
Fundamenta Informaticae Submitted (2013) 1–20 1

IOS Press

Proving Theorems by Program Transformation

Fabio Fioravanti
University of Chieti-Pescara, Pescara, Italy, fioravanti@unich.it

Alberto Pettorossi
University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy, pettorossi@disp.uniroma2.it

Maurizio Proietti
IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy, maurizio.proietti@iasi.cnr.it

Valerio Senni
IMT, Institute for Advanced Studies, Lucca, Italy, valerio.senni@imtlucca.it

Abstract. In this paper we present an overview of the unfold/fold proof method, a method for prov-
ing theorems about programs, based on program transformation. As a metalanguage for specifying
programs and program properties we adopt constraint logic programming (CLP), and we present a
set of transformation rules (including the familiar unfolding and folding rules) which preserve the
semantics of CLP programs. Then, we show how program transformation strategies can be used,
similarly to theorem proving tactics, for guiding the application of the transformation rules and
inferring the properties to be proved. We work out three examples: (i) the proof of predicate equiv-
alences, applied to the verification of equality between CCS processes, (ii) the proof of first order
formulas via an extension of the quantifier elimination method, and (iii) the proof of temporal prop-
erties of infinite state concurrent systems, by using a transformation strategy that performs program
specialization.

Keywords: Automated theorem proving, program transformation, constraint logic programming,
program specialization, bisimilarity, quantifier elimination, temporal logics.

1. Introduction

Program transformation is a methodology that allows the programmer to separate the correctness concern
and the efficiency concern when developing programs [4]. An initial, maybe inefficient, program whose
correctness with respect to a given specification can easily be proved, is transformed, possibly in several
steps, into an efficient program by applying correctness preserving transformations.

Although its main objective is the improvement of efficiency, it has long been recognized that pro-
gram transformation can also be used as a methodology for proving program properties and, more in
general, for proving theorems. Indeed, in the case of functional or logic programming, programs can
be regarded as theories consisting of sets of equations and logical implications, respectively, which are
associated with models defined by a suitable program semantics (either least or greatest models). Thus,
transforming programs can be regarded as an activity by which one deduces consequences of theories,

2 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

that is, theorems which hold in the models defined by the given semantics. In this setting, the elementary
transformation steps, often called transformation rules, can be regarded as inference rules, and composite
transformations, often called transformation strategies, can be regarded as theorem proving tactics.

The view of program transformation as a theorem proving activity was first suggested in the seminal
paper by Burstall and Darlington [4], where some equivalences between functions defined by recursive
equations are proved by applying unfolding and folding transformations. Given a function definition
f(x)=D[x], the unfolding rule consists in replacing a function call f(t) occurring in the right hand side
of a program equation by the expression D[t]. The folding rule is the inverse of the unfolding rule, and
consists in replacing an occurrence of the expression D[t] by the function call f(t). In order to prove
the equivalence of two functions, say f and g, Burstall and Darlington proposed a method, which we
will call the unfold/fold proof method, based on program transformations: by applying the unfolding
and folding rules, the definitions of f and g are transformed into two syntactically identical sets of
equations (modulo the function and variable names) and, additionally, the termination of the derived set
of equations is proved, to avoid that f(x) and g(x) differ for values of x where the function defined by
the new set of equations fails to terminate. (Essentially, this proof method is a transformational version
of McCarthy’s induction principle [21].)

Burstall and Darlington’s unfold/fold proof method for functional programs has been further refined
in several papers (see, for instance, [6, 17]). In particular, Kott [17] proposed a method to avoid the
termination check, which is hard to automate in general. Kott’s method guarantees the soundness of
the unfold/fold method by a suitable bookkeeping of the applications of the unfolding and folding rules
performed during the proof. Obviously, since program equivalence is undecidable and not even semide-
cidable, the unfold/fold proof method is necessarily incomplete. However, completeness results for some
classes of programs (including equational definitions of regular sets of trees) were presented in [6].

Tamaki and Sato extended the unfold/fold transformation methodology to logic programs in [38].
After their landmark paper, a lot of work has been done to prove the correctness of the transformation
rules with respect to the various semantics of logic programs, and to devise strategies of application of
the rules which have the objective of improving program efficiency (see [25] for a survey of early work
in the area).

Also the unfold/fold proof method has been extended to logic programming to prove equivalences of
predicates, instead of functions, that is, first order formulas of the form ∀X(p(X) ↔ q(X)) [26]. This
method has been shown to be effective for several verification tasks, such as the verification of properties
of parameterized concurrent systems [33]. Moreover, by using the Lloyd-Topor transformation [19],
any first order logic formula can be translated into a logic program with negation, thereby extending the
applicability of the unfold/fold proof method to prove any first order formula, not only equivalences [27].

In the context of first order theorem proving, for reasons of efficiency it is often useful to employ
specialized theorem provers for specific theories. This is why Constraint Logic Programming (CLP) is
a very attractive paradigm [15], as it combines general purpose, resolution-based logical reasoning, with
dedicated theorem provers (called solvers in this framework) for restricted theories of constraints (for
instance, linear equalities and inequalities over the integers, or the rationals, or the reals, and formulas
over the booleans or finite domains). The unfold/fold proof method has also been developed in the case
of CLP programs, thereby combining rules and strategies for transforming logic programs with theorem
proving techniques that exploit properties of the specific constraint domain [28].

Many non-classical logics, such as temporal logics, can be encoded into (constraint) logic program-
ming and, by this encoding, the unfold/fold proof method can be used for proving theorems in those

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 3

logics. This observation has lead to the design of transformational techniques for proving temporal prop-
erties of infinite state concurrent systems [10, 13, 18, 23].

The large variety of contexts where the unfold/fold proof method can be applied witnesses its great
generality and flexibility. Besides this, we would like to stress the main technical point that motivates
exploring the connections between program transformation and theorem proving: many automated trans-
formation strategies which have been developed with the goal of improving program efficiency can be
turned into proof tactics. One notable example is the strategy for eliminating existential variables, whose
initial motivation was to avoid the construction of unnecessary data structures when computing with
logic programs [31]. The same strategy can also be regarded as a technique for proving theorems by
quantifier elimination (see, for instance, [32]).

In this paper we overview the unfold/fold proof method in the case of constraint logic programming,
and we illustrate the method by means of examples. The paper is organized as follows. In Section 2,
we recall the basic notions about constraint logic programming and we present the transformation rules
which are used in the rest of the paper. In Section 3, we present the method for proving equivalences
of predicates, and we apply it to the proof of the equality of two CCS processes [22]. In Section 4,
we illustrate the unfold/fold proof method for general first order logic formulas, and we show how it
can be viewed as an extension of the quantifier elimination technique. In Section 5, we describe an
application of the unfold/fold proof method that allows us to verify properties of infinite state concurrent
systems specified in the CTL temporal logic [5]. Finally, in Section 6, we discuss new developments of
the method and, in particular, we discuss recent transformational techniques for proving theorems about
infinite structures and for verifying properties of imperative programs.

2. Transformation Rules for Constraint Logic Programs
In this section we briefly recall the basic notions about constraint logic programs [15] and we present the
rules we use for transforming those programs (see also [9, 12, 29, 34, 35]).

2.1. Constraint Logic Programs
We will consider constraint logic programs with linear constraints over the set R of the real numbers.
Note, however, that most of the notions and techniques extend to other constraint domains in a straight-
forward way.

Constraints are defined as follows. If p1 and p2 are linear polynomials with real variables, then
p1≥p2 and p1>p2 are atomic constraints. We will also use the equality ‘=’ and the inequalities ‘≤’ and
‘<’ defined in terms of ‘≥’ and ‘>’ as usual. A constraint is either true, or false, or an atomic constraint,
or a conjunction of constraints.

An atom is an atomic formula of the form p(t1, . . . , tm), where p is a predicate symbol not in {≥, >}
and t1, . . . , tm, with m≥0, are terms. A literal is either an atom or a negated atom. A goal is a (possibly
empty) conjunction of literals. A constrained goal c ∧∧G is a conjunction of a constraint c and a goal G.
A CLP program is a finite set of clauses of the form A ← c ∧∧G, where A is an atom and c ∧∧G is a
constrained goal. Given a clause A ← c ∧∧G, A is the head of the clause and c ∧∧G is the body of the
clause. Without loss of generality, we assume that all terms denoting real numbers and occurring in the
head of a clause are distinct variables.

The definition Defs(p, P) of a predicate p in a program P is the set of all clauses of P whose head
predicate is p. A predicate p depends on a predicate q in a program P if either in P there is a clause

4 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

p(. . .) ← c ∧∧G such that q occurs in G, or there exists a predicate r such that p depends on r in P
and r depends on q in P . The extended definition Defs∗(p, P) of a predicate p in a program P is the set
containing the definition of p and the definitions of all those predicates on which p depends in P .

Given a constraint (or a goal or a constrained goal) ϕ, by vars(ϕ) we denote the set of variables
occurring in ϕ. Given a clause γ : H ← c ∧∧G, by evars(γ) we denote the set of the existential variables
of γ, that is, vars(c ∧∧G) − vars(H). By ∀(ϕ) we denote the universal closure ∀X1 . . . ∀Xn ϕ, where
vars(ϕ) = {X1, . . . , Xn}. Similarly, by ∃(ϕ) we denote the existential closure ∃X1 . . . ∃Xn ϕ.

A stratification is a function σ from the set of predicate symbols to the non-negative integers. A strat-
ification σ extends to literals by taking σ(p(. . .)) =def σ(p) and σ(¬A) =def σ(A) + 1. A clause
A ← c ∧∧G is stratified with respect to σ if for every literal L in G, σ(A) ≥ σ(L). A program P is
stratified with respect to σ if every clause of P is. Finally, a program is stratified if it is stratified with
respect to some stratification function.

Let TR denote the set of ground terms built from R and from the function symbols in the language of
P . An R-interpretation is an interpretation which: (i) has universe TR, (ii) assigns to +,×, >,≥ the usual
meaning in R, and (iii) is the standard Herbrand interpretation [19] for function and predicate symbols
different from +,×, >,≥. We can identify an R-interpretation I with the set of ground atoms (with
arguments in TR) which are true in I . We write R |= ϕ if ϕ is true in every R-interpretation. A constraint
c is satisfiable if R |= ∃(c). A constraint c entails a constraint d, denoted c v d, if R |= ∀(c→ d).

An R-model of a CLP program P is an R-interpretation that makes true every clause of P . Every
stratified CLP program P has a unique perfect model, denoted M(P), which is constructed as follows
(see [3] for a similar definition). Let us consider any stratification σ such that P is stratified with re-
spect to σ. Let S0, . . . , Sn be a sequence of programs such that: (i)

⋃
0≤k≤n Sk = P , and (ii) for

k = 0, . . . , n, Sk is the set of clauses A ← c ∧∧G in P such that σ(A) = k. We define a sequence of
R-interpretations as follows: (i) M0 is the least R-model of S0 (note that no negative literals occur in
S0), and (ii) for 0≤k<n, Mk+1 is the least R-model of Sk+1 which contains Mk. The R-interpretation
Mn is the perfect model of P .

2.2. Transformation Rules for CLP Programs

A transformation sequence is a sequence P0, . . . , Pn of programs constructed by applying the transfor-
mation rules defined below. Without loss of generality, when applying the transformation rules we will
feel free to rewrite clauses by: (i) renaming their variables apart (so that distinct clauses have no variables
in common), and (ii) rearranging the order and removing repeated occurrences of literals in their bodies.
Suppose that we have constructed the transformation sequence P0, . . . , Pk, for 0≤ k≤n−1. Then the
next program Pk+1 in the sequence is derived from program Pk by the application of one the following
rules R1–R7.

Rule R1 is applied for introducing a new predicate definition.

R1. Definition Introduction. Let us consider a clause of the form: δ: newp(X1, . . . , Xh) ← c ∧∧G,
where: (i) newp is a predicate symbol not occurring in {P0, . . . , Pk}, (ii) X1, . . . , Xh are distinct
variables occurring in c ∧∧G, (iii) every predicate symbol occurring in G also occurs in P0. Clause δ
is called the definition of newp. By definition introduction from program Pk we derive the program
Pk+1 =Pk ∪ {δ}. For k≥0, Defsk denotes the set of clauses introduced by the definition rule during the
transformation sequence P0, . . . , Pk. In particular, Defs0 =∅.

The (positive or negative) unfolding rules consist in: (i) replacing an atomA occurring in the body of

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 5

a clause by the corresponding instance of the disjunction of the bodies of the clauses whose heads unify
with A, and (ii) applying suitable boolean laws for deriving clauses.
R2. Positive Unfolding. Let γ: H ← c ∧∧GL ∧∧A ∧∧GR be a clause in program Pk and let γ1: K1 ←
d1 ∧∧B1 . . . , γm: Km ← dm ∧∧Bm (m ≥ 0) be all (renamed apart) clauses of Pk such that, for i =
1, . . . ,m, A is unifiable with Ki, with most general unifier ϑi. By unfolding γ w.r.t. A we derive the
clauses η1, . . . , ηm (m≥0), where for i = 1, . . . ,m, ηi is (H ← c ∧∧ di ∧∧GL ∧∧Bi ∧∧GR)ϑi. From Pk we
derive the program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}.

R3. Negative Unfolding. Let γ: H ← c ∧∧GL ∧∧¬A ∧∧GR be a clause in program Pk and let γ1: K1 ←
d1 ∧∧B1, . . . , γm: Km ← dm ∧∧Bm (m ≥ 0) be all (renamed apart) clauses in Pk such thatA is unifiable
with K1, . . . ,Km, with most general unifiers ϑ1, . . . , ϑm, respectively. Assume that: (i) A = K1ϑ1 =
. . .= Kmϑm, that is, for i= 1, . . . ,m, A is an instance of Ki, and (ii) for i= 1, . . . ,m, evars(γi) = ∅.
From GL ∧∧¬((d1 ∧∧B1)ϑ1 ∨∨ . . . ∨∨ (dm ∧∧Bm)ϑm) ∧∧GR we get an equivalent disjunction Q1 ∨∨ . . . ∨∨Qr
of constrained goals, with r ≥ 0, by first moving ¬ inward using De Morgan’s law, then replacing
every negated atomic constraint of the form ¬(p1≥ p2) by p1<p2 and replacing every negated atomic
constraint of the form ¬(p1 < p2) by p1 ≥ p2, and finally moving ∨∨ outward using distributivity. By
unfolding γ w.r.t. ¬A we derive the clauses η1, . . . , ηr, where for i = 1, . . . , r, ηi is H ← Qi. From Pk
we derive the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

The folding rule consists in replacing an instance of the body of the definition of a predicate by the
corresponding head.
R4. Positive Folding. Let γ be a clause in Pk and let δ: K ← d ∧∧B, whereB is a non-empty conjunction
of literals, be a (renamed apart) definition in Defsk. Suppose that there exists a substitution ϑ such
that: (i) γ is of the form H ← c ∧∧ dϑ ∧∧GL ∧∧Bϑ ∧∧GR, and (ii) for every variable X ∈ evars(δ), the
following conditions hold: (ii.1) Xϑ is a variable not occurring in {H, c,GL, GR}, and (ii.2) Xϑ does
not occur in the term Y ϑ, for any variable Y occurring in d ∧∧B and different from X . By folding γ
using the definition δ we derive the clause η: H ← c ∧∧GL ∧∧Kϑ ∧∧GR. From Pk we derive the program
Pk+1 = (Pk − {γ}) ∪ {η}.
R5. Negative Folding. Let γ be a clause in Pk and let δ: K ← d ∧∧A, where A is an atom, be a
(renamed apart) definition in Defsk. Suppose also that there exists a substitution ϑ such that: (i) γ is of
the form: H ← c ∧∧GL ∧∧¬Aϑ ∧∧GR, (ii) c v dϑ, and (iii) vars(A) = vars(K). By folding γ using
the definition δ we derive the clause η: H ← c ∧∧GL ∧∧¬Kϑ ∧∧GR. From Pk we derive the program
Pk+1 = (Pk−{γ}) ∪ {η}.

The goal replacement rule allows us to replace a constrained goal c1 ∧∧G1 in the body of a clause by
a constrained goal c2 ∧∧G2, such that c1 ∧∧G1 and c2 ∧∧G2 are equivalent in the perfect model of Pk.

R6. Goal Replacement. Let γ: H ← c ∧∧ c1 ∧∧GL ∧∧G1 ∧∧GR be a clause in program Pk and as-
sume we have that M(Pk) |= ∀X (∃Y c1 ∧∧G1 ↔ ∃Z c2 ∧∧G2), where X = vars({H, c,GL, GR}),
Y = vars(c1 ∧∧G1)−X , and Z = vars(c2 ∧∧G2)−X . By replacing c1 ∧∧G1 with c2 ∧∧G2, from γ we
derive δ: H ← c ∧∧ c2 ∧∧GL ∧∧G2 ∧∧GR, and from Pk we derive Pk+1 = (Pk − {γ}) ∪ {δ}.
The clause deletion rule R7 allows us to remove from Pk a redundant clause γ, that is, a clause γ such
that M(Pk) =M(Pk−{γ}). In Rule R7 we use the following notions. A clause γ is subsumed by a
clause of the form H ← c ∧∧G1 if γ is of the form (H ← d ∧∧G1 ∧∧G2)ϑ, for some substitution ϑ, and
dϑ v c. A clause has a false body if it is of the form H ← c ∧∧G and either R |= ¬∃(c) or G has a
subconjunction of the form A ∧∧¬A. The set of useless predicates in a program P is the maximal set U

6 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

of predicates occurring in P such that p is in U iff every clause γ with head predicate p is of the form
p(. . .)← c ∧∧G1 ∧∧ q(. . .) ∧∧G2 for some q in U . A clause in a program P is useless if the predicate of its
head is useless in P .

R7. Clause Deletion. Let γ be a clause in Pk. By clause deletion we derive the program Pk+1 =
Pk − {γ} if one of the following three cases occurs:
R7s. γ is subsumed by a clause in Pk − {γ}; R7f. γ has a false body; R7u. γ is useless in Pk.

A transformation sequence P0, . . . , Pn is correct if the following conditions hold: (i) P0 ∪Defsn and Pn
are stratified, and (ii) M(P0 ∪Defsn) = M(Pn). Transformation sequences constructed by an unre-
stricted use of the transformation rules may be not correct. Now we present a correctness result for the
class of the so-called admissible transformation sequences.

Definition 2.1. (Admissible Transformation Sequence)
1. An atom A in a conjunction G is σ-maximal if, for every literal L in G, we have σ(A)≥σ(L).
2. A clause δ: H ← c ∧∧G is σ-tight if G is of the form G1 ∧∧A ∧∧G2, for some σ-maximal atom A and
subgoals G1 and G2, and σ(H)=σ(A).
3. A clause η is said to be a descendant of a clause γ if either η is γ itself or there exists a clause δ such
that η is derived from δ by using a rule in {R2,R3,R4,R5,R6}, and δ is a descendant of γ.
4. Let P0 be a stratified program and let σ be a stratification for P0. A transformation sequence
P0, . . . , Pn, with n≥0, is said to be admissible if, for k=1, . . . , n:
(a) every clause in Defsk is σ-tight,
(b) if Pk is derived from Pk−1 by goal replacement (R6) and c1 ∧∧G1 is replaced with c2 ∧∧G2, in the

clause H ← c ∧∧B, then σ(H) > σ(L) for every L in G2, and
(c) if Pk is derived from Pk−1 by positive folding (R4) of clause γ using clause δ, then: either (c.1) the

head predicate of γ occurs in P0, or (c.2) γ is a descendant of a clause β in Pj , with 0<j≤ k−1,
such that β has been derived by positive unfolding of a clause α in Pj−1 w.r.t. an atom which is
σ-maximal in the body of α and whose predicate occurs in P0.

Theorem 2.1. Every admissible transformation sequence is correct.

This theorem extends to CLP programs the result presented in [29] for locally stratified logic programs
over the domain of infinite lists. Recall that a program is locally stratified if there exists a function σ
from the set of ground atoms to the set of non-negative integers such that, for all ground instances
H ← c ∧∧B of a program clause, for all literals L in B, σ(H)≥ σ(L) (where for all ground atoms A,
σ(¬A)=def σ(A)+1) [3]. For the sake of conciseness, here we have made the more restrictive assumption
that programs are stratified. However, Theorem 2.1 can be extended to locally stratified CLP programs
in a straightforward way.

Example 2.1. Let us consider the program P0 made out of the following clauses:
1. prop←even(X) ∧∧¬odd(X+1)
2. even(X)←X=0 4. odd(X)← X=1
3. even(X)←X≥2 ∧∧ even(X−2) 5. odd(X)←X≥2 ∧∧ odd(X−2)

We take the stratification function σ such that σ(prop)=σ(even)>σ(odd). Predicate prop holds iff there
exists an even number whose successor is not odd. We will now prove that prop is false by constructing
a suitable transformation sequence starting from P0. By rule R1 we introduce the clause:
6. newp(X)← even(X) ∧∧¬ odd(X+1)

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 7

and we derive P1 = P0 ∪ {6}. We take σ(newp) = σ(even). Thus, clause 6 is σ-tight and even(X)
is a σ-maximal atom in its body. By using rule R2, we unfold clause 6 w.r.t. even(X) and we derive
P2 = P0 ∪ {7, 8}, where:
7. newp(X)← X=0 ∧∧¬ odd(X+1) 8. newp(X)← X≥2 ∧∧ even(X−2) ∧∧¬ odd(X+1)

By applying rule R3, we unfold clause 7 w.r.t. ¬ odd(X+1), and we get P3 = P0 ∪ {8, 9, 10, 11, 12},
where:
9. newp(X)← X=0 ∧∧X+1<1 ∧∧X+1<2

10. newp(X)← X=0 ∧∧X+1<1 ∧∧¬ odd((X+1)−2)
11. newp(X)← X=0 ∧∧X+1>1 ∧∧X+1<2
12. newp(X)← X=0 ∧∧X+1>1 ∧∧¬ odd((X+1)−2)
Now, clauses 9–12 all have an unsatisfiable conjunction of constraints in their body. Thus, by applying
the clause deletion rule R7f, we remove them all and we derive P4 = P0 ∪ {8}. Then, by unfolding
clause 8 w.r.t. ¬ odd(X+1) and deleting the clauses with unsatisfiable constraints, we derive P4 =
P0 ∪ {13}, where:
13. newp(X)← X≥2 ∧∧X+1>1 ∧∧ even(X−2) ∧∧¬ odd((X+1)−2)
By rule R6, we replace the constrained goal X ≥ 2 ∧∧X+1> 1 ∧∧¬ odd((X+1)−2) by the constrained
goal X≥2 ∧∧¬ odd((X−2)+1), and we derive P5 = P0 ∪ {14}, where
14. newp(X)← X≥2 ∧∧ even(X−2) ∧∧¬ odd((X−2)+1)
By applying rule R4 twice, we fold clauses 1 and 14 using definition 6 and we derive the program
P6 = {2, 3, 4, 5, 15, 16}, where:
15. prop← newp(X) 16. newp(X)← X≥2 ∧∧ newp(X−2)
Finally, clauses 15 and 16 are useless and, by applying rule R7u, can be deleted. Thus, we derive
P7 = {2, 3, 4, 5}.
The transformation sequence P0, . . . , P7 is admissible, and hence by Theorem 2.1 it is correct. In par-
ticular, the two applications of rule R4 satisfy Condition (4) of Definition 2.1 because: (i) clause 6 is
σ-tight, (ii.1) the head predicate of clause 1 occurs in P0, and (ii.2) clause 14 is a descendant of clause 8
which has been derived by unfolding w.r.t. a σ-maximal atom whose predicate occurs in P0. Since the
definition of prop is the empty set of clauses, we have that prop is false in M(P7). By the correctness of
the transformation sequence, we have proved that prop is false in M(P0).

Variants of the above rules have been presented in several papers and correctness results have been
proved with respect to various semantics of logic programs and constraint logic programs (see [25] for a
survey of early results, and [9, 30, 35] for more recent work). In this section we have presented only the
rules that are used in the examples presented in the following sections.

3. Proving Equivalence of CCS Terms
In this section we show the correctness of a mutual exclusion protocol by using the unfold/fold proof
method. First, we formalize the operational semantics of the protocol within the Calculus for Commu-
nicating Systems (CCS) [22] and we express that semantics using a logic program. Then, we show that
the protocol satisfies the mutual exclusion property by showing the equivalence of two predicates.

Let us start by introducing the basic notions of the fragment of CCS we need. For the notions not
presented here the reader may refer to [22]. We consider the following sets.
(i) The infinite set A of names. For every name ` ∈A we assume that there exists a co-name, denoted
by `. The set of all co-names is denoted by A. We assume that for any `∈A, ` = `. (ii) The set Act of

8 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

actions, which is A∪A∪{τ}, where τ is a distinguished element. α, β, . . . range over Act. (iii) The set
Id of identifiers which are introduced by definitions (see Point (v) below). (iv) The set P of processes,
also called terms, ranged over by p, q, . . ., possibly with subscripts, whose syntax is as follows:

p ∈ P p ::= 0 | α.p | p1+ p2 | p1 | p2 | p\L | P
where: 0 is a distinguished process, α is an action in Act, L⊆A is a set of names, and P is a process
identifier in Id. (v) The set of definitions of the form: P =def p, where every occurrence of an identifier
in p is within a subterm of the form α.p′, with α different from τ . We will write

∑
i∈I pi to denote the

term p1 + (p2 + (. . .+ pn). . .), for I={1, . . . , n}. Every subterm pi is called a summand.

We define the operational semantics of processes by introducing the binary relation
α−→ ⊆ P×P ,

for every α∈Act. That relation is defined by the following rules of inference.

Prefix: α.p
α−→ p Sum:

pj
α−→ q∑

i∈I pi
α−→ q

if j∈I

Parallel Composition:
p1

α−→ p′1

p1 | p2
α−→ p′1 | p2

p2
α−→ p′2

p1 | p2
α−→ p1 | p′2

(†)
p1

`−→ p′1 p2
`−→ p′2

p1 | p2
τ−→ p′1 | p′2

for any `∈A

Restriction:
p

α−→ q

p\B α−→ q\B
if α /∈B∪B, for any set B⊆A of names

Identifier:
p

α−→ q

P
α−→ q

where P =def p

From these rules it follows that the parallel composition ‘|’ is associative and commutative. If p α−→ q,
we say that q is an α-derivative of p. We have that: (i) α.p |α.q α−→p |α.q, (ii) α.p |α.q α−→ α.p | q, and
(iii) α.p |α.q τ−→ p | q. However, due to the restriction ‘\{α}’, we have that: (α.p |α.q)\{α} τ−→ p | q,
and neither an α-derivative nor an α-derivative exists for (α.p |α.q)\{α}.

Now we will define the relation =⊆ P×P , called equality. It requires the definition of the relation≈
⊆ P × P , called bisimilarity, which in turn requires the definition of the relations α=⇒ and bα=⇒, for any
action α ∈ Act. Let (τ−→)∗ denote the reflexive, transitive closure of τ−→. Let ε denote the empty
sequence of actions in Act∗. We define τ̂ to be ε, and for any action α different from τ , we define α̂ to
be α itself. Then, we define the following two relations which are subsets of P×P:
(i) p

ε=⇒ q iff p (τ−→)∗ q (in particular, for every process p, p ε=⇒ p), and
(ii) p α=⇒ q iff p (τ−→)∗ α−→ (τ−→)∗ q.

For any action α∈Act, the definition of bα=⇒ follows from Points (i) and (ii) and the definition of α̂.

Definition 3.1. The relation ≈ is the largest relation such that, for all processes p and q,

p ≈ q iff ∀α∈Act (i) ∀p′ if p α−→ p′ then (∃q′ q bα=⇒ q′ and p′ ≈ q′) and

(ii) ∀q′ if q α−→ q′ then (∃p′ p bα=⇒ p′ and p′ ≈ q′).
If p ≈ q, we say that p and q are bisimilar. The relation = is the relation such that, for all processes p
and q,

p = q iff ∀α∈Act (i) ∀p′ if p α−→ p′ then (∃q′ q α=⇒ q′ and p′ ≈ q′) and
(ii) ∀q′ if q α−→ q′ then (∃p′ p α=⇒ p′ and p′ ≈ q′).

If p = q, we say that p and q are equal.

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 9

Let a context C[−] be a CCS term C without a subterm. For instance, ([−] | p)+ q is a context. In general,
given any equivalence relation ∼, we say that it is a congruence iff for all p, q, if p ∼ q, then for all
contexts C[−], C[p] ∼ C[q]. We have the following result [22].

Fact 3.1. The relation ≈ is an equivalence relation and it is not a congruence. The relation = is an
equivalence relation and it is the largest congruence contained in ≈.

The following are sound axioms for establishing equality between processes: for all p, q, r ∈ P , for
all actions α, αi, βj , for all sets B⊆Act−{τ},
1. p+ (q + r) = (p+ q) + r 2. p+ q = q + p 3. p+ p = p 4. p+ 0 = p

5. α.τ.p = α.p 6. p+ τ.p = τ.p 7. α.(p+ τ.q) = α.(p+ τ.q) + α.q

8. 0\B = 0 9. (p+ q)\B = p\B + q\B 10. (α.p)\B = if α∈B∪B then 0 else α.(p\B)

Let p be
∑

i∈I αi.pi and q be
∑

j∈J βj .qj . Then,

11. p | q =
∑

i∈I αi.(pi | q) +
∑

j∈J βj .(p | qj) +
∑

i∈I, j∈J, αi=βj
τ.(pi | qj).

As a consequence of Axioms 8–11, we get the following equality, called Expansion Theorem. For
i = 1, . . . ,m, let pi be a process of the form

∑
j∈J αij .p

′
ij . Then,

(p1| . . . |pm)\B =
∑

αij .(p1| . . . |p′ij | . . . |pm)\B +
∑

τ.(p1| . . . |p′rh| . . . |p′sk| . . . |pm)\B

where: (i) the left summation is over all i∈{1, . . . ,m} and all summands αij .p′ij of pi with αij 6∈B∪B,
and (ii) the right summation is over all distinct r, s ∈ {1, . . . ,m}, all summands α.p′rh of pr, and all
summands α.p′sk of ps with α∈B∪B.

We define the semantics of any given process p to be a (finite or infinite) tree t, called a behaviour
tree, which has the following syntax: t ::= 0 | α.t | t1+t2 | ⊥
where: (i) 0 is the empty behaviour tree, (ii) for every α∈Act, α.− is a unary constructor, (iii) −+− is
a binary constructor, which is assumed to be associative, commutative, idempotent, with identity 0, and
(iv) ⊥ is the undefined behaviour tree. The semantics of a process p of the form either 0, or α.p′, or
p1+p2, is the process itself, when viewed as a behaviour tree. The semantics of a process p involving
parallel composition and restriction is the semantics of the process obtained from p by applying the
Expansion Theorem (which replaces | in favour of +). The semantics of a process identifier P, defined
by P =def p, is the semantics of p, and thus the semantics of a recursively defined process is, in general,
an infinite, ‘periodic’ behaviour tree. For instance, (i) the semantics of α.0 is α.0, (ii) the semantics of P
defined by P =def α.Q and Q=def β.0, is α.β.0, and (iii) the semantics of R defined by R =def α.β.R,
is the infinite tree α.β.α.β. . . .

The behaviour tree ⊥ has been introduced to avoid the explicit reference to infinite behaviour trees,
as we now explain. First, we need the following definition. An approximation of a behaviour tree t is
either t itself or a tree obtained from t by replacing one or more of its subtrees by ⊥.

Then, for any process p and any behaviour tree t, we introduce the predicate b(p, t) which holds if
and only if t is a finite approximation of the behaviour tree of process p. We list below (see clauses 1–5.6)
some of the clauses that define b(p, t). Clauses 1–3 refer to processes involving 0, α.−, and −+− only.
Clauses 4.1–4.3 refer to parallel composition of processes. Clauses 5.1–5.6 refer to process identifiers.
In clauses 1–5.6 we assume that: (i)B is any subset of Act−{τ} and

∼
B denotes the setB∪B, (ii) actions

α, β, and γ are pairwise distinct, and (iii) process id(P) is defined by P =def p and, for i = 1, 2, 3,
process id(Pi) is defined by Pi=def pi.

10 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

1. b(0, 0)← 2. b(α.P, α.T)← b(P, T) 3. b(P1+P2, T1+T2)← b(P1, T1) ∧∧ b(P2, T2)
4.1 b((α.P1 |α.P2 |α.P3)\B, τ.T1+τ.T2)←

b((P1 |α.P2 |P3)\B, T1) ∧∧ b((α.P1 |P2 |P3)\B, T2) for all α∈
∼
B

4.2 b((γ.P1 |α.P2 |β.P3)\B, γ.T) ← b((P1 |α.P2 |β.P3)\B, T) for all α, β∈
∼
B and γ 6∈

∼
B

4.3 b((α.P1 | γ.P2 |β.P3)\B, γ.T) ← b((α.P1 |P2 |β.P3)\B, T) for all α, β∈
∼
B and γ 6∈

∼
B

5.1 b(id(P),⊥)← 5.2 b(id(P), T)← b(p, T)
5.3 b((id(P1) |P2 | id(P3))\B, ⊥)← 5.4 b((id(P1) |P2 | id(P3))\B, T)← b((p1 |P2 | p3)\B, T)
5.5 b((P1 | id(P2) | id(P3))\B, ⊥)← 5.6 b((P1 | id(P2) | id(P3))\B, T)← b((P1 | p2 | p3)\B, T)

Note that Clauses 4.1–4.3 and Clauses 5.3–5.6 are particular instances of more general clauses that one
can introduce for defining the semantics of parallel composition of processes and process identifiers. We
considered these instances because they allow a shorter proof in the example we will present below.

We also introduce, for any two behaviour trees t1 and t2, the predicate eq(t1, t2) which holds iff the
equality t1 = t2 follows from Axioms 1–7 (which, among Axioms 1–11, are the ones involving α.− and
−+− only) by considering behaviour trees rather than processes. (Note that for our unfold/fold proof,
when applying the goal replacement rule, we need to know only some valid equivalences holding for
eq, not the clauses defining eq.) We have the following Fact (A): for all processes p and q, if for all
finite behaviour trees t, ∃t1(b(p, t1) ∧∧ eq(t1, t)) iff ∃t2(b(q, t2) ∧∧ eq(t2, t)), then p = q (in the sense of
Definition 3.1).

Now, by using the unfold/fold proof method, we will prove the correctness of a simple locking
protocol for mutual exclusion [14]. We consider the predicate b(Sys, T1) that defines the operational
semantics of the protocol (denoted by the CCS term Sys), and the predicate b(Mutex, T2) that de-
fines the mutual exclusion property (denoted by the CCS term Mutex). Then, we consider the predi-
cates new1(T) and new2(T) defined by the clauses new1(T)← b(Sys, T1) ∧∧ eq(T1, T) and new2(T)←
b(Mutex, T2) ∧∧ eq(T2, T), respectively. By constructing an admissible transformation sequence using
the program transformation rules of Section 2, we will derive for new1 and new2 two identical sets of
clauses (modulo the name of the predicates), and hence M(Beq) |= ∃T1(b(Sys, T1) ∧∧ eq(T1, T)) ↔
∃T2(b(Mutex, T2) ∧∧ eq(T2, T)), where M(Beq) is the perfect model of the program Beq made out of
the clauses for b and eq. Thus, by Fact (A) above, we have that Sys = Mutex, and this proves mutual
exclusion.

In the protocol we consider, we have two processes, a reader processR and a writer processW, which
want to access a common store. They are defined as follows: R =def r1.r2.R and W =def w1.w2.W .

The purpose of the protocol is to ensure mutual exclusion, that is, in every sequence of actions neither
action w1 nor action w2 should occur in between the two actions r1 and r2, and symmetrically, neither
r1 nor r2 should occur in between w1 and w2. The parallel composition (R |W) does not ensure mutual
exclusion. Indeed, for instance, we have that: (R |W) r1−→ w1−→ r2−→ w2−→(R |W). In order to ensure mutual
exclusion, (i) we consider the extra process: L =def l.u.L, (where l stands for lock and u for unlock),
and (ii) we modify the processes R and W by requiring that they should get the lock from L before their
actions (by performing the action l) and should release it to L afterwards (by performing the action u).
Thus, we get the following two modified processes: R′ =def l.r1.r2.u.R

′ and W ′ =def l.w1.w2.u.W
′.

Now, processes R′ and W ′, when composed in parallel with process L, can access the common store
in a mutually exclusive way only. Indeed, in particular, if the process L wants to perform the action l,
then by the parallel composition rule (†), only one of the two processes R′ and W ′ can engage in that
action with process L by performing l. We will formally prove that mutual exclusion is ensured by

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 11

showing that the process, called Sys, which is the term (l.r1.r2.u.R′ | l.w1.w2.u.W
′ | l.u.L)\{l, u} is

equal (in the sense of the equality relation = of Definition 3.1) to the following process specifying the
desired mutually exclusive access to the store: Mutex =def τ.r1.r2.Mutex + τ.w1.w2.Mutex. Note that,
in contrast to the process Mutex1 defined as: Mutex1 =def r1.r2.Mutex1 + w1.w2.Mutex1, our process
Mutex gives to the store the extra possibility of deciding ‘of its own volition’ to give access either to the
reader or to the writer.

The unfold/fold proof starts off by introducing, using rule R1, the following two predicates new1(T)
and new2(T):
1. new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\{l, u}, T1) ∧∧ eq(T1, T)
2. new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T2) ∧∧ eq(T2, T)
The bodies of clauses 1 and 2 define, indeed, the system Sys and the property Mutex, respectively. As a
consequence of its definition, the predicate eq satisfies the following equivalences, which we need below
in the unfold/fold proof (free variables are assumed to be universally quantified at the front):
E1. for all α∈Act, eq(α.τ.T1, T)↔ eq(α.T1, T) (see Axiom 5 above)
E2. for all u, v∈Act+, eq(u.T1+v.T2, T)↔ ∃U1∃U2 (eq(T1, U1) ∧∧ eq(T2, U2) ∧∧ eq(u.U1+v.U2, T))
together with the equivalences which axiomatize the fact that eq is a congruence. We deal with predicate
new1 first. By applying rule R2 we unfold clause 1 using the definitions of R′, W ′, and L. We get:
1.1 new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T1) ∧∧ eq(T1, T)
where C denotes the set {l, u}. By unfolding clause 1.1 using clause 4.1, we get:
1.2 new1(T)← b((r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | u.id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | w1.w2.u.id(W ′) | u.id(L))\C, T12) ∧∧ eq(τ.T11+τ.T12, T)
After a few unfolding steps using clauses 4.1, 4.2, and 4.3, from clause 1.2 we get:
1.3 new1(T)← b((id(R′) | l.w1.w2.u.id(W ′) | id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | id(W ′) | id(L))\C, T12) ∧∧ eq(τ.r1.r2.τ.T11+τ.w1.w2.τ.T12, T)
By applying the goal replacement rule R6 based on (E1) and on the congruence axioms for eq, we get:
1.4 new1(T)← b((id(R′) | l.w1.w2.u.id(W ′) | id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | id(W ′) | id(L))\C, T12) ∧∧ eq(τ.r1.r2.T11+τ.w1.w2.T12, T)
Then, by a few more unfolding steps from clause 1.4 using clauses 5.3–5.6, we get:
1.5 new1(T)← eq(τ.r1.r2.⊥+τ.w1.w2.⊥, T) (∗)
1.6 new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12)

∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.T12, T)
1.7 new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11)

∧∧ eq(τ.r1.r2.T11+τ.w1.w2.⊥, T)
1.8 new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12)
∧∧ eq(τ.r1.r2.T11+τ.w1.w2.T12, T)

By applying the goal replacement rule based on (E2) (and instances of it) to clauses 1.6–1.8, we get:
1.6r new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12) ∧∧ eq(T12, U12)

∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U12, T)
1.7r new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11) ∧∧ eq(T11, U11)

∧∧ eq(τ.r1.r2.U11+τ.w1.w2.⊥, T)
1.8r new1(T)← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11) ∧∧ eq(T11, U11)

∧∧ b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12) ∧∧ eq(T12, U12)
∧∧ eq(τ.r1.r2.U11+τ.w1.w2.U12, T)

12 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

By applying rule R4 and folding clauses 1.6r–1.8r using clause 1, we get:
1.6f new1(T)← new1(U12) ∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U12, T) (∗)
1.7f new1(T)← new1(U11) ∧∧ eq(τ.r1.r2.U11+τ.w1.w2.⊥, T) (∗)
1.8f new1(T)← new1(U11) ∧∧ new1(U12) ∧∧ eq(τ.r1.r2.U11+τ.w1.w2.U12, T) (∗)

Now we deal with predicate new2. Starting from clause 2 we perform a derivation similar to the one
we have performed starting from clause 1. By unfolding clause 2, we get:
2.1 new2(T)← b(τ.r1.r2.id(Mutex), T21) ∧∧ b(τ.w1.w2.id(Mutex), T22) ∧∧ eq(T21+T22, T)
After a few unfolding steps, from clause 2.1 we get the following clause:
2.2 new2(T)← b(id(Mutex), T21) ∧∧ b(id(Mutex), T22) ∧∧ eq(τ.r1.r2.T21+τ.w1.w2.T22, T)
Then, by a few more unfolding steps from clause 2.2 using clauses 5.1 and 5.2, we get:
2.3 new2(T)← eq(τ.r1.r2.⊥+τ.w1.w2.⊥, T) (∗∗)
2.4 new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T22) ∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.T22, T)
2.5 new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T21) ∧∧ eq(τ.r1.r2.T21+τ.w1.w2.⊥, T)
2.6 new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T21)

∧∧ b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T22) ∧∧ eq(τ.r1.r2.T21+τ.w1.w2.T22, T)
By applying the goal replacement rule based on (E2) (and instances of it) to clauses 2.4–2.6, we get:
2.4r new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T22) ∧∧ eq(T22, U22)

∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U22, T)
2.5r new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T21) ∧∧ eq(T21, U21)

∧∧ eq(τ.r1.r2.U21+τ.w1.w2.⊥, T)
2.6r new2(T)← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T21) ∧∧ eq(T21, U21)

∧∧ b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T22) ∧∧ eq(T22, U22)
∧∧ eq(τ.r1.r2.U21+τ.w1.w2.U22, T)

By folding clauses 2.4r–2.6r using clause 2, we get:
2.4f new2(T)← new2(U22) ∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U22, T) (∗∗)
2.5f new2(T)← new2(U21) ∧∧ eq(τ.r1.r2.U21+τ.w1.w2.⊥, T) (∗∗)
2.6f new2(T)← new2(U21) ∧∧ new2(U22) ∧∧ eq(τ.r1.r2.U21+τ.w1.w2.U22, T) (∗∗)
The transformation sequence from clause 1 to the clauses marked by (∗) and the transformation se-
quence from clause 2 to the clauses marked by (∗∗), constructed by applying the transformation rules
of Section 2, are admissible. Indeed, by taking σ(new1) = σ(new2) = σ(b) > σ(eq), Condition 4 of
Definition 2.1 is satisfied. Thus, those sequences are correct.

Since the clauses marked by (∗) and by (∗∗) are equal, modulo the names new1 and new2, we
conclude that the given system Sys satisfies the mutual exclusion property.

4. Proving First-Order Formulas
In this section we illustrate a transformation technique for checking whether or not a first order propertyϕ
holds in the perfect modelM(P) of a stratified CLP program P , that is, whether or notM(P) |=ϕ holds.
In particular, we show how unfold/fold program transformations can be used to extend to CLP programs
the quantifier elimination technique used for proving theorems in first order logic [32].

The basic idea of our technique is to transform a given formula ϕ with quantified variables into
CLP clauses with existential variables (that is, variables occurring in the body of a clause and not in its
head), and then to apply the Existential Variable Elimination strategy (EVE) [28, 31] to eliminate those
variables, hence deriving a propositional programQ. Then we can check whether or notM(P) |=ϕ holds

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 13

by constructing the perfect model of Q. Since M(P) |= ϕ is in general undecidable, the EVE strategy
may not terminate. The EVE strategy requires that the theory of constraints occurring in a stratified CLP
program admits quantifier elimination and, indeed, this is the case for the theory of constraints introduced
in Section 2, also known as the theory of Linear Real Arithmetic (LRA) [20].

Given a stratified program P with no existential variables and a closed first order formula ϕ, our
method for proving whether or not M(P) |=ϕ holds consists of the following two steps.
Step 1. We transform the formula p← ϕ, where p is a predicate symbol not occurring in P and ϕ, into a

set D(p, ϕ) of clauses such that M(P) |=ϕ iff M(P ∪D(p, ϕ)) |=p. This step is done by applying a
variant of the Lloyd-Topor transformation [19].

Step 2. We derive from P ∪ D(p, ϕ) a propositional, stratified logic program Q such that M(P ∪
D(p, ϕ)) |= p iff M(Q) |= p. This step is done by applying the transformation rules of Section 2
according to the EVE strategy.

If Step 2 terminates, the perfect model of Q is a finite set that can be constructed in finite time, and thus
in finite time we can check whether or not M(Q) |=p holds by checking whether or not p∈M(Q).

The EVE strategy is an extension to CLP programs of the UDF strategy for logic programs [31] (fur-
ther details can be found in [28]). The set D(p, ϕ) constructed at the end of Step 1 is a set {D1, . . . , Dn}
of clauses such that, for i=1, . . . , n, (i) the head predicate of Di does not occur in P∪{D1, . . . , Di−1},
and (ii) every predicate symbol in the body of Di occurs in P ∪ {D1, . . . , Di−1}.

The Existential Variable Elimination Strategy EVE.
Input: A stratified program P and the set D(p, ϕ) = {D1, . . . , Dn} of definitions generated by the

Lloyd-Topor transformation from p← ϕ.
Output: A propositional program Q such that M(P ∪D(p, ϕ)) |=p iff M(Q) |=p.

T := P ;
FOR i = 1, . . . , n DO

Defs := {Di}; InDefs := {Di};
WHILE InDefs 6= ∅ DO LET D∈ InDefs IN

IF evars(D) 6= ∅ THEN Unfold(D,T,Us); Simplify(Us, Ss); Define-Fold(Ss,Defs,NewDefs,Fs)
ELSE Fs := {D}; NewDefs = ∅ FI;

T := T ∪ Fs; Defs := Defs ∪ NewDefs; InDefs := (InDefs−{D}) ∪ NewDefs
OD

OD;
Q = Defs∗(p,T)

For each definition Di, the strategy iteratively applies the following three procedures: Unfold, Simplify,
and Define-Fold.
� Unfold. A definition clause D containing existential variables is unfolded w.r.t. each (positive or
negative) literal in the body using program T (initially T is the input program P), thereby deriving a set
Us of clauses. When unfolding, we use the rules R2 and R3. Note that, as indicated in [28], Condition (i)
of rule R3 (requiring a suitable instantiation of negative literals) can be satisfied by imposing syntactic
restrictions on programs and by using a specific unfolding strategy. Condition (ii) of rule R3 (requiring
the absence of existential variables in the body of the clauses used for unfolding) is satisfied because the
initial program P is assumed to have no existential variables and the program T derived at the end of
each iteration of the WHILE-loop has no existential variables.
� Simplify. The set Us of clauses obtained by unfolding is simplified, thereby deriving a new set Ss of

14 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

clauses as follows: (1) we apply rule R6 and exploit the fact that LRA admits quantifier elimination, for
removing implied subconstraints and existential variables occurring in constraints only, and (2) we apply
rules R7s and R7f for deleting subsumed clauses and clauses with a false body.
� Define-Fold. By using rule R4 each clause γ∈Ss that contains an existential variable is folded so that
the derived clause has no existential variables. Folding is performed by using: (1) either a previously
introduced definition in the set Defs, (2) or a suitable new definition introduced by applying rule R1. Note
that, in Case (2), Conditions (i) and (ii) of rule R4 are satisfied by introducing a new definition whose
body is the smallest constrained subgoal of the body of γ containing all occurrences of the existential
variables of γ (see [28] for details). The new definitions and the folded clauses are collected in the
sets NewDefs and Fs, respectively. Note that the new definitions that are introduced by the Define-Fold
procedure are added to the set InDefs, and thus require further iterations of the body of the WHILE-loop
of the EVE strategy.

Each iteration of the body of the WHILE-loop terminates and produces a program T with no existential
variables, at the expense of possibly introducing new predicate definitions. The strategy terminates when
no new definitions are introduced. It may be the case that an unbounded number of new definitions has
to be introduced and the strategy does not terminate.

Let T 0 be program P and, for i=1, . . . , n, let T i and Defsi denote, respectively, the program T and
the set Defs at the end of the i-th iteration of the for-loop. The proof of correctness of the EVE strategy
is based on the fact that, for i = 1, . . . , n, program T i has been obtained from program T i−1 via an
admissible transformation sequence, and hence, by Theorem 2.1, M(T i−1 ∪ Defsi)=M(T i).

The last step of the EVE strategy consists in deriving the program Q by taking the clauses in the
extended definition Defs∗ of p in T .

Now we illustrate how the EVE strategy works by means of an example. Let us consider the theory
of finite, ordered lists of real numbers, defined by the following clauses:

1. ord([])← 5. nth([A|L], P, E)← P =0 ∧∧ A=E
2. ord([A|L])← ord1(A,L) 6. nth([A|L], P, E)← P >0 ∧∧ nth(L,P−1, E)
3. ord1(A, [])← 7. el([], [])←
4. ord1(A, [B|L])← A≤B ∧∧ ord1(B,L) 8. el([A|L], [B|M])← el(L,M)

where: (i) ord(L) holds the list L is ordered, (ii) nth(L,P,E) holds iff in the list L the element at posi-
tion P isE, and (iii) el(L,M) holds iff the listsL andM have equal length. Let us consider the following
property ϕ: given two ordered lists X and Y of equal length, the list Z obtained by element-wise sum of
the elements in X and Y, is ordered. Thus, ϕ ≡ ∀X ∀Y ∀Z el(X,Y) ∧∧ el(X,Z) ∧∧ψ(X,Y, Z) ∧∧ ord(X)
∧∧ ord(Y)→ ord(Z), where the subformula ψ defines Z in terms of element-wise sum of X and Y , that
is, ψ(X,Y, Z) ≡ ∀P ∀E ∀F nth(X,P,E) ∧∧ nth(Y, P, F)→ nth(Z,P,E+F).
Step 1. By Lloyd-Topor transformation from the formula p← ϕ we derive the following set D(p, ϕ) of
definitions:
9. r(X,Y, Z)← nth(X,P,E) ∧∧ nth(Y, P, F) ∧∧ ¬ nth(Z,P,E+F)

10. q ← el(X,Y) ∧∧ el(X,Z) ∧∧ ¬ r(X,Y, Z) ∧∧ ord(X) ∧∧ ord(Y) ∧∧ ¬ ord(Z)
11. p← ¬ q
Step 2. The inputs of the EVE strategy are program P ={1, 2, 3, 4, 5, 6, 7, 8} and the setD={9, 10, 11}.
The strategy starts off by applying to clause 9 a single step of (positive or negative) unfolding (that is,
rule R2 or rule R3) w.r.t. each literal. We get:

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 15

12. r([A|B], [C|D], [])←
13. r([A|B], [C|D], [E|F])← E 6=A+C
14. r([A|B], [C|D], [])← E≥0 ∧∧ nth(B,E, F) ∧∧ nth(D,E,G)
15. r([A|B], [C|D], [E|F])← G≥0 ∧∧ G<0 ∧∧ nth(B,G,H) ∧∧ nth(D,G, I)
16. r([A|B], [C|D], [E|F])← G≥0 ∧∧ nth(B,G,H) ∧∧ nth(D,G, I) ∧∧ ¬ nth(F,G,H+I)
Clause 13 with 6= in its body stands for two different clauses, one with > and one with <. Clause 14 is
deleted by applying rule R7s, because it is subsumed by clause 12. Clause 15 is deleted by applying rule
R7f, since R |=¬∃(G≥ 0 ∧∧G< 0). Clause 16 cannot be folded using clause 9, because true 6v G≥ 0.
Thus, the following new definition 17 is introduced and clause 16 is folded using clause 17:
17. n1(A,B,C)← D≥0 ∧∧ nth(A,D,E) ∧∧ nth(B,D,F) ∧∧ ¬ nth(C,D,E+F)
18. r([A|B], [C|D], [E|F])← n1(B,D,F)
The set {12, 13, 18} of clauses defining predicate r has no existential variables. However, the new
definition clause 17 has existential variables. Thus, the strategy proceeds by transforming clause 17. By
unfolding and simplifying, we obtain:
19. n1([A|B], [C|D], [])←
20. n1([A|B], [C|D], [E|F])← E 6=A+C
21. n1([A|B], [C|D], [E|F])← G≥0 ∧∧ nth(B,G,H) ∧∧ nth(D,G, I) ∧∧ ¬ nth(F,G,H+I)
Now, clause 21 can be folded by using the previously introduced clause 17, thus obtaining:
22. n1([A|B], [C|D], [E|F])← n1(B,D,F)
The clauses 19, 20, and 22 defining n1 in the current program do not contain any existential variable.
The EVE strategy proceeds by processing the next definition in D(p, ϕ), that is, clause 10. By unfolding
that clause we derive:
23. q ← F =A+C ∧∧ el(B,D) ∧∧ el(B,E) ∧∧¬n1(B,D,E) ∧∧ ord1(A,B) ∧∧ ord1(C,D) ∧∧¬ ord1(F,E)
which cannot be folded by using any previously introduced definition. Thus, we introduce the following
new definition 24 and we fold clause 23 using clause 24:
24. n2 ← F =A+C ∧∧ el(B,D) ∧∧ el(B,E) ∧∧¬n1(B,D,E) ∧∧ ord1(A,B) ∧∧ ord1(C,D) ∧∧¬ ord1(F,E)
25. q ← n2

Now the EVE strategy processes clause 24, which contains existential variables. By unfolding we obtain
the following two clauses:
26. n2←A≤B ∧∧D≤E ∧∧A+D>B+E ∧∧ ord1(B,C) ∧∧ ord1(E,F) ∧∧ el(C,F) ∧∧ el(C,G) ∧∧¬n1(C,F,G)
27. n2 ← F =A+C ∧∧ ord1(A,B) ∧∧ ord1(C,D) ∧∧ el(B,D) ∧∧ el(B,E) ∧∧¬n1(B,D,E) ∧∧¬ ord1(F,E)
Clause 26 can be deleted by applying Rule R7f, since R |= ¬∃(A ≤ B ∧∧D ≤ E ∧∧A+D > B+E).
Clause 27 is folded using definition 24, and we get:
32. n2 ← n2

Finally, the EVE strategy takes into consideration the last clause 11. Since this clause has no existential
variables, it is simply added to the final program T . Thus, the EVE strategy terminates returning the
propositional program Q = Defs∗(p, T) = {p ← ¬q, q←n2, n2 ← n2}. The perfect model of Q is
M(Q) = {p}. By the correctness of the EVE transformation strategy, we have M(P ∪ {9, 10, 11}) |=p,
and by the correctness of the Lloyd-Topor transformation, we conclude M(P) |=ϕ.

Note that the EVE strategy does not depend on the specific theory of constraints and can be applied
to all CLP programs whose theory of constraints admits quantifier elimination (LRA in our example).
For some classes of CLP programs we can prove the termination of the EVE strategy, and thus the
decidability of the theorem proving problem (for example, in [11] a similar strategy has been applied for
deciding weak monadic second order logic [32]).

16 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

5. Temporal Logics and Verification of Infinite State Systems

In this section we show how to apply the unfold/fold proof method for verifying properties of infinite
state systems specified by using formulas of the temporal logic CTL (Computation Tree Logic [5]).

A concurrent system can be modeled as a state transition system consisting of: (i) a (possibly infinite)
set S of states, (ii) a set I⊆S of initial states, and (iii) a transition relation tr⊆S×S. We assume that,
for every state s∈S, there exists at least one state s′∈S, called a successor state of s, such that tr(s, s′)
holds. A computation path starting from a state s1 is an infinite sequence of states s1 s2 . . . such that, for
all i≥1, tr(si, si+1) holds, that is, there is a transition from si to si+1.

The properties of (the computation paths of) a state transition system can be specified by using
the CTL logic, whose formulas are built from a given set of elementary properties, by using: (i) the
connectives: not and and, (ii) the quantifiers along a computation path: g (‘for all states on the path’),
f (‘for some state on the path’), x (‘in the successor state’), and u (‘until’), and (iii) the quantifiers over
computation paths: a (‘for all paths’) and e (‘for some path’). For example, the formula a(f(F)) holds
in a state s if on every computation path starting from s there exists a state s′ where F holds. In what
follows, for reasons of readability, we will use a compact notation and, for instance, we will write af(F),
instead of a(f (F)).

We consider the Ticket Protocol [2] which can be used for controlling the behaviour of two processes,
say A and B, competing for the access to a shared resource. The protocol has the objective of guaranteeing
both mutual exclusion when accessing the resource, and starvation freedom, which means that every
request will eventually be served. The interaction between the two processes and the resource is realized
by assigning tickets to processes that request access to the resource.

The state of process A is represented by a pair 〈SA,TA〉, where SA, called the control state, is an
element of the set {t, w, u} (where t, w, and u stand for think, wait, and use, respectively), and TA is a
non-negative number encoding the ticket assigned to process A. Analogously, the state of process B is
encoded by 〈SB,TB〉. Thus, the state of the system resulting from the composition of the two processes A
and B is represented by the term 〈SA,TA, SB,TB,T,N 〉, where T is a non-negative number which is used
for storing the value of the next ticket to be issued, and N is a non-negative number such that if TA≤N,
then process A may access the shared resource (and similarly for TB and process B).

A state is initial if and only if T and N have the same value and both processes are in the control state
think. Thus, the (infinite) set of initial states can be encoded by introducing a predicate initial, such that
initial(X) holds iff X is an initial state, defined by the following CLP clause:
1. initial(〈t,TA, t,TB,T,N〉)← T=N ∧∧ T≥0
The transition relation is defined by a predicate tr(X,Y) which holds iff Y is a successor state of X .
The following set of clauses encode the transitions for process A, where, for brevity, we have used non-
distinct variables in the head of clauses and we have omitted to write constraints of the form T ≥ 0 and
N≥0 to ensure that real variables range over non-negative numbers.
2. tr(〈t,TA, SB,TB,T,N 〉, 〈w,T, SB,TB,T1,N 〉)← T1 =T+1
3. tr(〈w,TA, SB,TB,T,N 〉, 〈u,TA, SB,TB,T,N 〉)← TA ≤ N
4. tr(〈u,TA, SB,TB,T,N 〉, 〈t,TA, SB,TB,T,N1〉)← N1 =N+1
These clauses correspond to the arcs of the state transition diagram shown in Figure 1. The clauses
encoding the transitions for process B are similar and we do not show them here. Note that, since the
values of the numeric variables can increase in an unbounded way, the system has an infinite number of
states.

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 17

' $
?� �
� �

� �
� �

� �
� �- -t: think w: wait u: use

N := N+1

TA := T;
T := T+1 TA≤N

Figure 1. The Ticket Protocol: the state transition diagram for process A.

We define a predicate sat(X,F) which holds if and only if the CTL formula F is true at stateX [13] (see
also [10, 18] for similar encodings). For instance, the following clauses define the predicate sat(X,F)
for the cases where the formula F is: (i) an elementary formula, (ii) a formula of the form not(F), (iii) a
formula of the form and(F1, F2), (iv) a formula of the form ef(F), and (v) a formula of the form af(F).

5. sat(X,F)← elem(X,F) 6. sat(X, and(F1, F2))← sat(X,F1) ∧∧ sat(X,F2)
7. sat(X, not(F))← ¬sat(X,F)
8. sat(X, ef(F))← sat(X,F) 9. sat(X, ef(F))← tr(X,Y) ∧∧ sat(Y, ef(F))

10. sat(X, af(F))← sat(X,F) 11. sat(X, af(F))← trs(X,Ys) ∧∧ sat all(Ys, af(F))
12. sat all([], F)← 13. sat all([X|Xs], F)← sat(X,F) ∧∧ sat all(Xs, F)
where elem(X,F) holds iff F is an elementary property which is true at state X , and trs(X,Ys) holds
iff Ys is a list of all the successor states of X . For instance, we have that the elementary property thinkA
is encoded by the clause: elem(〈t,TA, SB,TB,T,N 〉, thinkA) ←. Similarly for the other elementary
properties for processes A and B. The clauses for the predicate trs (when the control state of process B
in the source state is think) are shown below:
14. trs(〈t,TA, t,TB,T,N 〉[〈w,T, t,TB,T1,N 〉, 〈t,TA, w,T,T1,N 〉])← T1 =T+1
15. trs(〈w,TA, t,TB,T,N 〉, [〈u,TA, t,TB,T,N 〉, 〈w,TA, w,T,T1,N 〉])← TA≤N ∧∧ T1 =T+1
16. trs(〈w,TA, t,TB,T,N 〉, [〈w,TA, w,T,T1,N 〉])← TA>N ∧∧ T1 =T+1
17. trs(〈u,TA, t,TB,T,N 〉, [〈t,TA, t,TB,T,N1〉, 〈u,TA, w,T,T1,N 〉])← T1 =T+1 ∧∧ N1 =N+1
For example, the first clause states that when both processes are in the think control state, there are two
possible successor states where exactly one of them is in the wait control state. For lack of space we
omit the other clauses for trs.

In order to verify that a CTL formula F holds for all initial states, we define a new predicate prop:
prop ≡def ∀X(initial(X)→ sat(X,F))

By using a variant of the Lloyd-Topor transformation [19] (see Section 4 for a similar transformation)
and by the semantics of not defined by clause 7, we encode this definition by the following two clauses:
18. prop← ¬negprop 19. negprop← initial(X) ∧∧ sat(X, not(F))
Let PF denote the constraint logic program consisting of the clauses defining the predicates prop,
negprop, initial, sat, sat all, tr, trs, and elem. The program PF is locally stratified and, hence, it has
a unique perfect model, denoted M(PF). One can show that our CLP encoding of the satisfiability of
CTL formulas for state transition systems is correct [13], that is, for all states s∈I , the formula F holds
at state s iff prop ∈M(PF).

As already mentioned, the Ticket Protocol satisfies both: (i) the mutual exclusion property, for-
bidding the processes A and B to be at the same time in the control state use, and (ii) the starvation
freedom property stating that, if a process, say A, has requested access to the resource and is wait-
ing for accessing it (that is, the control state of process A is wait) then, whatever the system does, the
process will eventually gain access to the resource (that is, the control state of process A will be use).

18 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

The latter property is expressed by the CTL formula SF: ag(waitA → af(useA)), which is equivalent
to not(ef(and(waitA, not(af(useA))))). By using the fact that for every CTL formula F , the formula
not(not(F)) is equivalent to F , the starvation freedom property is encoded by the following two clauses:
20. prop← ¬negprop 21. negprop← initial(X) ∧∧ sat(X, ef(and(waitA, not(af(useA)))))
Now, let us consider a program, call it PSF, which is like program PF , except that clause 19 for negprop
has been replaced by clause 21. If we transform program PSF by applying the transformation rules R1–R5
and R7 according to a variant of the EVE strategy presented in Section 4, we derive a program containing
a fact of the form: prop←. Thus, by the correctness of the encoding of the satisfiability relation of CTL
properties and by the correctness of the transformation rules, we conclude that the Ticket Protocol enjoys
the starvation freedom property.

The verification of the starvation freedom property can be performed automatically by using the MAP
system [1]. In [13], we have presented a transformation strategy, also based on the UDF strategy [31], that
works by specializing program PF with respect to any given CTL formula F and any given definitions
of the predicates initial, tr, trs, and elem. In order to guarantee the termination of the transformation
process, the strategy uses generalization operators (such as widening [7]) when introducing the required
new definition clauses. Using that automatic strategy one can verify safety and liveness properties of
several infinite-state concurrent systems, including mutual exclusion, parameterized cache coherence,
and communication protocols (see [13] for details).

6. Further Developments and Conclusions

The techniques and the examples presented in this paper demonstrate that the unfold/fold proof method
is very flexible and has a large variety of applications. Indeed, the method can be used for several
logics (such as classical logic and temporal logic) and induction principles (such as fixpoint induction
and structural induction). Moreover, it can be used for reasoning about programs written using different
programming languages and different formalisms (such as concurrent process algebras, constraint logic
programs, and transition systems).

In recent papers, the ability of the unfold/fold proof method to encode several induction principles
has been exploited to develop techniques for reasoning about infinite structures [29, 36]. In [29] prop-
erties of programs on infinite lists are encoded using logic programs with the perfect model semantics,
and those properties are proved by using transformation rules similar to the ones presented in this pa-
per. In [36] properties of programs on infinite structures are encoded using coinductive logic programs
(CoLP), whose semantics is defined by means of least and greatest models [37]. Then, those properties
are proved by using unfolding and folding transformations that preserve the semantics of CoLP, thereby
encoding a coinductive proof principle.

One key feature of the proof method presented in this paper is the use of constraint logic program-
ming as a metalanguage for specifying both the programs and the logics to reason over programs. This
feature makes the proof method suitable for a large number of different applications. For instance, re-
cent papers (such as [8]) show that the unfold/fold proof method can be used to perform the analysis of
imperative programs (see [16] for a survey of related techniques in the field of software model checking).
The technique presented in [8] works as follows. Given an imperative program P and a property ϕ to
be verified, one encodes both the interpreter of P and the property ϕ using a CLP program I (see [24]
for the definition of a CLP interpreter of an imperative language). Then, the property ϕ is proved by
applying the unfold/fold proof method to program I . In particular, the transformation strategy used in

F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation 19

this case consists in specializing I with respect to the given imperative program P .
We believe that the transformation-based methodology for theorem proving and program verification

we have presented in this paper has a great potential. Some of the transformation rules and strategies
presented here have been implemented in the MAP system [1] and we have obtained encouraging results.
Current work is devoted to the mechanization of the verification and theorem proving techniques and to
the improvement of the tools based on the transformation methodology so that they may perform well
also for large scale programs.

7. Acknowledgments

We would like to thank the anonymous referees for their helpful comments. We also thank Dominik
Ślȩzak, Hung Son Nguyen, Marcin Szczuka for inviting us to contribute to this special issue dedicated
to Professor Andrzej Skowron. We hope that Andrzej’s enthusiasm and example may give to all his
colleagues strength and joy for many years to come.

References

[1] The MAP transformation system. http://www.iasi.cnr.it/∼proietti/system.html. Also available
via WEB interface: http://www.map.uniroma2.it/mapweb.

[2] G. R. Andrews. Concurrent Programming: Principles and Practice. Addison-Wesley, 1991.
[3] K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of Logic Programming, 19,

20:9–71, 1994.
[4] R. M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal of the

ACM, 24(1):44–67, January 1977.
[5] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[6] B. Courcelle. Equivalences and transformations of regular systems – Applications to recursive program

schemes and grammars. Theoretical Computer Science, 42:1–122, 1986.
[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Proc.

5th ACM Symposium on Principles of Programming Languages, POPL’78, 84–96. ACM Press, 1978.
[8] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying Programs via Iterated Specialization.

In Proc. ACM SIGPLAN Workshop PEPM’13. 43–52, ACM, New York, USA, 2013.
[9] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer Science, 166:101–146,

1996.
[10] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state systems by specializing

constraint logic programs. In Proc. ACM SIGPLAN Workshop VCL’01, Technical Report DSSE-TR-2001-3,
85–96. University of Southampton, UK, 2001.

[11] F. Fioravanti, A. Pettorossi, and M. Proietti. Combining logic programs and monadic second order logics by
program transformation. In M. Leuschel, ed., Proc. LOPSTR’02, Lecture Notes in Computer Science 2664,
160–181. Springer, 2003.

[12] F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally stratified constraint logic pro-
grams. In K.-K. Lau and M. Bruynooghe, eds., Program Development in Computational Logic, Lecture
Notes in Computer Science 3049, 292–340. Springer, 2004.

[13] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verification of infinite
state systems. Theory and Practice of Logic Programming. Special Issue 25th GULP, 13(2):175–199, 2013.

[14] M. C. Hennessy. An Introduction to a Calculus of Communicating Systems. SRC Grant GR/A/75125,
University of Edinburgh, Scotland, 1982.

20 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Proving Theorems by Program Transformation

[15] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic Programming, 19/20:503–
581, 1994.

[16] R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys, 41(4):21:1–21:54, 2009.
[17] L. Kott. Unfold/fold program transformation. In M. Nivat and J.C. Reynolds, eds., Algebraic Methods in

Semantics, Cambridge University Press, 411–434, 1985.
[18] M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and program special-

ization. In A. Bossi, ed., Proc. LOPSTR’99, Lecture Notes in Computer Science 1817. Springer, 63–82,
2000.

[19] J. W. Lloyd. Foundations of Logic Programming. Second Edition, Springer, Berlin, 1987.
[20] R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal, 36(5):450–462,

1993.
[21] J. McCarthy. Towards a mathematical science of computation. In C. M. Popplewell, ed., Information Pro-

cessing, Proc. IFIP’62, 21–28, Amsterdam, North Holland, 1963.
[22] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[23] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs. In M. Leuschel,

ed., Proc. LOPSTR’02, Lecture Notes in Computer Science 2664, Springer, 90–108, 2003.
[24] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs through Analysis of Constraint

Logic Programs. In G. Levi, ed., Proc. SAS’98, Lecture Notes in Computer Science 1503, 246–261. Springer,
1998.

[25] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and techniques. Journal of
Logic Programming, 19, 20:261–320, 1994.

[26] A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using unfold/fold proofs.
Journal of Logic Programming, 41(2&3):197–230, 1999.

[27] A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transformations. In J. W. Lloyd, ed.,
Proc. CL 2000, Lecture Notes in Artificial Intelligence 1861, 613–628. Springer, 2000.

[28] A. Pettorossi, M. Proietti, and V. Senni. Proving properties of constraint logic programs by eliminating
existential variables. In S. Etalle and M. Truszczyński, eds., Proc. ICLP’06, Lecture Notes in Computer
Science 4079, 179–195. Springer, 2006.

[29] A. Pettorossi, M. Proietti, and V. Senni. Transformations of logic programs on infinite lists. Theory and
Practice of Logic Programming, Special Issue ICLP’10, Edinburgh, Scotland, 10(4–6): 383–399, 2010.

[30] A. Pettorossi, M. Proietti, and V. Senni. Constraint-based correctness proofs for logic program transforma-
tions. Formal Aspects of Computing, 24:569–594, 2012.

[31] M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for avoiding unnecessary variables
in logic programs. Theoretical Computer Science, 142(1):89–124, 1995.

[32] M. O. Rabin. Decidable theories. In J. Barwise, ed., Handbook of Mathematical Logic, 595–629. North-
Holland, 1977.

[33] A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Verifi-
cation of parameterized systems using logic program transformations. In Proc. TACAS 2000, Lecture Notes
in Computer Science 1785, 172–187. Springer, 2000.

[34] H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer Science, 86:107–139, 1991.
[35] H. Seki. On inductive and coinductive proofs via unfold/fold transformations. In D. De Schreye, ed., Proc.

LOPSTR’09, Lecture Notes in Computer Science 6037, 82–96. Springer, 2010.
[36] H. Seki. Proving properties of co-logic programs with negation by program transformations. In E. Albert,

ed., Proc. LOPSTR’12, Lecture Notes in Computer Science 7844, 213–227. Springer, 2013.
[37] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming. In S. Etalle and M. Trusz-

czyński, eds., Proc. ICLP’06, Lecture Notes in Computer Science 4079, 330–345. Springer, 2006.
[38] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-Å. Tärnlund, ed., Proc. ICLP’84,

Uppsala University, Uppsala, Sweden, 127–138, 1984.

