
Fundamenta Informaticae ??? (2009) 1–19 1

IOS Press

Controlling Polyvariance for Specialization-based Verification

Fabio Fioravanti
University of Chieti-Pescara

Viale Pindaro 42, 65127 Pescara, Italy

fioravanti@sci.unich.it

Alberto Pettorossi
University of Rome Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

pettorossi@disp.uniroma2.it

Maurizio Proietti
IASI-CNR

Viale Manzoni 30, 00185 Rome, Italy

maurizio.proietti@iasi.cnr.it

Valerio Senni
IMT Institute for Advanced Studies Lucca

Piazza San Ponziano 6, 55100 Lucca, Italy

valerio.senni@imtlucca.it

Abstract. Program specialization has been proposed as a means of improving constraint-based anal-
ysis of infinite state reactive systems. In particular, safety properties can be specified by constraint
logic programs encoding (backward or forward) reachability algorithms. These programs are then
transformed, before their use for checking safety, by specializing them with respect to the initial
states (in the case of backward reachability) or with respect to the unsafe states (in the case of for-
ward reachability). By using the specialized reachability programs, we can considerably increase the
number of successful verifications. An important feature of specialization algorithms is the so called
polyvariance, that is, the number of specialized variants of the same predicate that are introduced
by specialization. Depending on this feature, the specialization time, the size of the specialized pro-
gram, and the number of successful verifications may vary. We present a specialization framework
which is more general than previous proposals and provides control on polyvariance. We demon-
strate, through experiments on several infinite state reactive systems, that by a careful choice of
the degree of polyvariance we can design specialization-based verification procedures that are both
efficient and precise.

Address for correspondence: Valerio Senni, IMT Institute for Advanced Studies Lucca, Piazza San Ponziano 6, 55100 Lucca,
Italy, valerio.senni@imtlucca.it

2 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

Keywords: Program specialization, constraint logic programming, polyvariance, generalization,
verification of infinite state reactive systems, unfold/fold transformation.

1. Introduction
Program specialization, also known as partial evaluation, is a program transformation technique that,
given a program and a specific context of use, derives a specialized program that is more effective in
the given context [23]. Program specialization techniques have been proposed for several programming
languages and, in particular, for (constraint) logic languages (see [8, 14, 20, 21, 25, 26, 28, 31]).

Specialization may be polyvariant, in the sense that it may derive, starting from a single procedure,
several specialized versions of that procedure. In the case of (constraint) logic programming, program
specialization may introduce several new predicates corresponding to specialized versions of the same
predicate in the original program. The application of specialized procedures to specific input values often
results in more efficient computations. However, if the number of new predicate definitions, and hence
the size of the specialized program, is overly large, we may lose the advantages of specialization.

In order to find an optimal balance between the degree of specialization and the size of the specialized
program, several papers have addressed the issue of controlling polyvariance (see [26, 30], in the case
of logic programming). This issue is related to the one of controlling generalization during program
specialization, because a way of reducing unnecessary polyvariance is to replace several specialized
procedures by a single, more general one. In this paper we address the issue of controlling polyvariance
in the context of specialization-based techniques for the automatic verification of properties of reactive
systems [15, 17, 16, 27].

Applying model checking [5] to systems with an infinite number of states is a challenging task,
because exhaustive state exploration is impossible and, even for restricted classes, simple properties
such as safety (or reachability) properties are undecidable (see [12] for a survey of relevant results).

Some authors have advocated the use of symbolic approaches using constraints to represent infinite
sets of states and constraint logic programs to encode temporal properties (see, for instance, [9, 19]).
In these approaches, the verification of temporal properties is performed by computing the least (or
the greatest, depending on the properties) models of programs, represented as finite sets of constraints.
Since, in general, the computation of these models may not terminate, various techniques have been
proposed to improve termination and they are based on abstract interpretation [2, 3, 7, 9] and program
specialization [15, 16, 17, 27].

The techniques based on abstract interpretation compute program invariants, that is, constraints that
hold in the program model, which are sometimes sufficient to prove that the safety property of interest
holds. However, if the safety property is not a consequence of the computed invariants, one can conclude
nothing about the safety of the system, even if the system is indeed safe. In this case one can gener-
ate spurious counterexamples, that is, abstract computation paths leading to unsafe states, which do not
correspond to any concrete computation path. To alleviate this problem, the counterexample guided ab-
straction refinement (CEGAR) technique has been proposed to automatically strengthen the computed
invariants so that spurious counterexamples are avoided [6]. However, new spurious counterexamples
might be generated for the strengthened invariants and the refinement process of CEGAR is not guaran-
teed to terminate, as the strengthening process may be repeated an unbounded number of times.

Specialization-based techniques aim at improving termination of the verification process by trans-
forming the program that encodes both the infinite state system and the safety property of interest. Pro-

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 3

gram specialization transforms the given program by taking into account the property to be proved and the
initial states of the system. Similarly to abstract interpretation, also specialization computes invariants,
although in an implicit way. These invariants are used to transform the program so that the construction
of the model of the transformed program terminates more often than that of the original program.

This paper extends previous work in [15, 17, 16], by proposing a more general specialization frame-
work and a parameterized generalization strategy (that can also be instantiated to previously proposed
generalization strategies), that allows us to control the degree of polyvariance of specialized programs.
In order to simplify the presentation, in this paper we only consider reachability properties, but the ex-
tension to full CTL [5] is straightforward and requires only to encode the CTL temporal operators, as
shown in [17]. We show that the control of polyvariance plays a relevant role for the development of
effective verification techniques based on program specialization: the specialization time, the size of the
specialized program, and the precision of the verification may vary, depending on the degree of poly-
variance introduced by different strategies. Through several examples of infinite state reactive systems,
we compare the effectiveness of various polyvariance control strategies and we show that polyvariance
control is useful to increment the precision of the analysis while reducing the overall verification time.

Our paper is structured as follows. In Section 2 we present a method based on constraint logic pro-
gramming for specifying and verifying safety properties of infinite state reactive systems. In Sections 3
and 4 we present a general framework for specializing constraint logic programs and, in particular, for
controlling polyvariance during specialization. In Section 5 we present some experimental results. Fi-
nally, in Section 6 we compare our method with related approaches in the field of program specialization.

2. Specialization-Based Reachability Analysis of Infinite State Reactive
Systems

We begin by defining a language of constraints, which will be used for the symbolic representation of
infinite state reactive systems.

Let D be a finite set and R be the set of the real numbers. An atomic constraint is an equality on D
or a linear inequality on R. A constraint c is a finite conjunction of atomic constraints and it can also
be denoted by c(V), to indicate that the variables occurring in c are among the ones in the tuple V of
variables. By fd(c) we denote the conjunction of the equalities on D occurring in c and by re(c) we
denote the conjunction of the linear inequalities on R occurring in c. Given a constraint c and a tuple U
of variables, the projection c|U is the constraint d such that: (i) the variables of d are among the variables
in U , and (ii) D ∪ R |= ∀(d ↔ ∃Z c) where Z is the tuple of the variables occurring in c and not
in U . The set of constraints we consider in this paper is closed under projection. We say that a constraint
c entails a constraint d, written c v d, iff D ∪ R |= ∀(c → d). We say that c is equivalent to d, written
c ≡ d, iff c v d and d v c.

We extend the language of constraints by defining constraint logic programs, which will be used to
define properties of infinite state reactive systems.

An atom is a formula of the form p(t1, . . . , tn), for n ≥ 0, where p is a predicate symbol, different
from equality and inequality, and t1, . . . , tn are terms. A clause C is a formula of the form H ← c ∧∧ G,
where H is an atom, c is a constraint and, G is a goal, that is, a conjunction of atoms. A constraint logic
program is a set of clauses. By ct(C) we denote the constraint c in the clause C. If G is the empty
conjunction, then C is said to be a constrained fact, otherwise C is said to be a proper clause. We say

4 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

BR

UT−1(U)T−2(U). . .T−ω(U)I

FR

I T 1(I) T 2(I) . . . Tω(I) U

Figure 1. Backward (BR) and Forward (FR) strategies illustrated.

that a constrained fact H ← c subsumes a clause H ← d ∧∧G iff d v c. The semantics of a constraint
logic program P is given by its least model, denoted M(P), that is, the set of ground atoms derived by
using: (i) the theory of equalities over D and the theory of linear inequalities over R for the evaluation of
the constraints, and (ii) the usual least model construction (see [22] for more details).

An infinite state reactive system is represented by using constraints, as follows. A state is an tuple
〈a1, . . . , ap〉, where each ai belongs either to D or to R. By X we denote an tuple 〈X1, . . . , Xq〉 of
variables where each Xi ranges over either D or R. The set I of the initial states is represented by a
disjunction init1(X) ∨∨ . . . ∨∨ initk(X) of constraints. The transition relation T is represented by a
disjunction t1(X,X ′) ∨∨ . . . ∨∨ tm(X,X ′) of constraints, where X ′ is the tuple 〈X ′1, . . . , X ′n〉 of primed
variables. In this paper we focus on the verification of a class of properties of infinite state reactive
systems called safety properties. Let the set U of the unsafe states of a system be represented by a
disjunction u1(X) ∨∨ . . . ∨∨ un(X) of constraints. A safety property holds iff no unsafe state can be
reached from an initial state of the system.

Typically, one can verify a safety property by using one of the following two strategies:
(i) the Backward Strategy, which consists in computing the set BR of states from which it is possible to
reach an unsafe state, and then checking whether or not BR has an empty intersection with the set I of
the initial states;
(ii) the Forward Strategy, which consists in computing the set FR of states reachable from an initial state,
and then checking whether or not FR has an empty intersection with the set U of the unsafe states.
The Backward and Forward Strategies are illustrated in Figure 1. A number of variants of these two
strategies have been proposed and implemented in various automatic verification tools [1, 4, 18, 24, 32].

Those two strategies can be easily encoded into constraint logic programming. In particular, we can
encode the backward reachability strategy by means of the following constraint logic program Bw:

I1: unsafe← init1(X) ∧∧ bwReach(X)
· · ·

Ik: unsafe← initk(X) ∧∧ bwReach(X)

T1: bwReach(X)← t1(X,X
′) ∧∧ bwReach(X ′)

· · ·
Tm: bwReach(X)← tm(X,X ′) ∧∧ bwReach(X ′)

U1: bwReach(X)← u1(X)
· · ·

Un: bwReach(X)← un(X)

We have that: (i) bwReach(X) holds iff an unsafe state can be reached from the state X in zero or more
applications of the inverse transition relation, and (ii) unsafe holds iff there exists an initial state of the
system from which an unsafe state can be reached. The system is safe iff unsafe 6∈M(Bw).

Example 2.1. Let us consider an infinite state reactive system where each state is a pair of real numbers
and the following holds:

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 5

(i) the set of initial states is the set of pairs 〈X1, X2〉 such that the constraint X1 ≥ 1 ∧∧ X2 = 0 holds;
(ii) the transition relation is the set of pairs of states 〈〈X1, X2〉, 〈X ′1, X ′2〉〉 such that the constraint
X ′1=X1+X2 ∧∧ X

′
2=X2+1 holds; and

(iii) the set of unsafe states is the set of pairs 〈X1, X2〉 such that the constraint X2>X1 holds.
For the above system the predicate unsafe is defined by the following constraint logic program Bw1:

1. unsafe← X1≥1 ∧∧ X2=0 ∧∧ bwReach(X1, X2)

2. bwReach(X1, X2)← X ′1=X1+X2 ∧∧ X
′
2 = X2+1 ∧∧ bwReach(X ′1, X

′
2)

3. bwReach(X1, X2)← X2>X1 2

The Backward Strategy can be implemented by the bottom-up construction of the least fixpoint of the im-
mediate consequence operator SBw, that is, by computing SBw ↑ω [22]. The operator SBw is analogous to
the usual immediate consequence operator associated with a logic program, except that it constructs a set
of constrained facts, instead of a set of ground atoms. In particular, M(Bw) is the set of ground atoms of
the formAϑ such that there exists a constrained factA← c in SBw ↑ω and the constraint cϑ is satisfiable.
BR is the set of all states s such that there exists a constrained fact of the form bwReach(X)← c(X)
in SBw ↑ ω and c(s) holds. Thus, by using clauses I1, . . . , Ik, we have that the atom unsafe belongs to
M(Bw) iff BR ∩ I 6= ∅.

One weakness of the Backward Strategy is that, when computing BR, it does not take into account the
constraints holding in the initial states. This may lead to a failure of the verification process because the
computation of SBw ↑ω may not terminate. A similar weakness is also present in the Forward Strategy
as it does not take into account the constraints holding in the unsafe states when computing FR.

In this paper we present a method, based on the program specialization technique introduced in [17],
for improving the computation of SBw ↑ω. For reasons of space we present the details of our method for
the Backward Strategy only. Its application in the case of the Forward Strategy is similar, and we briefly
describe it when presenting our experimental results in Section 5.

The goal of program specialization is to transform the constraint logic program Bw into a new pro-
gram SpBw such that: (i) unsafe ∈M(Bw) iff unsafe ∈M(SpBw), and (ii) the computation of SSpBw ↑ω
terminates more often than SBw ↑ω because it exploits the constraints holding in the initial states.

Let us show how our method based on program specialization works on the infinite state reactive
system of Example 2.1.

Example 2.2. Let us consider the program Bw1 of Example 2.1. The computation of SBw1 ↑ω proceeds
as follows:

SBw1 ↑0 = {}
SBw1 ↑1 = SBw1 ↑0 ∪ {bwReach(X1, X2)← 0>X1−X2} (by clause 3)
SBw1 ↑2 = SBw1 ↑1 ∪ {bwReach(X1, X2)← 0>X1−1} (by clause 2)
SBw1 ↑3 = SBw1 ↑2 ∪ {bwReach(X1, X2)← 0>X1+X2−1} (by clause 2)
SBw1 ↑4 = SBw1 ↑3 ∪ {bwReach(X1, X2)← 0>X1+2X2} (by clause 2)
SBw1 ↑5 = SBw1 ↑4 ∪ {bwReach(X1, X2)← 0>X1+3X2+2} (by clause 2)

· · ·
where, for improving readability, the variables that occur in the constraints but not in the corresponding
heads have been projected out. One can easily prove that no new constrained fact in SBw1 ↑ k will be
subsumed by a constrained fact in SBw1 ↑ k−1, for any k ≥ 1, and thus this construction does not
terminate (note that the coefficient of X2 takes the values −1, 0, 1, 2, 3, . . .).

6 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

〈 unsafe | true 〉

〈 bwReach(X1, X2) |X1≥1 ∧∧ X2=0 〉

〈2 |X1≥1 ∧∧ X2=0 ∧∧ X2>X1 〉

〈2 | false 〉
〈 bwReach(X ′1, X

′
2) |X1≥1 ∧∧ X2=0 ∧∧ X ′1=X1+X2 ∧∧ X ′2=X2+1 〉

〈2 |X1≥1 ∧∧ X2=0 ∧∧ X ′1=X1+X2 ∧∧ X ′2=X2+1 ∧∧ X ′2>X ′1 〉

〈2 | false 〉〈 bwReach(X ′′1 , X
′′
2) |X1≥1 ∧∧ X2=0 ∧∧ X ′′1 =X1+2X2+1 ∧∧ X ′′2 =X2+2 〉

〈2 |X1≥1 ∧∧ X2=0 ∧∧ X ′′1 =X1+3X2+3 ∧∧ X ′′2 =X2+3 ∧∧ X ′′2 >X ′′1 〉

〈2 | false 〉〈 bwReach(X ′′′1 , X ′′′2) |X1≥1 ∧∧ X2=0 ∧∧ X ′′′1 =X1+3X2+3 ∧∧ X ′′′2 =X2+3 〉

.

1

2
3

2

3

2

3

2
3

Figure 2. A portion of the tree containing all the evaluations of the query unsafe. 〈G | c 〉 denotes the current
query G and the corresponding constraint store c. Arcs denote either resolution steps (using the clause whose
number is indicated on the arc) or constraint consistency checks. Details on this construction can be found in [22].

In Figure 2 we illustrate (the initial part of) the tree containing all possible top-down evaluations of
the query unsafe. These top-down evaluations either lead to unsatisfiable constraints or are infinite (note
that, in the leftmost branch of the tree, the coefficients of X2 in the constraint for X ′1 are: 1, 2, 3, . . .).

These non-termination difficulties can be overcome by specializing the program Bw1 with respect
to the constraint X1 ≥ 1 ∧∧ X2 = 0. Similarly to [17], we apply a specialization technique based
on the unfold/fold transformation rules for constraint logic programs (see, for instance, [13]). In what
follows we illustrate how these transformation rules are applied in order to obtain a specialized version
of program Bw1. We start off by introducing a new predicate new1 defined as follows:
4. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ bwReach(X1, X2)

We fold clause 1 using clause 4, that is, we replace the atom bwReach(X1, X2) by new1(X1, X2) in the
body of clause 1, and we get:
5. unsafe← X1≥1 ∧∧ X2=0 ∧∧ new1(X1, X2)

Now we continue the transformation from the definition of the newly introduced predicate new1. We
unfold clause 4, that is, we replace the occurrence of bwReach(X1, X2) by the bodies of the clauses 2
and 3 defining bwReach(X1, X2) in the program Bw1, and we derive:
6. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ X ′1=X1 ∧∧ X

′
2=1 ∧∧ bwReach(X ′1, X

′
2)

6′. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ X ′2>X1

Clause 6′ is deleted, because its constraint is unsatisfiable. In order to fold clause 6 we may use the
following definition, whose body consists (modulo variable renaming) of the atom bwReach(X ′1, X

′
2)

and the constraint X1 ≥ 1 ∧∧ X2 = 0 ∧∧ X ′1 = X1 ∧∧ X
′
2 = 1 of clause 6 projected w.r.t. the variables

〈X ′1, X ′2〉:
7. newp(X1, X2)← X1≥1 ∧∧ X2=1 ∧∧ bwReach(X1, X2)

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 7

However, if we repeat the process of unfolding and, in order to fold, we introduce new predicate defini-
tions whose bodies consist of the atom bwReach(X ′1, X

′
2) and projected constraints w.r.t. 〈X ′1, X ′2〉, then

we end up introducing, in fact, an infinite sequence of new predicate definitions of the form:

newq(X1, X2)← X1≥1 ∧∧ X2=k ∧∧ bwReach(X1, X2)

with k=1, 2, . . . In order to terminate the specialization process we apply a generalization strategy and
we introduce the following predicate definition which is a generalization of both clauses 4 and 7:

8. new2(X1, X2)← X1≥1 ∧∧ X2≥0 ∧∧ bwReach(X1, X2)

We fold clause 6 using clause 8 and we get:

9. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ X ′1=X1 ∧∧ X
′
2=1 ∧∧ new2(X ′1, X

′
2)

We continue the transformation from the definition of the new predicate new2. By unfolding clause 8
and then folding again using clause 8 itself we derive:

10. new2(X1, X2)← X1≥1 ∧∧X2≥0 ∧∧ X ′1=X1+X2 ∧∧X
′
2=X2+1 ∧∧new2(X ′1, X

′
2)

11. new2(X1, X2)← X1≥1 ∧∧ X2>X1

The specialized program SpBw1 is made out of clauses 5, 9, 10, and 11. Now we have that the com-
putation of SSpBw1 ↑ ω terminates and yields the singleton {new2(X1, X2) ← X1 ≥ 1 ∧∧ X2 > X1}.
Indeed, starting from the empty set, the immediate consequence operator SSpBw1 derives the constrained
fact new2(X1, X2) ← X1≥ 1 ∧∧ X2>X1 (using clause 11) and, from this constrained fact, it does not
derive any other constrained fact. Since unsafe 6∈ SpBw1, we have verified that the reactive system of
Example 2.1 is safe. 2

The form of the specialized program strongly depends on the strategy used to introduce new pred-
icates corresponding to the specialized versions of the predicate bwReach. In Example 2.2 we have
introduced the two new predicates new1 and new2 and we have obtained the specialized program by
deriving mutually recursive clauses defining those predicates. Note, however, that the definition of new2
is more general than the definition of new1, because the constraint occurring in the body of the clause
defining new1 implies the constraint occurring in the body of the clause defining new2.

By applying an alternative strategy we can introduce new2 only and, after folding clause 1 using
clause 8, derive a program SpBw2 where clauses 5 and 9 are replaced by the single clause:

12. unsafe← X1≥1 ∧∧ X2=0 ∧∧ new2(X1, X2)

Program SpBw2 has fewer clauses than SpBw1 and the computation of SSpBw2 ↑ ω terminates in fewer
steps than the one of SSpBw1 ↑ω.

In general, when applying our specialization-based verification method there is an issue of controlling
polyvariance, that is, introducing a set of new predicate definitions that has good performance with
respect to the following objectives:
(i) ensuring the termination and the efficiency of the specialization strategy,
(ii) minimizing the size of the specialized program SpBw, and
(iii) ensuring the termination and the efficiency of the computation of SSpBw ↑ω.

In general, objectives (i) and (ii) are in contrast with objective (iii), because the introduction of
more general definitions obviously improves specialization time and program size, but at the same time
reduces the effect of specialization and may not improve the termination behavior for the computation of
SSpBw ↑ω. In the next section we present a framework for controlling polyvariance and achieving a good
balance between the objectives above.

8 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

Input: Program Bw.
Output: Program SpBw such that unsafe ∈M(Bw) iff unsafe ∈M(SpBw).

INITIALIZATION:

DefsTree := {T {I1}−→ D1, . . . ,T
{Ik}−→ Dk};

while there exists a non-recurrent definition D: newp(X)← c(X) ∧∧ bwReach(X) in DefsTree do
1. UNFOLDING: Unfold(D,UnfD);

2. CLAUSE REMOVAL:
while in UnfD there exist two distinct clauses E and F such that E is a constrained fact that sub-
sumes F or there exists a clause F whose body has a constraint which is not satisfiable do

UnfD := UnfD− {F}
end-while;

3. DEFINITION INTRODUCTION:
Partition(UnfD, {B1, . . . , Bh});
for i = 1, . . . , h do Generalize(D,Bi,DefsTree, Gi); DefsTree := DefsTree∪{D Bi−→ Gi} end-for;

end-while;

FOLDING: Fold(DefsTree, SpBw)

Figure 3. The specialization algorithm.

3. An Algorithm for Controlling Polyvariance During Specialization

Our technique for controlling polyvariance is based on an algorithm for specializing the constraint logic
program Bw with respect to the constraints characterizing the set of initial states. Our algorithm is
parametric, in the sense that it depends on three procedures: (1) Partition, (2) Generalize, and (3) Fold.
Various definitions of these procedures are provided in Section 4. Depending on the choice of these
procedures, our algorithm reduces to various algorithms which have been proposed in the specialization
and verification field (see, for instance, [7, 17, 26, 31]), as well as new specialization algorithms which
will be discussed in the rest of this paper.

Our parametric specialization algorithm (see Figure 3) constructs a tree, called DefsTree, where:
(i) each node is labeled by a clause of the form newp(X)← d(X) ∧∧ bwReach(X), that is, the definition
of a new predicate introduced by specialization, and (ii) each arc from node Di to node Dj is labeled
by a set of clauses. We will explain below how this set of clauses is constructed. When no confusion
arises, we identify a node with its labeling definition. An arc from definition Di to definition Dj labeled

by the set Cs of clauses is denoted by Di
Cs−→ Dj . For instance, in Example 2.2 the clauses 4, 6, and 8

are related as indicated by the arc 4
{6}−→ 8. A definition D in DefsTree is said to be recurrent iff D labels

both a leaf node and a non-leaf node of DefsTree. The definition at the root of DefsTree is denoted by the
special symbol T.

Initially, DefsTree is {T {I1}−→ D1, . . . ,T
{Ik}−→ Dk}, where (i) I1, . . . , Ik are the clauses defining the

predicate unsafe in program Bw (see Section 2), and (ii) for j = 1, . . . , k, Dj is the clause newj(X) ←
initj(X) ∧∧ bwReach(X), such that newj is a new predicate symbol and the body of Dj is equal to the
body of Ij . The algorithm constructs the children of a non-recurrent definition D in the definition tree
DefsTree constructed so far, according to the following three steps:

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 9

>

D1 . . . Dk

D

G1 Gh−1. . .

{I1} {Ik}

B1 Bh−1

D

. . .

B1 . . .

. . .

Bh−1

. . .

Bh
constrained

facts

G1 . . . Gh−1

Unfold

Partition

Generalize

Figure 4. Construction of DefsTree, where a generic step of the construction of the children G1,. . . ,Gh−1 of a
given definition D, by using the procedures Unfold, Partition, and Generalize, is detailed.

1. UNFOLDING: it replaces the atom bwReach(X) occurring in the body of the definition D by the
bodies of the clauses T1, . . . , Tm, U1, . . . , Un that define bwReach in Bw, thereby deriving, by using the
procedure Unfold, the following set UnfD of m+n clauses:

UnfD = { newp(X)← c(X) ∧∧ t1(X,X
′) ∧∧ bwReach(X ′), . . . ,

newp(X)← c(X) ∧∧ tm(X,X ′) ∧∧ bwReach(X ′),
newp(X)← c(X) ∧∧ u1(X), . . . ,
newp(X)← c(X) ∧∧ un(X) }

2. CLAUSE REMOVAL: it removes from UnfD the clauses whose body contains an unsatisfiable con-
straint and the clauses that are subsumed by a (distinct) constrained fact in UnfD.

Note that, the clause removal procedure does not affect the termination of the specialization algo-
rithm, while it can affect both the specialization time and the efficiency of the specialized program. In
particular, we could choose either to apply subsumption to any pair of clauses (not requiring one to be a
constrained fact) or not to apply it at all. In practice, experiments show that subsumption with respect to
constrained facts determines a good balance between specialization time and efficiency of the specialized
programs.

3. DEFINITION INTRODUCTION: it constructs the new definitions G1, . . . , Gh which are the children
ofD using some specific procedures for Partition and Generalize, as indicated in the following Points (i)
and (ii).

(i) The procedure Partition computes a set {B1, . . . , Bh} of pairwise disjoint sets of clauses, called
blocks, such that UnfD = B1∪ . . .∪Bh. In [31] it has been argued that applying generalization to blocks
of clauses, instead of single clauses, can increase the precision of program specialization.

(ii) The procedure Generalize is applied to each block Bi of the partition and produces a new defini-
tion Gi. The main objective of this procedure is to enforce the termination of the specialization process
by introducing a finite set of new definitions. More specifically, in order to generate the definition Gi,
our Generalize procedure takes as input the clause D, a block Bi of the partition of UnfD , and the
whole definition tree constructed so far. If all clauses in Bi are constrained facts (and thus no folding
step is required), then Gi is the special clause denoted by the symbol 2. If a clause in Bi has the form
h(X) ← c(X,X ′) ∧∧ bwReach(X ′), then Gi has the form newp(X) ← d(X) ∧∧ bwReach(X) and

c(X,X ′) v d(X ′). Finally, for i = 1, . . . , h, we add to DefsTree the arc D Bi−→ Gi.
By construction, the constraint occurring in the body ofGi is entailed by every constraint occurring in

10 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

the body of a proper clause in Bi, and hence every proper clause in Bi can be folded using Gi. However,
we postpone the folding steps until the end of the construction of the whole tree DefsTree. In Figure 4
we show how the children nodes G1,. . . ,Gh−1 of a given definition D are constructed, according to the
specialization algorithm.

The construction of DefsTree terminates when all leaf clauses of the current DefsTree are recurrent. In
general, the termination of this construction is not guaranteed and it depends on the particular Generalize
procedure one considers. All Generalize procedures presented in the next section guarantee termination
(see also [17, 26, 31]).

FOLDING: when the construction of DefsTree terminates we construct the specialized program SpBw
by applying a Fold procedure which consists in: (i) collecting all clauses occurring in the blocks that
label the arcs of DefsTree, and (ii) folding every proper clause by using a definition that labels a node of
DefsTree. By construction, every proper clause occurring in a block that labels an arc of DefsTree can be
folded by a definition that labels a node of DefsTree.

In Section 4 we will show how the two different outcomes of the specialization process presented in
Example 2.2 can be obtained by using different instances of our parametric specialization algorithm. In
that section we will also indicate how by suitable choices of the Partition and Generalize procedures we
can reconstruct known techniques for controlling generalization and polyvariance [7, 17, 26, 31].

The correctness of our parametric specialization algorithm follows from the correctness of the un-
folding, folding, and clause removal rules [13]. The correctness proof is based on the fact that the
definitions introduced by the Generalize procedure are unfolded at least once before they are used for
folding.

Theorem 3.1. (Correctness of the Specialization Algorithm)
Let Bw and SpBw be the input and the output programs, respectively, of the specialization algorithm that
uses any given Partition, Generalize, and Fold procedures. Then unsafe∈M(Bw) iff unsafe∈M(SpBw).

4. Partition, Generalize, and Fold Procedures

In this section we provide several definitions of the Partition, Generalize, and Fold procedures that can
be used in our parametric specialization algorithm.

First we observe that the set of all conjunctions of equalities on D is a finite lattice under the
partial order defined by the entailment relation v. Then, let us define the most specific generaliza-
tion γ(c1, . . . , cn) of the constraints c1, . . . , cn as the conjunction of: (i) the least upper bound of
the conjunctions fd(c1), . . . , fd(cn) of equalities on D, and (ii) the convex hull [7] of the constraints
re(c1), . . . , re(cn) on R, which is the least (w.r.t. the v ordering) constraint h in R such that re(ci) v h,
for i = 1, . . . , n. For i = 1, . . . , n, we have that ci v γ(c1, . . . , cn). Note that our notion of most specific
generalization is an extension of the one commonly used in the specialization of logic programs [26].

Given a set of constraints Cs = {c1, . . . , cn}, we define two equivalence relations, 'fd and 're ,
on Cs. The relation 'fd on Cs, relates constraints that share their unique solution on D: in particular,
for every ci, cj ∈ Cs, ci 'fd cj iff fd(ci) ≡ fd(cj). The relation 're on Cs is defined in two steps:
in the first step we define a reflexive, symmetric relation ↓R on Cs, relating constraints that share some
solutions on R, then we define the equivalence relation're on Cs as the transitive closure of ↓R on Cs. In
particular, for every ci, cj∈Cs, ci ↓R cj iff re(ci) ∧∧ re(cj) is satisfiable in R. For example, let us consider

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 11

an element a∈D. Let c1 be the constraint X1> 0 ∧∧ X2= a and c2 be the constraint X1< 0 ∧∧ X2= a.
Then, we have that c1 'fd c2 on {c1, c2}. Now, let c3 be the constraint X1 > 0 ∧∧ X1 < 2, c4 be the
constraint X1>1 ∧∧ X1<3, and c5 be the constraint X1>2 ∧∧ X1<4. Since c3 ↓R c4 and c4 ↓R c5, we
have c3 're c5 on {c3, c4, c5}. Note that c3 6're c5 on {c3, c5} because c3 ∧∧ c5 is not satisfiable in R.

PARTITION. The Partition procedure takes as input a set UnfD := {C1, . . . , Cn} of clauses such that,
for some m, with 0≤m≤n, C1, . . . , Cm are not constrained facts, and Cm+1, . . . , Cn are constrained
facts. The Partition procedure returns as output a partition {B1, . . . , Bh} of UnfD, such that Bh =
{Cm+1, . . . , Cn}. The blocks B1, . . . , Bh−1 are computed by using one of the following five partition
operators which we now define. In these definitions, for i = 1, . . . , n, we denote by ct′i the constraint
ct(Ci)|X′ , that is, the projection of the constraint ct(Ci) of the clause Ci with respect to the variablesX ′.

(i) Singleton: h = m+1 and, for 1≤ i≤h−1, Bi={Ci}, which means that every non-constrained fact
is in a distinct block;

(ii) FiniteDomain: for 1≤ i≤h−1, for j, k=1, . . . ,m, two clauses Cj and Ck belong to the same block
Bi iff their finite domain constraints on the primed variables are equivalent, that is, ct′j 'fd ct′k
on {ct′1, . . . , ct′m};

(iii) Constraint: for 1≤ i≤h−1, for i, j=1, . . . ,m, two clauses Cj and Ck belong to the same block Bi

iff there exists a sequence Cj , . . . , Ck of clauses in UnfD such that for any two consecutive clauses
in the sequence, the conjunction of the real constraints on the primed variables is satisfiable, that
is, ct′j 're ct

′
k on {ct′1, . . . , ct′m};

(iv) FDC: for 1 ≤ i ≤ h−1, for i, j = 1, . . . ,m, two clauses Cj and Ck belong to the same block Bi

iff they belong to the same block according to both the FiniteDomain and the Constraint partition
operator, that is, ct′j 'fd ct

′
k and ct′j 're ct

′
k on {ct′1, . . . , ct′m};

(v) All: h=2 and B1={C1, . . . , Cm}, which means that all non-constrained facts are in a single block.

GENERALIZE. The Generalize procedure takes as input a definition D, a block B of clauses computed
by the Partition procedure, and the tree DefsTree of definitions introduced so far, and returns a definition
clause G. If B is a set of constrained facts then G is the special definition denoted by the symbol �.
Otherwise, let B be the set {E1, . . . , Ek} of clauses and G be obtained as follows.

Step 1. Let b(X ′) be the most specific generalization γ(ct(E1)|X′ , . . . , ct(Ek)|X′).
if in DefsTree there is a nearest ancestor A1 of D (possibly D itself) of the form (modulo variable

renaming) newq(X ′)← a1(X
′) ∧∧ bwReach(X ′) such that a1(X ′)'fd ct(D)

then banc(X
′)=γ(a1(X

′), b(X ′))
else banc(X

′)=b(X ′);

Step 2. Let us consider a generalization operator 	 (see the operators Widen and WidenSum defined
below and other operators defined in [17]).
if in DefsTree there is a clause H of the form (modulo variable renaming)

newt(X ′)← d(X ′) ∧∧ bwReach(X ′) such that banc(X
′) v d(X ′)

then G is H
else let newu be a new predicate symbol

12 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

if in DefsTree there exists a nearest ancestorA2 ofD (possiblyD itself) of the form (modulo
variable renaming) newr(X ′)← a2(X

′) ∧∧ bwReach(X ′) such that a2(X ′) 'fd banc(X
′)

then G is newu(X ′)← (a2(X
′)	 banc(X

′)) ∧∧ bwReach(X ′)
else G is newu(X ′)← banc(X

′) ∧∧ bwReach(X ′).

In [17] we have defined and compared several generalization operators. Among those, now we consider
the following two operators which we have used in the experiments we will report in the next section.
Indeed, as indicated in [17], these two operators perform better than the other operators considered
in [17].

Widen. For any two constraints c and d, where c = a1 ∧∧ . . . ∧∧ am and the ai’s are atomic constraints,
the operator Widen, denoted	W , returns the constraint c	W d which is the conjunction of the atomic
constraints of c which are entailed by d, that is, which are in the set {ah | 1≤ h≤m and dv ah}
(see [7] for a similar widening operator used in static analysis).

WidenSum. We start by defining the thin well-quasi ordering -S (see [10] for this notion). For any
atomic constraint a on R of the form q0 + q1X1 +. . .+ qkXk<0 or q0 + q1X1 +. . .+ qkXk≤0, we
define sumcoeff(a) to be

∑k
j=0 |qj |. Given the constraints a1 of the form p1< 0 and a2 of the form

p2< 0, we define a1 -S a2 iff sumcoeff(a1)≤ sumcoeff(a2). Similarly, given a1 of the form p1≤ 0
and a2 of the form p2≤0, we define a1 -S a2 iff sumcoeff(a1)≤sumcoeff(a2).
Given any two constraints c = a1 ∧∧ . . . ∧∧ am and d= b1 ∧∧ . . . ∧∧ bn, where the ai’s and the bi’s are
atomic constraints, the operator WidenSum, denoted	WS , returns the constraint c	WS d which is the
conjunction of the constraints in the set {ah | 1≤h≤m and d v ah} ∪ {bk | bk occurs in re(d) and
there exists ai occurring in re(c) such that bk -S ai}, which is the set of atomic constraints that either
occur in c and are entailed by d, or occur in d and are less than or equal to some atomic constraint
in c, according to the thin well-quasi ordering -S .

Our Partition and Generalize procedures can be suitably chosen so as to obtain specialization or abstract
interpretation algorithms already available in the literature. In particular, (i) the technique proposed by
Cousot and Halbwachs [7] can be obtained by using the operators FiniteDomain and Widen, (ii) the
specialization algorithm by Peralta and Gallagher [31] can be obtained by using the operators All and
Widen, and (iii) the technique presented in [17] can be obtained by using the partition operator Singleton
together with the generalization operators Widen or WidenSum.

FOLD. We define a notion of ordering between definitions. Consider the definitions C : newp(X) ←
c(X) ∧∧ bwReach(X) and D : newq(X) ← d(X) ∧∧ bwReach(X), we say that C is more general than
D, and we write D v C, iff d(X) v c(X). A definition C is said to be maximally general in a set S
of definitions iff, for every definition D ∈ S, if C v D then D v C. (Note that the relation v is not
antisymmetric.) For the Fold procedure we have two options:

Immediate Fold (Im, for short): (Step 1) all clauses occurring in the labels of the arcs of DefsTree are
collected in a set F , and then (Step 2) for every proper clause E in F such that E occurs in the block
Bi labeling an arc of the form D

Bi−→Di, for some clause D, E is folded using Di.

Maximally General Fold (MG, for short): (Step 1) is equal to that of Immediate Fold procedure, and
(Step 2) every proper clause in F is folded using a maximally general clause in DefsTree.

Immediate Fold is simpler than Maximally General Fold, because it does not require any comparison
between definitions in DefsTree to compute a maximally general one. However, the Maximally General

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 13

Fold procedure allows us to use a (possibly strict) subset of the definitions introduced by the special-
ization algorithm, thereby reducing polyvariance and the size of the specialized program. Note that, a
unique most general definition for folding a clause may not exist, that is, there exist clauses that can be
folded by using two definitions which are incomparable with respect to the v ordering.

As already mentioned in the previous section, the specialization algorithm which we have applied in
Example 2.2 can be obtained by instantiating our parametric specialization algorithm using the following
operators: Singleton for partitioning, Widen for generalization, and Immediate Fold for folding. The al-
ternative program mentioned after Example 2.2 can be obtained using the following operators: Singleton
for partitioning, Widen for generalization, and Maximally General Fold for folding.

5. Experimental Evaluation
We have implemented the parametric specialization algorithm presented in Section 3 using MAP [29],
an experimental system for transforming constraint logic programs. The MAP system is implemented in
SICStus Prolog 3.12.8 and uses the clpr library to operate on constraints. All experiments have been
performed on an Intel Core 2 Duo E7300 2.66 GHz under the Linux operating system. In [29] is provided
a web interface for using the MAP system, it is possible to retrieve all the experiments of this paper, and
also run them on the same machine used for the benchmarks.

We have performed the backward and forward reachability analyses of several infinite state reactive
systems taken from the literature [1, 2, 4, 9, 24, 32]. Among others, we have considered some mutual ex-
clusion and cache coherence protocols, client-server systems, producer-consumer systems, array bound
checking, and Reset Petri nets. All the systems considered here satisfy their safety conditions.

For backward reachability we have applied the method presented in Section 2. For forward reachabil-
ity we have applied a variant of that method: first, (i) we have encoded the forward reachability algorithm
by a constraint logic program Fw [16] and we have specialized Fw with respect to the set of the unsafe
states, thereby deriving a new program SpFw, and then, (ii) we have computed the least fixpoint of the
immediate consequence operator SSpFw.

In Tables 1 and 2 we report the results of our verification experiments for backward reachability
(that is, program Bw) and forward reachability (that is, program Fw), respectively. For each example
of infinite state reactive system, we have indicated the total verification time (in milliseconds) of the
non-specialized system and of the various specialized systems obtained by applying our strategy.

In the column named Input, we have indicated the time taken for computing the least fixpoint of the
immediate consequence operator of the input, non-specialized program (whose definition is based on
program Bw for backward reachability, and on program Fw for forward reachability). For each example
the tables have two rows corresponding, respectively, to the Immediate Fold procedure (Im) and Maxi-
mally General Fold procedure (MG). In the six rightmost columns, we have shown the total verification
time (that is, the sum of the specialization time and the time taken for computing the least fixpoint of the
immediate consequence operator of the specialized program) obtained by using the following six pairs
of partition operators and generalization operators: (i) 〈All, Widen〉, called All W, (ii) 〈FDC, Widen〉,
called FDC W, (iii) 〈Singleton, Widen〉, called Single W, (iv) 〈All, WidenSum〉, called All WS, (v) 〈FDC,
WidenSum〉, called FDC WS, and (vi) 〈Singleton, WidenSum〉, called Single WS. In Tables 1 and 2, the
last row, called no. of successes, indicates for each column the precision (that is, the number of success-
ful verifications) of the corresponding combinations of the partition and generalization operators. Those
rows contain two values, one for the Immediate Fold procedure (Im) and one for the Maximally General

14 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

Fold procedure (MG).
The symbol ‘∞’ means that either the program specialization or the least fixpoint construction does

not terminate within 300 seconds. If the time taken is less than 10 milliseconds, we have written the
value 0. Between parentheses we have also indicated the number of predicate symbols occurring in
the specialized program. This number is a measure of the degree of polyvariance determined by our
specialization algorithm.

If we consider precision, reported in the last two rows of Tables 1 and 2, we have that the best
combinations of the partition procedure and the generalization operators are: (i) FDC WS and Single WS
for backward reachability, each of which verified 54 properties out of 58 (in particular, 27 with Im
and 27 with MG), and (ii) Single WS for forward reachability, which verified 36 properties out of 58
(in particular, 18 with Im and 18 with MG). The comparison of the Input columns of Tables 1 and 2
shows that, on the chosen set of benchmarks, the computation of SBw ↑ω terminates more often that the
computation of SFw ↑ ω. This may motivate the better improvements obtained by specialization, when
applied to forward reachability rather than to backward reachability. However, in general, there is no
reason why specialization should be more effective in the case of forward reachability.

If we compare the Generalize procedures we have that WidenSum is strictly more precise than Widen
(up to 50%). Moreover, except for a few cases (namely, backward reachability of CSM, forward reach-
ability of Kanban), if a property cannot be proved by using WidenSum, then it cannot be proved using
Widen. WidenSum usually determines more polyvariance than Widen. If we consider the verification
times, they are generally favorable to WidenSum with respect to Widen.

If we compare the partition operators we have that All is strictly less precise than all other operators: it
successfully terminates in 138 cases out of 232. Those cases are obtained by varying: (i) the given infinite
state system, (ii) the property to be verified (either forward reachability or backward reachability), (iii) the
generalization operator, and (iv) the Fold procedure. However, All is the only partition operator which
allows us to verify the McCarty91 example. By using the Singleton operator, the verification terminates
in 158 cases out of 232, and by using the FDC operator, the verification successfully terminates in
159 cases out of 232. However, there are some properties (namely, forward reachability of Peterson,
InsertionSort and SelectionSort) which can only be proved using Singleton.

The two operators Singleton and FDC determine similar degrees of polyvariance and similar verifi-
cation times, while the operator All yields a specialized program with lower degree of polyvariance than
Singleton and FDC. On average, the polyvariance introduced by the generalization operators pays off
both in terms of precision and in terms of reduced verification time.

Regarding the two Fold procedures, we have an opposite behavior: except for a few cases (namely,
backward reachability of Bakery4, Peterson and CSM), the reduction of the degree of polyvariance due
to Maximally General Fold does not affect precision. Therefore, since it often allows a faster fixpoint
construction than Immediate Fold, the reduction of polyvariance in the FOLDING phase has to be pre-
ferred.

6. Related Work and Conclusions
We have proposed a framework for controlling polyvariance during the specialization of constraint logic
programs in the context of verification of infinite state reactive systems. In our framework we can com-
bine several techniques for introducing a set of specialized predicate definitions to be used when con-
structing the specialized programs. In particular, we have considered new combinations of techniques

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 15

Input Fold All W FDC W Single W All WS FDC WS Single WS

Bakery2 60 Im 140 (5) 130 (36) 130 (36) 80 (6) 20 (23) 20 (23)
MG 70 (3) 110 (14) 100 (14) 90 (5) 30 (15) 20 (15)

Bakery3 2710 Im 7240 (5) 3790 (144) 3870 (144) 1100 (6) 200 (77) 150 (77)
MG 3180 (3) 2650 (60) 2210 (58) 810 (5) 230 (53) 200 (53)

Bakery4 129900 Im ∞ 112340 (535) 111540 (539) 19340 (6) 102140 (1745) 101300 (1745)

MG 138210 (3) 38940 (272) 37160 (275) 13150 (5) 78010 (534) 76640 (534)

MutAst 1220 Im 4370 (6) 350 (173) 330 (173) 7850 (7) 170 (112) 150 (112)
MG 1390 (3) 330 (59) 340 (59) 2010 (3) 170 (71) 160 (71)

Peterson N 166520 Im ∞ ∞ ∞ 620 (9) 260 (22) 220 (22)
MG ∞ ∞ 170510 (3) 690 (6) 320 (22) 300 (22)

Ticket ∞ Im ∞ 30 (11) 10 (11) ∞ 20 (11) 20 (11)
MG ∞ 10 (11) 20 (11) ∞ 30 (11) 10 (11)

Berkeley RISC 20 Im 80 (5) 70 (6) 30 (6) 70 (5) 50 (8) 40 (8)
MG 80 (3) 70 (3) 20 (3) 80 (4) 40 (6) 30 (6)

DEC Firefly 50 Im 140 (5) 160 (7) 100 (7) 320 (7) 30 (6) 20 (6)
MG 140 (3) 170 (3) 90 (3) 280 (4) 30 (5) 20 (5)

IEEE Futurebus+ 14890 Im 16900 (6) 45240 (14) 44340 (14) 16910 (6) 2580 (19) 2410 (19)
MG 15140 (3) 16860 (3) 14860 (3) 15150 (3) 1780 (6) 1500 (6)

Illinois University 70 Im 210 (5) 150 (7) 60 (7) 110 (5) 30 (6) 20 (6)
MG 190 (3) 140 (4) 60 (4) 100 (3) 30 (5) 20 (5)

MESI 60 Im 120 (5) 50 (6) 50 (6) 90 (5) 40 (7) 20 (7)
MG 110 (3) 60 (4) 30 (4) 90 (4) 30 (5) 20 (5)

MOESI 50 Im 220 (6) 190 (7) 130 (7) 250 (6) 90 (7) 50 (7)
MG 200 (3) 150 (3) 90 (3) 190 (3) 80 (4) 40 (4)

Synapse N+1 10 Im 30 (4) 20 (5) 10 (5) 30 (4) 20 (5) 20 (5)
MG 20 (3) 30 (4) 10 (4) 30 (3) 30 (4) 10 (4)

Xerox PARC Dragon 80 Im 230 (5) 180 (7) 80 (7) 470 (7) 60 (8) 30 (8)
MG 210 (3) 170 (4) 60 (4) 460 (4) 70 (6) 30 (6)

Barber 420 Im 290 (5) 5170 (31) 3210 (35) 750 (6) 900 (44) 300 (43)
MG 270 (3) 3120 (6) 690 (6) 350 (3) 960 (14) 340 (20)

Bounded Buffer 20 Im 170 (5) 400 (11) 280 (11) 210 (6) 4490 (75) 3230 (75)
MG 150 (3) 310 (3) 180 (3) 200 (4) 4000 (18) 2890 (21)

Unbounded Buffer 20 Im 100 (6) 200 (12) 150 (12) 70 (6) 210 (12) 130 (12)
MG 80 (3) 140 (4) 100 (4) 60 (3) 150 (4) 110 (4)

CSM 188110 Im ∞ ∞ ∞ ∞ 9870 (146) 6920 (154)
MG 196100 (3) 206880 (3) 189090 (3) ∞ 10780 (22) 7850 (30)

Insertion Sort 40 Im 90 (7) 60 (23) 60 (23) 130 (8) 90 (28) 80 (28)
MG 100 (5) 50 (9) 50 (9) 130 (5) 110 (12) 100 (12)

Selection Sort ∞ Im ∞ ∞ ∞ ∞ 220 (35) 170 (32)
MG ∞ ∞ ∞ ∞ 290 (17) 200 (17)

Office Light Control 20 Im 60 (5) 20 (9) 10 (9) 50 (5) 20 (9) 20 (9)
MG 60 (3) 10 (7) 20 (7) 50 (3) 20 (7) 10 (7)

Reset Petri Nets ∞ Im ∞ ∞ ∞ 20 (5) 10 (5) 20 (5)
MG ∞ ∞ ∞ 20 (3) 20 (3) 10 (3)

GB 1750 Im 4780 (6) 3300 (10) 3300 (10) 6520 (6) 2190 (10) 2190 (10)
MG 1770 (3) 1850 (4) 1850 (4) 1810 (3) 2000 (5) 2010 (5)

Kanban ∞ Im ∞ ∞ ∞ ∞ 8310 (162) 8170 (162)
MG ∞ ∞ ∞ ∞ 13790 (162) 13690 (162)

McCarthy 91 ∞ Im ∞ ∞ ∞ 4130 (104) ∞ ∞
MG ∞ ∞ ∞ 3860 (3) ∞ ∞

Scheduler ∞ Im 4020 (5) 5770 (20) 5700 (20) 17530 (7) 3220 (91) 3120 (91)
MG 2330 (3) 2610 (6) 2420 (6) 12890 (3) 3360 (15) 3270 (15)

Train ∞ Im 1710 (6) 1340 (14) 1330 (14) 3030 (8) 20250 (299) 19850 (299)
MG 1440 (4) 970 (6) 950 (6) 2450 (5) 14010 (81) 12790 (80)

TTP ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Consistency ∞ Im ∞ ∞ ∞ 350 (13) 160 (20) 160 (21)
MG ∞ ∞ ∞ 380 (7) 200 (14) 150 (14)

no. of successes 20 Im 19 21 21 24 27 27
MG 21 22 23 24 27 27

Table 1. Verification Results using Backward Reachability.

16 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

Input Fold All W FDC W Single W All WS FDC WS Single WS

Bakery2 ∞ Im 20 (5) ∞ ∞ 30 (5) 20 (20) 20 (20)
MG 30 (4) ∞ ∞ 30 (4) 30 (15) 20 (15)

Bakery3 ∞ Im ∞ ∞ ∞ ∞ 1380 (223) 1190 (240)
MG ∞ ∞ ∞ ∞ 1530 (131) 1360 (134)

Bakery4 ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

MutAst 370 Im 420 (4) 1790 (190) 1720 (190) 410 (4) 280 (141) 280 (141)
MG 410 (3) 760 (51) 710 (51) 400 (3) 330 (123) 320 (123)

Peterson N 630 Im ∞ ∞ 1220 (6) ∞ ∞ 8000 (80)
MG ∞ ∞ 710 (3) ∞ ∞ 8650 (49)

Ticket 50 Im 60 (4) 240 (30) 210 (30) 60 (4) 210 (26) 180 (26)
MG 60 (3) 220 (11) 180 (11) 50 (3) 220 (16) 200 (16)

Berkeley RISC ∞ Im 40 (3) 50 (3) 10 (4) 40 (3) 40 (3) 20 (4)
MG 40 (3) 40 (3) 10 (4) 40 (3) 40 (3) 20 (4)

DEC Firefly ∞ Im 110 (3) 130 (3) ∞ 110 (3) 100 (3) 60 (9)
MG 120 (3) 120 (3) ∞ 120 (3) 110 (3) 60 (7)

IEEE Futurebus+ ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Illinois University ∞ Im 150 (3) 150 (3) ∞ 140 (3) 150 (3) 70 (8)
MG 140 (3) 160 (3) ∞ 150 (3) 150 (3) 60 (6)

MESI ∞ Im 90 (3) 90 (3) ∞ 90 (3) 90 (3) ∞
MG 80 (3) 90 (3) ∞ 90 (3) 90 (3) ∞

MOESI ∞ Im 130 (3) 130 (3) ∞ 130 (3) 130 (3) ∞
MG 120 (3) 140 (3) ∞ 130 (3) 130 (3) ∞

Synapse N+1 ∞ Im 10 (3) 20 (3) 0 (4) 20 (3) 20 (3) 10 (4)
MG 20 (3) 20 (3) 0 (4) 20 (3) 20 (3) 10 (4)

Xerox PARC Dragon ∞ Im 180 (3) 190 (3) ∞ 190 (3) 210 (3) 80 (8)
MG 190 (3) 210 (3) ∞ 180 (3) 210 (3) 90 (6)

Barber ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Bounded Buffer ∞ Im ∞ 50 (4) 20 (4) ∞ 50 (4) 20 (4)
MG ∞ 50 (4) 20 (4) ∞ 50 (4) 20 (4)

Unbounded Buffer ∞ Im ∞ 210 (8) 70 (8) ∞ 190 (8) 70 (8)
MG ∞ 220 (6) 80 (6) ∞ 220 (6) 80 (6)

CSM ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Insertion Sort ∞ Im ∞ ∞ 10 (14) ∞ ∞ 20 (14)
MG ∞ ∞ 20 (14) ∞ ∞ 20 (14)

Selection Sort ∞ Im ∞ ∞ 180 (37) ∞ ∞ 310 (47)
MG ∞ ∞ 230 (24) ∞ ∞ 430 (34)

Office Light Control ∞ Im ∞ 30 (18) 20 (18) ∞ 30 (18) 20 (18)
MG ∞ 20 (16) 20 (16) ∞ 30 (16) 20 (16)

Reset Petri Nets ∞ Im ∞ ∞ ∞ 0 (6) 10 (6) 0 (6)
MG ∞ ∞ ∞ 0 (5) 10 (5) 10 (5)

GB ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Kanban 44860 Im 46840 (4) 46860 (4) 56100 (13) ∞ ∞ ∞
MG 43630 (3) 43670 (3) 43660 (3) ∞ ∞ ∞

McCarthy 91 ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Scheduler 840 Im 910 (3) 910 (4) 1750 (32) 930 (3) 920 (4) 127370 (530)
MG 920 (3) 920 (4) 1120 (4) 930 (3) 940 (4) 70510 (80)

Train ∞ Im ∞ ∞ ∞ ∞ ∞ 410 (51)
MG ∞ ∞ ∞ ∞ ∞ 720 (38)

TTP ∞ Im ∞ ∞ ∞ 650 (4) 1140 (15) ∞
MG ∞ ∞ ∞ 670 (4) 1190 (11) ∞

Consistency ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

no. of successes 5 Im 12 14 12 13 17 18
MG 12 14 12 13 17 18

Table 2. Verification Results using Forward Reachability.

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 17

introduced in the area of constraint-based program analysis and program specialization such as convex
hull, widening, most specific generalization, and well-quasi orderings (see, for instance, [7, 17, 26, 31]).

We have performed an extensive experimentation by applying our specialization framework to the
reachability analysis of infinite state systems. We have considered constraint logic programs that en-
code both backward and forward reachability algorithms and we have shown that program specialization
improves the termination of the computation of the least fixpoint needed for the analysis. However, by
applying different instances of our framework, we may get different termination results and different ver-
ification times. In particular, we have provided an experimental evidence that the degree of polyvariance
has an influence on the effectiveness of our specialization-based verification method.

Our experiments confirm that, on one hand, a high degree of polyvariance often corresponds to high
precision of analysis (that is, high number of terminating verifications) and, on the other hand, a low
degree of polyvariance often corresponds to short verification times. We have also determined a specific
combination of techniques for controlling polyvariance and provided, with respect to our set of examples,
a good balance between precision and verification time.

Other techniques for controlling polyvariance during the specialization of logic programs have been
proposed in the literature [8, 17, 26, 30, 31]. As already mentioned, the techniques presented in [17, 31]
can be considered as instances of our framework, while [26, 30] do not consider constraints, which are of
primary concern here. Our framework generalizes and improves the framework of [17], by introducing
partitioning and folding operators which, as shown in Section 5, increase the precision and the perfor-
mance of the verification process. Note that in [17] we considered a subset of the experiments addressed
in the present paper. The results obtained in [17] can be obtained in the framework proposed here by us-
ing the Singleton strategy for partitioning and the Immediate Fold strategy for folding. Here we address
only a subset of the generalization operators illustrated in that paper: they are the Widen and WidenSum
operators, that perform well on our benchmarks. Also the specialization technique presented in [16] can
be obtained by using the Singleton and the Immediate Fold strategies presented here. That technique
makes use of program specialization as a preprocessing step for further analyses performed by applying
verification tools for counter systems such as ALV [32].

The off-line specialization approach followed by [8] is based on a preliminary binding time analysis
to decide when to unfold a predicate call and when to introduce a new predicate definition. In the context
of verification of infinite state reactive systems considered here, due to the very simple structure of the
program to be specialized, deciding whether or not to unfold a call is not a relevant issue, and in our
approach the binding time analysis is not performed.

As a future work we plan to continue our experiments on a larger set of infinite state reactive systems
so as to further enhance and better evaluate the specialization framework presented here. We also plan
to extend our approach to a framework for the specialization of constraint logic programs outside the
context of verification of infinite state reactive systems. Preliminary results in this direction can be found
in [11], where our specialization technique is applied and adapted to the analysis of C programs.

Acknowledgements
This work has been partially supported by the MIUR PRIN project n.20089M932N “Innovative and
multi-disciplinary approaches for reasoning with constraints and preferences” and by the joint CNR
(Italy)/CNRS (France) project: “Verification of infinite state and real time systems”. Many thanks to
Laurent Fribourg and John Gallagher for stimulating conversations on the topics of this paper, and to the

18 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification

anonymous referees for constructive criticism.

References
[1] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability analysis of complex systems.

In Proc. of CAV 2001, Lecture Notes in Computer Science 2102, pages 368–372. Springer, 2001.

[2] G. Banda and J. P. Gallagher. Analysis of linear hybrid systems in CLP. In Proc. of LOPSTR 2008, Lecture
Notes in Computer Science 5438, pages 55–70. Springer, 2009.

[3] G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal logic: A direct approach
to design and implementation. In Proc. of LPAR 2010, Lecture Notes in Artificial Intelligence 6355, pages
27–45. Springer, 2010.

[4] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Acceleration from theory to practice. Int. J. on
Software Tools for Technology Transfer, 10(5):401–424, 2008.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction Refinement.
In Proc. of CAV 2000, Lecture Notes in Computer Science 1855, pages 154–169. Springer, 2000.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In
Proc. of the Fifth ACM Symposium on Principles of Programming Languages (POPL’78), pages 84–96.
ACM Press, 1978.

[8] S.-J. Craig and M. Leuschel. A compiler generator for constraint logic programs. In M. Broy and A. V.
Zamulin, editors, 5th Ershov Memorial Conference on Perspectives of Systems Informatics, PSI 2003, Lecture
Notes in Computer Science 2890, pages 148–161. Springer, 2003.

[9] G. Delzanno and A. Podelski. Constraint-based deductive model checking. Int. J. on Software Tools for
Technology Transfer, 3(3):250–270, 2001.

[10] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1-2):69–116, 1987.

[11] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Software Model Checking by Program Spe-
cialization. In Proc. of the 9th Italian Convention on Computational Logic (CILC’12), CEUR-WS Vol.857.
2012.

[12] J. Esparza. Decidability of model checking for infinite-state concurrent systems. Acta Informatica, 34(2):85–
107, 1997.

[13] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer Science, 166:101–146,
1996.

[14] F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specializing constraint logic programs.
In Proc. of LOPSTR ’00, Lecture Notes in Computer Science 2042, pages 125–146. Springer-Verlag, 2001.

[15] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state systems by specializing
constraint logic programs. In Proc. of VCL’01, Tech. Rep. DSSE-TR-2001-3, pages 85–96. University of
Southampton, UK, 2001.

[16] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Improving Reachability Analysis of Infinite State
Systems by Specialization. In Proc. of RP 2011, Lecture Notes in Computer Science 6945, pages 165–179.
Springer, 2011.

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Controlling Polyvariance for Specialization-Based Verification 19

[17] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization Strategies for the Verifi-
cation of Infinite State Systems. Theory and Practice of Logic Programming. Available on CJO
doi:10.1017/S1471068411000627. Cambridge, 2012.

[18] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In M. Morari and L. Thiele,
editors, Hybrid Systems: Computation and Control, 8th International Workshop, HSCC 2005, Lecture Notes
in Computer Science 3414, pages 258–273. Springer, 2005.

[19] L. Fribourg. Constraint logic programming applied to model checking. In A. Bossi, editor, Proc. of the
9th International Workshop on Logic-based Program Synthesis and Transformation (LOPSTR ’99), Venezia,
Italy, Lecture Notes in Computer Science 1817, pages 31–42. Springer-Verlag, 2000.

[20] J. P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of the 1993 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics Based Program Manipulation, PEPM ’93, Copenhagen, Denmark,
pages 88–98. ACM Press, 1993.

[21] T. J. Hickey and D. A. Smith. Towards the partial evaluation of CLP languages. In Proc. of the 1991 ACM
Symposium on Partial Evaluation and Semantics Based Program Manipulation, PEPM ’91, New Haven, CT,
USA, SIGPLAN Notices, 26, 9, pages 43–51. ACM Press, 1991.

[22] J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic programming. Journal of
Logic Programming, 37:1–46, 1998.

[23] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. Prentice
Hall, 1993.

[24] LASH. homepage: http://www.montefiore.ulg.ac.be/~boigelot/research/lash .

[25] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction: Control issues.
Theory and Practice of Logic Programming, 2(4&5):461–515, 2002.

[26] M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and polyvariance in partial deduc-
tion of normal logic programs. ACM Transactions on Programming Languages and Systems, 20(1):208–258,
1998.

[27] M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and program special-
ization. In Proceedings of LOPSTR ’99, Lecture Notes in Computer Science 1817, pages 63–82. Springer,
2000.

[28] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. Journal of Logic Programming,
11:217–242, 1991.

[29] MAP. The MAP transformation system web interface: http://map.uniroma2.it/mapweb .

[30] C. Ochoa, G. Puebla, and M. V. Hermenegildo. Removing superfluous versions in polyvariant specialization
of Prolog programs. In Proc. of LOPSTR ’05, Lecture Notes in Computer Science 3961, pages 80–97.
Springer, 2006.

[31] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs. In Proc. of
LOPSTR ’02, Lecture Notes in Computer Science 2664, pages 90–108. Springer, 2003.

[32] T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An infinite-state model checker for reactive
software specifications. Formal Methods in System Design, 35(3):325–367, 2009.

