
Behavioral Reasoning on Semantic Business Processes in
a Rule-Based Framework?

Fabrizio Smith and Maurizio Proietti

National Research Council, IASI ”Antonio Ruberti” - Viale Manzoni 30, 00185 Roma, Italy
{fabrizio.smith, maurizio.proietti}@iasi.cnr.it

Abstract. We propose a representation method for semantically enriched busi-
ness processes by combining in a uniform logical framework both the procedural
and the domain dependent knowledge. First, we define a rule-based procedural
semantics for a relevant fragment of BPMN, a very popular graphical notation
for specifying business processes. Our semantics defines a state transition system
by following an approach similar to the Fluent Calculus, and allows us to specify
state change in terms of preconditions and effects of the enactment of activities.
Then, we show how the procedural process knowledge can be seamlessly inte-
grated with the domain knowledge specified by using the OWL-RL rule-based
ontology language. As a result, our framework provides a wide range of reason-
ing services by using standard logic programming inference engines.

Keywords: Business Processes, Ontologies, Rule-Based Reasoning, Verification

1 Introduction

The adoption of structured and systematic approaches for the management of the Busi-
ness Processes (BPs) operating within an organization is constantly gaining popularity
in various industrial sectors, especially in medium to large enterprises, and in the public
administration. The core of such approaches is the development of BP models that rep-
resent the knowledge about processes in machine accessible form. However, standard
BP modeling languages are not fully adequate to capture process knowledge in all its as-
pects. While their focus is on the procedural representation of a BP as a workflow graph
that specifies the planned order of operations, the domain knowledge regarding the en-
tities involved in such a process, i.e., the business environment in which processes are
carried out, is often left implicit. This kind of knowledge is typically expressed through
natural language comments and labels attached to the models, which constitute very
limited, informal and ambiguous pieces of information.

The above issues are widely recognized as an obstacle for the further automation of
BP Management (BPM) tools and methodologies [8]. Process modeling, in particular, is
still mainly a manual activity, where a very limited support is given in terms of reuse and
retrieval functionalities, or automated analysis facilities, i.e., for verifying whether the

? This work has been partly funded by the European Commission through the ICT Project
BIVEE: Business Innovation and Virtual Enterprise Environment (FoF-ICT-2011.7.3-285746).

requirements specified over the models are enforced. The latter aspect is addressed in
the BPM community mainly from a control flow perspective, with the aim of verifying
whether the behavior of the modeled system presents logical errors (see, for instance,
the notion of soundness [24]).

However, in order to verify that a BP actually behaves as expected, additional do-
main knowledge is required. In this respect, the application of well-established tech-
niques stemming from the area of Knowledge Representation in the domains of BP
modeling [8, 11, 26] and Web Services [2, 6] has been shown as a promising approach.
In particular, the use of computational ontologies is the most established approach for
representing in a machine processable way the knowledge about the domain where busi-
ness processes operate, providing formal definitions for the basic entities involved in a
process, such as activities, actors, data items, and the relations between them. However,
there are still several open issues regarding the combination of BP modeling languages
(with their execution semantics) and ontologies, and the accomplishment of behavioral
reasoning tasks involving both these components.

The main objective of this paper is to design a framework for representing and
reasoning about business process knowledge from both the procedural and ontologi-
cal point of views. To achieve this goal, we do not propose yet another business pro-
cess modeling language, but we provide a rule-based framework for reasoning about
process-related knowledge expressed by using de-facto standards for BP modeling, like
BPMN [17], and ontology definition, like OWL [9]. To this end we define a rule-based
procedural semantics for a relevant fragment of BPMN, and we extend it in order to
take into account OWL annotations that describe preconditions and effects of activities
and events occurring within a BP. Our procedural BP semantics seamlessly integrates
with OWL-RL [9], a fragment of the OWL ontology language which has a suitable
rule-based presentation, and is achieving increasing success because it constitutes an
excellent compromise between expressivity and efficiency.

In essence, the contributions of this paper can be summarized as follows. In Sec-
tion 2 we introduce a set of rules, expressed in the logic programming formalism [13],
for modeling the procedural semantics of a BP regarded as a workflow. The proposed
rule set can cope with a relevant fragment of the BPMN 2.0 specification, allowing us
to deal with a large class of process models. We then propose in Section 3 an approach
for the semantic annotation of BP models, where preconditions and effects of BP ele-
ments are described by using an OWL-RL ontology. In Section 4 we provide a general
verification mechanism by encoding the temporal logic CTL [4] as a set of rules which
allow us to analyze properties of BPs depending on both the control flow and semantic
annotations. Finally, in Section 5 we show how we can perform some very sophisti-
cated reasoning tasks, such as verification, querying and trace compliance checking,
that combine both the procedural and domain knowledge relative to a BP.

2 Behavioral Semantics of BP Schemas

In this section we introduce a formal representation of business processes by means of
the notion of Business Process Schema (BPS). A BPS, its meta-model, and its procedu-
ral (or behavioral) semantics will all be specified by sets of rules, for which we adopt
the standard notation and semantics of logic programming (see, for instance, [13]). In

particular, a rule is of the form A← L1 ∧ . . .∧Ln, where A is an atom (i.e., a formula
of the form p(t1, . . . , tm)) and L1, . . . ,Ln are literals (i.e., atoms or negated atoms). If
n = 0 we call the rule a fact. A rule (atom, literal) is ground if no variables occur in it.
A logic program is a finite set of rules. Throughout the paper we will consider the class
of (locally) stratified logic programs, i.e., programs that can be layered into strata such
that negated atoms in higher strata are defined by rules in lower strata. Every program P
in this class has a unique perfect model, denoted Perf(P), constructed as shown in [18].

Fig. 1: Handle Order BP

2.1 Business Process Schemas

We show how a BPS is specified by means of an example. The full definition can be
found in [21]. Let us consider the BP depicted in Figure 1, where the handling of a
purchase order is represented using the BPMN notation. The process starts with the or-
dering activity, which is a compound activity where, upon receiving a customer request,
a purchase order is created (create order), approved (accept order) or canceled (cancel
order). An approved order can also be subjected to a number of modifications (modify
order). If the order is canceled, the rejection is notified to the customer and the order is
archived (notify rejection). Otherwise, after the requisition of the requested items (parts
auction and allocate inventory), the delivery of products takes place together with the
payment of the order (fulfill order).

A BPS (e.g., Handle Order) consists of a set of flow elements and relations be-
tween them, and it is associated with a unique start event and a unique end event, which
are flow elements that represent the entry point and the exit point, respectively, of the
process. An activity is a flow element that represents a unit of work performed within
the process. A task represents an atomic activity (e.g., accept order), i.e., no further
decomposable, while a compound activity is associated with a process that provides

the definition of its internal structure (e.g., ordering). An intermediate event represents
“something that occurs during the process execution” (e.g., the time-out exception at-
tached to the accept order activity). The sequencing of flow elements is specified by
the sequence flow relation (corresponding to solid arrows), and the branching/merging
of the control flow is specified by using three types of gateways: exclusive (XOR, e.g.,
g1), inclusive (OR, e.g., g3), and parallel (AND, not exemplified in Figure 1). The item
flow relation (corresponding to dotted arrows) specifies that a flow element uses as in-
put (e.g., accept order and order) or produces as output (e.g., create order and order)
a particular item, i.e., a physical or information object.

A BPS can also represent other entities usually employed to model processes, such
as participants and messages, not presented here for lack of space. Indeed, by following
our approach we can represent the constructs common to the most used BP modeling
languages and, in particular, the ones based on the BPMN specification [17].

Formally, a BPS is specified by a set of ground facts of the form p(c1, . . . ,cn), where
c1, . . . ,cn are constants denoting flow elements (e.g., activities, events, and gateways)
and p is a predicate symbol. An excerpt of the translation of the Handle Order process
(referred to as ho) as a BPS is shown in Table 1.

Table 1: BPS representing the Handle Order process
bp(ho,s,e) seq(notify rejection,g6,ho) seq(parts auction,g4,ho)
seq(ordering,g1,ho) exc branch(g1) seq(g4,g5,ho)
seq(g1,g3,ho) inc branch(g3) seq(g5,fulfill order,ho)
seq(g3,allocate inventory,ho) comp act(ordering, s1, e1) seq(fulfill order,g6,ho)
seq(allocate inventory,g4,ho) seq(s, ordering, ho) seq(g6,e,ho)
seq(g5,g2,ho) seq(g1,g2, ho) exc merge(g2)
seq(g2,notify rejection,ho) seq(g3,parts auction,ho) . . .

Our formalization also includes a set of rules that represent the meta-model, defining
a number of structural properties which regard a BPS as a directed graph, where edges
correspond to sequence and item flow relations. Two categories of structural properties
should be verified by a well-formed (i.e., syntactically correct) BPS: i) local properties
related to its elementary components (e.g., every activity must have at most one ingoing
and at most one outgoing sequence flow), and ii) global properties related to the overall
structure of the BPS (e.g., every flow element must lie on a path from the start to the
end event). Furthermore, other meta-model properties are related to the notions of path
and reachability between flow elements, such as the following ones, which will be used
in the sequel: seq+(E1,E2,P), representing the transitive closure of the sequence flow
relation, and n reachable(E1,E2,E3,P), which holds if there is a path in P between E1
and E2 not including E3.

2.2 Behavioral Semantics
Now we present a formal definition of the behavioral semantics, or enactment, of a
BPS, by following an approach inspired to the Fluent Calculus, a well-known calculus
for action and change (see [23] for an introduction). In the Fluent Calculus, the state
of the world is represented as a collection of fluents, i.e., terms representing atomic
properties that hold at a given instant of time.

An action, also represented as a term, may cause a change of state, i.e., an update of
the collection of fluents associated with it. Finally, a plan is a sequence of actions that
leads from the initial to the final state.

For states we use set notation (here we depart from [23], where an associative-
commutative operator is used for representing collections of fluents). A fluent is an
expression of the form f (a1, . . . ,an), where f is a fluent symbol and a1, . . . ,an are con-
stants or variables. In order to model the behavior of a BPS, we represent states as finite
sets of ground fluents. We take a closed-world interpretation of states, that is, we as-
sume that a fluent F holds in a state S iff F ∈ S. This set-based representation of states
relies on the assumption that the BPS is safe, i.e., during its enactment there are no
concurrent executions of the same flow element [24]. This assumption enforces that the
set of states reachable by a given BPS is finite.

A fluent expression is built inductively from fluents, the binary function symbol
and, and the unary function symbol not. The satisfaction relation assigns a truth value
to a fluent expression with respect to a state. This relation is encoded by a predicate
holds(F,S), which holds if the fluent expression F is true in the state S. We also in-
troduce a constant symbol true, such that holds(true,S) holds for every state S. Ac-
cordingly to the closed-world interpretation given to states, the satisfaction relation is
defined by the following rules:

holds(F,S)← F = true
holds(F,S)← F ∈ S
holds(not(F),S)←¬holds(F,S)
holds(and(F1,F2),S)← holds(F1,S)∧holds(F2,S)

We will consider the following two kinds of fluents: cf(E1,E2,P), which means that the
flow element E1 has been executed and the flow element E2 is waiting for execution,
during the enactment of the process P (cf stands for control flow); en(A,P), which
means that the activity A is being executed during the enactment of the process P (en
stands for enacting). To clarify our terminology note that, when a flow element E2 is
waiting for execution, E2 might not be enabled to execute, because other conditions
need to be fulfilled, such as those depending on the synchronization with other flow
elements (see, in particular, the semantics of merging behaviors below).

We assume that the execution of an activity has a beginning and a completion (al-
though we do not associate a duration with activity execution), while the other flow el-
ements execute instantaneously. Thus, we will consider two kinds of actions: begin(A)
which starts the execution of an activity A, and complete(E), which represents the
completion of the execution of a flow element E (possibly, an activity). The change
of state determined by the execution of an action will be formalized by a relation
result(S1,A,S2), which holds if the action A can be executed in the state S1 leading
to the state S2. For defining the relation result(S1,A,S2) the following auxiliary pred-
icates will be used: (i) update(S1,T,U,S2), which holds if S2 = (S1− T)∪U , where
S1,T,U, and S2 are sets of fluents, and (ii) setof(F,C,S), which holds if S is the set of
ground instances of fluent F such that condition C holds.

The relation r(S1,S2) holds if a state S2 is immediately reachable from a state S1,
that is, some action A can be executed in state S1 leading to state S2:

r(S1,S2)← result(S1,A,S2)

We say that a state S2 is reachable from a state S1 if there is a finite sequence of actions
(of length ≥ 0) from S1 to S2, that is, reachable state(S1,S2) holds, where the relation
reachable state is is the reflexive-transitive closure of r.

In the rest of this section we present a fluent-based formalization of the behavioral
semantics of a BPS by focusing on a core of the BPMN language. The proposed formal
semantics, reported in Table ??, mainly refers to the BPMN semantics, as described (in-
formally) in the most recent specification of the language [17]. Most of the constructs
considered here (e.g., parallel or exclusive branching/merging) have the same interpre-
tation in most workflow languages. However, when different interpretations are given,
e.g., in the case of inclusive merge, we stick to the BPMN one.

Activity and Event Execution. The enactment of a process P begins with the execution
of the associated start event E in a state where the fluent cf(start,E,P) holds, being start
a reserved constant. After the execution of the start event, its unique successor waits for
execution (rule E1). The execution of an end event leads to the final state of a process
execution, in which the fluent cf(E,end,P) holds, where E is the end event associated
with the process P and end is a reserved constant (rule E2).

The execution of an activity is enabled to begin after the completion of its unique
predecessor flow element. The effects of the execution of an activity vary depending on
its type (i.e., atomic task or compound activity). The beginning of an atomic task A is
modeled by adding the en(A,P) fluent to the state (rule A1). At the completion of A,
the en(A,P) fluent is removed and the control flow moves on to the unique successor of
A (rule A2). The execution of a compound activity, whose internal structure is defined
as a process itself, begins by enabling the execution of the associated start event (rule
A3), and completes after the execution of the associated end event (rule A4).

According to the informal semantics of BPMN, intermediate events are intended
as instantaneous patterns of behavior that are registered at a given time point. Thus,
we formally model the execution of an intermediate event as a single state transition,
as defined in rule E3. Intermediate events in BPMN can also be attached to activity
boundaries to model exceptional flows. Upon occurrence of an exception, the execution
of the activity is interrupted, and the control flow moves along the sequence flow that
leaves the event (rule E4).

Branching Behaviors. When a branch gateway is executed, a subset of its successors
is selected for execution. We consider here exclusive, inclusive, and parallel branch
gateways. An exclusive branch leads to the execution of exactly one successor, while
an inclusive branch leads to the concurrent execution of a non-empty subset of its suc-
cessors. The set of successors of exclusive or inclusive decision points is selected by
using guards, i.e., fluent expressions whose truth value is tested with respect to the cur-
rent state. The value of guards may depend on fluents different from cf(E1,E2,P) and
en(A,P). Indeed, extra fluents can be introduced for modeling the effects of the exe-
cution of flow elements (e.g., operations on items) as shown in Section 3.2. A guard
is associated with a gateway by the predicate c seq(G,B,Y,P) modeling a conditional
sequence flow, where G is a fluent expression denoting a guard, B is an exclusive or
inclusive branch gateway and Y is a successor flow element of B in the process P. We
also have the rule seq(B,Y,P)← c seq(G,B,Y,P). The semantics of inclusive branches
is defined in rule B1. The semantics of exclusive branches can be defined in a similar

way and is omitted. Finally, a parallel branch leads to the concurrent execution of all its
successors (rule B2).

Table 2: Fragment of the behavioral semantics of the BPAL language
(E1) result(S1,complete(E),S2) ← start event(E)∧ holds(cf(start,E,P),S1)∧ seq(E,X ,P)∧

update(S1,{cf(start,E,P)},{cf(E,X ,P)},S2)
(E2) result(S1,complete(E),S2)← end event(E)∧holds(cf(X ,E,P),S1)∧

update(S1,{cf(X ,E,P)},{cf(E,end,P)},S2)
(E3) result(S1,complete(E),S2)← int event(E)∧holds(cf(X ,E,P),S1)∧ seq(E,Y,P)∧

update(S1,{cf(X ,E,P)},{cf(E,Y,P)},S2)
(E4) result(S1,complete(E),S2) ← exception(E,A,P) ∧ int event(E) ∧ holds(en(A,P),S1) ∧

seq(E,Y,P)∧update(S1,{en(A,P)},{cf(E,Y,P)},S2)

(A1) result(S1,begin(A),S2)← task(A)∧holds(cf(X ,A,P),S1)∧
update(S1,{cf(X ,A,P)},{en(A,P)},S2)

(A2) result(S1,complete(A),S2)← task(A)∧holds(en(A,P),S1)∧ seq(A,Y,P)∧
update(S1,{en(A,P)},{cf(A,Y,P)},S2)

(A3) result(S1,begin(A),S2)← comp act(A,S,E)∧holds(and(cf(X ,A,P),not(en(A,P))),S1)∧
update(S1,{cf(X ,A,P)},{cf(start,S,A),en(A,P)},S2)

(A4) result(S1,complete(A),S2)← comp act(A,S,E)∧holds(and(cf(E,end,A),en(A,P)),S1)∧
seq(A,Y,P)∧update(S1,{en(A,P),cf(E,end,A)},{cf(A,Y,P)},S2)

(B1) result(S1,complete(B),S2)← inc branch(B)∧holds(cf(X ,B,P),S1)∧
setof(cf(B,Y,P),(c seq(G,B,Y,P)∧holds(G,S1)),Succ)∧
update(I,{cf(X ,B,P)},Succ,S2)

(B2) result(S1,complete(B),S2)← par branch(B)∧holds(cf(X ,B,P),S1)∧
setof(cf(B,Y,P),seq(B,Y,P),Succ)∧ update(S1,{cf(X ,B,P)},Succ,S2)

(O1) result(S1,complete(M),S2)← inc merge(M)∧ enabled im(M,S1,P)∧
seq(M,Y,P)∧ setof(cf(X ,M,P),holds(cf(X ,M,P),S1),PredM)∧
update(S1,PredM,{cf(M,Y,P)},S2)

(O2) enabled im(M,S1,P)← holds(cf(X ,M,P),S1)∧¬exists upstream(M,S1,P)
(O3) exists upstream(M,S1,P)← seq(X ,M,P)∧holds(not(cf(X ,M,P)),S1)∧

holds(cf(Y,U,P),S1)∧upstream(U,X ,M,S1,P)
(O4) upstream(U,X ,M,S1,P)← n reachable(U,X ,M,P)∧¬exists path(U,M,S1,P)
(O5) exists path(U,M,S1,P)← holds(cf(K,M,P),S1)∧n reachable(U,K,M,P)
(P1) result(S1,complete(M),S2) ← par merge(M) ∧ ¬exists non executed pred(M,P,S1) ∧

seq(M,Y,P)∧ setof(cf(X ,M,P),seq(X ,M,P),PredM)∧
update(S1,PredM,{cf(M,Y,P)},S2)

(P2) exists non executed pred(M,P,S1)← seq(X ,M,P)∧holds(not(cf(X ,M,P)),S1)

Merging Behaviors. An exclusive merge can be executed whenever at least one of its
predecessors has been executed. Here we omit the straightforward formal definition.

For the inclusive merge several operational semantics have been proposed, due to
the complexity of its non-local semantics, see e.g., [10]. An inclusive merge is supposed
to be able to synchronize a varying number of threads, i.e., it is executed only when
n(≥ 1) predecessors have been executed and no other will be eventually executed. Here
we refer to the semantics described in [25] adopted by BPMN, stating that (rule O1) an
inclusive merge M can be executed if the following two conditions hold (rules O2, O3):

(1) at least one of its predecessors has been executed,

(2) for each non-executed predecessor X, there is no flow element U which is waiting
for execution and is upstream X. The notion of being upstream captures the fact
that U may lead to the execution of X , and is defined as follows. A flow element U
is upstream X if (rules O4, O5): a) there is a path from U to X not including M, and
b) there is no path from U to an executed predecessor of M not including M.

Finally, a parallel merge can be executed if all its predecessors have been executed as
defined in rule P1, where exists non executed pred(M,P,S1) holds if there exists no
predecessor of M which has not been executed in state S1 (rule P2).

3 Semantic Annotation
In the previous section we have shown how the behavioral semantics of the workflow
specified by a BPS can be modeled in our rule-based framework. However, not all
the relevant knowledge regarding process enactment is captured by a workflow model,
which defines the planned order of operations but does not provide an explicit represen-
tation of the domain knowledge regarding the entities involved in such a process, i.e.,
the business environment in which processes are carried out.

Similarly to proposals like Semantic BPM [8] and Semantic Web Services [6], we
will make use of semantic annotations to enrich the procedural knowledge specified by
a BPS with domain knowledge expressed in terms of a given business reference ontol-
ogy. Annotations provide two kinds of ontology-based information: (i) formal defini-
tions of the basic entities involved in a process (e.g., activities, actors, items) to specify
their meaning in an unambiguous way (terminological annotations), and (ii) specifica-
tions of preconditions and effects of the enactment of flow elements (functional annota-
tions). In this work we focus on functional annotations and on their interaction with the
control flow to define the behavior of a BPS, thus extending the framework presented
in [21] where terminological annotations only were considered.

3.1 Rule-Based Ontologies

A business reference ontology is intended to capture the semantics of a business sce-
nario in terms of the relevant vocabulary plus a set of axioms (TBox) which define the
intended meaning of the vocabulary terms. In order to represent the semantic annota-
tions and the behavioral semantics of a BPS in a uniform way, we will represent on-
tologies by sets of rules. To this end, we consider a fragment of OWL falling within the
OWL 2 RL [9] profile, which is an upward-compatible extension of RDF and RDFS
whose semantics is defined via a set of Horn rules, called OWL 2 RL/RDF rules.
OWL 2 RL ontologies are modeled by means of the ternary predicate t(s, p,o) rep-
resenting an OWL statement with subject s, predicate p and object o. For instance, the
assertion t(a,rdfs:subClassOf,b) represents the inclusion axiom a v b. Reasoning on
triples is supported by OWL 2 RL/RDF rules of the form t(s, p,o)← t(s1, p1,o1)∧·· ·∧
t(sn, pn,on). For instance, the rule t(A,rdfs:subClassOf,B)← t(A,rdfs:subClassOf,C)∧
t(C,rdfs:subClassOf,B) defines the transitive closure of the subsumption relation.

An OWL 2 RL ontology is represented as a set O of rules, consisting of a set of
facts of the form t(s, p,o), called triples, encoding the OWL TBox and the set of Horn

rules encoding the OWL 2 RL/RDF rules. This kind of representation allows us to take
advantage of the efficient resolution strategies developed for logic programs, in order
to perform the reasoning tasks typically supported by Description Logics reasoning
systems, such as concept subsumption and ontology consistency.

Table 3: Business Reference Ontology excerpt
ClosedPO v Order ApprovedPO v Order

CancelledPO v ClosedPO FulfilledPO v ClosedPO
UnavailablePL v PartList AvailablePL v PartList

payment v related ∃ payment− v Invoice
CancelledPO u ApprovedPO v⊥ UnavailablePL u AvailablePL v⊥

ApprovedPO u∃related.Invoice v FulfilledPO Order u∃related.UnavailablePL v CancelledPO

3.2 Functional Annotation

By using the ontology vocabulary and axioms, we define semantic annotations for mod-
eling the behavior of individual process elements in terms of preconditions under which
a flow element can be executed and effects on the state of the world after its execution.
Preconditions and effects, collectively called functional annotations, can be used, for
instance, to model input/output relations of activities with data items, which are the
standard way of representing information storage in BPMN diagrams. Fluents can rep-
resent the status of a data item affected by the execution of an activity at a given time
during the execution of the process. A precondition specifies the status a data item must
posses when an activity is enabled to start, and an effect specifies the status of a data
item after having completed an activity. In order to provide concrete examples to illus-
trate the main ideas, in the rest of the paper we refer to the excerpt of reference ontology
reported in Table 3, describing the items involved in the BPS depicted in Figure 1.

Functional annotations are formulated by means of the following two relations:

– pre(A,C,P), which specifies the fluent expression C, called enabling condition,
which must hold to execute an element A in the process P;

– eff(A,E−,E+,P), which specifies the set E− of fluents, called negative effects,
which do not hold after the execution of A and the set of fluents E+, called pos-
itive effects, which hold after the execution of A in the process P. We assume that
E− and E+ are disjoint sets.

In the presence of functional annotations, the enactment of a BPS is modeled as follows.
Given a state S1, a flow element A can be enacted if A is waiting for execution according
to the control flow semantics, and its enabling condition C is satisfied, i.e., holds(C,S1)
is true. Moreover, given an annotation eff(A,E−,E+,P), when A is completed in a given
state S1, then a new state S2 is obtained by taking out from S1 the set E− of fluents and
then adding the set E+ of fluents. We will assume that effects satisfy a consistency
condition which guarantees that: (i) no contradiction can be derived from the fluents of
S2 by using the state independent axioms of the reference ontology, and (ii) no fluent
belonging to E− holds in S2. This consistency condition will be formally defined later
in this section, and can be regarded as a way of tackling the Ramification Problem
due to indirect effects of actions (see e.g., [23, 19]). The state update is formalized by
extending the result relation so as to take into account the pre and eff relations. We only
consider the case of task execution. The other cases are similar and will be omitted.

Table 4: Functional annotations for the Handle Order process
Flow Element Enabling Condition Effects

create order tf (o,rdf:type,bro:Order)
accept order tf (o,rdf:type,bro:Order) tf (o,rdf:type,bro:ApprovedPO)

cancel order tf (o,rdf:type,bro:ApprovedPO) ¬tf (o,rdf:type,bro:ApprovedPO),
tf (o,rdf:type,bro:CancelledPO)

check inventory tf (o,rdf:type,bro:ApprovedPO) tf (o,bro:related, pl), tf (pl,rdf:type,bro:PartList)
check inventory tf (o,rdf:type,bro:ApprovedPO)

parts auction tf (pl,rdf:type,bro:PartList) tf (pl,rdf:type,bro:AvailablePL)
parts auction tf (pl,rdf:type,bro:PartList) ¬t f (o,rdf:type,bro:ApprovedPO),

tf (pl,rdf:type,bro:UnavailablePL)
fulfill order tf (o,rdf:type,bro:ApprovedPO) tf (o,bro:payment, i)

Gateway Target Guard
g1 g3 tf (o,rdf:type,bro:ApprovedPO)

g1 g2 not(tf (o,rdf:type,bro:ApprovedPO))

g3 parts auction and(tf (o,related,pl), tf (pl,rdf:type,bro:PartList))
g5 g2 tf (o,rdf:type,bro:CancelledPO)

g5 fulfill order not(tf (o,rdf:type,bro:CancelledPO))

result(S1,begin(A),S2)← task(A)∧ holds(cf(X ,A,P),S1)∧pre(A,C,P)∧holds(C,S1)∧
update(S1,{cf(X ,A,P)},{en(A,P)},S2)

result(S1,complete(A),S2)← task(A)∧ holds(en(A,P),S1)∧ eff(A,E−,E+,P)∧
seq(A,Y,P)∧update(S1,{en(A,P)}∪E−, {cf(A,Y,P)}∪E+,S2)

The enabling conditions and the negative and positive effects occurring in functional an-
notations are fluent expressions built from fluents of the form tf (s, p,o), corresponding
to the OWL statement t(s, p,o), where we adopt the usual rdf, rdfs, and owl prefixes for
names in the OWL vocabulary, and the bro prefix for names relative to our specific ex-
amples. We assume that the fluents appearing in functional annotations are either of the
form tf (a,rdf:type,c), corresponding to the unary atom c(a), or of the form tf (a, p,b),
corresponding to the binary atom p(a,b), where a and c are individuals, while c and
p are concepts and properties, respectively, defined in the reference ontology O. Thus,
fluents correspond to assertions about individuals, i.e., the ABox of the ontology, and
hence the ABox may change during process enactment due to the effects specified by
the functional annotations, while O, providing the ontology definitions and axioms, i.e.,
the TBox of the ontology, does not change.

Let us now present an example of specification of functional annotations. In partic-
ular, our example shows nondeterministic effects, that is, a case where a flow element
A is associated with more than one pair (E−,E+) of negative and positive effects.

Example 1 Consider again the Handle Order process in Figure 1. After the execution
of create order, a purchase order is issued. This order can be approved or canceled
upon execution of the activities accept order and cancel order, respectively. Depending
on the inventory capacity checked during the check inventory task, the requisition of
parts performed by an external supplier is performed (parts auction). Once that all the
order parts are available, the order can be fulfilled and an invoice is associated with
the order. This behavior is specified by the functional annotations reported in Table 4.

In order to evaluate a statement of the form holds(tf (s, p,o),X), where tf (s, p,o) is
a fluent and X is a state, the definition of the holds predicate given previously must be
extended to take into account the axioms belonging to the reference ontology O. Indeed,
we want that a fluent of the form tf (s, p,o) be true in state X not only if it belongs to X ,
but also if it can be inferred from the fluents in X and the axioms of the ontology. For
instance, let us consider the fluent F = tf (o,rdf:type,bro:CancelledPO). We can eas-
ily infer that F holds in a state which contains {tf (o,rdf:type,bro:CancelledPO)} (e.g.,
reachable after the execution of cancel order) by using the rule holds(F,X)← F ∈ X .
However, by taking into account the ontology excerpt given in Table 3, we also want
to be able to infer that F holds in a state which contains {tf (o,rdf:type,bro:Order),
tf (o,bro:related, pl), tf (pl,rdf:type,bro:UnavailablePL)} (e.g., reachable after the ex-
ecution of parts auction).

In our framework the inference of new fluents from fluents belonging to states is
performed by including extra rules derived by translating the OWL 2 RL/RDF entail-
ment rules as follows: every triple of the form t(s, p,o), where s refers to an individual,
is replaced by the atom holds(tf (s, p,o),X). Below we show the rules for concept sub-
sumption (1), role subsumption (2), domain restriction (3), transitive property (4), and
concept disjointness (5) .
1. holds(tf (S,rdf:type,C),X)← holds(tf (S,rdf:type,B),X)∧ t(B,rdfs:subClassOf,C)
2. holds(tf (S,P,O),X)← holds(tf (S,P1,O),X)∧ t(P1,rdfs:subPropertyOf,P)
3. holds(tf (S,rdf:type,C),X)← holds(tf (S,P,O),X)∧ t(P,rdfs:domain,C)
4. holds(tf (S,P,O),X)← holds(tf (S,P,O1),X)∧holds(tf (O1,P,O),X)∧

t(P,rdf:type,owl:TransitiveProperty)
5. holds(false,X)← holds(tf (I1,rdf:type,A),X)∧holds(tf (I2,rdf:type,B),X)∧

t(A,owl:disjointWith,B)

We denote by F the set of rules that encode the functional annotations, that is, the facts
defining the relations pre(A,C,P) and eff(A,E−,E+,P), along with the rules for eval-
uating holds(tf (s, p,o),X) atoms (such as rules 1–5 above). The rules in O ∪F may
also be needed to evaluate atoms of the form holds(G,X) in the case where G is a
guard expression associated with inclusive or exclusive branch points via the relation
c seq(G,B,Y,P). Indeed, G may depend on fluents introduced by functional annota-
tions.

We are now able to define the consistency condition for effects in a rigorous way.
We say that eff is consistent with process P if, for every flow element A and states S1,S2,
the following implication is true:
If the state S1 is reachable from the initial state of P, the relation result(S1,complete(A),S2)
holds, and the relation eff(A,E−,E+,P) holds,
Then O∪F ∪{¬holds(false,S2)} is consistent And for all F ∈E−, O∪F ∪{¬holds(F,S2)}
is consistent.

We will show in Section 5 how the consistency of effects can be checked by using
the rule-based temporal logic we will present in the next section.

4 Temporal Reasoning
In order to provide a general verification mechanism for behavioral properties, in this
section we propose a model checking methodology based on a formalization of the tem-

poral logic CTL (Computation Tree Logic, see [4] for a comprehensive overview) as a
set of rules. Model checking is a widely accepted technique for the formal verification
of BP schemas, as their execution semantics is usually defined in terms of states and
state transitions, and hence the use of temporal logics for the specification and verifica-
tion of properties is a very natural choice [7, 12]. The abstract syntax of a CTL formula
F is defined as follows:

F ::= e | true | false | ¬F | F1 ∧ F2 | EX(F) | EU(F1,F2) | EG(F)

where e is a fluent expression. Other operators can be defined in terms of the ones given
above, e.g., EF(F) ≡ EU(true,F) and AG(F) ≡ ¬EF(¬F) [4].

The semantics of CTL formulas is defined by taking into account the immediate
reachability relation r between states (i.e., finite sets of ground fluents) introduced in
Section 2.2, which here is also called the transition relation.

In the definition of the semantics of CTL given in [4], the transition relation r is
assumed to be total, that is, every state S1 has at least one successor state S2 for which
r(S1,S2) holds. This assumption is justified by the fact that the reactive systems consid-
ered in [4] can be thought as ever running processes. However, this assumption is not
realistic in the case of business processes, for which there is always at least one state
with no successors, namely one where the end event of a BPS has been completed. For
this reason the semantics of the temporal operators given in [4], which refers to infi-
nite sequences of states, is suitably changed here by taking into consideration maximal
paths, i.e., sequences of states that are either infinite or end with a state that has no
successors, called a sink.

Now we give a rule-based formalization of the semantics of CTL by extending the
definition of the predicate holds. (A similar formalization based on constraint logic
programming is proposed in [16], where however the semantics refers to infinite paths.)
EX(F) holds in state S0 if F holds in a successor state of S0:
holds(ex(F),S0)← r(S0,S1)∧holds(F,S1)

EU(F1,F2) holds in state S0 if there exists a maximal path π: S0 S1 . . . such that for some
Sn occurring in π we have that F2 holds in Sn and, for j = 0, . . . ,n−1, F1 holds in S j:
holds(eu(F1,F2),S0)← holds(F2,S0)
holds(eu(F1,F2),S0)← holds(F1,S0)∧ r(S0,S1)∧holds(eu(F1,F2),S1)

EG(F) holds in a state S0 if there exists a maximal path π starting from S0 such that F
holds in each state of π. Since the set of states is finite, EG(F) holds in S0 if there exists
a finite path S0 . . . Sk such that, for i = 0, . . . ,k, F holds in Si, and either (1) S j = Sk,
for some 0 ≤ j < k, or (2) Sk is a sink state. Thus, the semantics of the operator EG is
encoded by the following rules:
holds(eg(F),S0)← fpath(F,S0,S0)
holds(eg(F),S0)← holds(F,S0)∧ r(S0,S1)∧holds(eg(F),S1)
holds(eg(F),S0)← sink(S0)∧holds(F,S0)

where: (i) the predicate fpath(F,X ,X) holds if there exists a path from X to X itself,
consisting of at least one r arc, such that F holds in every state on the path and (ii) the
predicate sink(X) holds if X is a sink state.

Finally, we define a special fluent expression final(P) the final state of a process P,
whose semantics is given by the following rule:

holds(final(P),Z)← bp(P,S,E)∧holds(cf(E,end,P),Z)

Note that our definition of the semantics of EG avoids the introduction of greatest fixed
points of operators on sets of states which are required by the approach described in [4].
Indeed, the rules defining holds(eg(F),S0) are interpreted according to the usual least
fixpoint semantics (i.e., the least Herbrand model [13]). Note also that in some special
cases the assumption that paths are maximal, but not necessarily infinite, matters. For
instance, if S0 is a sink state, then holds(ag(F),S0) is true iff holds(F,S0) is true, since
the only maximal path starting from S0 is the one constituted by S0 only.

5 Reasoning Services
Our rule-based framework supports several reasoning services which can combine com-
plex knowledge about business processes from different perspectives, such as the work-
flow structure, the ontological description, and the behavioral semantics. In this section
we will illustrate three such services: verification, querying, and trace compliance.

Let us consider the following sets of rules: (1) B , representing a set of BP schemas
and the BP meta-model defined in Section 2.1, (2) T , defining the behavioral semantics
presented in Section 2.2, (3) O, collecting the OWL triples and rules which represent
the business reference ontology defined in Section 3.1, (4) F , encoding the functional
annotations defined in Section 3.2, and (5) CTL , defining the semantics of CTL pre-
sented in Section 4. Let KB be the set of rules B ∪ T ∪ O ∪ F ∪CTL . KB is called
a Business Process Knowledge Base (BPKB). We have that KB is a locally stratified
logic program and its semantics is unambiguously defined by its unique perfect model,
denoted by Perf(KB) [18].

Verification. In the following we present some examples of properties that can be spec-
ified and verified in our framework. A property is specified by a predicate prop defined
by a rule C in terms of the predicates defined in KB . The verification task is performed
by checking whether or not prop ∈ Perf(KB ∪{C}).
(1) A very relevant behavioral property of a BP p is that from any reachable state, it is
possible to complete the process, i.e., reach the final state. This property, also known as
option to complete [24], can be specified by the following rule, stating that the property
opt com holds if the CTL property AG(EF(final(p))) holds in the initial state s0 of p:

opt com← holds(ag(ef (final(p))),s0)

where s0 = {cf(start,st ev, p)} and st ev is the start event associated with p.

(2) Temporal queries allow us to verify the consistency conditions for effects introduced
in Section 3.2. In particular, given a BPS p, inconsistencies due to the violation of some
integrity constraint defined in the ontology by rules of the form false←G (e.g., concept
disjointness) can be verified by defining the inconsistency property as follows:

inconsistency← holds(ef (false),s0)

(3) Temporal queries can also be used for the verification of compliance rules, i.e.,
directives expressing internal policies and regulations aimed at specifying the way an
enterprise operates. In our Handle Order example, one such compliance rule may be that
every order is eventually closed. In order to verify whether this property holds or not,
we can define a noncompliance property which holds if it is possible to reach the final

state of the process where, for some O, it can be inferred that O is an order which is not
closed. In our example noncompliance is satisfied, and thus the compliance rule is not
enforced. In particular, if the exception attached to the accept order task is triggered,
the enactment continues with the notify rejection task (due to the guards associated to
g1), and the order is never canceled nor fulfilled.
noncompliance← holds(ef (and(tf (O,rdf:type,bro:Order),

and(not(tf (O,rdf:type,bro:ClosedPO)),final(p))),s0)

The verification of a property prop is performed by evaluating the query ← prop in
KB ∪ {C} using SLG-resolution, that is, resolution for general logic programs aug-
mented with the tabling mechanism [3]. The following definition is needed for present-
ing the termination, soundness, and completeness of query evaluation.

Definition 1. Let f be a term representing a CTL formula. A subterm e of f is ground-
ing if one of the following conditions hold: (i) f is an atomic fluent and e is f , (ii) f is
and(f1, f2) and e is a grounding subterm of either f1 or f2, (iii) f is ex(f1) and e is a
grounding subterm of f1, (iv) f is eu(f1, f2) and e is a grounding subterm of f2, (v) f
is eg(f1) and e is a grounding subterm of f1.

Theorem 1. Let C be a rule of the form prop← L1 ∧ . . .∧Ln, where, for i = 1, . . . ,n,
the predicate of Li is defined in KB . Suppose that: (i) if Li is of the form holds(f ,S), all
free variables of f occur in atomic fluents, and (ii) each variable X of C has its leftmost
occurrence in a positive literal Li such that either (ii.1) Li has not predicate holds or
(ii.2) Li = holds(f ,S) and the occurrence of X is in a grounding subterm of f .

Then: (1) the evaluation of the query← prop in KB∪{C} terminates by using SLG-
resolution with left-to-right computation rule, and (2) the query succeeds iff prop ∈
Perf(KB ∪ {C}).

Hypothesis (i) guarantees that no variable ranges over an infinite domain, such as the set
of all CTL formulas. Hypothesis (ii) guarantees that the query does not flounder, that is,
non-ground negative literals are never selected during SLG resolution. The termination
property (1) can be proved by showing that KB ∪{C} satisfies the bounded-term-size
property [3]. The soundness and completeness property (2) follows from the soundness
and completeness of SLG resolution with respect to the perfect model semantics [3].
Querying. The inference mechanism based on SLG-resolution can be used for comput-
ing boolean answers to ground queries, but also for computing, via unification, substitu-
tions for variables occurring in non-ground queries. By exploiting this query answering
mechanism we can easily provide, besides the verification service described in the pre-
vious section, also reasoning services for the retrieval of process fragments.

The following queries show how process fragments can be retrieved according to
different criteria: q1 computes every activity A (and the process P where it occurs)
which operates on an order as an effect (e.g., create order and cancel order); q2 com-
putes every exclusive branch G occurring along a path delimited by two activities A and
B which operate on orders (e.g., create order) and invoices (e.g., fulfill order), respec-
tively; finally, q3 is a refinement of q2, where it is also required that the enactment of B
is always preceded by the enactment of A.
q1(A,P)← eff(A,E−,E+,P)∧holds(tf (O,rdf:type,bro:Order),E+)

q2(A,G,B,P)← eff(A,E−A ,E+
A ,P)∧ seq+(A,G,P)∧

holds(tf (O,rdf:type,bro:Order),E+
A)∧ exc branch(G)∧ seq+(G,B,P)∧

eff(B,E−B ,E+
B ,P)∧holds(tf (I,rdf:type,bro:Invoice),E+

B)
q3(A,G,B,P)← q2(A,G,B,P)∧holds(not(eu(not(en(A,P)),en(B,P))),s0)

Trace Compliance. The execution of a process is modeled as an execution trace (cor-
responding to a plan in the Fluent Calculus), i.e., a sequence of actions of the form
[act(a1), . . . ,act(an)] where act is either begin or complete. The predicate trace(S1,T,S2)
defined below holds if T is a sequence of actions that lead from state S1 to state S2:
trace(S1, [],S2)← S1 = S2
trace(S1, [A|T],S2)←result(S1,A,U)∧trace(U,T,S2)

A correct trace T of a BPS P is a trace leading from the initial to the final state of P:
ctrace(T,P)← trace(s0,T,Z)∧holds(final(P),Z)
The correctness of a trace t with respect to a given BPS p can be verified by evaluating
a query of the type ← ctrace(t, p), where t is a ground list and p is a process name.
The rules defining the predicate ctrace can also be used to generate the correct traces
of a process p that satisfy some given property. This task is performed by evaluating a
query of the type← ctrace(T, p)∧ cond(T), where T is a free variable and cond(T) is
a property that T must enforce. For instance, we may want to generate traces where the
execution of a flow element a is followed by the execution of a flow element b:
cond(T)← concat(T1,T2,T)∧ complete(a) ∈ T1∧ complete(b) ∈ T2

The termination of querying and trace correctness checking can be proved under as-
sumptions similar to the ones of Theorem 1. However, stronger assumptions are needed
for the termination of trace generation if we want to compute the set of all correct traces
satisfying a given condition, as this set may be infinite in the presence of cycles.

6 Related Work
Among several mathematical formalisms proposed for defining a formal semantics of
BP models, Petri nets [24] are the most used paradigm to capture the execution se-
mantics of the control flow aspects of graph-based procedural languages. (The BPMN
case is discussed in [5].) Petri net models enable a large number of analysis techniques,
but they do not provide a suitable basis to represent and reason about additional do-
main knowledge. In our framework we are able to capture the token game semantics
underlying workflow models, and we can also declaratively represent constructs, such
as exception handling behavior or synchronization of active branches only (inclusive
merge), which, due to their non-local semantics, are cumbersome to capture in standard
Petri nets. In addition, the logical grounding of our framework makes it easy to deal
with the modeling of domain knowledge and the integration of reasoning services.

Program analysis and verification techniques have been largely applied to the analy-
sis of process behavior, e.g., [7, 12]. These works are based on the analysis of finite state
models through model checking techniques [4] where temporal logics queries specify
properties of process executions. However, these approaches are restricted to properties
regarding the control flow only (e.g., properties of the ordering, presence, or absence of
tasks in process executions), and severe limitations arise when taking into consideration
ontology-related properties representing specific domain knowledge.

There is a growing body of contributions beyond pure control flow verification. In
[26] the authors introduce the notion of Semantic Business Process Validation, which
aims at verifying properties related to the absence of logical errors which extend the no-
tion of workflow soundness [24]. Validation is based on an execution semantics where
token passing control flow is combined with the AI notion of state change induced by
domain related logical preconditions/effects. The main result is constituted by a valida-
tion algorithms which runs in polynomial time under some restrictions on the workflow
structure and on the expressivity of the logic underlying the domain axiomatization, i.e.,
binary Horn clauses. This approach is focused on providing efficient techniques for the
verification of specific properties, while the verification of arbitrary behavioral proper-
ties, such as the CTL formulae allowed in our framework, is not addressed. Moreover,
our language for annotations is more expressive than binary Horn clauses.

Several works propose the extension to business process management of techniques
developed in the context of the semantic web [8]. Meta-model process ontologies, e.g.,
[11], are derived from BP modeling languages and notations with the aim of specifying
in a declarative, formal, and explicit way concepts and constraints of a particular lan-
guage. Semantic Web Services approaches, such as OWL-S [2] and WSMO [6], make
an essential use of ontologies in order to facilitate the automation of discovering, com-
bining and invoking electronic services over the Web. To this end they describe services
from two perspectives: from a functional perspective a service is described in terms of
its functionality, preconditions and effects, input and output; from a process perspec-
tive, the service behavior is modeled as an orchestration of other services. However, in
the above approaches the behavioral aspects are abstracted away, since the semantics of
the provided constructs is not axiomatized within their respective languages, hampering
the availability of reasoning services related to the execution of BPs.

To overcome such limitations, several solutions for the representation of service
compositions propose to translate the relevant aspects of the aforementioned service
ontologies into a more expressive language, such as first-order logic, and to add a set
of axioms to this theory that constrains the models of the theory to all and only the
intended interpretations. Among them, [22] adopts the high-level agent programming
language Golog [19], [1, 15] rely on Situation Calculus variants. However, such ap-
proaches are mainly tailored to automatic service composition (i.e., finding a sequence
of service invocations such that a given goal is satisfied). Thus, the support provided for
process definition, in terms of workflow constructs, is very limited and they lack a clear
mapping from standard modeling notations. In contrast, our framework allows a much
richer procedural description of processes, directly corresponding to BPMN diagrams.
Moreover, a reference ontology can be used to “enrich” process descriptions by means
of OWL-RL annotations, a widespread language for ontology representation.

Other approaches based on Logic Programming which are worth to mention are [14,
20]. These approaches mainly focus on the verification and on the enactment of BPs,
while we are not aware of specific extensions that deal with the semantic annotation of
procedural process models with respect to domain ontologies.

Finally, with respect to our previous works [21], we have proposed several exten-
sions: (1) we have increased the expressivity from a workflow perspective, by mod-
eling arbitrary cycles, unstructured diagrams and exceptions; (2) we have introduced

functional annotations and we have provided a semantics for their integration with the
control flow; (3) we have introduced a general verification mechanism based on CTL.

7 Conclusions

The rule-based approach for representing and reasoning about business processes pre-
sented in this paper offers several advantages. First of all, it enables the combination of
the procedural and ontological perspectives in a very smooth and natural way, thus pro-
viding a uniform framework for reasoning on properties that depend on the sequence
of operations that occur during process enactment and also on the domain where the
process operates. Another advantage is the generality of the approach, which is open to
further extensions, since other knowledge representation applications can easily be in-
tegrated, by providing a suitable translation to logic programming rules. Our approach
does not introduce a new business process modeling language, but provides a frame-
work where one can map and integrate knowledge represented by means of existing
formalisms. This is very important from a pragmatic point of view, as one can express
process-related knowledge by using standard modeling languages such as BPMN for
business processes and OWL for ontologies, while adding extra reasoning services. Fi-
nally, since our rule-based representation can be directly mapped to a class of logic
programs, we can use standard logic programming systems to perform reasoning tasks
such as verification and querying.

We have implemented in the XSB logic programming system1 the various sets of
rules representing a Business Process Knowledge Base, and on top of the latter, the
verification, querying, and trace compliance services. The resolution mechanism based
on tabling [3] provided by XSB guarantees a sound and complete evaluation of a large
class of queries. We have also integrated the aforementioned services in the tool de-
scribed in [21], which implements an interface between the BPMN and OWL represen-
tations of business processes and reference ontology specifications on one hand, and
our rule-based representation on the other hand, so that, as already mentioned, we can
use the reasoning facilities offered by our framework as add ons to standard tools. First
experiments are encouraging and show that very sophisticated reasoning tasks can be
performed on business process of small-to-medium size in an acceptable amount of
time and memory resources. Currently, we are investigating various program optimiza-
tion techniques for improving the performance of our tool and enabling our approach
to scale to large BP repositories.

References

[1] Battle, S., et al. (2005). Semantic Web Services Ontology. http://www.w3.org/
Submission/SWSF-SWSO.

[2] Burstein, M., et al. (2004). OWL-S: Semantic Markup for Web Services. W3C Member
Submission, http://www.w3.org/Submission/OWL-S/.

[3] Chen, W. and Warren, D. S. (1996). Tabled Evaluation with Delaying for General Logic
Programs. JACM, 43:20–74.

[4] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. The MIT Press.

1 The XSB Logic Programming System. Version 3.2: http://xsb.sourceforge.net

[5] Dijkman, R. M., Dumas, M., and Ouyang, C. (2008). Semantics and Analysis of Business
Process Models in BPMN. Inf. Softw. Technol., 50:1281–1294.

[6] Fensel, D., et al. (2006). Enabling Semantic Web Services: The Web Service Modeling On-
tology. Springer.

[7] Fu, X., Bultan, T., and Su, J. (2004). Analysis of Interacting BPEL Web Services. In Int.
Conf. on World Wide Web, pages 621–630. ACM Press.

[8] Hepp, M., et al. (2005). Semantic Business Process Management: A Vision Towards Us-
ing Semantic Web Services for Business Process Management. In Int. Conf. on e-Business
Engineering. IEEE Computer Society.

[9] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S. (2009). OWL 2
Web Ontology Language. W3C Recommendation, http://www.w3.org/TR/owl2-primer/.

[10] Kindler, E. (2006). On the Semantics of EPCs: Resolving the Vicious Circle. Data Knowl.
Eng., 56(1):23–40.

[11] Lin, Y. (2008). Semantic Annotation for Process Models: Facilitating Process Knowledge
Management via Semantic Interoperability. PhD thesis, Norwegian University of Science and
Technology.

[12] Liu, Y., Müller, S., and Xu, K. (2007). A Static Compliance-Checking Framework for
Business Process Models. IBM Syst. J., 46:335–361.

[13] Lloyd, J. W. (1987). Foundations of logic programming. Springer-Verlag New York, Inc.
[14] Montali, M., Pesic, M., Aalst, W. M. P. v. d., Chesani, F., Mello, P., and Storari, S.

(2010). Declarative Specification and Verification of Service Choreographies. ACM Trans.
Web, 4(1):3:1–3:62.

[15] Narayanan, S. and McIlraith, S. (2003). Analysis and Simulation of Web services. Comp.
Networks, 42:675–693.

[16] Nilsson, U. and Lübcke, J. (2000). Constraint Logic Programming for Local and Symbolic
Model-checking. In Computational Logic, LNAI 1861. Springer.

[17] OMG (2011). Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0.
[18] Przymusinski, T. C. (1988). On the Declarative Semantics of Deductive Databases and

Logic Programs. In Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers Inc.

[19] Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press.

[20] Roman, D. and Kifer, M. (2008). Semantic Web Service Choreography: Contracting and
Enactment. In Int. Semantic Web Conference, LNCS 5318, pages 550–566. Springer.

[21] Smith, F., Missikoff, M., and Proietti, M. (2012). Ontology-Based Querying of Compos-
ite Services. In Business System Management and Engineering, LNCS 7350, pp. 159–780.
Springer.

[22] Sohrabi, S., Prokoshyna, N., and McIlraith, S. A. (2009). Web Service Composition via the
Customization of Golog Programs with User Preferences. In Conceptual Modeling: Founda-
tions and Applications, pages 319–334. Springer.

[23] Thielscher, M. (1998). Introduction to the Fluent Calculus. Electron. Trans. Artif. Intell.,
2:179–192.

[24] van der Aalst, W. M. P. (1998). The Application of Petri Nets to Workflow Management. J.
Circuits, Systems, and Computers, 8(1):21–66.

[25] Völzer, H. (2010). A New Semantics for the Inclusive Converging Gateway in Safe Pro-
cesses. In Int. Conf. on Business Process Management, LNCS 6336, pages 294–309, Berlin,
Heidelberg. Springer.

[26] Weber, I., Hoffmann, J., and Mendling, J. (2010). Beyond Soundness: On the Verification
of Semantic Business Process Models. Distrib. Parallel Dat., 27:271–343.

