
VeriMAP: A Tool for Verifying Programs
through Transformations

Emanuele De Angelis1?, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. We present VeriMAP, a tool for the verification of C pro-
grams based on the transformation of constraint logic programs, also
called constrained Horn clauses. VeriMAP makes use of Constraint Logic
Programming (CLP) as a metalanguage for representing: (i) the opera-
tional semantics of the C language, (ii) the program, and (iii) the prop-
erty to be verified. Satisfiability preserving transformations of the CLP
representations are then applied for generating verification conditions
and checking their satisfiability. VeriMAP has an interface with various
solvers for reasoning about constraints that express the properties of
the data (in particular, integers and arrays). Experimental results show
that VeriMAP is competitive with respect to state-of-the-art tools for
program verification.

1 The Transformational Approach to Verification
Program verification techniques based on Constraint Logic Programming (CLP),
or equivalently constrained Horn clauses (CHC), have gained increasing popular-
ity during the last years [2,4,9,18]. Indeed, CLP has been shown to be a powerful,
flexible metalanguage for specifying the program syntax, the operational seman-
tics, and the proof rules for many different programming languages and program
properties. Moreover, the use of the CLP-based techniques allows one to enhance
the reasoning capabilities provided by Horn clause logic by taking advantage of
the many special purpose solvers that are available for various data domains,
such as integers, arrays, and other data structures.

Several verification tools, such as ARMC [19], Duality [16], ELDARICA [13],
HSF [8], TRACER [14], µZ [12], implement reasoning techniques within CLP
(or CHC) by following approaches based on interpolants, satisfiability modulo
theories, counterexample-guided abstraction refinement, and symbolic execution
of CLP programs.

Our tool for program verification, called VeriMAP, is based on transformation
techniques for CLP programs [5,4]. The current version of the VeriMAP can be
? Supported by the National Group of Computing Science (GNCS-INDAM).

used for verifying safety properties of C programs that manipulate integers and
arrays. We assume that: (i) a safety property of a program P is defined by a pair
〈ϕinit , ϕerror〉 of formulas, and (ii) safety holds iff no execution of P starting from
an initial configuration that satisfies ϕinit , terminates in a final configuration that
satisfies ϕerror .

From the CLP representation of the given C program and of the property,
VeriMAP generates a set of verification conditions (VC’s) in the form of CLP
clauses. The VC generation is performed by a transformation that consists in
specializing (with respect to the given C program and property) a CLP program
that defines the operational semantics of the C language and the proof rules
for verifying safety. Then, the CLP program made out of the generated VC’s
is transformed by applying unfold/fold transformation rules [6]. This transfor-
mation ‘propagates’ the constraints occurring in the CLP clauses and derives
equisatisfiable, easier to analyze VC’s. During constraint propagation VeriMAP
makes use of constraint solvers for linear (integer or rational) arithmetic and
array formulas. In a subsequent phase the transformed VC’s are processed by a
lightweight analyzer that basically consists in a bounded unfolding of the clauses.
Since safety is in general undecidable, the analyzer may not be able to detect the
satisfiability or the unsatisfiability of the VC’s and, if this is the case, the verifi-
cation process continues by iterating the transformation and the propagation of
the constraints in the VC’s.

The main advantage of the transformational approach to program verifica-
tion over other approaches is that it allows one to construct highly parametric,
configurable verification tools. In fact, one could modify VeriMAP so as to deal
with other programming languages, different language features, and different
properties to be proved. This modification can be done by reconfiguring the in-
dividual modules of the tool, and in particular, (i) by replacing the CLP clauses
that define the language semantics and proof rules, (ii) by designing a suitable
strategy for specializing the language semantics and proof rules so as to automat-
ically generate the VC’s for any given program and property, (iii) by designing
suitable strategies for transforming the VC’s by plugging-in different constraint
solvers and replacement rules (which are clause rewriting rules) depending on
the theories of the data structures that are used, (iv) by replacing the lightweight
analyzer currently used in VeriMAP by other, more precise analyzers available
for CLP programs. These module reconfigurations may require considerable ef-
fort (and this is particularly true for the design of the strategies of Point (iii)),
but then, by composing the different module versions we get, we will have at our
disposal a rich variety of powerful verification procedures.

Another interesting feature of the transformational approach is that at each
step of the transformation, we get a set of VC’s which is equisatisfiable with
respect to the initial set. This feature allows us both (i) to compose together
various verification strategies, each one being expressed by a sequence of trans-
formations, and (ii) to use VeriMAP as a front-end for other verifiers (such as
those we have mentioned above) that can take as input VC’s in the form of
CLP clauses. Finally, the use of satisfiability preserving transformations eases

2

the task of guaranteeing that VeriMAP computes sound results, as the soundness
of the transformation rules can be proved once and for all, before performing
any verification using VeriMAP.

2 The VeriMAP Tool: Architecture and Usage

Architecture. The VeriMAP tool consists of three modules (see Figure 1).
(1) A C-to-CLP Translator (C2CLP) that constructs a CLP encoding of the
C program and of the property given as input.C2CLP first translates the given
C program into CIL, the C Intermediate Language of [17]. (2) A Verification
Conditions Generator (VCG) that generates a CLP program representing the
VC’s for the given program and property. The VCG module takes as input
also the CLP representations of the operational semantics of CIL and of the
proof rules for establishing safety. (3) An Iterated Verifier (IV) that attempts
to determine whether or not the VC’s are satisfiable by iteratively applying
unfold/fold transformations to the input VC’s, and analyzing the derived VC’s.

C-to-CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint
Solvers

Unfolding
Operators

Verification
Conditions
Generator

Fig. 1. The VeriMAP architecture.

The C2CLP module is based on a modified version of the CIL tool [17]. This
module first parses and type-checks the input C program, annotated with the
property to be verified, and then transforms it into an equivalent program writ-
ten in CIL that uses a reduced set of language constructs. During this transfor-
mation, in particular, commands that use while’s and for ’s are translated into
equivalent commands that use if-then-else’s and goto’s. This transformation step
simplifies the subsequent processing steps. Finally, C2CLP generates as output
the CLP encoding of the program and of the property by running a custom
implementation of the CIL visitor pattern [17]. In particular, for each program
command, C2CLP generates a CLP fact of the form at(L, C), where C and L
represent the command and its label, respectively. C2CLP also constructs the
clauses for the predicates phiInit and phiError representing the formulas ϕinit
and ϕerror that specify the safety property.

The VCG module generates the VC’s for the given program and property
by applying a program specialization technique based on equivalence preserving
unfold/fold transformations of CLP programs [6]. Similarly to what has been
proposed in [18], the VCG module specializes the interpreter and the proof rules

3

with respect to the CLP representation of the program and safety property gen-
erated by C2CLP (that is, the clauses defining at, phiInit, and phiError).
The output of the specialization process is the CLP representation of the VC’s.
This specialization process is said to ‘remove the interpreter’ in the sense that
it removes every reference to the predicates used in the CLP definition of the
interpreter in favour of new predicates corresponding to (a subset of) the ‘pro-
gram points’ of the original C program. Indeed, the structure of the call-graph
of the CLP program generated by the VCG module corresponds to that of the
control-flow graph of the C program.

The IV module consists of two submodules: (i) the Unfold/Fold Transformer,
and (ii) the Analyzer. The Unfold/Fold Transformer propagates the constraints
occurring in the definition of phiInit and phiError through the input VC’s
thereby deriving a new, equisatisfiable set of VC’s. The Analyzer checks the
satisfiability of the VC’s by performing a lightweight analysis. The output of this
analysis is either (i) true, if the VC’s are satisfiable, and hence the program is
safe, or (ii) false, if the VC’s are unsatisfiable, and hence the program is unsafe
(and a counterexample may be extracted), or (iii) unknown, if the lightweight
analysis is unable to determine whether or not the VC’s are satisfiable. In this
last case the verification continues by iterating the propagation of constraints
by invoking again the Unfold/Fold Transformer submodule. At each iteration,
the IV module can also apply a Reversal transformation [4], with the effect of
reversing the direction of the constraint propagation (either from phiInit to
phiError or vice versa, from phiError to phiInit).

The VCG and IV modules are realized by using MAP [15], a transformation
engine for CLP programs (written in SICStus Prolog), with suitable concrete
versions of Transformation Strategies. There are various versions of the transfor-
mation strategies which, as indicated in [4], are defined in terms of: (i) Unfold-
ing Operators, which guide the symbolic evaluation of the VC’s, by controlling
the expansion of the symbolic execution trees, (ii) Generalization Operators [7],
which guarantee termination of the Unfold/Fold Transformer and are used (to-
gether with widening and convex-hull operations) for the automatic discovery
loop invariants, (iii) Constraint Solvers, which check satisfiability and entailment
within the Constraint Domain at hand (for example, the integers or the ratio-
nals), and (iv) Replacement Rules, which guide the application of the axioms
and the properties of the Data Theory under consideration (like, for example,
the theory of arrays), and their interaction with the Constraint Domain.
Usage. VeriMAP can be downloaded from http://map.uniroma2.it/VeriMAP
and can be run by executing the following command: ./VeriMAP program.c,
where program.c is the C program annotated with the property to be verified.
VeriMAP has options for applying custom transformation strategies and for
exiting after the execution of the C2CLP or VCG modules, or after the execution
of a given number of iterations of the IV module.

3 Experimental Evaluation
We have experimentally evaluated VeriMAP on several benchmark sets. The first
benchmark set for our experiments consisted of 216 safety verification problems

4

of C programs acting on integers (179 of which are safe, and the remaining 37
are unsafe). None of these programs deal with arrays. Most problems have been
taken from the TACAS 2013 Software Verification Competition [1] and from
the benchmark sets of other tools used in software model checking, like DAG-
GER [10], TRACER [14] and InvGen [11]. The size of the input programs ranges
from a dozen to about five hundred lines of code.

In Table 1 we summarize the verification results obtained by VeriMAP and
the following three state-of-the-art CLP-based software model checkers for C pro-
grams: (i) ARMC [19], (ii) HSF(C) [8], and (iii) TRACER [14] using the strongest
postcondition (SPost) and the weakest precondition (WPre) options.

VeriMAP ARMC HSF(C) TRACER
SPost WPre

correct answers 185 138 160 91 103
safe problems 154 112 138 74 85
unsafe problems 31 26 22 17 18

incorrect answers 0 9 4 13 14
missed bugs 0 1 1 0 0
false alarms 0 8 3 13 14

errors (∗) 0 18 0 20 22
timeout 31 51 52 92 77
total time 10717.34 15788.21 15770.33 27757.46 23259.19
average time 57.93 114.41 98.56 305.03 225.82

Table 1. Verification results using VeriMAP, ARMC, HSF(C), and TRACER. Time
is in seconds. The time limit for timeout is five minutes. (∗) These errors are due to
incorrect parsing, or excessive memory requirements, or similar other causes.

The results of the experiments show that our approach is competitive with state-
of-the-art verifiers. Besides the above benchmark set, we have used VeriMAP on
a small benchmark set of verification problems of C programs acting on integers
and arrays. These problems include programs for computing the maximum el-
ements of arrays and programs for performing array initialization, array copy,
and array search. Also for this benchmark, the results we have obtained show
that our transformational approach is effective and quite efficient in practice.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz
processor with 4GB of memory running GNU/Linux, using a time limit of five
minutes. The source code of all the verification problems we have considered is
available at http://map.uniroma2.it/VeriMAP.

4 Future Work
The current version of VeriMAP deals with safety properties of a subset of the
C language where, in particular, pointers and recursive procedures do not occur.
Moreover, the user is only allowed to configure the transformation strategies by
choosing among some available submodules for unfolding, generalization, con-
straint solving, and replacement rules (see Figure 1). Future work will be devoted
to make VeriMAP a more flexible tool so that the user may configure other pa-
rameters, such as: (i) the programming language and its semantics, (ii) the class

5

of properties and their proof rules (thus generalizing an idea proposed in [9]),
and (iii) the theory of the data types in use, including those for dynamic data
structures, such as lists and heaps.

References
1. D. Beyer. Second Competition on Software Verification (SV-COMP 2013).

TACAS’13, LNCS 7795, pages 594–609. Springer, 2013.
2. N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified

Horn clauses. SAS’13, LNCS 7935, pages 105–125. Springer, 2013.
3. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verification of imper-

ative programs by constraint logic program transformation. SAIRP’13, Electronic
Proceedings in Theoretical Computer Science, 129, pages 186–210, 2013.

4. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying Programs
via Iterated Specialization. PEPM’13, pages 43–52. ACM, 2013.

5. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying Programs
by Transforming Verification Conditions. VMCAI’14, LNCS 8318, pages 182–202,
2014.

6. F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally
stratified constraint logic programs. Program Development in Computational Logic,
LNCS 3049, pages 292–340. Springer, 2004.

7. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies
for the verification of infinite state systems. Theory and Practice of Logic Pro-
gramming, 13(2):175–199, 2013.

8. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A software verifier based on Horn clauses. TACAS’12, LNCS 7214, pages
549–551. Springer, 2012.

9. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. PLDI’12, pages 405–416. ACM, 2012.

10. B.S. Gulavani, S. Chakraborty, A.V. Nori, and S.K. Rajamani. Automatically refin-
ing abstract interpretations. TACAS’08, LNCS 4963, pp. 443–458. Springer, 2008.

11. A. Gupta and A. Rybalchenko. InvGen: An efficient invariant generator. CAV’09,
LNCS 5643, pages 634–640. Springer, 2009.

12. K. Hoder, N. Bjørner, and L. M. de Moura. µZ - An efficient engine for fixed points
with constraints. CAV 2011, LNCS 6806, pages 457–462. Springer, 2011.

13. H. Hojjat, F. Konecný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer. A verifi-
cation toolkit for numerical transition systems. FM’12, LNCS 7436, pages 247–251.
Springer, 2012.

14. J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A symbolic
execution tool for verification. CAV’12, Lecture Notes in Computer Science 7358,
pages 758–766. Springer, 2012.

15. TheMAP system. http://www.iasi.cnr.it/~proietti/system.html
16. K. L. McMillan and A. Rybalchenko. Solving constrained Horn clauses using

interpolation. MSR Technical Report 2013-6, Microsoft Report, 2013.
17. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. CC’02, LNCS 2304, pages
209–265. Springer, 2002.

18. J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs
through analysis of Constraint Logic Programs. SAS’98, LNCS 1503, pages 246–
261. Springer, 1998.

6

19. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction refinement. PADL’07, LNCS 4354, pages 245–259.
Springer, 2007.

A An example of verification using VeriMAP

In this appendix we show how to use VeriMAP on two simple examples. Let us
consider the C Program listed below, stored in a file named example1.c. The
safety property considered in this example is defined by the formulas ϕinit ≡
y ≥ 0 and ϕerror ≡ x < 0, which are encoded in the program as calls to the
functions __VERIFIER_assume and __VERIFIER_assert according to the rules
of the TACAS Verification Competition [1].

1 int y;
2 int incr(int z) { z = z+y; y=0; }
3 void main() {
4 int x;
5 __VERIFIER_assume(y >= 0);
6 if (x < y) {
7 x = incr(x);
8 if (x >= y)
9 goto END;
10 }
11 while (x < y)
12 x=x+1;
13 END: __VERIFIER_assert(x >= 0);
14 }

The function call __VERIFIER_assume(y >= 0) is translated into
phiInit([. . .,(y,Y),. . .]) :- Y>=0

and the function call __VERIFIER_assert(x >= 0) is translated into
phiError([. . .,(x,X),. . .]) :- X<0.

The argument of phiInit and phiError is a list of pairs binding the variables
of the C program to the corresponding CLP variables.

By executing ./VeriMAP example1.c we get as output: Answer: true, which
means that the given program is safe. In the examples presented in this section,
the Unfold/Fold Transformer module makes use of a generalization operator
based on standard widening.

In the following we will see how this answer is produced. In particular, we
will list the commands needed to invoke each module described in Section 2 and
the output produced by each module.

C-to-CLP Translation
The C2CLP module is invoked by the command ./VeriMAP --c2clp example1.c.
The output is the following set of CLP clauses (example1.pl), which define the
predicates fun/4, at/2 and gvars/1 representing the function declarations, the
C statements, and the global variable declarations, respectively.

7

1 % function declarations
2 fun(incr,[id(loc(scalar(int(z))))],[],entry_point(addr(9))).
3 fun(main,[],[id(loc(scalar(int(x))))],entry_point(addr(11)).
4 % function definitions
5 at(lab(9,inst),asgn(id(loc(scalar(int(z)))),
6 aexp(plus(aexp(id(loc(scalar(int(z))))),
7 aexp(id(glb(scalar(int(y))))))),addr(9.1))).
8 at(lab(9.1,inst),asgn(id(glb(scalar(int(y)))),
9 aexp(const(int(0))),addr(10))).
10 at(lab(10,ret),ret(aexp(const(int(0))))).
11 at(lab(11,inst),call(map__VERIFIER_assume,[bexp(gte(aexp(id(glb(scalar(int(y))))),
12 aexp(const(int(0)))))],id(undef),addr(12))).
13 at(lab(12,ifte),ite(bexp(lt(aexp(id(loc(scalar(int(x))))),
14 aexp(id(glb(scalar(int(y))))))),addr(13),addr(18))).
15 at(lab(13,inst),call(incr,[aexp(id(loc(scalar(int(x)))))],
16 id(loc(scalar(int(x)))),addr(14))).
17 [...] <--- missing lines here
18 at(lab(23,inst),call(map__VERIFIER_assert,[bexp(gte(aexp(id(loc(scalar(int(x))))),
19 aexp(const(int(0)))))],id(undef),addr(24))).
20 at(lab(24,ret),ret(aexp(id(undef)))).
21 at(lab(h,halt),halt).
22 % global variables
23 gvars([(id(glb(scalar(int(y)))),aexp(id(undef)))]).

The predicate fun(Id,Parameters,LocalVars,EntryAddr) represents the func-
tion definitions, where: (i) Id is the identifier of the function, (ii) Parameters
is the list of the formal parameters, (iii) LocalVars is the list of the local vari-
ables, and (iv) EntryAddr is the address of the first command in the body of the
function. For instance, lines 5–10 represent:

int incr(int z) { z = z+y; y=0; }.

The predicate at(Lab,Cmd) represents a C statement, where: (i) Lab is of the
form lab(Addr,Type) and represents the label of the command (in particular,
Addr and Type represent the address of the entry point and the command type,
respectively), and (ii) Cmd represents the given C command. For instance, lines
13–14 represent the if-then-else (ite/3) at lines 6–10 of the given C program. The
first argument of ite represents the expression of the statement, where: (i) lt
represents the ‘<’ operator, (ii) bexp and aexp represent boolean and arithmetic
expressions, respectively, and (iii) loc and glb represent local and global variable
identifiers, respectively. The second and third arguments of ite represent the
address of the first instruction of the then and else branches, respectively.

The predicate gvars(GlbList) represents the list of global variables. In the
example we have a single global variable id(glb(scalar(int(y)))) which is
uninitialized (see aexp(id(undef))).

8

Verification Conditions Generation

By executing the command ./VeriMAP --vcg example1.c the verification pro-
cess stops after the execution of the VCG module. This module specializes the
following proof rules for safety checking:

1 safe :- \+ unsafe.
2 unsafe :- elem(X,initial), reachable(X,U).
3 reachable(X,U) :- elem(X,error).
4 reachable(X,U) :- tr(X,Y), reachable(Y,U).
5 elem(X,initial) :- phiInit(X).
6 elem(X,error) :- phiError(X).

where \+ denotes negation, tr denotes the transition relation that defines the
CIL Interpreter, elem(X,initial) and elem(X,error) denote the properties
that characterize the initial and error configurations, respectively. Thus, safe
holds if and only if there exists no error configuration which is reachable from
some initial configuration. The predicate tr/2 is defined as follows:

t1. tr(cf(cmd(L,asgn(X,expr(E)),L1),D,T), cf(cmd(L1,C),D1,T1)):-
loc_env(T,S), eval(E,D,S,V),
update(D,T,X,V,D1,T1), at(L1,C).

t2. tr(cf(cmd(L,asgn(X,call(F,Es)),L1),D,T),cf(cmd(FL,C),D,[frame(L1,X,FEnv)|T])):-
loc_env(T,S), eval_list(Es,D,S,Vs),
build_funenv(F,Vs,FEnv), firstlab(F,FL), at(FL,C).

t3. tr(cf(cmd(L,ret(E)),D,[frame(L1,X,S)|T]),cf(cmd(L1,C),D1,T1)):-
eval(E,D,S,V), update(D,T,X,V,D1,T1), at(L1,C).

t4. tr(cf(cmd(L,ite(E,L1,L2)),D,T),cf(cmd(L1,C),D,T)):-
loc_env(T,S), beval(E,D,S), at(L1,C).

t5. tr(cf(cmd(L,ite(E,L1,L2)),D,T),cf(cmd(L2,C),D,T)):-
loc_env(T,S), beval(not(E),D,S), at(L2,C).

t6. tr(cf(cmd(L,goto(L1)),D,T),cf(cmd(L1,C),D,T)):- at(L1,C).
t7. update(D,T,X,V,D1,T):- global(X), update_global(D,X,V,D1).
t8. update(D,T,X,V,D,T1):- local(X), update_local(T,X,V,T1).

We have the clauses for: (i) assignments to global and local variables (clause t1),
(ii) function calls and returns (clauses t2 and t3), (iii) conditionals (clauses t4
and t5), and (iv) jumps (clause t6). The predicates for evaluating expressions
and for updating the environment, have specific versions that deal with integers
and arrays.

The generation of the VC’s is performed by specializing the proof rules and
the interpreter with respect to the set of CLP clauses produced by applying
C2CLP to example1.c, that is, the clauses for at, phiInit, and phiError. In
the following we present an excerpt of the log file produced by invoking the
VCG module. The first part shows an application of the unfolding, definition,
and folding transformation rules. The second part shows the specialized program
that represents the VC’s.

9

7 RESULTS of Iteration #6
8 -unfold-
9 new7(A,B) :- A-B>=1,
10 reachable(cf(cmd(lab(13,inst),
11 call(fun,[aexp(id(loc(scalar(int(x)))))],id(loc(scalar(int(x)))),addr(14))),
12 ([(int(y),A)],[((undef,addr(h)),[(int(x),B)])])),error).
13 -define-
14 new9(A,B) :- reachable(cf(cmd(lab(13,inst),
15 call(fun,[aexp(id(loc(scalar(int(x)))))],id(loc(scalar(int(x)))),addr(14))),
16 ([(int(y),A)],[((undef,addr(h)),[(int(x),B)])])),error).
17 -fold-
18 new7(A,B) :- A-B>=1, new9(A,B).
19
20 [...] <--- missing lines here
21 Transformed program:
22 new15(A,B) :- A-B=<0, new12(A,B).
23 new15(A,B) :- A-B>=1, new10(A,B).
24 new13(A,B,C) :- B=0.
25 new12(A,B) :- C=1, B>=0, new13(A,C,B).
26 new12(A,B) :- C=0, B=< -1, new13(A,C,B).
27 new10(A,B) :- C=1+B, A-B>=1, new10(A,C).
28 new10(A,B) :- A-B=<0, new12(A,B).
29 new9(A,B) :- C=0, D=0, new15(D,C).
30 new7(A,B) :- A-B>=1, new9(A,B).
31 new7(A,B) :- A-B=<0, new10(A,B).
32 new6(A,B,C) :- new6(A,B,C).
33 new4(A,B,C) :- B=0, new6(A,B,C).
34 new4(A,B,C) :- B=< -1, new7(A,C).
35 new4(A,B,C) :- B>=1, new7(A,C).
36 new3(A,B) :- C=1, A>=0, new4(A,C,B).
37 new3(A,B) :- C=0, A=< -1, new4(A,C,B).
38 new2(A) :- new3(A,B).
39 unsafe :- new2(A).
40 safe :- \+unsafe.

Unfold/Fold Transformation
By executing ./VeriMAP --transform example1.c the verification process stops
after one execution of the Unfold/Fold Transformer module.

This module transforms the VC’s generated as output by the VCG module.
In order to maximize code reuse, the VC’s are first converted into a transition
relation representation.

The excerpt of the log file below shows the part of the transition relation tr
(lines 42–45) corresponding to the clauses listed at lines 25–28, and the two elem
facts (line 47 and 48) corresponding to the clauses at lines 24 and 39, respectively.
Lines 51–64 list the transformed program, and lines 66–68 give some statistics
about the transformation (in particular, the number of Unfold-Definition-Fold

10

cycles, the number of clauses introduced by the definition rule, and the time
required by the transformation process).

41 Initial program:
42 tr(s(new12,A,B),s(new13,A,C,B)) :- C=1, B>=0.
43 tr(s(new12,A,B),s(new13,A,C,B)) :- C=0, B=< -1.
44 tr(s(new10,A,B),s(new10,A,C)) :- C=1+B, A-B>=1.
45 tr(s(new10,A,B),s(new12,A,B)) :- A-B=<0.
46 [...] <--- missing lines here
47 elem(s(new13,A,B,C),initial) :- B=0.
48 elem(s(new2,A),error).
49
50 Transformed program:
51 new13(A,B) :- A=0, B=0, new11(A,B).
52 new11(A,B) :- C=1, A-B=<0, A>=0, new12(A,C,B).
53 new10(A,B) :- A-B=<0, A>=0, new11(A,B).
54 new9(A,B) :- C=0, D=0, A>=0, A-B>=1, new13(C,D).
55 new8(A,B) :- A>=0, A-B>=1, new9(A,B).
56 new8(A,B) :- A-B=<0, A>=0, new10(A,B).
57 new6(A,B,C) :- B=0, A=< -1, new6(A,B,C).
58 new5(A,B,C) :- B=0, A=< -1, new6(A,B,C).
59 new4(A,B,C) :- B=1, A>=0, new8(A,C).
60 new3(A,B) :- C=1, A>=0, new4(A,C,B).
61 new3(A,B) :- C=0, A=< -1, new5(A,C,B).
62 new2(A) :- new3(A,B).
63 unsafe :- new2(A).
64 safe :- \+unsafe.
65
66 #UDF-iteration(s): 13
67 #definitions: 13
68 Elapsed time 10ms

Analysis
As a last step, the ./VeriMAP example1.c command invokes the Analyzer mod-
ule which detects the absence of facts in the transformed CLP program (lines
51–64). Thus, no unfolding will ever derive a fact for the predicate unsafe, and
hence the predicate safe is true. The Analyzer module produces the output
Answer: true, meaning that the program in example1.c is safe.

Iterated Verification

Now we consider a second C program (in file example2.c)

1 int x=0, y=0, n;
2 while (x < n) {
3 x = x+1;

11

4 y = y+x;
5 }
6 __VERIFIER_assert(x<=y);

By executing the command ./VeriMAP example2.c we get: Answer: unknown.
Indeed, at the end of the process we derive the following program:

1 new10(A,B,C,D) :- D=0, B>=0, A-B>=1, A-C>=0.
2 new8(A,B,C) :- D=1, A-B=<0, A>=0, A-C>=0, new9(A,B,C,D).
3 new8(A,B,C) :- D=0, B>=0, A-B>=1, A-C>=0, new10(A,B,C,D).
4 new5(A,B,C) :- A=0, B=0, D=1, C=<0, new6(A,B,C,D).
5 new4(A,B,C) :- A= -1+D, B=E-D, D>=1, C-D>=0, E-D>=0, new4(D,E,C).
6 new4(A,B,C) :- A>=0, B>=0, A-C>=0, new8(A,B,C).
7 [...] <--- missing lines here
8 new2(A,B,C) :- A=0, B=0, new3(A,B,C).
9 unsafe :- A=0, B=0, new2(A,B,C).
10 safe :- \+unsafe.

where the presence of the constrained fact at line 1 allows the lightweight ana-
lyzer to give neither the answer true nor the answer false. Thus, the IV module
performs one more invocation of the transformation and analysis submodules.
(The first step of the Unfold/Fold Transformer is an application of the Rever-
sal transformation to enable the propagation of the constraints occurring in the
definition of phiError).

The excerpt of the log file reported below shows some information about the
transformation performed at the second iteration of IV.

11 Initial program:
12 tr(s(new2,A,B,C),s(new3,A,B,C)) :- A=0, B=0.
13 [...] <--- missing lines here
14 tr(s(new4,A,B,C),s(new4,D,E,C)) :- A= -1+D, B=E-D, D>=1, C-D>=0,

E-D>=0.
15 tr(s(new4,A,B,C),s(new8,A,B,C)) :- A>=0, B>=0, A-C>=0.
16 tr(s(new5,A,B,C),s(new6,A,B,C,D)) :- A=0, B=0, D=1, C=<0.
17 tr(s(new8,A,B,C),s(new9,A,B,C,D)) :- D=1, A-B=<0, A>=0, A-C>=0.
18 tr(s(new8,A,B,C),s(new10,A,B,C,D)) :- D=0, B>=0, A-B>=1, A-C>=0.
19 elem(s(new2,A,B,C),initial) :- A=0, B=0.
20 elem(s(new10,A,B,C,D),error) :- D=0, B>=0, A-B>=1, A-C>=0.
21
22 Transformed program:
23 new3(A,B,C) :- B>=0, A-B>=1, A-C>=0, new4(A,B,C).
24 new2(A,B,C,D) :- D=0, B>=0, A-B>=1, A-C>=0, new3(A,B,C).
25 unsafe :- A=0, B>=0, C-D>=0, C-B>=1, new2(C,B,D,A).
26 safe :- \+unsafe.
27
28 #definitions: 5
29 #UDF-iteration(s): 5
30 Elapsed time 10ms

12

Since the transformed CLP program contains no constrained facts, the An-
alyzer module concludes that the program of example2.c is safe and returns
Answer: true.

The iterated verification shown here has been performed by executing the
command ./VeriMAP --iterations=2 example2.pl (where ‘--iterations=2’
specifies that the maximal number of iterations to be executed is 2).

13

