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Abstract. The goal of Bounded-Exhaustive Testing (BET) is the automatic
generation of all test cases satisfying a given invariant, within a given size
bound. When the test cases have a complex structure, the development of
correct and efficient generators becomes a very challenging task. In this pa-
per we use Constraint Logic Programming (CLP) to systematically develop
generators of structurally complex test data structures.

We follow a declarative approach which allows us to separate the issue of
(i) defining the test data structure in terms of its properties, from that of
(ii) efficiently generating data structure instances. This separation helps es-
tablish the correctness of the developed test case generators. We rely on a
symbolic representation and we take advantage of efficient search strategies
provided by CLP systems for generating test instances.

Through a running example taken from the literature on BET, we illustrate
our test generation framework and we show that CLP allows us to develop
easily understandable and efficient test generators.

Additionally, we propose a program transformation technique whose goal is to
make the evaluation of these CLP-based generators much more efficient and
we demonstrate its effectiveness on a number of complex test data structures.

1 Introduction

The identification of test cases, which is a central task in the testing process, is
very often carried out as a manual activity. As a consequence, it is error-prone, it
has limited applicability, and it can be very expensive (around 50% of the cost of
software development). Formal and automated techniques have thus received interest
from the testing community because they can be used to develop test suites in a more
systematic and cost-effective way, as well as guaranteeing the correctness of test case
generators.
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San Ponziano 6, 55100 Lucca, Italy, valerio.senni@imtlucca.it



In this paper we focus on the bounded-exhaustive testing [9] approach (BET),
whose goal is to test a program on all input data satisfying a given invariant, up to
a given bound on their size. The motivation underlying the BET approach is based
on the observation that defects, if present, are likely to appear already in small-sized
instances of the inputs.

Modern software often manipulates input data with complex structure (like trees
and graphs) and satisfying non-trivial invariants (like sorting, coloring, depth balanc-
ing). The correct and efficient generation of structurally complex inputs is a challeng-
ing task because the number of test input candidates can grow very fast, but only a
few inputs, which satisfy the desired invariants, are to be selected as admissible.

In this paper we propose a framework based on Constraint Logic Programming
(CLP) for the systematic development of generators of large sets of structurally
complex test data structures. We adopt a declarative approach which allows us to
separate the issue of (i) defining the test data structure in terms of its properties,
from that of (ii) efficiently generating all data structure instances that comply with
the given definition. This separation helps establish the correctness of the developed
test case generators, because it lets testing engineers specify what to generate, in a
very modular and easily understandable way. General purpose CLP search strategies
are then used for realizing how test instances are generated. However, declarativeness
is often deemed to be paid in terms of inefficiency. We show that this is not the case
for CLP-based test generation, and that very good results can already be obtained
by following some simple programming guidelines. In particular, we show that test
generators should be written following the so-called constrain-and-generate approach,
computing the structural and invariant constraints first, allowing to prune the search
space at the symbolic level, and postponing as much as possible the actual (expensive)
generation of test instances. Our experimental evaluation in [35] demonstrates the
effectiveness of the CLP-based approach, for the construction of efficient and correct
test generators.

Despite the good performance of declarative CLP-based test case generators, the
problem of generating large sets of complex data structures remains very challenging,
due to the inherent combinatorial nature of the problem. Therefore, to obtain signifi-
cantly more efficient CLP-based generators, we propose in this paper an optimization
technique based on program transformation [7,13,14,36].

This optimization technique is inspired by the simple consideration that left-to-
right scheduling of constraints and atoms implemented by standard CLP systems
enforces the full generation of a data structure before the evaluation of a filter can
start, which can be very inefficient. A possible solution is to adopt a more efficient,
problem specific, scheduling strategy, as it happens in dynamic scheduling via delay
declarations [31], at the cost of a strong overhead on the evaluation mechanism.

In this paper we follow a different approach: we apply program transformation
to a given test case generator and we obtain a transformed program such that (i)
it computes the same test cases as the original generator, and (ii) under the default
left-to-right scheduling it behaves like the original generator does when using a more
efficient scheduling strategy, thus avoiding any evaluation overhead. The underlying
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idea is that filters should be applied as soon as a data structure has been partially
generated, hence determining an early pruning of the search space.

In Section 2, we formalize our CLP-based test generation approach and we illus-
trate its expressiveness by providing a clean and declarative definition of a Red-Black
tree generator. In Section 3 we present our optimization technique based on CLP pro-
gram transformation, for obtaining faster generators. Finally, in Section 4, we carry
on an evaluation of the proposed CLP-based approach by comparing its performance
with that of a state-of-the-art Java-based tool called Korat, and by showing the im-
provements obtained through our optimization technique on a number of CLP-based
test generators.

2 The CLP-based Approach

Among several applications, CLP has been shown to be well suited for encoding and
solving combinatorial problems [28]. In this section we illustrate how to formulate test
generation problems as CLP programs and queries, and how to exploit the evaluation
mechanism of CLP to solve them efficiently. We start by recalling the CLP framework,
with a special attention to its operational semantics. For missing details we refer the
reader to [28].

2.1 Preliminaries

We consider a typed first order language [26] with two types: D denoting the domain
of the constraints, and T denoting finite trees of elements in D. Let ΣC = 〈VC ,FC , ΠC〉
be a logic language signature, where VC is a denumerable set of variables, FC is a
denumerable set of function symbols, and ΠC is a finite set of predicate symbols. An
atomic constraint is an atomic formula over ΣC . A constraint is a finite conjunction
of atomic constraints. Terms and constraints are typed according to the following
rules: (1) variables in VC are typed D, (2) function symbols of arity k ≥ 0 in FC
are typed Dk → D, and (3) predicate symbols of arity k ≥ 0 in ΠC are typed Dk.
The constraint interpretation D is a mathematical structure with domain D, and
provides a fixed interpretation for ΣC . A constraint solver for D provides a function
solv(c) that maps a constraint c to either true, false, or unknown and such that:
(i) if solv(c) = true then D |= ∃c (that is, c is satisfiable) and (ii) if solv(c) = false
then D |= ¬∃c (that is, c is unsatisfiable). The solver is complete if, for any given
constraint, it returns either true or false. One can adopt an incomplete solver for
efficiency reasons. Such a solver, for example, can be used to eliminate a number
of false constraints, while the discovery of true constraints among a restricted set is
performed by using a complete solver at a later stage.

CLP(D) programs are defined on a signature Σ = 〈VT ∪ VC ,FT ∪ FC , ΠU ∪ΠC〉,
where VT is a denumerable set of variables, FT is a denumerable set of function sym-
bols (i.e., tree constructors), ΠU is a finite set of (user-defined) predicate symbols.
Terms and atoms are constructed complying with the usual typing rules, including
the following ones: (1) variables in VT are typed T, (2) function symbols of arity
k ≥ 0 in FT are typed Ak → T, where A ∈{D,T}, and (3) predicate symbols of arity
k ≥ 0 in ΠU are typed Ak, where A ∈{D,T}. Atoms are of the form p(s1, . . . , sm),
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where p is a predicate symbol in ΠU and s1, . . . , sm are terms of appropriate type. A
goal is a finite conjunction L1, . . . , Lm where Li is either an atomic constraint or an
atom. The empty goal is denoted by �. A CLP program P over Σ is a finite set of
clauses of the form H :- G. where H is an atom and G is a goal. We have two extra
assumptions on programs: (i) symbols in FC appear only within the constraints, and
(ii) occurrences of VC-variables in the head of a clause are all distinct. These two
assumptions can be easily satisfied whenever the theory of constraints includes an
equality predicate (which happens in most theories). The reason for these assump-
tions is to avoid (unsound) unifications between terms of type D. The semantics of a
CLP program P is given in terms of its least D-model M(P ) [28].

A CLP system computes the answers to a user query of the form :- G. against a
program P , where G is a goal. The evaluation of a query is performed by constructing
a so-called LD-derivation, which is a (possibly infinite) sequence of states. In the
following we will omit the prefix LD- and we will simply talk about derivations.
A state is a pair 〈G | c〉, where G is a goal L1, . . . , Ln and c is a constraint, called
store. Given a program P and a state 〈G | c〉, a derivation step 〈G | c〉 →σ 〈G′ | c′〉
is performed by selecting the leftmost (atomic) conjunct L1 of G and rewriting the
state according to the following two cases: (1) L1 is an atomic constraint, then σ is
the identity substitution, c′ is L1 ∧∧ c and if solv(c′) = false then G′ is the empty goal,
otherwise G′ is L2, . . . , Ln, and (2) L1 is a user defined atom, then (2.1) if there exists
a clause H :- B. in P such that σ is the most general unifier of L1 and H, c′ is cσ
and G′ is (B,L2, . . . , Ln)σ, and (2.2) if there is no such clause, c′ is false and G′ is the
empty goal. A derivation in P starting in the state 〈G0 | c0〉 is a sequence 〈G0 | c0〉 →σ1

〈G1 | c1〉 →σ2
〈G2 | c2〉 →σ3

. . . of states such that 〈Gi | ci〉 →σi+1
〈Gi+1 | ci+1〉, for

i ≥ 0, is a derivation step. If G is a goal, then a derivation in P for G is a derivation
in P starting in the state 〈G | true〉. A state 〈� | c〉 is a failure state if solv(c) = false
and it is a success state otherwise. A finite derivation δ : 〈G | true〉 →σ1

〈G1 | c1〉 →σ2

. . .→σk
〈Gk | ck〉 for the goal G is failed if 〈Gk | ck〉 is a failure state and it is successful

if 〈Gk | ck〉 is a success state. If δ is successful, then (σ1· · ·σk, ck) is an answer to the
query :-G.. Clearly, depending on the choice of the clause used in case (2) of the
derivation step, there can be several (possibly infinite) derivations in P for a given
goal. Let us define the derivation tree in P for the query Q of the form :- G. as the
set of all possible derivations for the goal G. We denote by AnsP (Q) the set of all
answers in P to the query Q.

For reasons of simplicity, in this paper we focus on Constraint Logic Programming
over Finite Domains (CLP(FD) [28]) but the test generation framework as well as
the optimization technique we propose and the related results do not rely on this
assumption and can be applied also if we consider logic programs that combine con-
straints on finite and infinite domains. Clearly, when considering infinite domains,
one needs to rely on a finite (symbolic) presentation or on criteria to select finitely
many values out of infinitely many.

In CLP(FD) we have that: (1) VC is a set of variables ranging over a finite integer
domain, (2) FC = {+, -, *, min, max}∪Z, where Z is the set of the integer numbers, and
(3) ΠC = {#=, #\=, #>, #>=, #<, #=<}. Note that CLP(FD) can handle more general
constraints. However, for the examples considered in this paper, arithmetic equalities
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and inequalities are sufficiently expressive. The fixed interpretation for ΣC is the
structure of the integers Z.

The solver over ΣC of most CLP(FD) systems (such as SICStus [3] and GNU Pro-
log [2]) is incomplete, which means that those systems may produce successful deriva-
tions that terminate on a state having an unsatisfiable store. Most systems provide the
following additional predicates: domain(Vs,Min,Max)1, that constrains all the vari-
ables in the list Vs to range over [Min, . . . , Max]⊂Z, and labeling(Settings,Vs)1,
that implements a complete solver for FD-constraints and binds the variables in Vs

to ground values such that the current constraint store is satisfied (the optional
Settings argument can be used for configuring the search process).

We are interested into characterizing terms manipulated by CLP-based test gen-
erators in terms of classes of trees. In particular, we introduce the set Υ of the trees
constructed over (VC ,FT ∪FC) (no variable of type T allowed) and with at least one
symbol in FT . We also define the set Υ of ground trees, that is, the set of those trees
in Υ with no occurrences of variables in VC . Note that D ∩Υ = ∅.

A modemp for a predicate p of arity n is a function {1, . . . , n} → {+, -, ?} such that
if position i has type T then mp(i) ∈ {+, -}, otherwise mp(i) = ?. If mp(i) = + then
we call the i-th argument an input position, otherwise we call it an output position.
Constraint predicates have mode (?, ?). A program is moded if each user-defined
predicate has a mode. From now on we will assume all programs are moded. An
atom is correctly input-typed (resp. output-typed) if its input (resp. output) positions
are filled in by terms in Υ.

We now introduce the notion of well-modedness, which is a slight modification of
that in [4], where modes distinguish ground and non-ground arguments. To simplify
the notation, in the following we write p(i,o) to indicate that i is the sequence of the
input arguments of p, and o is the sequence of the output arguments of p. Moreover,
we indicate by VarsT (t) the set of variables of type T occurring in the term t.

Definition 1 (Well-modedness). A clause C is well-moded if the clause obtained
from C by dropping all constraints is of the form

p0(t0, sn+1) :- p1(s1, t1), . . . , pn(sn, tn). and, for i ∈ {1, . . . , n+ 1},
VarsT (si) ⊆

⋃i−1
j=0 VarsT (tj).

A goal G (query :- G.) is well-moded if the clause q :- G. is well-moded. A program
is well-moded if all of its clauses are well-moded.

Note that, if a goal is well-moded, then its leftmost atom is correctly input-typed.
Similarly to [4] for the case of (pure) logic programs, we can now state a result of
preservation of well-modedness and correct input/output typing of goals.

Proposition 1. Let P be a well-moded program and :-G. a well-moded query. For
every state 〈G′ | c〉 in a derivation δ for :- G. in P : (1) the goal G′ is well-moded
and correctly input-typed, and (2) if δ is successful and (ϑ, c) is the answer computed
by δ, then Gϑ is correctly output-typed.

1 Here we adopt the SICStus Prolog syntax [3].
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2.2 CLP(FD)-based test case generation

Our method for developing test case generators takes advantage of the CLP(FD) pro-
gramming paradigm, sometimes referred to as constrain-and-generate [28]. It follows
a symbolic approach and it is structured mainly in two phases, as follows.

In a first phase we construct a so-called shape of the desired data structure (a term
in Υ), capturing some basic structural properties (such as being a binary tree or a
list). We also leave several parts of the data structure unspecified, by using variables
in VC as place-holders. Then, we add to those VC variables constraints deriving from
the invariants that define the data structure and we obtain a so-called constrained
shape. In this phase constraints are checked for consistency using the built-in (in-
complete) solver (constrain phase). The constrained shapes found inconsistent are
rejected at this early stage. Since one of these shapes may represent a large number
of instances, we have a great advantage in evaluating them at this symbolic stage.

In a second phase, we invoke a complete solver to find the constrained shapes
that can effectively be instantiated to a concrete data structure (we call these feasible
structures) and we compute all the correct instantiations (i.e., terms in Υ), which we
call the set of the test cases (generate phase).

An additional feature of our approach is the declarativeness of test case generators,
that allows us to define a desired structure through several steps. Firstly, by providing
the definition of the search domain specified by a so-called generator, which constructs
a set of shapes. Then, by providing the definition (over that domain) of one or more
filters, encoding the invariants these shapes must satisfy.

We define a template (τ), based on the constrain-and-generate paradigm, for
developing (filter-based) test case generators. In the following, for the sake of con-
ciseness, whenever possible we use a shorter notation for modes and types: we use
mh to denote a sequence of h ≥ 0 inputs of a given mode m, for m ∈ {+, -, ?}, and
th to denote the Cartesian product of h copies of type t ∈ {D,T}.

The template is divided into three parts: (1) the Preamble contains the defini-
tion of the lists of VC-variables and their domains, (2) the Symbolic Definition

contains: (i) a call to a generator which defines the data structure shapes (e.g. list,
tree, graph), and (ii) a sequence of calls to filters defining the invariants in terms of
constraints among the VC-variables, and (3) the Instantiation contains the calls to
the complete solver to instantiate the VC-variables.

(τ)

tc(T,P1 ,...,Ph) :-

% Preamble (constrain)

init(P1 ,...,Ph,V1 ,...,Vk), % definition of domains

% of the FD -variables

% Symbolic Definition (constrain)

g(T,P1 ,...,Ph,V1 ,...,Vk), % shape

inv1(T,P1 ,...,Ph), ..., % invariants

invn(T,P1 ,...,Ph),

% Instantiation (generate)

labeling(V1) ,...,

labeling(Vk).
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where we assume that: (1) the predicate tc has type T × Dh and mode (-,?h),
(2) the predicate init has type Dh × Tk and mode (?h,-k), (3) the predicate g

has type T× Dh × Tk and mode (-,?h,+k), (4) the predicates inv1, . . . ,invn have
type T × Dh and mode (+,?h), and (5) the predicate labeling has type T and
mode (+). The init predicate has the role of constructing the finite lists V1,...,Vk
of VC-variables and fixing their domain, depending on the values of the parameters
P1,...,Ph. Note that any instance of the template clause satisfying the given types and
modes is well-moded.

Besides typing and moding, we expect the predicate g to be a generator and the
predicates inv1, . . . , invn to be filters, according to the following definitions.

Definition 2 (Generator). Given a well-moded program P , a generator is a user-
defined predicate g of type T × Dh × Tk and mode (-,?h,+k) such that, for any
well-moded query Q of the form :- g(T,p1,...,ph,v1,...,vk)., if p1, . . . , ph ∈ Z
then AnsP (Q) is finite.

Note that, in Def. 2, for any answer (σ, c) to the well-moded query Q, the term
Tσ is a tree, that is Tσ ∈ Υ . Therefore, for any given values p1, . . . , ph ∈ Z of its
parameters, a generator defines a finite set of shapes, that is, a finite search domain.

Definition 3 (Filter). Given a well-moded program P , a filter is a user-defined
predicate inv of type T× Dh and mode (+,?h) such that, for any well-moded query
Q of the form :- inv(t,p1,...,ph)., AnsP (Q) is finite.

Note that, in Def. 3, by the well-modedness assumption, t is in Υ and any answer
in AnsP (Q) is of the form (ε, c), where ε is the identity substitution. For any given
input shape t, a filter computes a finite set of constrained shapes.

Definition 4 (Test case Generator). A test case generator is a well-moded pro-
gram P defining a predicate tc by a clause which is an instance of the template (τ)
satisfying mode and type requirements, and such that the predicate for g is a generator
and the predicates for inv1, . . . ,invn are filters.

Finally, we define the set of the test cases as follows.

Definition 5 (Test Cases). Given a test generator program P defining tc, the set
of the test cases is the set T = AnsP (Q), for any well-moded query Q of the form
:- tc(T,p1,...,ph). and parameters p1, . . . , ph ∈ Z.

The test cases are elements of Υ , as stated by the following proposition.

Proposition 2. Let T = AnsP (Q) be a set of test cases, for a given well-moded query
Q of the form :- tc(T,p1,...,ph). and parameters p1, . . . , ph ∈ Z. An answer in T
is of the form (σ, true) and Tσ ∈ Υ .

For any answer in T , the ground term Tσ represents the test case/data structure
of interest.

In order to better evaluate our approach and the advantage of the symbolic eval-
uation, we define some sets of terms, constructed during the evaluation of test case
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generators. We indicate by S ⊆ Υ the set of shapes, generated by the predicate g and
by CS the set of the constrained shapes, produced after the execution of the filters.
We denote by F the set of the feasible shapes, that is, the set of the symbolic shapes
selected using a complete solver. Finally, we denote by D ⊆ Υ the set of all possible
(domain consistent) instantiations of the shapes in S. The set D, ideally, represents
the search space we would have to consider if we were not using a symbolic approach.
In order to compute those sets, one can instrument appropriately the test generator.
We have F ⊆ T ⊆ D but no knowledge about the relation of T with the other sets.

Note that, from Definitions 2 and 3 it directly follows that the sets of the shapes,
of the constrained shapes, and of the feasible shapes are finite. However, if no further
assumption is made on the predicate init and on the domains of the variables in the
lists V1,...,Vk, we have no guarantee on the finiteness of the set of test cases T .

2.3 Red-Black Trees

In this section we discuss a concrete example, in order to show our approach in
practice. We consider a classical data structure, called Red-Black tree.

Example 1. A Red-Black tree [10] is a binary search tree where each node has two
labels: a color, either red or black, and an integer, called key (for the purpose of test
generation, node values are abstracted away in the definition of the data structure).
Therefore, it satisfies the following type equations:

Color ::= 0 | 1

Key ::= ... | -1 | 0 | 1 | ...

Tree ::= e | Color x Key x Tree x Tree

where 0 and 1 denote red and black, respectively, and e denotes the emtpy tree. A
Red-Black tree must also satisfy the following three invariants:

(I1) every path from the root to a leaf has the same number of black nodes,
(I2) no red node has a red child, and
(I3) for every node n, all the nodes in the left (respectively, right) subtree of n, if

any, have keys which are smaller (respectively, bigger) than the key labeling n.

Since Red-Black trees enjoy a weak form of balancing, operations such as inserting,
deleting, and finding values are more efficient, in the worst-case, than in ordinary
binary search trees.

The CLP specification of a Red-Black tree generator is parameterized by the
minimum and maximum tree size (defined as the number of its nodes), and by the
maximum value for the keys. The following clause defines the test case generator:

rbtree(T,MinSize ,MaxSize ,NumKeys) :-

% Preamble

MinSize#=<S, S#=<MaxSize ,

varlist(S,Keys), varlist(S,Colors), Max#=NumKeys -1,

domain(Keys ,0,Max), domain(Colors ,0,1),

% Symbolic Definition

lbt(T,S,Keys ,[],Colors ,[]), % shape
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pi(T,_), ci(T), ordered(T,0,NumKeys), % invariants

% Instantiation

labeling(Keys), labeling(Colors).

Given the ground (non-negative) input integers minSize, maxSize, and numKeys, the
set AnsP (rbtree(T,minSize,maxSize,numKeys)) contains all the Red-Black trees
of size ranging in {minSize, . . . ,maxSize}, with keys ranging in {0, . . . ,numKeys-1}.
The predicate varlist(N,L), is used for constructing a list L of N fresh VC-variables.

The first line of the Preamble fixes the domain of the variable S denoting the tree
size. Then, two lists of (distinct) variables are defined, Keys and Colors, with the
corresponding domains, {0,. . . ,NumKeys-1} and {0,1}, respectively. These variables
are placed along the tree structure in the Symbolic Definition part by the predicate
lbt, which defines (2-)labeled binary trees by structural induction:

1. lbt(e ,S,Ks ,Ks ,Cs ,Cs ) :- S#=0.

2. lbt(t(C,K,L,R),S,[K1|Ks],NKs ,[C1|Cs],NCs) :-

S#>=1, SL#>=0, SR#>=0, S#=SL+SR+1, C#=C1 , K#=K1 ,

lbt(L,SL ,Ks ,TKs ,Cs ,TCs), lbt(R,SR ,TKs ,NKs ,TCs ,NCs).

The first argument is either the constant e denoting the empty tree or a term
t(C,K,L,R) denoting a (non-empty) tree with left subtree L, right subtree R, and
whose root node is labeled with color C and key K. The second argument is the size of
the tree (the number of nodes) which, in clause 2, is at least 1 and it is split into a pair
of non-negative integers SL and SR denoting the size of the left and right subtrees, re-
spectively, such that S = SL+SR+1. The left and right subtrees are then constructed
recursively. The remaining two arguments contain the key and color variables, that
are placed in each node.

The predicate pi (for path invariant) encodes the invariant (I1):

3. pi(e ,C) :- C#=0.

4. pi(t(C,_,L,R),D) :- ND#>=0, D#=ND+C, pi(L,ND), pi(R,ND).

The semantics of pi is the following: for a given tree t, pi(t,d) holds if d is the
number of black nodes on every root-to-leaf path in t. We say that d is the value
of the black-nodes counter of t. If a tree is empty then its black-nodes counter is 0,
otherwise, the black-nodes counter is computed by adding the ‘color’ of the root (i.e.,
0, if red, and 1, if black) to the black-nodes counter of (both) its subtrees (that must
have the same value).

The predicate ci (for color invariant) encodes the invariant (I2):

5. ci(e ).

6. ci(t(C,_,L,R)) :- root_col(L,C), root_col(R,C), ci(L), ci(R).

7. root_col(e ,_).

8. root_col(t(C,_,_,_),D) :- C+D#>0.

In clause 6 the color invariant is enforced by testing the color of the roots of the left
and right subtrees. For each branch, the constraint C+D#>0 enforces either the father
or the child to be black (i.e., equal to 1).

Finally, the predicate ordered defines the invariant (I3):
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9. ordered(e ,_ ,_ ).

10. ordered(t(_,N,L,R),Min ,Max) :- Min#=<N, N#<Max , M#=N+1,

ordered(L,Min ,N), ordered(R,M,Max).

We compared our declarative CLP-based test generator for Red-Black trees with
a generator written using Korat [30], a tool for bounded-exhaustive testing of Java
programs, which is specifically tailored for the construction of structurally complex
test inputs. Korat allows the generation of complex data structures by providing
primitives to populate an object domain, to initialize objects, and to set links among
them. Korat performs a systematic search of the program input space, avoiding the
full exploration of failing regions and the generation of isomorphic structures.

Following [27], we consider the ‘canonical set’ AnsP (rbtree(T, s, s, s)), for s ∈ Z,
which is the set of all Red-Black trees of s nodes and keys ranging in {0, . . . , s− 1}.
The results of the comparison are summarized in Table 1 of Section 4 and show that
the CLP-based Red-Black tree generator is much more efficient than the Korat one.

3 Transformational Optimization

In this section we present a technique based on program transformation [7,36] for
improving the efficiency of test case generator programs.

The left-to-right scheduling of constraints and atoms implemented by most CLP
systems can be a source of inefficiency, because it enforces the full generation of a
data structure shape before the evaluation of a filter can start. This difficulty can
be mitigated by providing a more intelligent scheduling strategy, so that filters are
applied as soon as a data structure has been partially generated, hence determining
early failure and backtracking when a data structure shape does not satisfy the
constraints defined by the filters. A lot of research in the area of logic programming
has been devoted to devise techniques for allowing the user to specify sophisticated
selection strategies, such as delay (or wait) declarations, which determine a dynamic
scheduling of the atoms to be evaluated based on their instantiation patterns [31].
However, the increased intricacies of the implementation of the dynamic scheduling
mechanism may reduce the efficiency gains due to more intelligent scheduling.

An alternative approach that we follow here is based on a program transformation
that modifies a given test case generator in such a way that the transformed program
computes the same test cases and behaves under left-to-right scheduling like the
original program behaves under a selection rule which interleaves generators and
filters. Hence, program transformation avoids the overhead due to the execution of
sophisticated dynamic scheduling mechanisms.

We will follow the rule-based approach to transformation [7], where a program
transformation is achieved by applying semantics preserving transformation rules
(see [13,14,36] for the case of logic and constraint logic programs) guided by suit-
able strategies which have the goal of improving program efficiency (see [33,34] for
strategies related to the one presented here).

The transformation rules we will use here are the following, taken from [13,14,36]:
definition, unfolding, folding, goal replacement, constraint replacement, and clause
deletion. These rules are applied according to the Filter Promotion (FP) strategy
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outlined in Figure 1, where: (1) the Dfn function applies the definition rule, (2)
the Unf function applies the unfolding rule, (3) the Rrg function applies the goal
replacement and clause deletion rules, and finally, (4) the Fld function applies the
folding rule. Below we provide more details about the FP strategy by means of the
Red-Black tree example.

Fig. 1: The Filter Promotion Strategy

Input : Clause γ in the test case generator P ;
Output : A set Tγ of clauses and a test case generator TransfP = (P − {γ}) ∪ Tγ such that,
for all queries Q of the form :- tc(T,p1,...,ph)., where T is a variable and p1, . . . , ph ∈ Z,
AnsP (Q) = AnsTransfP(Q).

Tγ := {γ}; Defs := ∅;
while Tγ contains a clause with multiple occurrences of a relevant variable in the body do

Define: Transf := Dfn(Tγ); Defs := Dfn(Tγ) ∪Defs;
Unfold : Transf := Unf(Transf, P );
Rearrange: Transf := Rrg(Transf);
Fold : Tγ := Fld(Tγ ∪ Transf,Defs);

end-while

The FP strategy takes as input a test case generation program P and a clause
γ ∈ P which is an instance of the template (τ) defined in Section 2.

In order to apply the FP strategy and guarantee its termination by applying the
results of [33], we now introduce the notion of marking on the input program P .
Intuitively, the marking identifies the slice of P that manipulates the data structures
to be generated. We assume that some of the predicates occurring in P are marked as
relevant. An atom with relevant predicate is said to be a relevant atom. Each relevant
predicate has exactly one argument position (without loss of generality, the first one)
which is marked as relevant. The argument occurring in a relevant position is said to
be a relevant argument. Each variable of type T occurring in a relevant argument is
said to be a relevant variable.

Definition 6 (Linear Marked Program). A test case generator P is said to be a
linear marked program if its marking satisfies the following conditions. (i) The first
argument position of g, inv1, . . . , invn is relevant. (ii) Only predicates in ΠU and
terms of type T are marked as relevant. (iii) For each clause C in P−{γ} whose head
is relevant we have that: (iii.1) every variable occurs at most once in the relevant
argument t0 of the head of C, (iii.2) every relevant argument occurring in the body of
C is a proper subterm of t0, and (iii.3) distinct relevant arguments occurring in the
body of C share no variables. (iv) Every non-relevant argument has mode in {+, ?}.

Thus, in a linear marked program, both the generator and the filters are defined
by structural induction on the data structure we want to generate.

Note that clause γ is not required to fulfill Condition (iii.3) of the above definition,
and indeed the atoms g(T,P1,...,Ph,V1,...,Vk), inv1(T,P1,...,Ph,V1,...,Vk),
. . . , invn(T,P1,...,Ph,V1,...,Vk), share the relevant variable T.

The output of the Filter Promotion strategy is a set Tγ of clauses and a trans-
formed program TransfP which is equivalent to P with respect to queries of the form
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:- tc(T,p1,...,ph). From the operational point of view, TransfP achieves filter
promotion by performing consistency tests defined by the filters as soon as a partial
instantiation of T is generated.

3.1 Filter Promotion Applied to the Red-Black Tree Generator

We illustrate the transformation strategy on the Red-Black tree program (RBT ) dis-
cussed in Section 2. Let γ be the clause defining the predicate rbtree. Program RBT,
where the predicates lbt, pi, ci, and ordered (along with their first arguments) are
marked as relevant, is a linear marked program.

Define. The Filter Promotion strategy starts off by applying the Dfn function, which
introduces a new predicate sync (which stands for synchronized) defined by the fol-
lowing clause:

sync(T,P1,...,Ph,V1,...,Vk) :-

g(T,P1,...,Ph,V1,...,Vk),

inv_1(T,P1,...,Ph,V1,...,Vk), ..., inv_n(T,P1,...,Ph,V1,...,Vk).

(†)

whose body consists of precisely those atoms in the body of γ that share the relevant
variable T. The predicate sync has mode (-,?h,+k). In the Red-Black tree example,
the Dfn function introduces the following new predicate definition:
1. sync(T,S,Keys,NewKeys,Colors,NewColors,Min,Max,D) :-

lbt(T,S,Keys,NewKeys),

pi(T,D), ci(T,Colors,NewColors), ordered(T,Min,Max).

Transf and Defs are both initialized to the set consisting of clause 1. Then the
strategy proceeds by looking for a recursive definition of sync.

Unfold. The unfolding rule consists of a symbolic evaluation step: an atom A in the
body of a clause is selected according to a given selection function, and A is replaced
by the bodies of the clauses in program P whose heads unify with A. The function
Unf applies the unfolding rule once or more times. For the first step of unfolding,
Unf selects the leftmost relevant atom in the body of each clause in Transf. In the
Red-Black tree example Unf selects the atom lbt(T,S,Keys,NewKeys) in the body
of clause 1, thus deriving the following pair of clauses (new variable names have been
automatically generated by our prototype transformation system MAP [1]):

2. sync(e,A,B,B,C,C,D,E,F) :- A#=0, pi(e,D), ci(e), ordered(e,E,F).

3. sync(t(A,B,C,D),E,[F|G],H,[I|J],K,L,M,N) :-

E#>=1, O#>=0, P#>=0, E#=O+P+1, A#=I, B#=F,

lbt(C,O,G,Q,J,R), lbt(D,P,Q,H,R,K), pi(t(A,B,C,D),L),

ci(t(A,B,C,D)), ordered(t(A,B,C,D),M,N).

The first unfolding step causes a partial instantiation of T. Further unfolding steps
are performed on the filter predicates to add constraints to the partially generated
structure, guided by a selection function defined as follows. A relevant atom p(t, . . .) in
the body of a clause is selectable if for every head in P−{γ} unifiable with p(t, . . .) via
a most general unifier ϑ, the term tϑ is a variant of t. Then, every clause is unfolded
with respect to a selectable atom, until no such atom exists. In the Red-Black tree
example, from clauses 2 and 3 we derive:
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4. sync(e,A,B,B,C,C,D,E,F) :- A#=0, D#=0.

5. sync(t(A,B,C,D),E,[F|G],H,[I|J],K,L,M,N) :-

E#>=1, O#>=0, P#>=0, E#=O+P+1, A#=I, B#=F,

lbt(C,O,G,Q,J,R), lbt(D,P,Q,H,R,K), S#>=0, L#=S+A, pi(C,S), pi(D,S),

not_redroot(C,A), not_redroot(D,A), ci(C), ci(D), M#=<B, B#<N, T#=B+1,

ordered(C,M,B), ordered(D,T,N).

Finally, all clauses are unfolded by selecting the atoms that unify with the heads of
constrained facts only. In the Red-Black tree example, by selecting the not_redroot

atoms, from clause 5 we derive:

7. sync(t(A,B,e,e),C,[D|E],E,[F|G],G,H,I,J) :-

C#>=1, K#>=0, L#>=0, C#=K+L+1, A#=F, B#=D, K#=0, L#=0,

M#>=0, H#=M+A, M#=0, M#=0, I#=<B, B#<J, N#=B+1.

8. sync(t(A,B,e,t(C,D,E,F)),G,[H|I],J,[K|L],M,N,O,P) :-

G#>=1, Q#>=0, R#>=0, G#=Q+R+1, A#=K, B#=H, Q#=0,

lbt(t(C,D,E,F),R,I,J,L,M), S#>=0, N#=S+A, S#=0,

pi(t(C,D,E,F),S), C+A#>0, ci(t(C,D,E,F)), O#=<B, B#<P, T#=B+1,

ordered(t(C,D,E,F),T,P).

9. sync(t(A,B,t(C,D,E,F),e),G,[H|I],J,[K|L],M,N,O,P) :-

G#>=1, Q#>=0, R#>=0, G#=Q+R+1, A#=K, B#=H,

lbt(t(C,D,E,F),Q,I,J,L,M), R#=0, S#>=0, N#=S+A,

pi(t(C,D,E,F),S), S#=0, C+A#>0, ci(t(C,D,E,F)), O#=<B, B#<P, T#=B+1,

ordered(t(C,D,E,F),O,B).

10. sync(t(A,B,t(C,D,E,F),t(G,H,I,J)),K,[L|M],N,[O|P],Q,R,S,T) :-

K#>=1, U#>=0, V#>=0, K#=U+V+1, A#=O, B#=L,

lbt(t(C,D,E,F),U,M,W,P,X), lbt(t(G,H,I,J),V,W,N,X,Q), Y#>=0, R#=Y+A,

pi(t(C,D,E,F),Y), pi(t(G,H,I,J),Y), C+A#>0, G+A#>0,

ci(t(C,D,E,F)), ci(t(G,H,I,J)), S#=<B, B#<T, Z#=B+1,

ordered(t(C,D,E,F),S,B), ordered(t(G,H,I,J),Z,T).

At this point of the execution of the strategy Transf consists of clauses 7–10.

Rearrange. By unfolding we have partially constructed a structure together with
some constraints it must satisfy. This partial generation does not determine a signif-
icant efficiency improvement on its own, but it provides opportunities for optimiza-
tions performed by the Rrg function, as listed below.

- Promotion of consistency checks on constraints by moving them to the left of atoms.

- Simplification of constraints by projecting out existential variables whenever possi-
ble.

- Deletion of clauses whose body contains an unsatisfiable constraint.

- Deletion of subsumed clauses (H :- c,B. is subsumed by H :- d. if c entails d).

- Simplification of clauses by exploiting properties of user-defined predicates.

Finally, the Rrg function also reorders the atoms so as to derive clauses of the form
H :- c,B1, . . . , Bm.

where, for i = 1, . . . ,m, Bi is a conjunction of consecutive atoms, called block, such
that two distinct atoms occur in Bi iff they share a relevant variable (in particular,
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each non-relevant atom occurs in a block made out of that atom only). In our example
we derive the following clauses:

4. sync(e,A,B,B,C,C,D,E,F) :- A#=0, D#=0.

11. sync(t(A,B,e,e),C,[D|E],E,[F|G],G,H,I,J) :-

A#=F, B#=D, C#=1, H#=A, I#=<B, B#<J.

12. sync(t(A,B,e,t(C,D,E,F)),G,[H|I],J,[K|L],M,N,O,P) :-

G#>=1, Q#>=0, G#=Q+1, A#=K, B#=H, R#=0, N#=A, S#=0,

C+A#>0, O#=<B, B#<P, T#=B+1, lbt(t(C,D,E,F),Q,I,J,L,M),

pi(t(C,D,E,F),S), ci(t(C,D,E,F)), ordered(t(C,D,E,F),T,P).

13. sync(t(A,B,t(C,D,E,F),e),G,[H|I],J,[K|L],M,N,O,P) :-

G#>=1, Q#>=0, G#=Q+1, A#=K, B#=H, R#=0, N#=A, S#=0,

C+A#>0, O#=<B, B#<P, T#=B+1, lbt(t(C,D,E,F),Q,I,J,L,M),

pi(t(C,D,E,F),S), ci(t(C,D,E,F)), ordered(t(C,D,E,F),O,B).

14. sync(t(A,B,t(C,D,E,F),t(G,H,I,J)),K,[L|M],N,[O|P],Q,R,S,T) :-

K#>=1, U#>=0, V#>=0, K#=U+V+1, A#=O, B#=L, W#>=0, R#=W+A,

C+A#>0, G+A#>0, S#=<B, B#<T, X#=B+1, lbt(t(C,D,E,F),U,M,Y,P,Z),

pi(t(C,D,E,F),W), ci(t(C,D,E,F)), ordered(t(C,D,E,F),S,B),

lbt(t(G,H,I,J),V,Y,N,Z,Q), pi(t(G,H,I,J),W), ci(t(G,H,I,J)),

ordered(t(G,H,I,J),X,T).

where clauses 12 and 13 contain one block each, while clause 14 contains two non-
singleton blocks:

lbt(t(C,D,E,F),S,L,U), pi(t(C,D,E,F),V),

ci(t(C,D,E,F),O,W), ordered(t(C,D,E,F),Q,B)

and

lbt(t(G,H,I,J),T,U,M), pi(t(G,H,I,J),V),

ci(t(G,H,I,J),W,P), ordered(t(G,H,I,J),X,R)

At the end of the Rearrange step, Transf consists of clauses 4, 11, 12, 13, and 14.

Fold. The Fld function applies the folding rule once or more times to the clauses
in Tγ ∪ Transf, with the goal of deriving a recursive definition of sync. Indeed, Fld
replaces each blockBi which is an instance of the body of clause (†) by the correspond-
ing instance of the head (sync(T,S,Keys,NewKeys,Colors,NewColors,Min,Max,D)
in our example). Blocks without relevant atoms are not folded. In the Red-Black tree
example, by folding the clause defining the predicate rbtree and also clauses 12, 13,
and 14, we get:

15. rbtree(A,B,C,D) :- B#=<E, E#=<C, labeling([],[E]), varlist(E,F),

varlist(E,G), H#=D-1, domain(F,0,H), domain(G,0,1),

sync(A,E,F,[],G,[],I,0,D), labeling([],F), labeling([],G).

4. sync(e,A,B,B,C,C,D,E,F) :- A#=0, D#=0.

11. sync(t(A,B,e,e),C,[D|E],E,[F|G],G,H,I,J) :-

A#=F, B#=D, C#=1, H#=A, I#=<B, B#<J.

16. sync(t(A,B,e,t(C,D,E,F)),G,[H|I],J,[K|L],M,N,O,P) :-

G#>=1, Q#>=0, G#=Q+1, A#=K, B#=H, R#=0, N#=A, S#=0, C+A#>0,

O#=<B, B#<P, T#=B+1, sync(t(C,D,E,F),Q,I,J,L,M,S,T,P).
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17. sync(t(A,B,t(C,D,E,F),e),G,[H|I],J,[K|L],M,N,O,P) :-

G#>=1, Q#>=0, G#=Q+1, A#=K, B#=H, R#=0, N#=A, S#=0, C+A#>0,

O#=<B, B#<P, T#=B+1, sync(t(C,D,E,F),Q,I,J,L,M,S,O,B).

18. sync(t(A,B,t(C,D,E,F),t(G,H,I,J)),K,[L|M],N,[O|P],Q,R,S,T) :-

K#>=1, U#>=0, V#>=0, K#=U+V+1, A#=O, B#=L, W#>=0, R#=W+A,

C+A#>0, G+A#>0, S#=<B, B#<T, X#=B+1,

sync(t(C,D,E,F),U,M,Y,P,Z,W,S,B), sync(t(G,H,I,J),V,Y,N,Z,Q,W,X,T).

This program implements filter promotion in the sense that at each recursive call
the predicate sync generates a portion of the tree structure and immediately tests
whether the constraints on the finite domain variables occurring in this partial struc-
ture are consistent. In other words, sync interleaves structure generation and invari-
ant checking, possibly determining an early failure in the case where the partially
generated structure is not consistent with the invariants defining Red-Black trees.

3.2 Termination and Correctness of the FP Strategy

Termination of the FP Strategy. Due to Condition (iii.2) of Def. 6 the function Unf
terminates. Other selection strategies guarantee the termination of Unf. For a gen-
eral treatment of the problem of controlling unfolding in the related field of Partial
Deduction we refer to the survey [25]. Since also the other functions used in the FP
strategy obviously terminate, in order to establish the termination of the strategy
one should prove that a finite number of iterations is performed.

In general, it may happen that some block with multiple relevant atoms cannot
be folded because it is not an instance of the body of (†). In this case, after the
Fold step, in Tγ there exists a clause whose body contains multiple occurrences of
a relevant variable, and hence the transformation strategy performs other iterations
of the while loop. At a generic iteration, given a set Tγ of clauses, the Dfn function
computes a set of new predicate definitions as follows. Let B be a non-singleton block
in the body of a clause in Tγ . The Dfn function computes a new clause of the form

newp(X1, . . . , Xm):-B′.

where newp is a new predicate symbol, {X1, . . . , Xm} = Vars(B′), and there exists
a most general substitution ϑ with the following properties: (i) B = B′ϑ, and (ii) for
all relevant variables Xi, Xj in B′, if Xiϑ = Xjϑ then Xi = Xj .

Then, for each new clause introduced by Dfn the FP strategy applies Unfold,
Rearrange, and Fold. To guarantee the termination of the strategy we need to enforce
that finitely many new definitions are introduced. Since the class of linear marked
programs taken as input by the strategy is a subclass of the one considered in Section 4
of [33], the finiteness of the set of new definitions, and hence the termination of the
strategy is a consequence of Theorem 11 of that paper.

All programs considered in Section 4 are linear marked, and thus the FP strategy
could be applied in a fully automatic way. If the input of the strategy is not a
linear marked program, then termination is not guaranteed. However, by using the
generalization technique presented in [33], we can define a transformation strategy
that always terminates, possibly paying the price of deriving a suboptimal program.
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Correctness of the FP Strategy. It is fairly simple to verify that each rule appli-
cation preserves well-modedness. Indeed, this is straightforward for definition (pro-
vided that we suitably define the mode for the new predicate), unfolding, reordering
of constraints, clause deletion, and folding. For the reordering of atoms during the
Rearrange step, the preservation of well-modedness is ensured by condition (iv) of
Definition 6.

By construction there is no clause in Tγ whose body contains a multiple occurrence
of a relevant variable. In particular, these multiple occurrences can be eliminated by
folding, which replaces a block with multiple occurrences of a relevant variable by an
atom with a single occurrence.

The FP strategy applies the transformation rules by fulfilling the restrictions
considered in [13,14,36], thus ensuring that the least D-model of P ∪ Defs, where
Defs is the set of new definitions introduced by the strategy, is equal to the least D-
model of TransfP. Now, let us consider a query Q of the form :- tc(T,p1,...,ph).,
where T is a variable and p1,...,ph are ground integers. Both P and TransfP are
well-moded, and hence all answers to Q in P or TransfP are of the form (σ, true),
where Tσ is a ground term (see Proposition 2). By the soundness and completeness
of LD-resolution, we get that AnsP (Q) = AnsTransfP(Q), and also that for any well-
moded query Q′ of the form :- sync(T,p1,...,ph,v1,...,vk)., if p1, . . . , ph ∈ Z
then AnsTransfP(Q′) is finite.

Thus, we have the following result.

Theorem 1 (Termination and Correctness of Filter Promotion). For any
clause γ and linear marked program P the FP strategy terminates. Let TransfP be
the output of the strategy. Then:

(i) TransfP is a test case generator (in particular, well-moded),

(ii) no clause in TransfP has a multiple occurrence of a relevant variable in its body,

(iii) for all queries Q of the form :- tc(T,p1,...,ph)., where T is a variable and
p1, . . . , ph ∈ Z, AnsP (Q) = AnsTransfP(Q).

4 Experimental Evaluation

In this section we discuss the results obtained by performing an experimental eval-
uation of our CLP-based method for test generation, considering: (1) the original
declarative programs and (2) their optimized versions obtained by Filter Promotion.

During the first set of experiments, we assessed the performance of the declarative
CLP-based test generator for Red-Black trees presented in Section 2. Then, we com-
pared the results with those obtained by running Korat, a state-of-the-art BET tool
for Java on the same problem instances. The experimental data obtained by running
the declarative CLP-based test generator and Korat are reported in Table 1.

In our experiments, the performance of CLP-based test generators is always one
or two orders of magnitude better than the performance of the corresponding Korat
generators. This difference could partly be ascribed to the fact that Korat builds tree
data structures generating elements from a domain of graphs and filtering out the
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Table 1: Comparison of Red-Black Trees generators. The table reports the size of the red-black trees
(column 1), the number of computed red-black trees (2), the time, in seconds, needed for generating all the
structures running the original CLP generator of Sec. 2 using the GNU and SICStus Prolog systems (3-4),
the size of the domain and the number of shapes, constrained shapes and feasible shapes (5-8). The last
two columns (9-10) report the time needed by the Korat generator and the number of explored structures.
(-) means not computed within one hour.

CLP-based Korat

Size Trees Time Counts Time Counts

GNU SICStus |D| |S| |CS | |F | Explored

9 122 0.06 0.24 1015 4862 54 46 3.59 1510006

10 260 0.20 0.89 1017 16796 92 76 15.79 7530712

11 586 0.71 3.17 1019 58786 218 190 89.24 39089158

12 1296 2.76 12.09 1022 208012 512 456 469.66 205512574

13 2708 10.12 45.13 1024 742900 1004 904 3080.21 1084433242

14 5400 38.21 172.82 1027 2674440 1960 1696 - -

acyclic ones. In CLP, on the contrary, trees can be represented in a straightforward
manner by using terms, which are natively managed by existing Prolog systems.

Columns 7 and 8 of Table 1 show that the number of feasible shapes is never much
smaller than the number of constrained shapes. This means that, for the considered
examples, most of the constrained shapes do actually lead to a test case, and thus the
consistency checks performed by the Prolog systems during the search for a solution
are effective.

Moreover, we notice that the number of constrained shapes is considerably smaller,
and grows more slowly, than the number of shapes (actually they grow exponentially
with a base of 2 and 4, respectively). In cases like this, where the ratio between
constrained shapes and shapes is small, the Filter Promotion strategy, is potentially
able to improve the performance in a substantial way. We will elaborate more on this
aspect in the rest of this section.

In the second set of the examples, we applied our Filter Promotion strategy
to some CLP-based test generators for tree-like complex data structures and we
compared the declarative and the optimized ones on problem instances of different
size, focusing on their time performance and the number of shapes generated. The
results are reported in Table 2.

In order to assess the effectiveness of our Filter Promotion strategy we have
comparatively analyzed the declarative CLP-based generators and the corresponding
optimized ones for the following tree-like data structures: AVL-trees (balanced binary
search trees, where the length of the root-to-leaf paths differ by at most one), B-trees
(n-ary search trees used in filesystems), Red-Black trees (presented in Section 2)
and Well-Labeled trees (labeled trees where adjacent nodes have labels differing by
at most one). Similarly to Red-Black trees, we considered general, parametric test
generators, but we focused the experimental evaluation on canonical structures, where
the domain of keys is {0, . . . , n− 1} and n is the number of nodes of the tree under
consideration. For B-trees, in particular, we focused on canonical B-trees of order 4,
also known as 2-3-4 trees.

17



Table 2: Comparison of declarative and optimized versions of generators for tree-like data structures.
The table reports the name of the examples (column 1), the size and the number of computed trees (2-
3), the time, in seconds, needed for generating all the trees running the declarative and optimized CLP
generators using SICStus Prolog (4-5), the number of shapes and constrained shapes for the declarative
version (7-8), and the number of shapes for the optimized version (9). Columns (6) and (10) report the time
(and number of shapes, respectively) percentage ratio between the optimized version and the declarative
one. Zero in time columns means less than 10 ms, zero in ratio columns means less than 0.01%, (-) means
not computed within 400 seconds or undefined.

Example Time Shapes

Name Size Trees T Topt ratioT (%) |S| |CS | |Sopt | ratioS(%)

AVL-tree

11 70 4.09 0.09 2.20 58786 70 70 0.12
12 184 14.55 0.18 1.24 208012 184 184 0.09
13 476 53.84 0.33 0.61 742900 476 476 0.06
14 872 194.78 0.64 0.33 2674440 872 872 0.03
23 174374 - 247.89 - - - 174374 -

B-tree

13 8 6.58 0.01 0.15 208012 8 8 0
14 10 24.46 0.01 0.04 742900 10 10 0
15 14 86.18 0.03 0.03 2674440 14 14 0
16 21 324.06 0.04 0.01 9694845 21 21 0
31 2952 - 398.27 - - - 2952 -

RB-tree

11 586 3.17 0.51 16.09 58786 218 218 0.37
12 1296 12.09 1.13 9.35 208012 512 512 0.25
13 2708 45.13 2.43 5.38 742900 1004 1004 0.14
14 5400 172.82 5.36 3.10 2674440 1960 1960 0.07
19 140612 - 260.16 - - - 72606 -

WL-tree

6 41112 0.18 0.19 105.56 42 42 42 100
7 463548 2.11 2.18 103.32 132 132 132 100
8 5280270 24.02 23.88 99.42 429 429 429 100
9 60570250 267.72 270.54 101.05 1430 1430 1430 100

10 - - - - - - - -

For all the examples, the number of shapes of the optimized version (|Sopt |) equals
the number of constrained shapes (|CS |). In most cases (with the exception of WL-
tree, which we discuss later) this number is at least two orders of magnitude smaller
than the number of shapes (|S|). When the constraint solver is able to detect that
several potential shapes are unfeasible, the optimized generators obtained by apply-
ing the Filter Promotion strategy, perform much better than the declarative ones.
The reason for such performance improvement is due to the fact that the optimized
generators are able to directly generate the set of constrained shapes, avoiding the
intermediate generation of a large number of shapes which do not lead to actual
solution.

The time performance improvement of the optimized version w.r.t. the declarative
one (ratioT ), is linearly dependent on the improvement over the number of shapes
generated (ratioS). This is confirmed by the experiments performed on the WL-tree
instances, where the number of constrained shapes equals the number of shapes, and
the optimized version of the generator is not better than the declarative one.

The CLP-based approach to bounded exhaustive testing has been shown to be
very efficient when using a straightforward, declarative encoding, as already demon-
strated by the experiments reported in [35], where the authors considered generators
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for sorted lists of integers, integer-labeled search trees, and array-based representa-
tions of heaps and disjoint set partitions.

The experimental evaluation we have performed in this paper shows that, starting
from a natural, declarative encoding, the application of the Filter Promotion strategy
is often able to introduce an additional level of improvement. This is particularly
important as it allows the test engineer to encode the properties of the considered
data structure in a very declarative and modular way, focusing on each property
separately from the others, thus increasing his/her confidence in the correctness of
the test specification. Then, the Filter Promotion strategy can be applied on the
declarative test generator in order to obtain an equivalent, optimized test generator.

4.1 Experimental settings

We selected two different CLP(FD) systems for running our experiments: SICStus,
for its widespread availability and industrial strength, and GNUProlog, for its effi-
cient compilation. In our experiments, GNUProlog outperforms SICStus, due to its
efficient compilation of FD constraints. However, we chose to keep also the SICStus
timings, because they revealed to be much more stable w.r.t. different encodings we
experimented with (such as moving term comparison constraints from the head to
the body). Therefore, SICStus seems to be more reliable in a setting where the user is
not aware of the inner evaluation mechanism and cannot take advantage of it, while
being still efficient.

The memory consumption of the CLP generators is negligible and grows very
slowly on the size of the structures (as in Korat) so we did not report it.

We did not explore different tunings of the CLP(FD)-solver other than the default
ones, which revealed to be already satisfactory. However, more complex problems
(involving, for example, conditions based on minimization) may benefit of the many
built-in predicates implementing more sophisticated solution search algorithms [28].

The experiments were performed on an Intel Core 2 Duo E7300 2.66 GHz under
the Linux operating system, using GNU Prolog 1.3.0, SICStus Prolog 3.12.8 and
OpenJDK 7. The timings were collected using CLP and Java statistics predicates.

5 Related Work and Conclusions

Constraint-based techniques have been widely used in the field of test case generation,
since pioneering work in [12]. Early use of CLP for test generation can be found in
the tool ATGen [29], developed for testing Spark ADA programs.

More recent approaches, such as [11], enable white-box (i.e., code-driven) testing
of an imperative language with pointers and heap by symbolic execution of a small-
step operational semantics in CLP. Further work on testing has been done in [8,22] for
the generation of heap-allocated data structures, following a fixed coverage criteria
for the choice of the test cases. The work in [21] presents a technique for white-
box testing of object-oriented languages, where test case generators are obtained by
partial evaluation of a language interpreter with respect to a given program.

In this paper we are motivated by black-box testing and we follow the BET ap-
proach. We focus on showing that CLP search strategies, besides being very general,
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can be efficient and can be further optimized by employing suitable optimization
techniques. In the BET setting, our optimization shows several advantages. The ap-
proach proposed in this paper shares motivation also with research on model-based
test generation and combinatorial testing [23,32,37], where constraints are adopted
for increasing declarativeness and efficiency.

The declarative approach has also been adopted by test generation tools such as
Korat [30], which has been used in our experimental evaluation, UDITA [20], and
TestEra [24]. These tools are quite efficient in practice but require careful implemen-
tations of clever, ad-hoc backtracking mechanisms and search strategies, which are
either built-in (like non-deterministic choice) or easily implementable in standard
CLP systems. Lazy instantiation strategies in UDITA [20] can be seen as a partic-
ular Constraint Programming strategy. Moreover, these tools are language-specific
and they are not easily adaptable to other languages.

In [9] it is shown that the use of BET for verifying large systems is feasible and
provides effective results, but requires significant effort to be tuned and combined with
abstraction techniques to reach the generation of useful test sets. For this purpose,
our approach could easily benefit from decades of research on program analysis and
abstract interpretation of constraint logic programs.

Concerning our optimization technique, the idea of improving generate-and-filter
programs by transformation is not new. For instance, this idea stands behind the
Filter Promotion transformation strategy proposed both for functional programs [5]
and logic programs [34]. Compiling control [6] is another related transformation tech-
nique which, given a logic program P and a selection rule R, derives a new program
that behaves under LD-resolution like P behaves under R. However, the transforma-
tion technique we present here is the first one specifically designed for CLP test case
generation programs, where we can exploit the peculiar form of the programs and
the properties of the constraint-based computation model.

There are several issues which deserve further study. Among these, we plan to ex-
plore the relationship between constraint solving strategies and test coverage criteria.
Indeed, one may be interested into exploring the set of possible structures according
to an ordering, or parametrized by a given coverage criteria.

The approach of this paper is essentially based on the idea of promoting constraint
solving with respect to structural induction. One should be aware, however, that in
realistic examples the size of constraints grows very quickly, together with the search
space the solver is required to traverse. Our approach currently relies on ingenuity
built in the constraint solver but further optimizations are possible. For example,
in [15,18], a static analysis technique is used to infer constraints over variables of a
CLP-based encoding of an infinite state reactive system. These constraints are very
useful to prune the search of model checking algorithms applied to those infinite state
systems. Similar techniques can be applied to infer extra constraints on data structure
variables, to improve the solver pruning mechanisms and mitigate the explosion of
the search space size.

A further optimization to be explored concerns the use of mixed constraint solvers.
Indeed, more efficient solvers on different domains can be employed to compute con-
servative approximations of solutions, to be refined using domain specific solvers.
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For example, if we consider data structures containing integer values we may re-
place the integer (or finite domain) solver by a more efficient solver on real numbers
when determining feasible structures. This idea has been successfully applied for the
specialization of CLP programs [19].

Furthermore, while in this paper we focused on model-based input generation only,
we believe that the CLP approach can be successfully applied also for developing test
oracles which can be used for verifying the post-conditions of the methods under test,
since CLP generators can also be used as acceptors.

We also plan to study extensions of the correctness results stated in Theorem 1,
and look for sufficient conditions guaranteeing that our optimization technique based
on program transformation preserves properties of the operational semantics. In par-
ticular, we want to guarantee that no left-terminating program (where all derivations
starting from a ground query are finite) is transformed into a non-terminating one.
Since we are interested in computing all the solutions of test generator programs, we
want to avoid to introduce infinite derivations.

Program transformation of CLP programs could also be applied to white-box
testing by lifting the techniques which have been developed for the verification of
imperative programs on integers [16]. In that work, similarly to what has been done
in [21], an interpreter encoding the semantics of the programming language is special-
ized w.r.t. a CLP representation of the considered program. However, the transforma-
tional method could take advantage of more powerful rules, like those for reasoning
about programs manipulating arrays and other data structures [17].

In conclusion, we believe that, due to its inherent symbolic execution mechanism,
CLP has a promising application field in test case generation, especially in the case of
complex input data. Indeed, CLP provides a highly declarative language and ensures
efficiency by using dedicated constraint solvers and optimization techniques.

Acknowledgements. We thank the anonymous referees for their useful feedback.
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