
Verification of Imperative Programs through
Transformation of Constraint Logic Programs

Emanuele De Angelis1, Fabio Fioravanti1,
Alberto Pettorossi2 and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy {emanuele.deangelis,fioravanti}@unich.it
2 DICII, University of Rome Tor Vergata, Rome, Italy pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy maurizio.proietti@iasi.cnr.it

1 Introduction

In the last decade formal techniques have received a renewed attention as the basis of a method-
ology for increasing the reliability of software artifacts and reducing the cost of software pro-
duction. In particular, great efforts have been made to devise automatic techniques such as
software model checking [20], for verifying the correctness of programs with respect to their
specifications.

In many software model checking techniques, the use of constraints has been very effective
both for constructing models of programs and for reasoning about them [1, 7, 8, 10, 15, 17, 19,
30, 31]. Several kinds of constraints have been considered, such as equalities and inequalities
over booleans, integers, reals, and finite or infinite trees. By using constraints we can represent
in a symbolic, compact way the (possibly infinite) sets of values computed by programs and,
in general, the sets of states which are reached during program executions. Then, by using
powerful solvers specifically designed for the classes of constraints we have mentioned above,
we can reason about program properties in an efficient way.

In this paper we consider a simple imperative programming language with integer and
array variables and we use Constraint Logic Programming (CLP) [18] as a metalanguage for
representing imperative programs, their executions, and the properties to be verified. We use
constraints consisting of linear equalities and inequalities over integers. Note, however, that
the method presented here is parametric with respect to the constraint domain which is used.
By following an approach originally presented in [30], a given imperative program prog and its
interpreter are first encoded as a CLP program. Then, the proofs of the properties of interest
about the program prog are sought by analyzing that derived CLP program. In order to improve
the efficiency of that analysis, it is advisable to first compile-away the CLP interpreter of the
language in which prog is written. This is done by specializing the interpreter with respect to
the given program prog using well-known program specialization techniques [21, 30].

In previous papers [8, 13] we have shown that program specialization can be used not only
as a preprocessing step to improve the efficiency of program analysis, but also as a means of
analysis on its own. In this paper, we extend that approach and we propose a verification
method based on more general unfold/fold transformation rules for CLP programs [4, 11, 34].

Transformation-based verification techniques are very appealing because they are parametric
with respect to both the programming languages in which programs are written, and the logics
in which the properties of interest are specified. Moreover, since the output of a transformation-
based verification method is a program which is equivalent to the given program with respect
to the properties of interest, we can apply a sequence of transformations, thereby refining the
analysis to the desired degree of precision (see, for instance, [8]).

1



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

The specific contributions of this paper are the following. We present a verification method
based on a set of transformation rules which includes the rules for performing conjunctive def-
inition, conjunctive folding, and goal replacement, besides the usual rules for unfolding and
constraint manipulation which are used during program specialization. The rules for conjunc-
tive definition and conjunctive folding allow us to introduce and transform new predicates
defined in terms of conjunctions of old predicates, while program specialization can only deal
with new predicates that correspond to specialized versions of exactly one old predicate. The
goal replacement rule allows us to replace conjunctions of predicates and constraints by ap-
plying equivalences that hold in the least model of the CLP program at hand, while program
specialization can only replace conjunctions of constraints.

By using these more powerful definition and folding rules, we extend the specialization-
based verification method in the following two directions: (i) we verify programs with respect
to specifications given by sets of CLP clauses (for instance, recursively defined relations among
program variables), whereas program specialization can only deal with specifications given by
constraints, and (ii) we verify programs manipulating arrays and other data structures by
applying equivalences between predicates that axiomatize suitable properties of those data
structures (for instance, the ones deriving from the axiomatization of the theory of arrays [28]).

The paper is organized as follows. In Section 2 we present our transformation-based verifica-
tion method. First, we introduce a simple imperative language and we describe how correctness
properties of imperative programs can be translated into predicates defined by CLP programs.
We also present a general strategy for applying the transformation rules to CLP programs,
with the objective of verifying the properties of interest. Next, we present two examples of
application of our verification method. In particular, in Section 3 we show how we deal with
specifications given by recursive CLP clauses, and in Section 4 we show how we deal with pro-
grams which manipulate arrays. Finally, in Section 5 we discuss the related work which has
been recently done in the area of automatic program verification.

2 The Transformation-Based Verification Method

We consider an imperative C-like programming language with integer and array variables, as-
signments (=), sequential compositions (;), conditionals (if and if else), while-loops (while),
and jumps (goto). A program is a sequence of (labeled) commands, and in each program there
is a unique halt command which, when executed, causes program termination.

The semantics of our language is defined by a transition relation, denoted =⇒, between
configurations. Each configuration is a pair 〈〈c, δ〉〉 of a command c and an environment δ. An
environment δ is a function that maps: (i) every integer variable identifier x to its value v, and
(ii) every integer array identifier a to a finite function from the set {0, . . . , dim(a)−1}, where
dim(a) is the dimension of the array a, to the set of the integer numbers. The definition of the
relation =⇒ is similar to the ‘small step’ operational semantics given in [32], and is omitted.

Given an imperative program prog , we address the problem of verifying whether or not,
starting from any initial configuration that satisfies the property ϕinit , the execution of prog
eventually leads to a final configuration that satisfies the property ϕerror , also called an er-
ror configuration. This problem is formalized by defining an incorrectness triple of the form
{{ϕinit}} prog {{ϕerror}}, where ϕinit and ϕerror are encoded by CLP predicates defined by (pos-
sibly recursive) clauses. We say that a program prog is incorrect with respect to ϕinit and ϕerror ,
whose free variables are assumed to be among z1, . . . , zr, if there exist environments δinit and δh
such that: (i) ϕinit(δinit(z1), . . . , δinit(zr)) holds, (ii) 〈〈`0 : c0, δinit〉〉 =⇒∗ 〈〈`h : halt, δh〉〉, and
(iii) ϕerror (δh(z1), . . . , δh(zr)) holds, where `0 : c0 is the first labeled command of prog and

2



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

`h :halt is the unique halt command of prog . A program is said to be correct with respect to
ϕinit and ϕerror iff it is not incorrect with respect to ϕinit and ϕerror . Note that this notion of
correctness is equivalent to the usual notion of partial correctness specified by the Hoare triple
{ϕinit} prog {¬ϕerror}.

Our verification method is based on the formalization of the notion of program incorrectness
by using a predicate incorrect defined by a CLP program.

In this paper a CLP program is a finite set of clauses of the form A :- c,B, where A is an atom,
c is a constraint (that is, a possibly empty conjunction of linear equalities and inequalities over
the integers), and B is a goal (that is, a possibly empty conjunction of atoms). The conjunction
c,B is called a constrained goal. A clause of the form: A :- c is called a constrained fact. We
refer to [18] for other notions of CLP with which the reader might be not familiar.

We translate the problem of checking whether or not the program prog is incorrect with
respect to the properties ϕinit and ϕerror into the problem of checking whether or not the
predicate incorrect is a consequence of the CLP program T defined by the following clauses:

incorrect :- initConf(X), reach(X).

reach(X) :- tr(X, X1), reach(X1).

reach(X) :- errorConf(X).

together with the clauses for the predicates initConf(X), errorConf(X), and tr(X, X1). They
are defined as follows: (i) initConf(X) encodes an initial configuration satisfying the prop-
erty ϕinit , (ii) errorConf(X) encodes an error configuration satisfying the property ϕerror , and
(iii) tr(X, X1) encodes the transition relation =⇒. (Note that in order to define initConf(X),
errorConf(X), and tr(X, X1) and, in particular, to represent operations over the integer vari-
ables and the elements of arrays, we need constraints.) The predicate reach(X) holds if an
error configuration Y such that errorConf(Y) holds, can be reached from the configuration X.

The imperative program prog is correct with respect to the properties ϕinit and ϕerror iff
incorrect 6∈M(T ), whereM(T ) denotes the least model of program T [18]. Due to the presence
of integer variables and array variables, M(T ) is in general an infinite model, and both the
bottom-up and top-down evaluation of the query incorrect may not terminate. In order to
deal with this difficulty, we propose an approach to program verification which is symbolic and,
by using program transformations, allows us to avoid the exhaustive exploration of the possibly
infinite space of reachable configurations.

Our verification method consists in applying to program T a sequence of program trans-
formations that preserve the least model M(T ) [11]. In particular, we apply the following
transformation rules, collectively called unfold/fold rules: (i) (conjunctive) definition, (ii) un-
folding, (iii) goal replacement, (iv) clause removal, and (v) (conjunctive) folding. Our verification
method is made out of the following two steps.

Step (A): Removal of the Interpreter. Program T is specialized with respect to the given prog
(on which tr depends), initConf, and errorConf, thereby deriving a new program T1 such
that: (i) incorrect ∈M(T ) iff incorrect ∈M(T1), and (ii) tr does not occur explicitly in T1
(in this sense we say that the interpreter is removed or compiled-away).

Step (B): Propagation of the Initial and Error Properties. By applying a sequence of unfold/fold
transformation rules, the CLP program T1 is transformed into a new CLP program T2 such
that incorrect holds in M(T2) iff prog is incorrect with respect to the given initial and error
properties. The objective of Step (B) is to propagate the initial and the error properties so as to
derive a program T2 where the predicate incorrect is defined by either (i) the fact ‘incorrect.’
(in which case prog is incorrect), or (ii) the empty set of clauses (in which case prog is correct).
In the case where neither (i) nor (ii) holds, that is, in program T2 the predicate incorrect is

3



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

defined by a non-empty set of clauses not containing the fact ‘incorrect.’, we cannot conclude
anything about the correctness of prog and, similarly to what has been proposed in [8], we
iterate Step (B) in the hope of deriving a program where either (i) or (ii) holds. Obviously, due
to undecidability limitations, it may be the case that we never get a program where either (i)
or (ii) holds.

Steps (A) and (B) are both instances of the Transform strategy outlined in Figure 1 below.

Input : Program P .
Output : Program TransfP such that incorrect∈M(P ) iff incorrect∈M(TransfP).

Initialization:
TransfP := ∅; InDefs := {incorrect:- c, G}; Defs := InDefs;

while in InDefs there is a clause C do
Unfolding: Apply the unfolding rule at least once, and derive from C a set U(C) of
clauses;
Goal Replacement: Apply a sequence of goal replacements, and derive from U(C) a
set R(C) of clauses;
Clause Removal: Remove from R(C) all clauses whose body contains an unsatisfiable
constraint;
Definition&Folding: Introduce a (possibly empty) set NewDefs of new predicate defi-
nitions and add them to Defs and to InDefs;
Fold the clauses in R(C) different from constrained facts by using the clauses in Defs, and
derive a set F(C) of clauses;
InDefs := InDefs− {C}; TransfP := TransfP ∪ F(C);

end-while;
Removal of Useless Clauses:
Remove from TransfP all clauses whose head predicate is useless.

Figure 1: The Transform strategy.

In particular, the application of the Transform strategy for performing Step (A) coincides with
the fully automatic specialization strategy presented in [8]. In the Transform strategy we make
use of the following rules, where P is the input CLP program, and Defs is a set of clauses, called
definition clauses, constructed as we indicate in that strategy.

Definition Rule. By this rule we introduce a clause of the form newp(X) :- c,G, where newp is
a new predicate symbol, X is a tuple of variables occurring in (c,G), c is a constraint, and G is
a non-empty conjunction of atoms.

Unfolding Rule. Given a clause C of the form H :- c,L,A,R, where H and A are atoms, c is
a constraint, and L and R are (possibly empty) conjunctions of atoms, let us consider the
set {Ki :- ci,Bi | i = 1, . . . ,m} made out of the (renamed apart) clauses of P such that, for
i= 1, . . . ,m, A is unifiable with Ki via the most general unifier ϑi and (c,ci)ϑi is satisfiable
(thus, the unfolding rule performs some constraint solving operations). By unfolding C w.r.t. A
using P , we derive the set {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.
Goal Replacement Rule. If a constrained goal c1, G1 occurs in the body of a clause C, and
M(P ) |= ∀ (c1, G1↔c2, G2), then we derive a new clause D by replacing c1, G1 by c2, G2 in the
body of C.

4



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

The equivalences which are needed for goal replacements are called laws and their validity
in M(P ) can be proved once and for all, before applying the Transform strategy.
Folding Rule. Given a clause E of the form: H :- e, L, Q, R and a clause D in Defs of the form
K :- d, D such that: (i) for some substitution ϑ, Q = Dϑ, and (ii) ∀ (e→ dϑ) holds, then by
folding E using D we derive H :- e, L, Kϑ, R.
Removal of Useless Clauses. The set of useless predicates in a given program Q is the greatest
set U of predicates occurring in Q such that p is in U iff every clause with head predicate p is
of the form p(X) :- c, G1, q(Y), G2, for some q in U . A clause in a program Q is useless if the
predicate of its head is useless in Q.

The termination of the Transform strategy is guaranteed by suitable techniques for con-
trolling the unfolding and the introduction of new predicates. We refer to [25] for a survey
of techniques which ensure the finiteness of unfolding. The introduction of new predicates is
controlled by applying generalization operators based on various notions, such as widening,
convex hull, most specific generalization, and well-quasi ordering, which have been proposed for
analyzing and transforming CLP programs (see, for instance, [7, 9, 14, 29]).

The correctness of the strategy with respect to the least model semantics directly follows
from the fact that the application of the transformation rules complies with some suitable
conditions that guarantee the preservation of that model [11].
Theorem 1. (Termination and Correctness of the Transform strategy) (i) The Transform
strategy terminates. (ii) Let program TransfP be the output of the Transform strategy applied
on the input program P . Then, incorrect∈M(P) iff incorrect∈M(TransfP).

3 Verification of Recursively Defined Properties
In this section we will show, through an example, that our verification method can be used when
the initial properties and the error properties are specified by (possibly recursive) CLP clauses,
rather than by constraints only (as done, for instance, in [8]). In order to deal with that kind
of properties, during the Definition&Folding phase of the Transform strategy, we allow
ourselves to introduce new predicates which are defined by clauses of the form: Newp :- c, G,
where Newp is an atom with a new predicate symbol, c is a constraint, and G is a conjunction of
one or more atoms. This kind of predicate definitions allows us to perform program verifications
that cannot be done by the technique presented in [8], where the goal G is assumed to be a
single atom.

Let us consider the following program GCD that computes the greatest common divisor z
of two positive integers m and n, denoted gcd(m,n, z).

GCD : `0: x = m ;
`1: y = n ;
`2: while (x 6= y) { if (x > y) x=x−y ; else y=y−x ; } ;
`3: z = x ;
`h: halt

We also consider the incorrectness triple {{ϕinit(m,n)}}GCD {{ϕerror (m,n, z)}}, where:
(i) ϕinit(m,n) is m ≥ 1 ∧∧n ≥ 1, and (ii) ϕerror (m,n, z) is ∃ d (gcd(m,n, d) ∧∧ d 6= z). These
properties ϕinit and ϕerror are defined by the following CLP clauses 1 and 2–5, respectively:
1. phiInit(M, N) :- M≥1, N≥1.
2. phiError(M, N, Z) :- gcd(M, N, D), D 6=Z.
3. gcd(X, Y, D) :- X>Y, X1=X−Y, gcd(X1, Y, D).
4. gcd(X, Y, D) :- X<Y, Y1=Y−X, gcd(X, Y1, D).
5. gcd(X, Y, D) :- X=Y, Y=D.

5



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

The predicates initConf and errorConf specifying the initial and the error configurations,
respectively, are defined by the following clauses:
6. initConf(cf(cmd(0, asgn(int(x), int(m))),

[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :- phiInit(M, N).
7. errorConf(cf(cmd(h, halt),

[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :- phiError(M, N, Z).

Thus, the CLP program encoding the given incorrectness triple consists of clauses 1–7 above,
together with the clauses defining the predicates incorrect, reach, and tr.

Now we perform Step (A) of our verification method, which consists in the removal of the
interpreter, and we derive the following CLP program:
8. incorrect :- M≥1, N≥1, X=M, Y=N, new1(M, N, X, Y, Z).
9. new1(M, N, X, Y, Z) :- X>Y, X1=X−Y, new1(M, N, X1, Y, Z).

10. new1(M, N, X, Y, Z) :- X<Y, Y1=Y−X, new1(M, N, X, Y1, Z).
11. new1(M, N, X, Y, Z) :- X=Y, Z=X, Z 6=D, gcd(M, N, D).

By moving the constrained atom ‘Z 6=D, gcd(M, N, D)’ from the body of clause 11 to the body of
clause 8, we can rewrite clauses 8 and 11 as follows (this rewriting is correct because in clauses 9
and 10 the predicate new1 modifies neither the value of M nor the value of N):
8r. incorrect :- M≥1, N≥1, X=M, Y=N, Z 6=D, gcd(M, N, D), new1(M, N, X, Y, Z).
11r. new1(M, N, X, Y, Z) :- X=Y, Z=X.

Note that we could avoid performing the above rewriting and obtain a similar program where
the constraints characterizing the initial and the error properties occur in the same clause by
starting our derivation from a more general definition of the reachability relation. However, an
in-depth analysis of this variant of our verification method is beyond the scope of this paper.

Now we will perform Step (B) of the verification method by applying the Transform strategy
to the derived program consisting of clauses {3, 4, 5, 8r, 9, 10, 11r}. Initially, we have that the
sets InDefs and Defs of definition clauses are both equal to {8r}.
Unfolding. We start off by unfolding clause 8r w.r.t. the atom new1(M, N, X, Y, Z), and we get:
12. incorrect :- M≥1, N≥1, X=M, Y=N, X>Y, X1=X−Y, Z 6=D, gcd(M, N, D), new1(M, N, X1, Y, Z).
13. incorrect :- M≥1, N≥1, X=M, Y=N, X<Y, Y1=Y−X, Z 6=D, gcd(M, N, D), new1(M, N, X, Y1, Z).
14. incorrect :- M≥1, N≥1, X=M, Y=N, X=Y, Z=X, Z 6=D, gcd(M, N, D).

By unfolding clauses 12, 13, and 14 w.r.t. the atom gcd(M, N, D), we derive:
15. incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D, gcd(X1, N, D), new1(M, N, X1, N, Z).
16. incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D, gcd(M, Y1, D), new1(M, N, M, Y1, Z).

(The unfolding of clause 14 produces the empty set of clauses because the constraint ‘X=M, Z=X,
Z 6=D, M=D’ is unsatisfiable.) The Goal Replacement and Clause Removal phases leave
the set of clauses produced by the Unfolding phase unchanged, because no laws are available
for the predicate gcd.
Definitions&Folding. In order to fold clauses 15 and 16, we perform a generalization step
and we introduce a new predicate defined by the following clause:
17. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, Z 6=D, gcd(X, Y, D), new1(M, N, X, Y, Z).

The body of this clause 17 is the most specific generalization of the bodies of clause 8r (which
is the only clause in Defs), and clauses 15 and 16 (which are the clauses to be folded). Now,
clauses 15 and 16 can be folded by using clause 17, thereby deriving:
18. incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D, new2(M, N, X1, N, Z, D).
19. incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D, new2(M, N, M, Y1, Z, D).

6



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

Clause 17 defining the new predicate new2 is added to Defs and InDefs and, since the latter
set is not empty, we perform a new iteration of the while-loop body of the Transform strategy.
Unfolding. By unfolding clause 17 w.r.t. new1(M,N,X,Y,Z) and then unfolding the resulting
clauses w.r.t. gcd(X,Y,Z), we derive:
20. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D, gcd(X1, Y, D), new1(M, N, X1, Y, Z).

21. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D, gcd(X, Y1, D), new1(M, N, X, Y1, Z).

Definition&Folding. Clauses 20 and 21 can be folded by using clause 17, and we derive:
22. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D, new2(M, N, X1, Y, Z).
23. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D, new2(M, N, X, Y1, Z).

No new predicate definition is introduced, and the Transform strategy exits the while-loop.
The final program TransfP is the set {18, 19, 22, 23} of clauses, which contains no constrained
facts. Hence both predicates incorrect and new2 are useless and all clauses of TransfP can be
removed. Thus, the Transform strategy terminates with TransfP=∅ and we conclude that the
imperative program GCD is correct w.r.t. the given initial and error properties.

4 Verification of Array Programs
In this section we apply our verification method to the following program ArrayMax which
computes the maximal element of an array:

ArrayMax : `0 : i = 0;
`1 : while (i<n) { if (a[i] > max) max = a[i];

i = i+1; };
`h : halt

We consider the following incorrectness triple: {{ϕinit(i,n,a,max)}}ArrayMax {{ϕerror (n,a,max)}}
where: (i) ϕinit(i,n,a,max) is i≥0 ∧∧ n=dim(a) ∧∧ n≥ i+1 ∧∧ max=a[i], and (ii) ϕerror (n,a,max)
is ∃k (0≤k<n ∧∧ a[k]>max ).

First, we construct a CLP program T which encodes the above incorrectness triple, similarly
to what has been done in Section 3. The predicates initConf(X) and errorConf(X) specifying
the initial and the error configurations, respectively, are defined by the following clauses:
1. initConf(cf(cmd(0, asgn(int(i), int(0))),

[[int(i), I], [int(n), N], [array(a), (A, N)], [int(max), Max]])) :- phiInit(I, N, A, Max).
2. errorConf(cf(cmd(h, halt),

[[int(i), I], [int(n), N], [array(a), (A, N)], [int(max), Max]])) :- phiError(N, A, Max).
3. phiInit(I, N, A, Max) :- I≥0, N≥I+1, read((A, N), I, Max).
4. phiError(N, A, Max) :- K≥0, N>K, Z>Max, read((A, N), K, Z).

Now we start off by applying Step (A) of our verification method which consists in the removal
of the interpreter. From program T we obtain the following program T1:
5. incorrect :- I=0, N≥1, read((A, N), I, Max), new1(I, N, A, Max).
6. new1(I, N, A, Max) :- I1=I+1, I<N, I≥0, M>Max, read((A, N), I, M), new1(I1, N, A, M).
7. new1(I, N, A, Max) :- I1=I+1, I<N, I≥0, M≤Max, read((A, N), I, M), new1(I1, N, A, Max).
8. new1(I, N, A, Max) :- I≥N, K≥0, N>K, Z>Max, read((A, N), K, Z).

As indicated in [8], in order to propagate the error property, we ‘reverse’ the derived program T1
and we get the following program T1rev:
rev1. incorrect :- b(U), r2(U).
rev2. r2(V) :- trans(U, V), r2(U).
rev3. r2(U) :- a(U).

7



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

where the predicates a, b, and trans are defined as follows:
s4. a([new1, I, N, A, Max]) :- I=0, N≥1, read((A, N), I, Max)
s5. trans([new1, I, N, A, Max], [new1, I1, N, A, M]) :-

I1=I+1, I<N, I≥0, M>Max, read((A, N), I, M).
s6. trans([new1, I, N, A, Max], [new1, I1, N, A, Max]) :-

I1=I+1, I<N, I≥0, M≤Max, read((A, N), I, M).
s7. b([new1, I, N, A, Max]) :- I≥N, K≥0, K<N, Z>Max, read((A, N), K, Z).
The transformation from T1 to T1rev is correct in the sense that incorrect ∈ M(T1) iff
incorrect ∈ M(T1rev). This equivalence holds because: (i) in program T1 the predicate
incorrect is defined in terms of the predicate new1 that encodes the reachability relation
from an error configuration to an initial configuration, and (ii) in program T1rev the predicate
incorrect is defined in terms of the predicate r2 that also encodes the reachability relation,
but this time the encoding is ‘in the reversed direction’, that is, from an initial configuration
to an error configuration.

Now let us apply Step (B) of our verification method starting from the program T1rev.
Unfolding. First we unfold clause rev1 w.r.t. the atom b(U), and we get:
9. incorrect :- I≥N, K≥0, K<N, Z>Max, read((A, N), K, Z), r2([new1, I, N, A, Max]).
Neither Goal Replacement nor Clause Removal is applied.
Definition&Folding. In order to fold clause 9 we introduce the following clause:
10. new2(I, N, A, Max, K, Z) :- I≥N, K≥0, K<N, Z>Max, read((A,N), K, Z), r2([new1, I, N, A, Max]).
By folding clause 9 using clause 10, we get:
11. incorrect :- I≥N, K≥0, K<N, Z>Max, new2(I, N, A, Max, K, Z).
Now we proceed by performing a second iteration of the body of the while-loop of the Transform
strategy because InDefs is not empty (indeed, clause 10 belongs to InDefs).
Unfolding. After some unfoldings from clause 10 we get the following clauses:
12. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,

read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

13. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M≤Max, Z>Max,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Goal Replacement. We use the following law which is a consequence of the fact that arrays
are finite functions:
(GR) read((A, N), K, Z), read((A, N), I, M) ↔

(K=I, Z=M, read((A, N), K, Z)) ∨ (K 6=I, read((A, N), K, Z), read((A, N), I, M))

Thus, (i) we replace the conjunction of atoms ‘read((A, N), K, Z), read((A, N), I, M)’ occurring in
the body of clause 12 by the right hand side of law (GR), and then (ii) we split the derived
clause with disjunctive body into the following two clauses, each of which corresponds to a
disjunct of the right hand side of (GR). We get the following clauses:
12.1 new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,

K=I, M=Z, read((A, N), K, Z), r2([new1, I, N, A, Max]).
12.2 new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,

K 6=I, read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).
Clause Removal. The constraint ‘Z>M, M=Z’ in the body of clause 12.1 is unsatisfiable.
Hence, this clause is removed from TranfP. By simplifying the constraints in clause 12.2 we get:

8



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

14. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M>Max, Z>M,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

By applying similar goal replacements and clause removals, from clause 13 we get:
15. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M≤Max, Z>Max,

read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).
Definition&Fold. In order to fold clause 14, we introduce the following definition:
16. new3(I, N, A, Max, K, Z) :- K≥0, K<N, K<I, Z>Max, read((A, N), K, Z)), r2([new1, I, N, A, Max]).
Clause 16 is obtained from clauses 10 and 14 by applying a generalization operator called
WidenSum [14], which is a variant of the classical widening operator [5]. Clause 16 can be used
also for folding clause 15, and by folding clauses 14 and 15 using clause 16, we get:
17. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M>Max, Z>M,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
18. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M≤Max, Z>Max,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
Now we perform the third iteration of the body of the while-loop of the strategy. After some
unfolding, goal replacement, clause removal, and folding steps, from clause 16 we get:
19. new3(I1, N, A, M, K, Z) :- I1=I+1, K≥0, K+1<I1, N≥I1, M>Max, Z>M,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
20. new3(I1, N, A, Max, K, Z) :- I1=I+1, K≥0, K+1<I1, N≥I1, M≤Max, Z>Max,

read((A, N), I, M), new3(I, N, A, Max, K, Z).
Since we did not introduce any new definition, and no clause remains to be processed (indeed,
the set InDefs of definitions is empty), the Transform strategy exits the while-loop and we get
the program consisting of the set {11, 17, 18, 19, 20} of clauses.

Since no clause in this set is a constrained fact, by the final phase of removing the useless
clauses we get a final program consisting of the empty set of clauses. Thus, the program
ArrayMax is correct with respect to the given ϕinit and ϕerror properties.

5 Related Work and Conclusions

The verification method presented in this paper is an extension of the one introduced in [8],
where Constraint Logic Programming (CLP) and iterated specialization have been used to
define a general verification framework that is parametric with respect to the programming
language and the logic used for specifying the correctness properties. The main novelties of
this paper are the following ones: (i) we have considered imperative programs acting on integer
variables as well as array variables, and (ii) we have allowed a more expressive specification
language, in which one can write properties about elements of arrays and, in general, elements
of complex data structures.

In order to deal with this more general setting, we have defined the operational semantics
of array manipulation, and we have also considered powerful transformation rules, such as
conjunctive definition, conjunctive folding, and goal replacement. These transformation rules
together with some strategies for guiding their application, have been implemented in the MAP
transformation system [26], so that the proofs of program correctness have been performed in
a semi-automatic way.

The use of constraint-based techniques for program verification is not novel. Indeed, CLP
programs have been successfully applied to perform model checking of both finite and infinite
state systems [10, 12, 14] because through CLP programs one can express in a simple manner

9



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

both (i) the symbolic executions of imperative programs and (ii) the invariants which hold
during their executions. Moreover, there are powerful CLP-based tools, such as ARMC [31],
TRACER [19], and HSF [17], that can be used for performing model checking of imperative
programs. These tools are fully automatic, but they are applicable to classes of programs and
properties that are much more limited than those considered in this paper. We have shown
in [8] that, by focusing on verification tasks similar to those considered by ARMC, TRACER,
and HSF, we can design a fully automatic, transformation-based verification technique whose
effectiveness is competitive to the one of the above mentioned tools.

Our rule-based program transformation technique is also related to conjunctive partial de-
duction (CPD) [9], a technique for the specialization of logic programs with respect to con-
junctions of atoms. There are, however, some substantial differences between CPD and the
approach we have presented here. First, CPD is not able to specialize logic programs with
constraints and, thus, it cannot be used to prove the correctness of the GCD program where
the role of constraints is crucial. Indeed, using the ECCE conjunctive partial deduction sys-
tem [24] for specializing the program consisting of clauses {3, 4, 5, 8r, 9, 10, 11r} with respect
to the query incorrect, we obtain a residual program where the predicate incorrect is not
useless. Thus, we cannot conclude that the atom incorrect does not belong to the least model
of the program, and thus we cannot conclude that the program is correct. One more difference
between CPD and our technique is that we may use goal replacement rules which allow us
to evaluate terms over domain-specific theories. In particular, we can apply the goal replace-
ment rules using well-developed theories for data structures like arrays, lists, heaps and sets
(see [3, 27, 16, 2, 33, 36] for some formalizations of these theories).

An alternative, systemic approach to program transformation is supercompilation [35], which
considers programs as machines. A supercompiler runs a program and, while it observes its
behavior, produces an equivalent program without performing stepwise transformations of the
original program.

The verification method presented in this paper is also related to several other methods for
verifying properties of imperative programs acting on arrays. Those methods use techniques
based on abstract interpretation, theorem proving and, in particular, Satisfiability Modulo
Theory (see, for instance, [6, 22, 23]).

The application of the powerful transformation rules we have considered in this paper en-
ables the verification of a larger class of properties, but it does not entirely fit into the automated
strategy used in [8]. In the future we intend to consider the issue of designing fully mechaniz-
able strategies for guiding the application of our program transformation rules. In particular,
we want to study the problem of devising suitable unfolding strategies and generalization op-
erators, by adapting the techniques already developed for program transformation. We also
envisage that the application of the laws used by the goal replacement rule can be automated
by importing in our framework the techniques used in the fields of Theorem Proving and Term
Rewriting. For some specific theories we could also apply the goal replacement rule by exploiting
the results obtained by external theorem provers or Satisfiability Modulo Theory solvers.

We also plan to address the issue of proving correctness of programs acting on dynamic
data structures such as lists or heaps, looking for a set of suitable goal replacement laws which
axiomatize those structures.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and constructive
criticism.

10



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

References
[1] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis for combined

theories. In Proceedings of the 8th International Conference on Verification, Model Checking, and
Abstract Interpretation. VMCAI ’07, Lecture Notes in Computer Science 4349, pages 378–394.
Springer, 2007.

[2] R. S. Bird. An introduction to the theory of lists. In Proceedings of the NATO Advanced Study
Institute on Logic of programming and calculi of discrete design, pages 5–42. Springer-Verlag New
York, Inc., 1987.

[3] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In Proceedings of
the 7th International Conference on Verification, Model Checking, and Abstract Interpretation.
VMCAI’06, Charleston, SC, USA, January 8-10, 2006, Lecture Notes in Computer Science 3855.
Springer, 2006.

[4] R. M. Burstall and J. Darlington. A transformation system for developing recursive programs.
Journal of the ACM, 24(1):44–67, January 1977.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction of approximation of fixpoints. In Proceedings of the 4th ACM-SIGPLAN
Symposium on Principles of Programming Languages (POPL’77), pages 238–252. ACM Press,
1977.

[6] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic
and scalable array content analysis. In Proceedings of the 38th ACM Symposium on Principles of
programming languages. POPL’11, pages 105–118, 2011.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Proceedings of the Fifth ACM Symposium on Principles of Programming Languages
(POPL’78), pages 84–96. ACM Press, 1978.

[8] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying Programs via Iterated
Specialization. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and
Program Manipulation, PEPM ’13, pages 43–52, 2013.

[9] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen. Con-
junctive partial deduction: Foundations, control, algorithms, and experiments. Journal of Logic
Programming, 41(2–3):231–277, 1999.

[10] G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, ed., 5th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99),
Lecture Notes in Computer Science 1579, pages 223–239. Springer-Verlag, 1999.

[11] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer Science,
166:101–146, 1996.

[12] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state systems
by specializing constraint logic programs. In Proceedings of the ACM SIGPLAN Workshop on
Verification and Computational Logic VCL’01, Florence (Italy), Technical Report DSSE-TR-2001-
3, pages 85–96. University of Southampton, UK, 2001.

[13] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Improving reachability analysis of infinite
state systems by specialization. In G. Delzanno and I. Potapov, eds., Proceedings of the 5th
International Workshop on Reachability Problems (RP 2011), September 28-30, 2011, Genova,
Italy, Lecture Notes in Computer Science 6945, pages 165–179. Springer, 2011.

[14] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verification
of infinite state systems. Theory and Practice of Logic Programming. Special Issue on the 25th
Annual GULP Conference, 13(2):175–199, 2013.

[15] C. Flanagan. Automatic software model checking via constraint logic. Sci. Comput. Program.,
50(1–3):253–270, 2004.

[16] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of the
theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.

[17] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko. HSF(C): A Software
Verifier based on Horn Clauses. In Proc. of the 18th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS ’12, Lecture Notes in Computer

11



Program Verification by CLP Transformation E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti

Science 7214, pages 549–551. Springer, 2012.
[18] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic Programming,

19/20:503–581, 1994.
[19] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool for

verification. In CAV, Lecture Notes in Computer Science 5732, pages 758–766. Springer, 2012.
[20] R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys, 41(4):21:1–21:54,

2009.
[21] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.

Prentice Hall, 1993.
[22] L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using a theorem

prover. In Proceedings of the 12th International Conference on Fundamental Approaches to Soft-
ware Engineering. FASE 2009, Lecture Notes in Computer Science 5503, pages 470–485. Springer,
2009.

[23] D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant generation. In 14th
International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI
2013, Rome, Italy, January 20-22, 2013., Lecture Notes in Computer Science 7737, pages 169–188.
Springer, 2013.

[24] M. Leuschel. The ECCE partial deduction system and the DPPD library of benchmarks, Release
3, Nov. 2000. Available from http://www.ecs.soton.ac.uk/∼mal.

[25] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction: Control
issues. Theory and Practice of Logic Programming, 2(4&5):461–515, 2002.

[26] MAP. The MAP transformation system. http://www.iasi.cnr.it/∼proietti/system.html.
Also available via a WEB interface from http://www.map.uniroma2.it/mapweb.

[27] J. McCarthy. A basis for a mathematical theory of computation. In Computer Programming and
Formal Systems, pages 33–70. North-Holland, 1963.

[28] J. McCarthy. Towards a mathematical science of computation. In C. Popplewell, ed., Information
Processing. Proceedings of IFIP 1962, pages 21–28, Amsterdam, 1963. North Holland.

[29] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs. In
M. Leuschel, ed., Logic Based Program Synthesis and Tranformation, 12th International Workshop,
LOPSTR 2002, Madrid, Spain, September 17–20, 2002, Revised Selected Papers, Lecture Notes in
Computer Science 2664, pages 90–108, 2003.

[30] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs through Analysis
of Constraint Logic Programs. In G. Levi, ed., Static Analysis, 5th International Symposium,
SAS ’98, Pisa, Italy, September 14-16, 1998, Lecture Notes in Computer Science 1503, pages
246–261. Springer, 1998.

[31] A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for Software Model Checking with
Abstraction Refinement. In M. Hanus, ed., Practical Aspects of Declarative Languages, PADL ’07,
Lecture Notes in Computer Science 4354, pages 245–259. Springer, 2007.

[32] C. J. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998.
[33] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of

the 17th Annual IEEE Symposium on Logic in Computer Science, LICS’02, pages 55–74. IEEE
Computer Society, 2002.

[34] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-Å. Tärnlund, ed.,
Proceedings of the Second International Conference on Logic Programming (ICLP’84), pages 127–
138, Uppsala, Sweden, 1984. Uppsala University.

[35] V. F. Turchin. The concept of a supercompiler. ACM TOPLAS, 8(3):292–325, 1986.
[36] M. Wirsing. Algebraic specification. In J. Van Leeuwen, ed., Handbook of Theoretical Computer

Science, volume B, pages 675–788. Elsevier, 1990.

12


	Introduction
	The Transformation-Based Verification Method
	Verification of Recursively Defined Properties
	Verification of Array Programs
	Related Work and Conclusions

