
eChallenges e-2014 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2014
ISBN: 978-1-905824-46-5

Copyright © 2014 The Authors www.eChallenges.org Page 1 of 10

BPAL: A Tool for Managing Semantically
Enriched Conceptual Process Models

Fabrizio SMITH, Maurizio PROIETTI
National Research Council, IASI “Antonio Ruberti”,

Via dei Taurini 19, 00185, Rome, Italy
Email:{fabrizio.smith, maurizio.proietti}@iasi.cnr.it

Abstract: In this paper we will provide an overview of the Business Process
Abstract Language (BPAL) Platform, which implements a Business Process (BP)
modelling and reasoning environment where the procedural knowledge of a BP can
be enriched through ontology-based annotations. The BPAL Platform provides a
graphical user interface to ease the definition of a Business Process Knowledge Base
that collects the various facets of process knowledge. It also provides a reasoner
implementing services for the enactment, verification, retrieval, and composition of
processes in the knowledge base. After discussing the functionalities and the
architecture of the tool, we report on an experimental evaluation of the whole
system, whose results are encouraging and show the viability of the approach.

1. Introduction
The penetration of Business Process (BP) Management solutions into production realities is
constantly growing, due to its potential for an effective support to enterprise actors and
business stakeholders along the entire BP life-cycle. During the design and reengineering
of a BP, modelling languages such as BPMN1, are employed to develop conceptual process
models to be used by the stakeholders (designers, analysts, business men, engineers) to
discuss requirements, validate design choices, and support decision making. In the
implementation and enactment phases, different actors (developers, engineers) use models
to generate, manually or semi-automatically, the runtime support for the process execution.

With such a central role of BPs in today’s business realities, hundreds of BP models
developed by different designers are available within an organization, constituting a
relevant amount of knowledge regarding how the business is conducted. Nevertheless, the
management of such knowledge is strongly hampered because standard BP modelling
languages are an insufficient means for capturing the complex process-related knowledge
of organizations and making it available in a machine-accessible form [1]. While their focus
is on the procedural representation of a BP as a workflow graph that specifies the planned
order of operations, the domain knowledge regarding the entities involved in such a
process, i.e., the business environment in which processes are carried, is mainly left
implicit. As a result, the automation of many tasks, such as process analysis, verification,
retrieval and composition, is severely hampered and still require great manual efforts. In
this scenario, the application of well-established techniques stemming from the area of
Knowledge Representation has been shown as a promising approach for the enhancement
of BP [1, 2] management systems, providing the means for the semantic lifting of BP
models and enabling powerful automatic reasoning techniques.

Many of the tools available today on the market, open source or free of charge are able
to provide, besides a graphical editor, additional services, such as some forms of
verification, simulation of the designed processes, execution or (semi-)automatic generation

1 www.bpmn.org

Copyright © 2014 The Authors www.eChallenges.org Page 2 of 10

of executable code (e.g., in the form of BPEL code). Nevertheless, to the best of our
knowledge, no commercial tool enables the semantic annotation of business process
models, nor semantics-based reasoning services. Although several approaches have been
proposed in literature to enable the exploitation of semantic facilities (see, e.g., the seminal
work in [2, 3], and recent proposals [4,5]), very few implemented tools (e.g., [6,7]) give a
(limited) support to the integrated management of the structural definition of a flow model,
the formal definition of its behaviour, and the domain knowledge related to the business
scenario where it operates.

In this paper we will overview the BPAL Platform, which implements a BP modelling
and reasoning environment where the procedural knowledge of a BP can be enriched
through ontology-based annotations. The theoretical basis of the tool is the Business
Process Abstract Language (BPAL) [8], a language grounded in Logic Programming (LP)
for representing and reasoning on various facets of process knowledge: (i) the meta-model
of a BP model, which covers a core of the BPMN notation, (ii) the BP execution semantics,
specified in a specialized version of the Fluent Calculus, a well-known LP-based action
language, (iii) the behavioural properties of process executions, expressed by means of the
CTL temporal logic, and (iv) the domain specific semantics of individual activities
occurring in a BP, defined via OWL annotations (falling within the OWL 2 RL fragment)
along the line of Semantic Web Services proposals.

The BPAL Platform provides a graphical user interface to ease the definition of a BP
Knowledge Base (BPKB) that collects the various pieces of process knowledge. BPAL also
provides a reasoner implementing services for the enactment, verification, retrieval, and
composition of processes in the BPKB. Complex queries combining different aspects of
process knowledge can be expressed in QuBPAL [9], a query language based on the
SELECT-WHERE paradigm. QuBPAL queries are translated into clausal form and
answered through an efficient, sound and complete LP query evaluation mechanism.

2. Tool Functionalities
The end-user tools provided by the BPAL Platform allow the semantic enrichment of
existing BP models as well as the creation of new BPs from scratch. Furthermore, reasoning
capabilities based on a Logic Programming (LP) engine are made available through the
query mechanism. Figure 1 presents the identified use cases for the tool, and the main
addressed functionalities are described in the following.

2.1 Managing BP Repositories
The platform provides functionalities for managing BP repositories, which include: (1)
creation of a new BP model; (2) importing an existing BP, possibly designed through an
external BP management system, encoded in a XML linear form (currently XPDL and
.bpmn files are supported); (3) editing of a BP model through a graphical editor based on
BPMN.

2.2 Semantic Annotation.
The support provided for the semantic annotation of BP elements in terms of a reference
ontology includes: (1) terminological annotations, defining correspondences between
elements of a BP and ontological concepts, in order to provide a formal and unambiguous
definition of the former in terms of a suitable conceptualization of the underlying business
domain provided by the latter (e.g., the participant shipper can be associated to the concept
Carrier, which can be either an internal Department or a Business Partner); (2) functional
annotations, providing additional information regarding how the world changes under the
execution of the activities during a process enactment, in terms of conditions under which a
task can be executed and effects on the state of the world upon its execution (e.g., the task

Copyright © 2014 The Authors www.eChallenges.org Page 3 of 10

bill_client requires an ApprovedPO to be enacted and results in the issuing of an Invoice).
To this end, OWL ontologies can be imported into the workspace and browsed through a
graphical representation. Finally, the meta-data produced during the semantic annotation
can be exported and imported as OWL/RDF documents too, in order to ease the sharing and
re-use of semantic information.

Figure 1. Use cases implemented by the BPAL Platform

2.3 BPKB Definition.
Once that the BP models are available and, possibly, they have been enriched with the
domain knowledge provided by some reference ontology, a BPAL Business Process
Knowledge Base (BPKB) can be built in order to enable the reasoning capabilities that the
framework offers. To define a BPKB, the user selects the resources (i.e., processes,
ontologies and annotations) to be included. A LP formalization of the BPKB is then
produced, and used to feed the underlining reasoning engine.

2.4 Querying and Reasoning.
Every reasoning task supported by the framework is performed by posing LP queries on a
BPKB. The user can interact with the reasoning engines through a query language (see next
section) intended to ease the query formulation hiding the underlying formalism, and results
can be consulted through the graphical user interface.

3. Reasoning Services
Our rule-based framework supports several reasoning services that can combine complex
knowledge about BPs from different perspectives, such as the workflow structure, the
behavioural semantics, and the ontology-based domain description. The provided services
are all made available through a query mechanism supported by the query language
QuBPAL, designed for interrogating a repository of semantically enriched BPs and based
on the framework presented in [9]. It does not require the user to understand the
technicalities of the underlying LP engine, since QuBPAL queries are SELECT-WHERE
statements intended to be automatically translated into LP queries, and then evaluated by
using the underlying reasoner.

Copyright © 2014 The Authors www.eChallenges.org Page 4 of 10

The SELECT statement defines the output of the query evaluation, which can be a
boolean answer, or values for variables occurring in the WHERE statement. The WHERE
statement specifies an expression that restricts the set of data returned by the query, built
from the set of the predicates defined in the BPKB and the connectives AND, OR, NOT,
with the standard logic semantics. In the queries we use question mark to denote variables
(e.g., ?x), and we use the notation ?x::C to indicate the terminological annotation of a
variable x with respect to the concept C. It is worth noting that OWL/RDF resources are
represented by means of the ternary predicate t(s, p, o) representing an RDF statement with
subject s, predicate p and object o. For instance, the assertion t(a, rdfs:subClassOf, b)
represents an inclusion axiom between a and b. The encoding of ontologies as set of triples
allows us to pose queries over the ontology in a form very close to the SPARQL2 standard,
defined by the World Wide Web Consortium and widely accepted in the Semantic Web
community. SPARQL is in fact designed to query RDF resources that essentially are
organized as directed and labelled graphs, by matching graph pattern over RDF graphs.
Graph patterns are in turn specified as triples where variables can occur in every position,
along with their conjunctions and disjunctions. In this sense, while providing additional
primitives to be used specifically for querying BPs, the ontology-related reasoning is
specified in a QuBPAL query accordingly to consolidated Semantic Web standards.

To provide some insights about the language, we report in the following some examples
of reasoning tasks expressed through QuBPAL queries, which are related to the verification
of correctness criteria, compliance rules, retrieval and composition.

3.1 Verification
BPAL enables the verification of properties that depend on the interaction between the
operational behaviour of the process and the ontology-based semantic annotation. Thus,
besides well-known correctness criteria typically addressed in the workflow community
(e.g., soundness), the tool is also able to verify that, during a BP enactment, no semantics-
related constraint is violated (e.g., the fact that an order cannot be marked at the same time
as approved and rejected). Some examples are reported in the following. Q1 expresses the
option to complete property, i.e., from any reachable state of given BP p, it is possible to
complete the process reaching the final state. Q2 verifies that no reachable state contains a
contradiction, i.e., false is never implied by the assertions inferred in any state. Q3 verifies
the existence of a state where an activity reached by the control flow is unable to execute
due to some unsatisfied enabling condition. In the examples, all_reachable(prop, bp) and
reachable(prop, bp) are predicates defined in terms of (CTL) temporal operators. The
former means that from any state of bp, it is possible to reach a state where property prop
holds, while the latter means that from the initial state of bp it is possible to reach a state
where prop holds.
Q1. SELECT <>
WHERE all_reachable(final, p)

Q2. SELECT <>
WHERE NOT reachable(false, p)

Q3. SELECT <>
WHERE reachable(flow(?x, ?a) AND NOT enabled(?a), p)

2 http://www.w3.org/TR/sparql11-overview/

Copyright © 2014 The Authors www.eChallenges.org Page 5 of 10

3.2 Compliance

QuBPAL queries can also be used for verifying the compliance with business rules, i.e.,
directives expressing internal policies and regulations of an enterprise. In an eProcurement
scenario, one such compliance rule may be that every order is eventually closed. In order to
verify this property, we can define the query Q4 that holds if it is possible to reach the final
state of the process p where, for some o, it can be inferred that o is an order which is not
closed.
Q4. SELECT <>
WHERE reachable(final AND t(?o, rdf:type, PurchaseOrder) AND NOT

t(?o, rdf:type, ClosedPO), p)

3.3 Retrieval

The LP inference mechanism can be used for computing boolean answers to ground
queries, but also for computing, via unification, substitutions for variables occurring in non-
ground queries. By exploiting this query answering mechanism we can easily provide,
besides the verification services described above, also reasoning services for the retrieval of
process fragments. For instance, if we want to retrieve all activities that must precede a
delivery and require an authorization by the sales manager, then we may issue the query
Q5.
Q5. SELECT ?a
WHERE precedes(?a, Delivering, p) AND requiresSalesMgrAuth(?a)

where (i) precedes(a, b, bp) is a predicate, defined by using the CTL temporal operators,
which means that in any enactment of process bp, activity a precedes activity b, and (ii)
requiresSalesMgrAuth(a) holds if the (terminological) annotation of a is a concept
subsuming the OWL assertion (requiresAuth some SalesMgr).

3.4 Composition

The tool allows the user to design a new process by specifying a process skeleton, which
constitutes a high level definition of a new BP to be composed, and retrieving sub-processes
from a given BP repository [10] to implement the skeleton. Tasks appearing in the skeleton
are associated with local constraints, which express requirements for the selection of the
corresponding sub-processes to be retrieved, and global constraints, specifying the
requirements on the composed BP as a whole. Local and global constraints are expressed as
QuBPAL queries and evaluated over the BPKB in order to compute possible compositions.

4. Technology Description
The BPAL Platform3 is implemented as an Eclipse Plug-in, whose main components are
depicted in the functional view in Figure 2. It provides the BPKB Editor to assist the user
through a graphical interface in the definition of a BPKB, and the BPAL Reasoner, based
on an LP engine, able to operate on the BPKB through the query language QuBPAL.

3 A short video demonstration is available at http://www.youtube.com/watch?v=xQkapzjhO7g

Copyright © 2014 The Authors www.eChallenges.org Page 6 of 10

Figure 2. Functional view of the BPAL Platform

4.1 BPKB Editor
This component provides a graphical user interface to define a BPKB and to interact with
the BPAL Reasoner. A screen-shot of the main components of the GUI is depicted in
Figure 3.

The left panel (Figure 3.a) is the Package Explorer, providing a tree view of the
resources available in the workspace, including BP models and ontologies.
The central panel (Figure 3.b) is the BP Modelling View, based on the Eclipse STP
BPMN Modeller4, comprising an editor and a set of tools to model BP diagrams using
the BPMN notation.
On the bottom left (Figure 3.c), the Ontology View allows for the visualization of
OWL ontologies, published on the Internet or locally stored.
The bottom panel (Figure 3.d) is the Annotation View, an editor for the annotation of
process elements with respect to the reference ontology.
The top-central panel (Figure 3.e) is the QuBPAL View, which provides a query
prompt to access the BPAL reasoner through the query mechanism. Results can be
consulted in the result panel (Figure 3.f).

4.2 BPKB Reasoner
This component implements the reasoning methods described in Section 3 by using the
XSB Prolog system5, which is a LP system based on the tabling resolution inference
strategy. Tabling resolution has profound consequences in our setting since, as discussed in
[8], it guarantees a sound and complete terminating evaluation of QuBPAL queries, with
polynomial time (in the size of the state space) complexity.

4 http://www.eclipse.org/soa/
5 http://xsb.sourceforge.net/

Copyright © 2014 The Authors www.eChallenges.org Page 7 of 10

Figure 3 GUI of the BPAL Platform

 Process models are imported into the BPKB from BPMN files via the BPMN2BPAL
interface. In order to ease the sharing and re-use of semantic meta-data, semantic
information used and produced during the annotation process (i.e., reference ontologies and
semantic annotations) can be exported and imported from OWL/RDF files by means of the
RDF I/O module. The underlying XSB-Prolog implementation of the rule-based reasoner
can deal indifferently with RDF, RDFS and OWL 2 RL ontologies. The BPKB Manager
handles the set-up of the reasoning engine by initializing and updating a BPKB. After
populating the BPKB, inference is essentially performed by posing queries to XSB,
connected through a Java/Prolog interface6. To this end, the Query Manager exposes
functionalities to translate QuBPAL queries into LP queries, evaluate them, and collect the
results in a textual form or export them in an XML serialization.

5. Experimental Evaluation
The approach has been applied to real-world scenarios coming from end-users involved in
the European Project BIVEE7 and from the pilot conducted within a bilateral collaboration
between the Italian CNR and SOGEI (ICT Company of the Italian Ministry of Finance).
The former is related to the modelling of production processes in manufacturing oriented
networked enterprises, while the latter regards the procedural modelling of legislative
decrees in the tax domain. The experiments we have conducted are encouraging and
revealed the practical usability of the tool and its acceptance by business experts. On a more
technical side, the LP reasoner based on the XSB system shown a significant effciency,
since very sophisticated reasoning tasks have been performed on BPs of small-to-medium
size (about one hundred of activities and several thousands of reachable states) in an
acceptable amount of time and memory resources.

Some empirical results are reported in the following, related to a dataset described in
Table 1. We started by adapting a real word process, dealing with eProcurement, obtaining
the BP P, for which we report: the size, in terms of the number of flow elements; the
number of reachable states; the number of exclusive, parallel, and inclusive gateways. As
summarized in the table, the considered BP does not contain logical errors (e.g., deadlocks)
and is characterized by a considerable number of gateways, that is, branching/merging

6 http://www.declarativa.com/InterProlog/
7 BIVEE: Business Innovation and Virtual Enterprise Environment (FoF-ICT-2011.7.3-285746)

Copyright © 2014 The Authors www.eChallenges.org Page 8 of 10

points (about 40% of the total number of elements). We then annotated in three different
ways the process, obtaining P1, P2, P3. For each one, in Table 1 we report: the number of
reachable states; the coverage of the annotation, in terms of the percentage of the annotated
flow elements; the average size of each state, in terms of the number of ontological
assertions (derived by the annotations) occurring in each state; the average size of the
annotation, in terms of the number of assertions associated to the annotated flow elements;
the errors exhibited by the BP. In particular, P1 has been annotated without preventing
logical errors induced by the annotation, P2 presents a revised version of P1 annotation,
further extended in P3.

For the annotation of the BP, we adapted an ontology covering documents and
production related activities in the context of eProcurement and eBusiness, comprising
about 100 concepts.

Table 1. Annotated processes used in the evaluation

Size States XOR PAR OR Errors
P 87 821 14 14 6 NO

States Annotation
Coverage

Average
State Size

Average
Annotation Size

Errors

P1 944 35 % 7 3 2 non executable activities
150 inconsistent states

2 deadlocks
P2 2172 70 % 11 5 NO
P3 3866 100 % 16 8 NO

 The experiments have been performed on an Intel laptop, with a 3 GHz Core 4 CPU, 8
GB RAM and Windows operating system. For each BPS we first tested the set-up of the
reasoner, which include the translation of the BPKB into LP rules, their loading into the
XSB reasoner, and the computation of the state space. Timing (measured in milliseconds)
and memory occupation (measured in megabytes) are reported in Table 2. We then run the
queries Q1-Q5 presented in Section 3. For each query, the average timing obtained in 10
runs is reported.

To better understand the performed tests, additional considerations are needed. Firstly,
the above queries have been executed after the computation of the state space, which, due
to the resolution strategy implemented by XSB, causes the population of the tables storing
the intermediate results. The tables are then available in the subsequent queries, speeding
up the computation. Secondly, to stress the engine, the evaluation of the performed queries
requires the verification of ontology-based properties for each reachable state. Finally, the
amount of required memory depends on the strategy adopted by the engine for the
management of the tables. In the above experiments the default behaviour has been adopted
and, according to that, every intermediate result is materialized. This explains the large
memory consumption, which, if needed, can be strongly reduced by introducing specific
configurations to limit the use of tables, trading space for time. It is also worth noting that
no code optimization has been performed. Another remark regards the overhead introduced
by the Java/Prolog bridge, which does not introduce a relevant performance degradation.
Indeed, by running the same tests directly on XSB, without the Java infrastructure, the
timings differ (up to a 10%) only in the presence of a large amount of results, mainly due to
the inter-process data exchange.

Table 2. Run-time phase evaluation
State Space Query Evaluation

Time Memory Q1 Q2 Q3 Q4 Q5
P 265 35 60 100 60 - -
P1 1030 210 110 2710 110 50 30
P2 3300 670 530 4320 240 90 50
P3 9720 1200 970 9250 405 105 60

Copyright © 2014 The Authors www.eChallenges.org Page 9 of 10

6. Conclusions
In this paper we presented the BPAL Platform, a proof of concept implementation of a
semantic BP modelling tool. The BPAL Platform provides a graphical user interface to
assist the user in the definition and interrogation of a BPKB. We discussed how
functionalities for modelling, semantically annotating and querying BPs are made available
by the tool. Then, a practical evaluation of the reasoning engine has been conducted to
show the viability of the approach.

The main design choices have been oriented at guaranteeing both a solid formal
foundation and a high level of practical usability. The formal foundation is rooted in the
logic-based approach of the BPAL framework. The practical usability derives from the
efforts to support widely used and accepted standards and technologies. We adopted BPMN
as graphical modelling notation, and its XML linear form to import and manipulate BP
models, possibly designed through external BP management systems. For what concerns
the ontology representation, we commit to OWL/RDF, the current de-facto standard for
ontology modelling and meta-data exchange. The whole platform is finally packaged as an
Eclipse plug-in, which extends the Eclipse STP BPMN Modeller, an established open-
source BPMN editor.

For what concerns the reasoning engine, we built on top of a standard LP engine (XSB)
an environment to manipulate and query semantically annotated BPs. The results have been
quite encouraging, since without any particular query optimization strategy, the rule based
implementation of the OWL reasoner and the effective tabled evaluation mechanism of the
XSB engine shown good response time and scalability.

In the literature, several approaches have been proposed from different areas for dealing
with the three main perspectives of process knowledge: graph-matching for structural
querying [11,12], model checking for behavioural properties verification [13,14],
description logics for domain knowledge representation [15,16,17]. Each of them proposes
techniques that have been proven effective with respect to the specific aspect they address,
but no one of them is able to model and reason about BPs by combining the knowledge
related to the different perspectives considered above. As a result, many services with a
practical relevance, e.g., the identification of a process fragment which enforces some
behavioural properties where also domain knowledge is considered, would require,
whenever possible, an ad-hoc integration of heterogeneous formalisms and tools. Our final
goal is to manage a BPKB which organizes and stores the conceptual knowledge about the
three aforementioned perspectives, and allows inference over this structure in a uniform and
formal framework.

Finally, we do not aim at providing an alternative to existing solutions but, conversely,
an “add-on” facility to be associated to the available BP modelling tools enhancing their
functionalities. Indeed, most of the BP management systems adopted nowadays in business
realities provide additional support for the definition of organizational, data and object
models. While these conceptual models are designed for different purposes, they actually
provide the very same kind of knowledge we expect formalized in business ontologies.
Lifting existing models into formal theories suitable for automatic reasoning is the core of
our proposal, and the prototype here discussed constitutes a step in that direction.

References
[1] Hepp, M., et al. (2005). Semantic Business Process Management: A Vision Towards Using Semantic

Web Services for BPM. In Proc. of Int. Conf. on e-Business Engineering, IEEE.
[2] Fensel, D., et al. (2006). Enabling Semantic Web Services: The Web Service Modeling Ontology,

Springer.
[3] Burstein, M., et al. (2004). OWL-S: Semantic Markup for Web Services. W3C Member Submission,

http://www.w3.org/Submission/OWL-S/.

Copyright © 2014 The Authors www.eChallenges.org Page 10 of 10

[4] Baryannis, G., Plexousakis, D. (2013). WSSL: A Fluent Calculus-Based Language for Web Service
Specifications. In Proc. of the 25th CAiSE Conference, LNCS 7908, Springer.

[5] Calvanese, D., et al. (2012). Ontology-Based Governance of Data-Aware Processes. In Proc. of the 6th
Int. Conf. on Web Reasoning and Rule Systems, LNCS 7497, Springer.

[6] Dimitrov, M., et al. (2007). WSMO Studio: A Semantic Web Services Modelling Environment for
WSMO. In Proc. of the 4th European Conf. on the Semantic Web. LNCS 4519, Springer.

[7] Born, M., et al. (2009). Supporting Execution-level Business Process Modeling with Semantic
Technologies. In Proc. of the 14th DASFAA Conference. LNCS 5463, Springer.

[8] Smith, F., Proietti, M. (2013). Rule-based Behavioral Reasoning on Semantic Business Processes. In
Proc. of the 5th Int. Conf. on Agents and Artificial Intelligence, SciTePress.

[9] Smith, F., Missikoff, M., Proietti, M. (2012). Ontology-Based Querying of Composite Services. In
Business System Management and Engineering, BSME 2010, LNCS 7350, Springer.

[10] Smith, F., Bianchini, D. (2012). Semi-Automatic Process Composition via Semantics Enabled Sub-
Process Selection and Ranking. Enterprise Interoperability V, I-ESA’12, Springer.

[11] Sakr, S., Awad, A. (2010). A Framework for Querying Graph-based Business Process Models. In Proc.
of the 19th Int. Conf. on World Wide Web, ACM.

[12] Beeri, C., et al. (2008). Querying Business Processes with BP-QL. Information Systems, 33:477–507.
[13] Fu, X. Bultan, T., Su, J. (2004). Analysis of Interacting BPEL Web Services. In Proc. of the 13th Int.

Conf. on World Wide Web, ACM.
[14] Liu, Y., Muller, S., Xu, K. (2007). A Static Compliance-checking Framework for Business Process

Models. IBM System Journal, 46:335–361.
[15] Di Francescomarino, C., Tonella, P. (2009). Crosscutting Concern Documentation by Visual Query of

Business Processes. In Business Process Management Workshops, LNBIP 17, Springer.
[16] Lin, Y. (2008). Semantic Annotation for Process Models: Facilitating Process Knowledge Management

via Semantic Interoperability. PhD Thesis, Norwegian University of Science and Technology.
[17] Markovic, I. (2011). Semantic Business Process Modeling, KIT Scientific Publishing.

