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We present a verification technique for program safety that combines Iterated Specialization and

Interpolating Horn Clause Solving. Our new method composes together these two techniques in

a modular way by exploiting the common Horn Clause representation of the verification problem.

The Iterated Specialization verifier transforms an initial set of verification conditions by using un-

fold/fold equivalence preserving transformation rules. During transformation, program invariants are

discovered by applying widening operators. Then the output set of specialized verification conditions

is analyzed by an Interpolating Horn Clause solver, hence adding the effect of interpolation to the

effect of widening. The specialization and interpolation phases can be iterated, and also combined

with other transformations that change the direction of propagation of the constraints (forward from

the program preconditions or backward from the error conditions). We have implemented our ver-

ification technique by integrating the VeriMAP verifier with the FTCLP Horn Clause solver, based

on Iterated Specialization and Interpolation, respectively. Our experimental results show that the

integrated verifier improves the precision of each of the individual components run separately.

1 Introduction

Constraint Logic Programming1 (CLP) [30] is becoming increasingly popular as a logical basis for

developing methods and tools for software verification (see, for instance, [8, 16, 24, 32, 39, 37]). Indeed,

CLP provides a suitable formalism for expressing verification conditions that guarantee the correctness of

imperative, functional, or concurrent programs and, moreover, constraints are very useful for encoding

properties of data domains such as integers, reals, arrays, and heaps [6, 18, 11, 35]. An advantage of

using a CLP representation for verification problems is that we can then combine reasoning techniques

and constraint solvers based on the common logical language [22]. In this paper we will show that, by

exploiting the CLP representation, we can combine in a modular way a verification technique based on

CLP specialization [16] and a verification technique based on interpolation [23].

The use of CLP program specialization, possibly integrated with abstract interpretation, has been pro-

posed in various verification techniques [5, 16, 37, 38]. In particular, iterated specialization [16] makes

use of unfold/fold CLP program transformations to specialize a given set of verification conditions with

respect to the constraints representing the initial and error configurations. The objective of the special-

ization transformation is to derive an equivalent set of verification conditions represented as a finite set of

constrained facts from which one can immediately infer program correctness or incorrectness. Since the

1In this paper we use interchangeably the terminology “Constraint Logic Program” and “Constrained Horn Clauses” [8].
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verification problem is undecidable in general, the specialization strategy employs a suitable generaliza-

tion strategy to guarantee the termination of the analysis. Generalization consists in replacing a clause

H :- c,B by the new clause H :- c,G, where G is defined by the clause G :- d,B and d is a constraint

entailed by c, and then specializing G, instead of H. Most generalization strategies are based on widening

operators like the ones introduced in the field of abstract interpretation [13]. Unfortunately, the use of

generalization can lead to a loss of precision, that is, to a specialized set of verification conditions which

we are neither able to prove satisfiable nor to prove unsatisfiable because of the presence of recursive

clauses. Precision can be improved by iterating the specialization process and alternating the propaga-

tion of the constraints of the initial configuration (forward propagation) and of the error configuration

(backward propagation).

Interpolation [14] is a technique that has been proposed to recover precision losses from abstractions,

including those from widening (see, for instance, [2, 25]). Having found a spurious counterexample (that

is, a false error detection), one can compute an interpolant formula that represents a set of states from

which the spurious counterexample cannot be generated, and by combining widening with interpolation

one can recover precision of the analysis by computing an overapproximation of the reachable states that

rules out the counterexample. Interpolation (without any combination with widening) has also been used

by several CLP verification techniques (see, for instance, [23, 24, 31, 33, 39]). However, to the best of

our knowledge, no CLP-based verifier combines widening and interpolation in a nontrivial way.

Among the various CLP-based techniques, Interpolating Horn Clause (IHC) solvers [23] enhance

the classical top-down (i.e., goal oriented) execution strategy for CLP with the use of interpolation.

During top-down execution suitable interpolants are computed, and when the constraints accumulated

during the execution of a goal imply an interpolant associated with that goal, then it is guaranteed that

the goal will fail and the execution can be stopped. Thus, the use of interpolants can achieve termination

in the presence of potentially infinite goal executions. Therefore, IHC solvers can be used to verify safety

properties by showing that error conditions cannot be reached, even in the presence of infinite symbolic

program executions.

In this paper we propose a CLP-based verification technique that combines widening and interpola-

tion by composing in a modular way specialization-based verification with an IHC solver. Our technique

first specializes the CLP clauses representing the verification conditions with respect to the constraints

representing the initial configuration, hence deriving an equivalent set of CLP clauses that incorporate

constraints derived by unfolding and generalization (including, in particular, loop invariants computed

by widening). Next, the IHC solver is applied to the specialized CLP clauses, hence adding the effect

of interpolation to the effect of widening. In the case where the interpolation-based analysis is not suf-

ficient to check program correctness, the verification process proceeds by specializing the CLP clauses

with respect to the constraints representing the error configuration, and then applying the IHC solver to

the output program. Since program specialization preserves equivalence with respect to the property of

interest, we can iterate the process consisting in alternating specialization (with respect to the initial or

error configuration) and interpolation in the hope of eventually deriving CLP clauses for which we are

able to prove correctness or incorrectness.

We have implemented our verification technique by integrating FTCLP, an IHC solver [23], within

VeriMAP, a verifier based on iterated specialization [17]. The experimental results show that the inte-

grated verifier improves the precision of each of its individual components.
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2 An Introductory Example

Consider the C program in Figure 1(a) where the symbol ∗ represents a non-deterministic choice. A

possible inductive invariant that proves the safety of this program is x ≥ 1∧ y ≥ 0∧ x ≥ y.

Figure 1(b) shows the set of CLP clauses that represent the verification conditions for our verification

problem. We will explain in Section 3 how to generate automatically those conditions, but very roughly

each basic block in the C program is translated to a CLP clause and each assertion is negated. Note that

the loop is translated into the recursive predicate new3. The key property of this translation is that the

program in Figure 1(a) is safe iff the CLP predicate unsafe in Figure 1(b) is unsatisfiable, that is, all

derivations of unsafe lead to failure.

int x = 1;

int y = 0;

while (∗) {
x = x+ y;

y = y+ 1;

}
assert( x >= y);

unsafe :- new2.

new2 :- X = 1, Y = 0, new3(X ,Y, ).

new3(X ,Y, ) :- new4(X ,Y, ).

new4(X ,Y,C) :- X1 = X +Y ,

Y1 = Y + 1, C ≥ 1, new3(X1,Y1,C).

new4(X ,Y,C) :- C ≤ 0, new6(X ,Y,C).

new6(X ,Y,C) :- D = 1, (X −Y )≥ 0 ,

new7(D,X ,Y,C).

new6(X ,Y,C) :- D = 0, (X −Y )≤−1,

new7(D,X ,Y,C).

new7(D, , , ) :- D = 0.

unsafe :- new2.

new2 :- X = 1, Y = 0, new4(X ,Y ).

new4(X ,Y ) :- X = 1, Y = 0,

Y 1 = 1, X1 = 1, new5(X1,Y1).

new5(X ,Y ) :- X = 1, Y ≥ 0, new8(X ,Y ).

new8(X ,Y ) :- X = 1, X1 = Y + 1,

X1 ≥ 1, Y 1 = X1, new9(X1,Y1).

new8(X ,Y ) :- X = 1, Y ≥ 0, new10(X ,Y).

new10(X ,Y):- X = 1, Y ≥ 2.

new9(X ,Y ) :- X ≥ 1,Y ≥ 0, new13(X ,Y).

new13(X ,Y):- X1 = X +Y , Y1 = Y + 1,

new9(X1,Y1).

new13(X ,Y):- X ≥ 1,Y ≥ 0, new15(X ,Y).

new15(X ,Y):- X ≥ 1, (X −Y)≤−1.

(a) (b) (c)

Figure 1: (a) C program, (b) CLP clauses representing the verification conditions, and (c) CLP clauses

after specialization.

Note that neither a top-down nor a bottom-up evaluation of the CLP program in Figure 1(b) will

terminate, essentially due to the existence of the recursive predicate new3. To avoid this problem, our

method performs a transformation based on program specialization [16]. We postpone the details of

this transformation to Section 3, but the key property of this transformation is that it is satisfiability-

preserving. That is, unsafe is satisfiable in the input program iff it is satisfiable in the transformed one.

The benefits of this transformation come from the addition of new constraints (e.g., using widening

techniques) that might make a top-down or bottom-up evaluation terminate. We show the result of this

transformation in Figure 1(c). For clarity, we have removed from the transformation irrelevant arguments

and performed some constraint simplifications.

The clause of predicate new2 encodes the initial conditions. The transformation introduces new

definitions new4 and new8 after unrolling twice new3. The predicate new9 encodes the loop just after

these two unrolls. Note that our transformation inserts two additional constraints X ≥ 1 and Y ≥ 0 that

will play an essential role later. Although this transformed set of clauses might appear simpler to solve

the predicate unsafe, it is still defined by recursive clauses with constrained facts. Even CLP systems

with tabling [10, 12] will not terminate here.

Instead, consider an IHC solver following the approach of Failure Tabled CLP (FTCLP) [23]. In a

nutshell, FTCLP augments tabled CLP [10, 12] by computing interpolants whenever a failed derivation
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CLP constraints for Figure 1(b) CLP constraints for Figure 1(c)
Π1: . . ., X = 1,Y = 0, new3(X ,Y, ), new4(X ,Y, ),

X1 = X +Y , Y 1 = Y + 1, new3(X1,Y1, )

Π2: . . ., X = 1,Y = 0, new3(X ,Y, ), new4(X ,Y, ),

new6(X ,Y, ), X −Y ≥ 0, D = 1, new7(D,X ,Y, ), D = 0

Π3: . . ., X = 1,Y = 0, new3(X ,Y, ), new4(X ,Y, ),

new6(X ,Y, ), X −Y ≤−1, D = 0, new7(D,X ,Y, ), D = 0

Π1′ : X = 2,Y = 2, new9(X ,Y ), X ≥ 1,Y ≥ 0,

new13(X ,Y ),X1 = X +Y , Y 1 = Y + 1,

new9(X1,Y1)

Π2′ : X = 2,Y = 2, new9(X ,Y ), X ≥ 1,Y ≥ 0,

new13(X ,Y ), X ≥ 1,Y ≥ 0, new15(X ,Y)

X ≥ 1,X −Y ≤−1

Table 1: Executions of the CLP clauses from Figures 1(b)-(c)

is encountered during the top-down evaluation of the CLP program. If a call of predicate p has been fully

executed and has not produced any solution then its interpolants denote the conditions under which the

execution of p will always lead to failure. During the execution of a recursive predicate p the top-down

evaluation might produce multiple copies of p, each one with different constraints c originated from

the unwinding of the recursive clauses for p. Given two copies p′ and p′′ with constraints c′ and c′′,

respectively, and being p′′ a descendant of p′, the tabling mechanism will check whether p′′ is subsumed

by p′ (i.e., c′′ ⊑ c′). If this is the case, the execution can be safely stopped at p′′. In tabling, rather than

using c′ it is common to use weaker constraints (in the logical sense) in order to increase the likelihood

of subsumption. These weaker constraints are often called reuse conditions. The major difference with

respect to standard tabled CLP is that FTCLP uses the interpolants as reuse conditions while tabled

CLP uses constraint projection. A key insight is that when FTCLP is used in the context of verification

its tabling mechanism using interpolants as reuse conditions resembles a verification algorithm using

interpolants to produce candidates and keeping those which can be proven to be inductive invariants.

Coming back to our CLP program in Figure 1(b). If we run FTCLP on that set of clauses, the top-

down execution of unsafe will not terminate. To understand why, let us focus on the predicate new3,

initially with constraints X = 1,Y = 0. From new3 we reach new4 which has two clauses. From the

execution of the first clause, we will reach again new3 (Π1 in Table 1), but this time with constraints

X = 1,Y = 0,X1 = X +Y,Y 1 = Y +1 (we ignore constraints over C since they are irrelevant). To avoid

an infinite loop, the tabling mechanism will freeze here its execution and backtrack to the nearest choice

point which is the second clause for new4. From here, we will reach new6 which has also two clauses.

The first clause for new6, executed by Π2, has the constraint X −Y ≥ 0,D = 1 which is consistent

with X = 1,Y = 0,X1 = X +Y,Y 1 = Y + 1. The execution follows new7 which will fail because the

constraint D = 0 cannot be satisfied. The second clause of new6 executed in Π3 has no solution either

because D = 0,X −Y ≤−1 is also false. Very importantly, FTCLP will generate interpolants from these

two failed derivations. The key interpolant is generated from the second clause of new6 (Π3) which

when propagated backwards to new3 is X ≥ Y . Note that this is an essential piece of information, but

unfortunately it is not enough for tabling to stop permanently since this constraint alone is not sufficient

to subsume the descendants of new3. That is, X ≥Y ∧X1 = X +Y ∧Y 1 =Y +1 6|= X1 ≥Y 1. Therefore,

FTCLP will unfreeze the execution of new3 and repeat the process. Unfortunately, FTCLP will not

terminate.

Let us now consider the set of clauses in Figure 1(c). Let us repeat the same process running FTCLP

on the transformed program. Let us focus on new9, which encodes the loop after two unrolls. For clarity

of presentation the execution of new9, shown in Π1′ , starts with the constraints X = 2,Y = 2 which are

produced by projecting the constraints accumulated from new2 to new9 onto X and Y . Since there is

a cycle when new9(X1,Y 1) is reached the tabling mechanism will freeze its execution. Note that the

transformation inserted the constraints X ≥ 1 and Y ≥ 0. This was achieved by applying generalization
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via widening during the unfolding of the clause. From the second clause of new13, shown in Π2′ ,

the top-down evaluation will eventually fail. Again, it will generate an interpolant that after backwards

propagation to new9 is X ≥Y . Now, it can be proven that the descendant of new9 can be safely subsumed

because X ≥ Y,X ≥ 1,Y ≥ 0,X1 = X +Y,Y 1 = Y +1 |= X1 ≥ Y 1, and therefore, FTCLP will terminate

proving that unsafe is unsatisfiable. The magic here is originated from the fact that the transformation

produced the invariants X ≥ 0 and Y ≥ 1 (widening) while FTCLP produced the remaining part X ≥ Y

(interpolation) which together form the desired safe inductive invariant.

Finally, it is worth mentioning that we do not claim that this program cannot be proven safe by

other methods using more sophisticated interpolation algorithms (e.g. [4]) and/or combining with other

techniques such as predicate abstraction (e.g., [24]). Instead, we would like to stress how we can have the

same effect than a specialized algorithm using widening and interpolation in a much less intrusive and

completely modular manner by exploiting the fact that both methods share the same CLP representation.

3 Verification based on Iterated Specialization and Interpolation

In order to show how our verification method based on iterated specialization and interpolation works,

let us consider again the program shown in Fig. 1 (a). We want to prove safety of program P with

respect to the initial configurations satisfying ϕinit(x,y) =def x=1 ∧ y=0, and the error configurations

satisfying ϕerror(x,y) =def x< y. That is, we want to show that, starting from any values of x and y that

satisfy ϕinit(x,y), after every terminating execution of program P, the new values of x and y do not satisfy

ϕerror(x,y).

Our verification method consists of the following steps.

(Step 1 - CLP Encoding) First, we encode the safety verification problem using a CLP program I, called

the interpreter, which defines a predicate unsafe. We have that program P is safe iff I 6|= unsafe.

(Step 2 - Verification Conditions Generation) Then, by specializing I w.r.t. (a CLP encoding of) program

P, we generate a set VC of CLP clauses representing the verification conditions for P. Specialization

preserves safety, i.e., I |= unsafe iff VC |= unsafe.

(Step 3 - Constraint Propagation) Next, we apply CLP specialization again and we propagate the con-

straints occurring in the initial and error conditions, thereby deriving a new set VC′ of verification con-

ditions. Also this specialization step preserves safety, i.e., VC |= unsafe iff VC′ |= unsafe. During this

step, in order to guarantee termination, we generate inductive loop invariants by using generalization

operators based on widening and convex hull [21].

(Step 4 - Interpolating Verification) We consider the verification conditions obtained after constraint

propagation. If their satisfiability cannot be decided by simple syntactic checks (e.g., emptiness of the

set of CLP clauses or absence of constrained facts), we apply the interpolating Horn Clause solver.

In the case where the IHC solver is not able to provide a definite answer, we reverse the program

encoding the VC’s by exchanging the direction of the transition relation and the role of the initial and

error conditions, then we iterate the constraint propagation and satisfiability check (go to Step 3).

Of course, due to undecidability of safety, our verification method might not terminate. However,

as experimentally shown in Section 4, the combination of program specialization and interpolating ver-

ification is successful in many examples and it is synergistic, in the sense that it improves over the use

of program specialization and interpolating verification alone. We now describe in more detail the tech-

niques applied in each step listed above.
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3.1 Encoding safety problems of imperative programs using CLP

As already mentioned, the safety verification problem can be encoded as a CLP program I, called the

interpreter. We now show, through an example, how to derive a set of CLP clauses that encode (i) the

semantics of the programming language in which the program under verification is written, (i) the pro-

gram under verification itself, and (iii) the proof rules for the considered safety property. The extension

to the general case is straightforward.

Encoding the semantics of the programming language. The semantics of the imperative language

can be encoded as a transition relation from any configuration of the imperative program to the next

configuration, by using the predicate tr. Below we list the clauses of tr for (i) assignments (clause 1),

(ii) conditionals (clauses 2 and 3), and (iii) jumps (clause 4).

1. tr(cf(cmd(L,asgn(X,expr(E))),Env), cf(cmd(L1,C),Env1)) :-

eval(E,Env,V), update(Env,X,V,Env1), nextlab(L,L1), at(L1,C).

2. tr(cf(cmd(L,ite(E,L1,L2)),Env), cf(cmd(L1,C),Env)) :- beval(E,Env),at(L1,C).

3. tr(cf(cmd(L,ite(E,L1,L2)),Env), cf(cmd(L2,C),Env)) :- beval(not(E),Env),at(L2,C).

4. tr(cf(cmd(L,goto(L)),Env), cf(cmd(L,C),Env)) :- at(L,C).

The term cf(cmd(L,C),Env) encodes the configuration consisting of the command C with label L

and the environment Env. The predicate eval(E,Env,V) computes the value V of the expression E

in the environment Env. The predicate beval(E,Env) holds if the Boolean expression E is true in

the environment Env. The predicate at(L,C) binds to C the command with label L. The predicate

nextlab(L,L1) binds to L1 the label of the command that is written immediately after the command

with label L. The predicate update(Env,X,V,Env1) updates the environment Env by binding the vari-

able X to the value V, thereby constructing a new environment Env1.

Encoding the imperative program. The imperative program P is encoded by a set of constrained facts

for the at predicate, as follows. First, we translate program P to the sequence of labelled commands

ℓ0 . . . ℓh. Then, we introduce the CLP facts {5−9} which encode those commands.

ℓ0: if (∗) ℓ1 else ℓh ; 5. at(0,ite(nondet,1,h)).

ℓ1: x = x+ y ; 6. at(1,asgn(int(x),expr(plus(int(x),int(y))))).

ℓ2: y = y+ 1 ; 7. at(2,asgn(int(y),expr(plus(int(y),int(1))))).

ℓ3: goto ℓ0 ; 8. at(3,goto(0)).

ℓh: halt ; 9. at(h,halt).

Encoding safety as reachability of configurations. Finally, we write the CLP clauses defining the

predicate unsafe that holds if and only if there exists an execution of the program P that leads from an

initial configuration to an error configuration.

10. unsafe :- initConf(X), reach(X).

11. reach(X) :- tr(X,X1), reach(X1).

12. reach(X) :- errorConf(X).

13. initConf(cf(cmd(0,C), [[int(x),X],[int(y),Y]])) :- X=1, Y=0, at(0,C).

14. errorConf(cf(cmd(h,halt), [[int(x),X],[int(y),Y]])) :- X<Y.

Note that in clauses 13 and 14, the second component of the configuration term cf encodes the environ-

ment as a list [[int(x),X],[int(y),Y]] that provides the bindings for the program variables x and

y, respectively. The set of CLP clauses {1− 14} constitutes the interpreter I. By the correctness of the

CLP Encoding [16] we have that program P is safe if and only if I 6|= unsafe.

When the CLP program I is run by using the top-down, goal directed strategy usually employed by

CLP systems, an execution of the goal unsafe corresponds to a forward traversal of the transition graph
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(i.e., a traversal starting from the initial configuration). We can also provide an alternative definition of

the reach(X) relation that would generate a backward traversal of the transition graph (i.e., a traversal

starting from the error configuration). However, as shown in Section 3.5, the method alternates between

the forward and backward directions, and the direction used by the first specialization is not very relevant

in practice.

More in general, the specialization-based approach is to a large extent parametric with respect to the

definition of the semantics of the programming language, as long as this is defined by a CLP program.

3.2 Generation of CLP Verification Conditions

The verification conditions associated with the given safety verification problem, are generated by per-

forming a CLP specialization based on unfold/fold program transformations [19, 20]. During this step,

we specialize the clauses defining unsafe in the interpreter I with respect to: (i) the clauses that define

the predicate tr, and (ii) the clauses that encode the given program P. The output of this program spe-

cialization is the set of verification conditions for P: a set of CLP clauses that encode the unsafety of the

imperative program, is equisatisfiable w.r.t. I, and contains no explicit reference to the predicate symbols

used for encoding the transition relation and the program commands. This first step is performed also in

other specialization-based techniques for program verification (see, for instance, [15, 37].).

In this paper we consider a C-like imperative programming language and proof rules for safety prop-

erties only. However, the specialization-based approach to the generation of verification conditions has

the advantage of being modular w.r.t. (i) the semantics of the programming language in which the pro-

gram under verification is written, and (ii) the logic used for specifying the property to be verified, and

seems to be reasonably efficient in practice.

The verification conditions for the safety problem we are considering are shown in Fig. 1 (b) and

have been briefly described in Section 2.

3.3 Constraint Propagation by CLP Transformation

Constraint propagation is achieved by a CLP specialization algorithm similar to the one used for the

Verification Conditions Generation (Step 2). The main difference is that for constraint propagation we

use a generalization operator based on widening and convex-hull that in many cases allows the discovery

of useful program invariants [21].

The specialization algorithm starts off from a set VC of clauses that include j≥1 clauses defining

the predicate unsafe:

unsafe :- c1(X),p1(X), . . . , unsafe :- c j(X), p j(X)

where c1(X),...,c j(X) are constraints and p1(X),...,p j(X) are atoms.

The specialization algorithm makes use of the unfolding, definition introduction, and folding trans-

formation rules [19, 20].

The clauses for unsafe are unfolded, that is, they are transformed by applying the following un-

folding rule: Given a clause C of the form H :- c,A, let {Ki :-ci,Qi | i = 1, . . . ,m} be the set of the

(renamed apart) clauses in program VC such that, for i = 1, . . . ,m, A is unifiable with Ki via the most

general unifier ϑi and the constraint (c,ci)ϑi is satisfiable. Then from clause C we derive the clauses:

(H :- c,ci,Qi)ϑi, for i = 1, . . . ,m.

Unfolding propagates the constraints by adding the constraints on atom A to the constraints of the atom

Qi that occurs in the body of a clause unifying A. By unfolding we may derive a fact for unsafe, and

hence the given program is unsafe. Alternatively, we may derive an empty set of clauses for unsafe,
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and hence we infer safety. However, in most cases we will derive a nonempty set of clauses which are

not constrained facts. In these cases the specialization algorithm introduces a set Defs of new predicate

definitions, one for each clause which is not a constrained fact. More specifically, let E be a clause

derived by unfolding of the form H(X) :- e(X,X1),Q(X1), where X and X1 are tuples of variables,

e(X,X1) is a constraint, and Q(X1) is an atom. Then, the specialization algorithm introduces a new

definition clause D: newq(X1):- g(X1), Q(X1), such that: (i) newq is a new predicate symbol, and

(ii) g(X1) is a generalization of e(X,X1), that is, e(X,X1)⊑ g(X1) (for the first definition introduction

step g(X1) is the projection, in the reals, of e(X,X1) onto the variables X1). Then clause E is folded

using D, hence deriving the clause F: H(X) :- e(X,X1),newq(X1). Note that, even if g(X1) is a

generalization of e(X,X1), clause E is equisatisfiable to the pair of clauses D and F .

The clauses in Defs are then processed similarly to the clauses for unsafe, by applying unfolding,

adding new predicate definitions in Defs, and folding, and this unfolding-definition introduction-folding

cycle is repeated until all clauses derived by unfolding can be folded using clauses introduced in Defs in

a previous step, so that no new predicate definitions need be introduced.

The termination of the specialization algorithm depends on a strategy that controls the introduction of

new definitions so that all clauses are eventually folded. To guarantee termination we use a generalization

operator Gen which enjoys properties similar to the widening operator considered in the field of abstract

interpretation [13]. In particular, given a clause E as above and a set Defs of predicate definitions,

Gen(E,Defs) is a clause newq(X1):- g(X1),Q(X1), such that e(X,X1)⊑ g(X1) and, moreover, any

sequence of applications of Gen stabilizes, that is, the following property holds. For any infinite sequence

E1,E2, . . . of clauses, let G1,G2, . . . be a sequence of clauses constructed as follows: (1) G1 =Gen(E1, /0),
and (2) for every i> 0, Gi+1 = Gen(Ei+1,{G1, . . . ,Gi}). Then there exists an index k such that, for

every i> k, Gi is equal, modulo the head predicate name, to a clause in {G1, . . . ,Gk}. Many concrete

generalization operators have been defined in the CLP specialization literature (see, for instance, [21]),

and we will consider two of them in our experiments of Section 4.

The correctness of the specialization algorithm directly follows from the fact that the transformation

rules preserve the least model semantics [19]. Thus, given a set VC of CLP clauses (representing verifi-

cation conditions), if VC′ is the output of the specialization algorithm applied to VC, then VC |= unsafe

iff VC′ |= unsafe.

3.4 Interpolating solver

We now describe informally how the IHC solver considered in this paper works. For that, the concept of

a derivation plays a key role. A derivation step is a transition from state 〈G |C〉 to state 〈G′ |C′〉, written

〈G |C〉 ⇒ 〈G′ |C′〉, where G, G′ are goals (sequences of literals that can be either atoms or constraints)

and C, C′ are constraint stores (the constraints accumulated during the derivation of a goal). A derivation

step consists essentially of unifying some atom in the current goal G with the head of some clause and

replacing G with the literals in the body of the matched clause producing a new goal G′. Moreover, new

constraints can be added to the constraint store C producing a new constraint store C′. At any derivation

step the constraint store C can be unsatisfiable, hence producing a failed derivation. A derivation tree

for a goal G is a tree with states as nodes where each path corresponds to a possible derivation of G.

In order to prove that a goal (e.g., the predicate unsafe) is unsatisfiable, the solver tries to produce a

finite derivation tree proving that the goal has no answers (i.e., all the derivations fail). If an answer is

found then it represents a counterexample. To facilitate this process, each node in the tree is annotated

with an interpolant producing at the end a tree interpolant. To achieve this, the solver computes a

path interpolant from each failed derivation and then combines them. Informally, given a sequence of
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formulas F1, . . . ,Fn (extracted from the constraint store at each state in the failed derivation) the sequence

I0, . . . , In is called a path interpolant if, for all i ∈ [1, . . . ,n], we have Ii−1 ∧Fi |= Ii (with I0 = true and

In = f alse) and the variables of Ii are common to the variables of Fi and Fi+1. The interpolant associated

with a node in the tree is the conjunction of the children’s interpolants.

Even if the derivation tree is finite, its tree interpolant is very valuable since it can be used for pruning

other redundant failed derivations.

A more interesting fact is how we can use interpolants to prove that the derivation of a goal will fail

infinitely. We rely on the same principle followed by tabled CLP in order to subsume states in presence

of infinite derivations. Whenever a cycle is detected its execution is frozen2 to avoid running infinitely,

and a backtracking to an ancestor choice point occurs. By repeating this, the execution of a goal will

always terminate and a tree interpolant can be computed. After completion of a subtree, the tabling

mechanism will attempt at proving that the state where the execution was frozen can be subsumed by

any of its ancestors using an interpolant as the subsumption condition. If it fails then its execution is

re-activated and the process continues. Of course, the execution might run forever. The subsumption

test is described informally as follows. Let Ga and Gd be two atoms with the same functor and arity,

where Ga is the head and Gd is the tail of a cycle. The symbols a and d refer to ancestor and descendant,

respectively. Let [[p1]], . . . , [[pn]] be all the constraints originated from all paths p1, . . . , pn between Ga and

Gd , and Ia be the interpolant computed for Ga. Then, we do not need to re-activate the execution of Gd

if
∧

1≤i≤n Ia ∧ [[pi]] |= I′a (where I′a is the interpolant Ia after proper renaming). This process is analogue to

tabled CLP’s completion check.

Consider again the transformed program in Figure 1(c). Let us focus on the execution of new9, which

is a recursive predicate. Recall that new9 is reached after unwinding twice the loop. Therefore, before

the execution of new9 the constraint store is X = 2,Y = 2, after constraint simplification. Its depth-first,

left-to-right derivation tree is shown in Figure 2. Each oval node represents the call to a body atom and

an edge denotes a derivation step. A failed derivation is marked with a (red) “cross” symbol. Note that

there is no successful derivation, otherwise the program would be unsafe.

Interpolant:

X ≥Y

Interpolant:

X ≥Y

Interpolant:

X ≥Y

X = 2,Y = 2

new9(X ,Y )

X ≥ 1,Y ≥ 0

new13(X ,Y )

X1 = X +Y,Y 1 = Y +1

new9(X1,Y 1)

X ≥ 1,Y ≥ 0

new15(X ,Y )

X ≥ 1,X −Y ≤−1

✗

Figure 2: The derivation tree for goal X = 2,Y = 2,new9(X ,Y ) where new9 is a predicate defined in the

CLP program of Figure 1(c)

2The freeze of an execution can be done in several ways. The algorithm described in [23] performs a counter instrumentation

similar to [34] in order to make finite the execution and produce interpolants.
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The leftmost derivation is frozen when the atom new9(X1,Y 1) is encountered. Then, the execution

backtracks to new13(X ,Y ) and activates the rightmost derivation, which fails. We compute the inter-

polant for this derivation and we annotate the atom new9(X ,Y ) with the constraint X ≥ Y . At this point,

we visit again new9(X1,Y 1) in order to perform the subsumption test: X ≥ Y, X ≥ 1, Y ≥ 0, X1 =
X +Y, Y 1 =Y +1 |= X1 ≥ Y 1. This entailment holds, and therefore the execution can safely stop prov-

ing that the goal new9(X ,Y ) is unsatisfiable. Note that if the transformation had not added the constraints

X ≥ 1,Y ≥ 0 the subsumption test would have failed and the execution would have run forever.

Finally, the criteria used for stopping the IHC solver is currently based on a timeout. Of course, due

to undecidability reasons, there is no method that can decide whether the IHC solver will eventually stop

finding a safe inductive invariant. However, there might be cases where by inspecting the interpolants we

could guess that it is not likely for the IHC solver to stop in a reasonable amount of time. In these cases,

it is desirable to switch to the next transformation phase instead of waiting until the timeout expires. In

the future, we would like to investigate this problem.

3.5 CLP reversal

In the case where the IHC solver is not able to check (within a given amount of time) whether unsafe

holds or not, the verification method returns to Step 3 and propagates the constraints by first inverting the

roles of the initial and error configurations. Thus, at each iteration of the method, verification switches

from forward propagation (of the constraints of the initial configuration) to backward propagation (of the

constraints of the error configuration), or vice versa, having also strengthened the constraints of the initial

and error configurations due to previous specializations. This switch is achieved by a CLP transformation

called Reversal [16].

CLP Reversal transforms the set VC1 = {1,2,3} of CLP clauses into the set VC2 = {4,5,6}.

1. unsafe :- a(U), r1(U). 4. unsafe :- b(U), r2(U).
2. r1(U) :- c(U,V), r1(V). 5. r2(V) :- c(U,V), r2(U).
3. r1(U) :- b(U). 6. r2(U) :- a(U).

The Reversal transformation can be generalized to any number of clauses and predicates, and preserves

safety in the sense that VC1 |= unsafe iff VC2 |= unsafe.

4 Experimental Evaluation

The verification method presented in Section 3 has been implemented by combining VeriMAP [17] and

FTCLP [23]. The verification process is controlled by VeriMAP, which is responsible for the orchestra-

tion of the following components: (i) a translator, based on the C Intermediate Language (CIL) [36],

which translates a given verification problem (i.e., the C program together with the initial and error

configurations) into a set of CLP program, (ii) a specializer for CLP programs, based on the MAP

transformation system [1], which generates the verification conditions (VCs) and applies the iterated

specialization strategy, and (iii) an IHC solver (IHCS), implemented by the FTCLP tool.

We have performed an experimental evaluation on a set of benchmarks consisting of 216 verification

problems (179 of which are safe, and the remaining 37 are unsafe). Most problems have been taken

from the repositories of other tools such as DAGGER [25] (21 problems), TRACER [32] (66 problems),

InvGen [27] (68 problems), and also from the TACAS 2013 Software Verification Competition [7] (52

problems). The size of the input programs ranges from a dozen to about five hundred lines of code. The

source code of all the verification problems is available at http://map.uniroma2.it/VeriMAP/hcvs/.
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FTCLP VeriMAPM VeriMAPM + FTCLP VeriMAPPH VeriMAPPH + FTCLP

answers 116 128 160 178 182

crashes 5 0 2 0 0

timeouts 95 88 54 38 34

total time 12470.26 11285.77 9714.41 5678.09 6537.17

average time 107.50 88.17 60.72 31.90 35.92

Table 2: Verification results using VeriMAP, FTCLP, and the combination of VeriMAP and FTCLP. The

timeout limit is two minutes. Times are in seconds.

The program verifier has been configured to execute the following process:

SpecializeRemove; SpecializeProp; IHCS;
(

Reverse; SpecializeProp; IHCS
)∗

After having translated the verification problem P into CLP, the verifier: (i) generates the verification

conditions for P by applying the SpecializeRemove procedure (Section 3.2), (ii) propagates the constraints

that represent the initial configurations by executing the SpecializeProp procedure (Section 3.3), and (iii)

runs the IHC solver (Section 3.4). If the solvability of the CLP clauses can be decided the verifier

stops. Otherwise, the verifier calls the Reverse procedure that interchanges the roles of the initial and

error configurations (Section 3.5), and calls SpecializeProp again. The
(

Reverse; SpecializeProp; IHCS
)

sequence might repeat forever unless the specializer is able to generate a set of CLP clauses that IHCS

can either prove to be solvable or prove to be unsolvable.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB

of memory under the GNU Linux operating system Ubuntu 12.10 (64 bit, kernel version 3.2.0-57). A

timeout limit of two minutes has been set for each verification problem.

Table 2 summarizes the verification results obtained by the VeriMAP and the FTCLP tools executed

separately (first, second and fourth columns) and the combination of both tools (third and fifth columns).

When VeriMAP is executed without the help of FTCLP, the analysis described in [16] is used in place

of the IHC solver. In the columns labeled by VeriMAPM and VeriMAPPH we have reported the results

obtained by using the VeriMAP system with the generalization operator GenM (monovariant general-

ization3 using widening only) and GenPH (polyvariant generalization4 using widening and convex hull),

respectively. Row 1 reports the total number of definite answers (correctly asserting either program

safety or unsafety). Row 2 reports the number of tool crashes. Row 3 reports the number of verification

problems that could not be solved within the timeout limit of two minutes. Row 4 reports the total CPU

time, in seconds, taken to run the whole set of verification tasks: it includes the time taken to produce

answers and the time spent on tasks that timed out. Finally, row 5 reports the average time needed to

produce a definite answer, which is obtained by dividing the total time by the number of answers.

The results in Table 2 show that the combination of VeriMAP and FTCLP, by exploiting the synergy

of widening and interpolation, improves the performance of both tools whenever executed separately.

In particular, we have that the best performance is achieved by the combination VeriMAPPH + FTCLP

where the process is able to provide an answer for 182 programs out of 216 (84.26%).

Table 3 summarizes the results obtained at the end of each of the first five iterations of the verification

process when VeriMAP is executed alone and combined with FTCLP. We observe that when VeriMAP

is used in combination with FTCLP the number of iterations required to solve the verification problems

is considerably reduced.

3All constrained atoms with the same predicate are generalized to the same new predicate.
4Constrained atoms with the same predicate can be generalized to different new predicates.
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Iteration VeriMAPM VeriMAPM + FTCLP VeriMAPPH VeriMAPPH + FTCLP

1 74 119 104 136

2 45 38 54 34

3 7 2 10 5

4 2 1 8 3

5 0 0 2 4

Table 3: Number of definite answers computed by VeriMAP and by the combination of VeriMAP and

FTCLP within the first five iterations.

5 Related Work

As Horn logic is becoming more popular for reasoning about properties of programs, the number of ver-

ifiers based on this logic has increased during recent years (e.g, [17, 24, 29, 32, 33, 39, 40]). Although

they can differ significantly from each other, one possible classification is based on their use of interpo-

lation (e.g., [24, 32, 33, 39]), Property Directed Reachability (PDR) [9] (e.g., [29]), or a combination of

both (e.g., [40]). Unlike the above mentioned verifiers, VeriMAP [17] does not use interpolation and,

as explained in previous sections, implements a transformation method based on widening techniques

similar to the ones used in the field of abstract interpretation [13].

It should be noted that, with the exception of VeriMAP, abstract interpretation techniques are surpris-

ingly less common than PDR and interpolation in Horn Clause verifiers. HSF [24] combines predicate

abstraction with interpolation but no other abstract interpretations. TRACER [32] only uses abstract

interpretation as a pre-processing step in order to inject invariants during the execution of the Horn

Clauses. Therefore, to the best of our knowledge there is no Horn Clause verifier that combines abstract

interpretation (apart from predicate abstraction) with interpolation in a nontrivial manner.

Several works (e.g., [2, 25, 26, 41]) have focused on how to refine abstract interpretations different

from predicate abstraction outside the scope of Horn Clause verifiers. [26, 41] focus on how to recover

from the losses of widening by using specific knowledge of polyhedra. DAGGER [25] tackles in a more

general way the imprecision due to widening by proposing the “interpolated widen” operator which

refines the abstract state after widening using interpolation. [2] proposes another algorithm called VINTA

which can also refine precision losses from widening, but it relies heavily on the use of an abstract

domain that can represent efficiently disjunction of abstract states. However, efficient disjunctive abstract

domains are rare and it is well known that the design of precise widening operators is far from easy.

UFO [3, 4] is a framework for combining CEGAR methods based on over-and-under approximations

which is parameterized by a post operator. The post operator is used during the unwinding of the control

flow graph. If an error is found then Craig interpolation is used to refine the abstraction. Although

in principle the post operator could perform an arbitrary abstraction the refinement described in [3, 4]

assume heavily that predicate abstraction is used. If other abstractions were used it is not clear at all how

to refine them. Moreover, unlike DAGGER and VINTA, during the unwinding of the control flow graph

no abstract joins are performed, and thus we may consider UFO as another CEGAR method based on

interpolation.

The approach followed by DAGGER is probably the most closely related to ours. If DAGGER finds

a spurious counterexample due to widening losses, it must be the case that (A⊔B)⊓E = ⊥ but (A ∇

B)⊓E 6= ⊥, where A is the abstract state before starting the execution of a loop, B is the abstract state

after executing the backedge of the loop, and E is an abstract state that leads to an error. The idea behind

“interpolated widen” is to replace ∇ with ∇I , where ∇I is an instance of the widening up-to [28]. The key
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property of the ∇I operator is that it preserves the desirable properties of widening while excludes from

the abstract state A ∇I B the spurious counterexample (and possibly others) denoted by the interpolant

I (i.e., (A ∇I B)⊓E = ⊥). Our transformation phase performs widening during the generalization step,

while the IHC solver generates interpolants in order to discover more program invariants. We believe

this combination can be seen as a version of the ∇I operator. The main difference is that our method

can obtain an effect similar to combining widening with interpolation without the enormous effort of

implementing a new verifier from scratch.

6 Conclusions and Future Work

In this paper we have presented some preliminary results obtained by integrating an Interpolating Horn

Clause solver (FTCLP) with an Iterated Specialization tool (VeriMAP). The experimental evaluation

confirms that such an integration is effective in practice, as discussed in Section 4.

The fact that both tools use CLP as a representation formalism for the verification conditions, together

with the modular design of VeriMAP, allowed us a very clean and painless integration with FTCLP. As a

result, we can achieve the effect of combining abstract interpretation with interpolation without having to

design and implement a custom verifier. We believe this modular combination is valuable by itself, since

based on the experience, one could implement a custom verifier or simply apply the method described

here if the performance is adequate.

In this preliminary work, we have used the IHC solver mainly as a black-box and although the gains

are promising they are somewhat limited. As future work, we would like to combine these tools in more

synergistic ways. We believe that the integration can be improved in several ways.

First, when FTCLP is not able to produce a solution within the considered timeout limit, it would be

useful to leverage the partial information it discovers and integrate it in the transformed program, with

the aim of improving the subsequent unfold/fold transformation steps. For example, during its execution

FTCLP might discover that some subtrees rooted in some goal cannot lead to an answer. Thus, the

corresponding predicate can be considered useless and its clauses can be removed from the specialized

program before the next iteration starts.

Another observation is that FTCLP generates for each predicate p an interpolant that represents an

over-approximation of the original constraint store that preserves the unsolvability of p. It would be

interesting to study how these interpolants can be used to refine the generalization step performed during

the unfold/fold transformation, with the objective of preserving the branching structure of the symbolic

evaluation tree, as indicated in [15], and preventing the introduction of spurious paths.

Finally, another possible direction for future work regards the use of interpolation during the trans-

formation process in order to make more efficient the unfold/fold process. While this appears to be a

very promising direction it raises some issues related to the termination of the transformation process

itself, which deserve further study.
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