p(X)
where: (i)newr is a predicate symbol not occurring
inI U Defs and (ii)g(X) is a constraint such that
e(X,X1) CgX1);
Defs:= Defsu {Gen E, Defs)};
InCls:= InClsU {Gen(E, Defs) };
SpC:= (SpC— {E}) U{H :-e(X,X1), newr(X1)}
end-while

InCls := InCls — {C};
Isp:= lspU SpG

end-while

REMOVAL OF USELESSCLAUSES:
Remove from/, all clauses whose head predicate is useless.

Figure 2. The SpecializeProcedure.

As mentioned above, the termination of the unfolding phdse o

the Specializeprocedure is guaranteed by a suitable annotation of

the atoms in the body of the clauses. Moreover, wenis defined
as one of the generalization operators presented in [fR]itaset
of new predicates are introduced during ®ygecializeprocedure,
and hence the procedure terminates.

Thus, we have the following result.
THEOREMZ2. (Termination and Correctness of Specialization)
(i) The Specialize procedure terminatéd. Let program §, be the
output of the Specialize procedure applied on the input anog! .
Thenunsafe € M (1) iff unsafe € M (lsp).

The Reverse Transformation

The Reverseprocedure implements a transformation that reverses

the flow of computation: the top-down evaluation (that ispirthe



head to the body of a clause) of the transformed program corre 6.

sponds to the bottom-up evaluation (that is, from the bodghéo
head) of the initial program. In particular, if tHeeverseproce-
dure is applied to a program that checks the reachabilithe®t-
ror configurations from the initial configurations by exphay the
transition graph forward from the initial configurationkenh the
transformed program checks reachability by exploring thedi-
tion graph backward from error configurations. Vice versainfa
program that checks reachability by a backward exploratfdhe
transition graphReversealerives a program that checks reachability
by a forward exploration of the transition graph.

The output of theSpecializeprocedure, and hence the input of
the Reversegrocedure, is a progray, of the form:

unsafe :- a;(X), newp:(X).
unsafe :- ap(X), newpr(X).
newqi(X) :- t1(X,X1), newr (X1).

newgm(X) :- t,(X,X1), newr,,(X1).
news1(X) :- bi(X).

news,(X) :- b(X).
where: (i) ai(X),...,anX), t1(X,X1),. .., tm(X,X1),b1(X), ...,
b,(X) are constraints, and (ii) the (possibly non-distinct) jrate
symbolsnewp,’s, newq,’s, newr;’s, andnews;’s are the new predi-
cate symbols introduced by the generalization opei@sn

The Reversgrocedure transforms prografy, in two steps as
follows.
Stepl. Programl,, is transformed into a progratf, of the fol-
lowing form:

unsafe :- a(U), r1i(U).
r1(U) :- trans(U,V), ri(V).
r1(U) :- b().

a((newpy,X)) :- ai(X).

a((newpr, X)) :- ap(X).
trans ((newqi,X) , (newrq,X1)) - t1(X,X1).

trans ((newqm,X) , (newr,,,X1)) -t (X,X1).
b((news;,X)) :- bi1(X).

b((news,,X)) = bp(X).
The correctness of the transformation frdgg to I, relies on the
fact that by unfolding the clauses &f, w.r.t. a(U), trans(U, V),
andb(U), and then rewriting all atoms of the form ((newpred, Z))
into newpred(Z), we get backsp.
Step2. Progranyg, is transformed into a prograti, by replacing
the first three clauses df, by the following ones:

unsafe :- b(U), r2U).
r2(V) :- trans(U,V), r2(U).
r2(U) :- a(U).

The correctness of this transformation can be proved asateti
in [3], and thus we have the following result.

THEOREM3. Let Iy be the program derived from prograth,
by the Reverse procedure. Thensafe € M (Isp) iff unsafe €
M (Iev).

Finally, by using Theorems 1, 2, and 3, we get the following
soundness result.

Experimental Evaluation

We have performed an experimental evaluation of our soéiwar
model checking method on benchmark programs taken from the
literature. The results of our experiments show that ouraggh is
competitive with state-of-the-art software model chesker

ProgramssubstringandtracerP are taken from [21] and [17],
respectively, while programe 1 andsingleLoopare taken from [9].
ProgramselectSortis an encoding of the selection sort algorithm
where references to arrays have been replaced by usingiahini
ized variables to perform array bounds checking. The other p
grams are taken from the benchmark set of DAGGER [14]. The
source code of all the programs we have considered is al@#ab
http://map.uniroma2.it/smc/.

Our software model checker consists of three modules.

(i) A front-end module, based on CIL [26], which translates
a C program together with the initial and error configuragidanto

a set of CLP facts. These facts, together with the clausethéor
predicatestr, unsafe, andreach (and the predicates they de-
pend upon), are used during the first program specializatttinh
removes the interpreter.

(ii) A module for CLP program transformation which is used fo
removing the interpreter and applying the iterated spizeigbn
strategy. This module is implemented using the MAP systefh [2
which is a tool for transforming constraint logic programstten

in SICStus Prolog. The MAP system operates on constrairgs ov
the rational numbers by using tkepq library.

(iif) A module for inspecting the CLP programs obtained bg-sp
cialization and checking whether they contain the faciafe (in
which case the given C programs are proved unsafe) or thegiocon
no clauses with heaahsafe (in which case the given C program
are proved safe).

We have also tested the following three state-of-the-aP-CL
based software model checkers for C programs: (i) ARMC [29],
(i) HSF(C) [13], and (iii) TRACER [18]. ARMC and HSF(C)
are based on the Counter-Example Guided Abstraction Redinem
technique (CEGAR) [4, 20, 31], while TRACER uses a technique
based on approximated preconditions and approximatedqratit
tions. We have compared the performance of those model ereck
on our benchmark programs with that of our model checker.

Table 1 reports the results of our experimental evaluatidrich
has been performed on an Intel Core Duo E7300 2.66Ghz prrcess
with 4GB of memory under the GNU Linux operating system.

In the columns labelled with MAP(a) and MAP(b) we have re-
ported the time needed for the verification process using/the
system according to the method for iterated specializapim:
sented in this paper. That time includes the time needecd:fooy-
ing the interpreter, which ranges from some tenths of meitisds
to eight or nine seconds, for the most complex programs.

We have used the following sequences of program transforma-
tions (the exponent indicates the number of times the aswati
subsequence has been applied):
for MAP(a):

Specializgemovs (ReversgSpecializep)™, and
for MAP(b):

Specializemove Specializewp; (ReverseSpecializeop)™ .

Thus, after the removal of the interpreter, the fBpecialize., of
MAP(a) propagates the constraints of #reor configuration(and
this corresponds tolaackwardmove along the transition graph as-
sociated with the reachability relation), while the figgtecializerop
of MAP(b) propagates the constraints of tinéial configuration

THEOREM4. (Soundness of the Software Model Checking method) (and this corresponds tda@ward move along the transition graph).

LetI be the CLP encoding of the unsafety triffl@nit } P {@error }}-
If the Iterated Specialization strategy terminates for itigut pro-
gram I, and Isp is the output of the strategy, then is safe with
respect t0pinit and @ error iff unsafe ¢ lsp.

In the subcolumns labelled with we have reported the total
number of program specializations needed, after the rehuiva
the interpreter, before a successful verification or befoneout.



Program to be verified MAP(a) MAP(b) ARMC || HSF(C) TRACER

n n SPost| WPre
barber 3| 137.99| 2 69.74 || 577.06 13.88 || 12.86 3.86
barberl 1 13.71 || 2 26.43 || 414.01 0.59 7.00 5.17
berkeleyNat 3 1.88( 2 1.51 11.48 0.29 - 1.33
berkeley 1 157 2 1.53 11.28 0.26 - 1.00
efm 3 6.48 || 2 4.04 31.17 0.51 2.43 2.68
ext 1 0.03| 2 0.40 1.69 0.22 - 1.39
fla 2 0.17 || 1 0.07 - 0.21 - 1.97
heapSort 1 8.16 || 2 13.51 39.66 0.35 - -
heapSort 1 3.01| 2 9.58 20.55 0.26 - -
interp 1 0.12 || 2 0.28 11.41 0.19 - 2.92
lifnat 3 23.13 (| 2 20.20 || 228.96 7.19 - 72.12
lifo 1 2056 || 2 15.59 126.54 0.54 - 7.45
p2 1 1475 1 - - 0.77 - -
rel 1 023 1 0.08 - 0.19 - -
seesaw 1 209 2 3.04 - 0.27 - 34.16
selectSort 3 196 || 6 3.26 24.97 0.25 - -
singleLoop 3 035 2 0.28 - - - 56.57
substring 2 0.16 | 1 0.20 472.32 40.51 - -
swim 3| 11656 2 40.13 - 2.94 - 15.13
tracerP 1 001 1 0.07 - - 1.04 1.03
number of verified programs 20 (9) 19 (15) 13 18 4 14
total time 353.29 209.94 | 1971.10 69.42 || 23.33 | 206.78

Table 1. Time (in seconds) required for program verification. ‘-’ meaunable to verify within 10 minutes’. The subcolumns lédxtby n
report the number ddpecializep performed by the MAP system, that is, the number of speeitidins, after the removal of the interpreter.

The generalizations performed by the MAP system are done by uration (that is, the initial configuration or the final configtion,

applying the widening and the convex hull operators.

In the remaining columns we have reported the results afdain
by ARMC, HSF(C), and TRACER using the strongest postcondi-
tion (SPos} and the weakest preconditioWWPre options, respec-
tively. The last two lines report the number of programs \tiave
been successfully verified and the total time needed fofiwation.

For the MAP system we also report, between parenthesesiithe n
ber of programs which require more than one iteration>(1) to
be successfully verified. This number measures the eftgatiss of
performing additional iterations of program specialiaati

The experimental results show that our approach of itegatin
program specialization, is indeed effective and determae in-
crease of the number of successful verifications. Sometingeis-
crease is substantial.

On our set of examples, the MAP(a) system is able to verify 20
programs out of 20. It is followed by MAP(b) (19), HSF(C) (18)
TRACER using weakest precondition (14), ARMC (13), and
TRACER using strongest postcondition (4).

respectively), then we are still able to prove the propefinterest
by requiring very little extra time. Actullay, sometime®és for in-
stance, thdifo andsubstringprograms) this additional preliminary
specialization can even reduce the total time becauserieprthe
search space.

Looking at Table 1, we may conclude that the verification sme
taken by our MAP-based software model checker is generaity-c
parable with that of the other tools, and it is not much gnethan
that of the fastest tools.

7. Related Work and Conclusions

The software model checking technique proposed in thismiape
an extension of the technique for the verification of simphgér-
ative programs presented in [9]. The main novelties intceduin
this work are the following: (i) we consider CIL programsdth
is, C programs transformed by using the CIL tool [26]), amdye
define a general verification framework in which specialabf

We observe that some of the examples are verified by the MAP constraint logic programs is repeatedly applied with thipctive

system using the transformation sequence MAP(a) wita 1,
that is, by propagating the constraints of the error conéitjon
only. The examplegel andtracerP can be verified by MAP(a) or
MAP(b) with n = 1, that is, by a single propagation of the con-
straints of either the error configuration or the initial figaration,
respectively.

Thus, in some of our benchmark programs the invariants which
are useful for their proofs, can be discovered Isiryle propaga-
tion of the constraints of either the error configuration or the in
tial configuration. However, if we perform a preliminary ditthal
specialization by propagating the constraints of the otwafig-

of making a more effective use of the information disperéedugh
the program to be verified (typically, the initial configuoais and
the error configurations).

The use of constraint logic programming and program special
ization for the verification of properties of imperative grams is
not novel. It has also been investigated, for instance,8ih [& that
paper a CLP interpreter for the operational semantics omplsi
imperative language is specialized with respect to thetimppo-
gram to be verified. Then, a static analyser for CLP programgi
plied to the residual program for computing ‘invariantstteé input
imperative program, which are used in the proof of the pribdger
of interest. Unlike [28], our verification approach does resjuire



any static analyzer and, instead, we discover program iamar
during the specialization process by means of suitablergbna-
tion operators. They are defined in terms of operators aatioab
on constraints such as widening, convex-hull, and welkgoa
ders [12]. As in [28], we also use program specialization eéo- p
form the removal of the interpreter, but in addition, we pely
use specialization for propagating the information abbatinitial
configurations and the error configurations.

A popular technique for program verification is the so called
Counter-Example Guided Abstraction Refinement (CEGAR) [4,
20, 31], which is used by many software model checkers such as
BLAST [2], DAGGER [14], and SLAM [1]. In the CEGAR tech-
nique, given a progran® and a safety property to be verified, one
automatically constructs an abstract modelPofvhich is used to
check whether or not an abstract error configuration is aaeh
form an abstract initial configuration. If no abstract erconfig-
uration can be reached, théhsatisfies the given safety property,
otherwise a counterexample, that is, a sequence of corfligiga
leading to an abstract error configuration, is generatedrardana-
lyzed. If the counterexample corresponds to a concrete atatipn
of P, then the program is proved unsafe, otherwise the absiracti

needs to be refined because it was too coarse, and a new cycle o

the verification process is performed using that refinedrabison
in the hope of a successful proof.

In the field of static program analysis the idea of performing
backward and forward semantic analyses has been propofgd in
These analyses have been combined, for instance, in [7évieal
a fixpoint-guided abstraction refinement algorithm whick heen
proved to be at least as powerful as the CEGAR algorithm where
the refinement is performed by applying a backward analysis.
enhanced version of that algorithm, which improves therabst
state space exploration and makes use of disjunctive abstoa
main, has been proposed in [30].

Our approach can be regarded as complementary to those base

on CEGAR. Indeed, we begin by making no abstraction at atl, an
if the specialization process is deemed to diverge, thenexf®pn
some generalization steps which plays a role similar to tfiat
abstraction. (Note, however, that program specializgpi@serves
program equivalence.) There are various generalizati@nabprs
that we can apply for that purpose and by varying those opesat
we can tune the specialization process in the hope of making i
more effective for the proofs of the properties of interest.

Our preliminary experimental results show that our appnaac
viable and competitive with state-of-the-art software elatheck-
ers, some of which follow the CEGAR approach.

As a future work, we would like to address the issue of the de-
sign of suitable heuristics that should guide the choicénefgen-
eralization operators in each iteration of the specidbrgprocess.

It will also be important to design suitable strategies famtcolling
the number of clauses of the specialized programs. Indédthti
number is too high, then verification becomes inefficient.
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