
Under consideration for publication in Theory and Practice of Logic Programming 1

Proving Correctness of Imperative Programs by
Linearizing Constrained Horn Clauses

EMANUELE DE ANGELIS, FABIO FIORAVANTI

DEC, University ‘G. d’Annunzio’, Pescara, Italy
(e-mail: {emanuele.deangelis,fabio.fioravanti}@unich.it)

ALBERTO PETTOROSSI

DICII, Università di Roma Tor Vergata, Roma, Italy
(e-mail: pettorossi@disp.uniroma2.it)

MAURIZIO PROIETTI

CNR-IASI, Roma, Italy
(e-mail: maurizio.proietti@iasi.cnr.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We present a method for verifying the correctness of imperative programs which is based
on the automated transformation of their specifications. Given a program prog, we con-
sider a partial correctness specification of the form {φ} prog {ψ}, where the assertions φ
and ψ are predicates defined by a set Spec of possibly recursive Horn clauses with linear
arithmetic (LA) constraints in their premise (also called constrained Horn clauses). The
verification method consists in constructing a set PC of constrained Horn clauses whose
satisfiability implies that {φ} prog {ψ} is valid. We highlight some limitations of state-of-
the-art constrained Horn clause solving methods, here called LA-solving methods, which
prove the satisfiability of the clauses by looking for linear arithmetic interpretations of
the predicates. In particular, we prove that there exist some specifications that cannot be
proved valid by any of those LA-solving methods. These specifications require the proof of
satisfiability of a set PC of constrained Horn clauses that contain nonlinear clauses (that
is, clauses with more than one atom in their premise). Then, we present a transformation,
called linearization, that converts PC into a set of linear clauses (that is, clauses with
at most one atom in their premise). We show that several specifications that could not
be proved valid by LA-solving methods, can be proved valid after linearization. We also
present a strategy for performing linearization in an automatic way and we report on some
experimental results obtained by using a preliminary implementation of our method.

This paper appears in Theory and Practice of Logic Programming (TPLP), Vol. 15 (4–5),
Special issue on ICLP 2015.

KEYWORDS: Program verification, Partial correctness specifications, Horn clauses, Con-
straint Logic Programming, Program transformation.

1 Introduction

One of the most established methodologies for specifying and proving the cor-

rectness of imperative programs is based on the Floyd-Hoare axiomatic approach

(see (Hoare 1969), and also (Apt et al. 2009) for a recent presentation dealing with

both sequential and concurrent programs). By following this approach, the partial

correctness of a program prog is formalized by a triple {φ} prog {ψ}, also called

partial correctness specification, where the precondition φ and the postcondition ψ

are assertions in first order logic, meaning that if the input values of prog satisfy φ

and program execution terminates, then the output values satisfy ψ.

It is well-known that the problem of checking partial correctness of programs with

respect to given preconditions and postconditions is undecidable. In particular, the

undecidability of partial correctness is due to the fact that in order to prove in Hoare

logic the validity of a triple {φ} prog {ψ}, one has to look for suitable auxiliary

assertions, the so-called invariants, in an infinite space of formulas, and also to cope

with the undecidability of logical consequence.

Thus, the best way of addressing the problem of the automatic verification of

programs is to design incomplete methods, that is, methods based on restrictions of

first order logic, which work well in the practical cases of interest. To achieve this

goal, some methods proposed in the literature in recent years use linear arithmetic

constraints as the assertion language and constrained Horn clauses as the formalism

to express and reason about program correctness (Bjørner et al. 2012; De Angelis

et al. 2014a; Grebenshchikov et al. 2012; Jaffar et al. 2012; Peralta et al. 1998;

Podelski and Rybalchenko 2007; Rümmer et al. 2013).

Constrained Horn clauses are clauses with at most one atom in their conclusion

and a conjunction of atoms and constraints over a given domain in their premise.

In this paper we will only consider constrained Horn clauses with linear arithmetic

constraints. The use of this formalism has the advantage that logical consequence

for linear arithmetic constraints is decidable and, moreover, reasoning within con-

strained Horn clauses is supported by very effective automated tools, such as Satis-

fiability Modulo Theories (SMT) solvers (de Moura and Bjørner 2008; Cimatti et al.

2013; Rümmer et al. 2013) and constraint logic programming (CLP) inference sys-

tems (Jaffar and Maher 1994). However, current approaches to correctness proofs

based on constrained Horn clauses have the disadvantage that they only consider

specifications whose preconditions and postconditions are linear arithmetic con-

straints.

In this paper we overcome this limitation and propose an approach to proving

general specifications of the form {φ} prog {ψ}, where φ and ψ are predicates defined

by a set of possibly recursive constrained Horn clauses (not simply linear arithmetic

constraints), and prog is a program written in a C-like imperative language.

First, we indicate how to construct a set PC of constrained Horn clauses (PC

stands for partial correctness), starting from: (i) the assertions φ and ψ, (ii) the

program prog, and (iii) the definition of the operational semantics of the language

in which prog is written, such that, if PC is satisfiable, then the partial correctness

specification {φ} prog {ψ} is valid.
Then, we formally show that there are sets PC of constrained Horn clauses

encoding partial correctness specifications, whose satisfiability cannot be proved by

current methods, here collectively called LA-solving methods (LA stands for linear

2

arithmetic). This limitation is due to the fact that LA-solving methods try to prove

satisfiability by interpreting the predicates as linear arithmetic constraints.

For these problematic specifications, the set PC of constrained Horn clauses con-

tains nonlinear clauses, that is, clauses with more than one atom in their premise.

Next, we present a transformation, which we call linearization, that converts

the set PC into a set of linear clauses, that is, clauses with at most one atom in

their premise. We show that linearization preserves satisfiability and also increases

the power of LA-solving, in the sense that several specifications that could not be

proved valid by LA-solving methods, can be proved valid after linearization. Thus,

linearization followed by LA-solving is strictly more powerful than LA-solving alone.

The paper is organized as follows. In Section 2 we show how a class of partial

correctness specifications can be translated into constrained Horn clauses. In Sec-

tion 3 we prove that LA-solving methods are inherently incomplete for proving the

satisfiability of constrained Horn clauses. In Section 4 we present a strategy for au-

tomatically performing the linearization transformation, we prove that it preserves

LA-solvability, and (in some cases) it is able to transform constrained Horn clauses

that are not LA-solvable into constrained Horn clauses that are LA-solvable. Fi-

nally, in Section 5 we report on some preliminary experimental results obtained by

using a proof-of-concept implementation of the method.

2 Translating Partial Correctness into Constrained Horn Clauses

We consider a C-like imperative programming language with integer variables, as-

signments, conditionals, while loops, and goto’s. An imperative program is a se-

quence of labeled commands (or commands, for short), and in each program there

is a unique halt command that, when executed, causes program termination.

The semantics of our language is defined by a transition relation, denoted =⇒, be-

tween configurations. Each configuration is a pair ⟨⟨ℓ :c, δ⟩⟩ of a labeled command ℓ :c

and an environment δ. An environment δ is a function that maps every integer vari-

able identifier x to its value v in the integers Z. The definition of the relation =⇒
is similar to that of the ‘small step’ operational semantics presented in (Reynolds

1998), and is omitted. Given a program prog, we denote by ℓ0 :c0 its first labeled com-

mand.

We assume that all program executions are deterministic in the sense that,

for every environment δ0, there exists a unique, maximal (possibly infinite) se-

quence of configurations, called computation sequence, of the form: ⟨⟨ℓ0 :c0, δ0⟩⟩ =⇒
⟨⟨ℓ1 :c1, δ1⟩⟩ =⇒ · · ·. We also assume that every finite computation sequence ends

in the configuration ⟨⟨ℓh :halt, δn⟩⟩, for some environment δn . We say that a pro-

gram prog terminates for δ0 iff the computation sequence starting from the initial

configuration ⟨⟨ℓ0 :c0, δ0⟩⟩ is finite.

3

2.1 Specifying Program Correctness

First we need the following notions about constraints, constraint logic programming,

and constrained Horn clauses. For related notions with which the reader is not

familiar, he may refer to (Jaffar and Maher 1994; Lloyd 1987).

A constraint is a linear arithmetic equality (=) or inequality (>) over the inte-

gers Z, or a conjunction or a disjunction of constraints. For example, 2 ·X ≥3 ·Y−4

is a constraint. We feel free to say ‘linear arithmetic constraint’, instead of ‘con-

straint’. We denote by CLA the set of all constraints. An atom is an atomic formula

of the form p(t1, . . . , tm), where p is a predicate symbol not in {=, >} and t1, . . . , tm
are terms. Let Atom be the set of all atoms. A definite clause is an implication of the

form A← c,G , where in the conclusion (or head) A is an atom, and in the premise

(or body) c is a constraint, and G is a (possibly empty) conjunction of atoms.

A constrained goal (or simply, a goal) is an implication of the form false ← c,G .

A constrained Horn clause (CHC) (or simply, a clause) is either a definite clause or

a constrained goal. A constraint logic program (or simply, a CLP program) is a set of

definite clauses. A clause over the integers is a clause that has no function symbols

except for integer constants, addition, and multiplication by integer constants.

The semantics of a constraint c is defined in terms of the usual interpretation,

denoted by LA, over the integers Z. We write LA |= c to denote that c is true in LA.

Given a set S of constrained Horn clauses, an LA-interpretation is an interpretation

for the language of S that agrees with LA on the language of the constraints. An

LA-model of S is an LA-interpretation that makes all clauses of S true. A set of

constrained Horn clauses is satisfiable if it has an LA-model. A CLP program P is

always satisfiable and has a least LA-model, denoted M (P). We have that a set S

of constrained Horn clauses is satisfiable iff S=P∪G , where P is a CLP program,

G is a set of goals, and M (P) |= G . Given a first order formula φ, we denote by

∃(φ) its existential closure and by ∀(φ) its universal closure.
Throughout the paper we will consider partial correctness specifications which

are particular triples of the form {φ} prog {ψ} defined as follows.

Definition 1 (Functional Horn Specification)

A partial correctness triple {φ} prog {ψ} is said to be a functional Horn specifica-

tion if the following assumptions hold, where the predicates pre and f are assumed

to be defined by a CLP program Spec:

(1) φ is the formula: z1=p1 ∧ . . .∧ zs =ps ∧ pre(p1, . . . , ps), where z1, . . . , zs are the

variables occurring in prog, and p1, . . . , ps are variables (distinct from the zi ’s),

called parameters (informally, pre determines the initial values of the zi ’s);

(2) ψ is the atom f (p1, . . . , ps , zk), where zk is a variable in {z1, . . . , zs} (informally,

zk is the variable whose final value is the result of the computation of prog);

(3) f is a relation which is total on pre and functional, in the sense that the following

two properties hold (informally, f is the function computed by prog):

(3.1)M (Spec) |= ∀p1, . . . , ps . pre(p1, . . . , ps)→ ∃y . f (p1, . . . , ps , y)
(3.2)M (Spec) |= ∀p1, . . . , ps , y1, y2. f (p1, . . . , ps , y1)∧f (p1, . . . , ps , y2)→y1=y2. �

We say that a functional Horn specification {φ} prog {ψ} is valid , or prog is par-

tially correct with respect to φ and ψ, iff for all environments δ0 and δn ,

4

if M (Spec) |= pre(δ0(z1), . . . , δ0(zs)) holds (in words, δ0 satisfies pre) and ⟨⟨ℓ0 :c0, δ0⟩⟩
=⇒∗ ⟨⟨ℓh :halt, δn⟩⟩ holds (in words, prog terminates for δ0) holds, then M (Spec) |=
f (δ0(z1), . . . , δ0(zs), δn(zk)) holds (in words, δn satisfies the postcondition).

The relation rprog computed by prog according to the operational semantics of

the imperative language, is defined by the CLP program OpSem made out of: (i) the

following clause R (where, as usual, variables are denoted by upper-case letters):

R. rprog(P1, . . . ,Ps ,Zk)← initCf (C0,P1, . . . ,Ps), reach(C0,Ch), finalCf (Ch ,Zk)

where:

(i.1) initCf (C0,P1,. . . ,Ps) represents the initial configuration C0, where the variables

z1,. . .,zs are bound to the values P1,. . .,Ps , respectively, and pre(P1,. . .,Ps) holds,

(i.2) reach(C0,Ch) represents the transitive closure =⇒∗ of the transition relation

=⇒, which in turn is represented by a predicate tr(C1,C2) that encodes the

operational semantics, that is, the interpreter of our imperative language, by

relating a source configuration C1 to a target configuration C2,

(i.3) finalCf (Ch ,Zk) represents the final configuration Ch , where the variable zk is

bound to the value Zk ,

and (ii) the clauses for the predicates pre(P1, . . . ,Ps) and tr(C1,C2). The clauses

for the predicate tr(C1,C2) are defined as indicated in (De Angelis et al. 2014a),

and are omitted for reasons of space.

Example 1 (Fibonacci Numbers)

Let us consider the following program fibonacci, that returns as value of u the n-th

Fibonacci number, for any n (≥ 0), having initialized u to 1 and v to 0.[
0: while (n>0) { t=u; u=u+v; v=t; n=n-1 } fibonacci

h: halt

The following is a functional Horn specification of the partial correctness of the

program fibonacci :

{n=N, N>=0, u=1, v=0, t=0} fibonacci {fib(N,u)} (‡)
where N is a parameter and fib is defined by the following CLP program:

S1. fib(0,1). Specfibonacci
S2. fib(1,1).

S3. fib(N3,F3) :- N1>=0, N2=N1+1, N3=N2+1, F3=F1+F2, fib(N1,F1), fib(N2,F2).

For reasons of conciseness, in the above specification (‡) we have slightly deviated

from Definition 1. In particular, we did not introduce the predicate symbol pre, and

in the precondition and postcondition we did not introduce the parameters which

have constant values.

The relation r fibonacci computed by the program fibonacci according to the

operational semantics, is defined by the following CLP program:

OpSemfibonacci
R1. r fibonacci(N,U) :- initCf(C0,N), reach(C0,Ch), finalCf(Ch,U).

R2. initCf(cf(LC,E),N) :- N>=0, U=1, V=0, T=0, firstCmd(LC),

env((n,N),E), env((u,U),E), env((v,V),E), env((t,T),E).

R3. finalCf(cf(LC,E),U) :- haltCmd(LC), env((u,U),E).

where: (i) firstCmd(LC) holds for the command with label 0 of the program fibo-

nacci ; (ii) env((x,X),E) holds iff in the environment E the variable x is bound to the

5

value of X; (iii) in the initial configuration C0 the environment E binds the variables

n, u, v, t to the values N (>=0), 1, 0, and 0, respectively; and (iv) haltCmd(LC)

holds for the labeled command h: halt. �

2.2 Encoding Specifications into Constrained Horn Clauses

In this section we present the encoding of the validity problem of functional Horn

specifications into the satisfiability problem of CHC’s.

For reasons of simplicity we assume that in Spec no predicate depends on f

(possibly, except for f itself), that is, Spec can be partitioned into two sets of clauses,

call them Fdef and Aux , where Fdef is the set of clauses with head predicate f, and f

does not occur in Aux.

Theorem 1 (Partial Correctness)

Let Fpcorr be the set of goals derived from Fdef as follows : for each clause D ∈Fdef
of the form f (X1, . . . ,Xs ,Y)← B ,

(1) every occurrence of f in D (and, in particular, in B) is replaced by rprog, thereby

deriving a clause E of the form: rprog(X1, . . . ,Xs ,Y)← B̃ ,

(2) clause E is replaced by the goal G : false ← Y ̸= Z , rprog(X1, . . . ,Xs ,Z), B̃ ,

where Z is a new variable, and

(3) goal G is replaced by the following two goals:

G1. false← Y >Z , rprog(X1, . . . ,Xs ,Z), B̃

G2. false← Y <Z , rprog(X1, . . . ,Xs ,Z), B̃

Let PC be the set Fpcorr∪Aux∪OpSem of CHC’s. We have that: if PC is satisfiable,

then {φ} prog {ψ} is valid. �
The proof of this theorem and of the other facts presented in this paper can be

found in the appendix. In our Fibonacci example (see Example 1) the set Fdef of

clauses is the entire set Specfibonacci and Aux= ∅. According to Points (1)–(3) of

Theorem 1, from Specfibonacci we derive the following six goals:

G1. false :- F>1, r fibonacci(0,F).

G2. false :- F<1, r fibonacci(0,F).

G3. false :- F>1, r fibonacci(1,F).

G4. false :- F<1, r fibonacci(1,F).

G5. false :- N1>=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r fibonacci(N1,F1), r fibonacci(N2,F2), r fibonacci(N3,F3).

G6. false :- N1>=0, N2=N1+1, N3=N2+1, F3<F1+F2,

r fibonacci(N1,F1), r fibonacci(N2,F2), r fibonacci(N3,F3).

Thus, in order to prove the validity of the specification (‡) above, since Aux=∅, it
is enough to show that the set PCfibonacci={G1,. . . , G6}∪OpSemfibonacci of CHC’s

is satisfiable.

3 A Limitation of LA-solving Methods

Now we show that there are sets of CHC’s that encode partial correctness specifi-

cations whose satisfiability cannot be proved by LA-solving methods.

A symbolic interpretation is a function Σ : Atom −→ CLA such that, for every

A∈Atom and substitution ϑ, Σ(Aϑ) = Σ(A)ϑ. Given a set S of CHC’s, a symbolic

6

interpretation Σ is an LA-solution of S iff, for every clause A0 ← c,A1, . . . ,An in

S , we have that LA |= (c ∧ Σ(A1) ∧ . . . ∧ Σ(An))→ Σ(A0).

We say that a set S of CHC’s is LA-solvable if there exists an LA-solution of S .

Clearly, if a set of CHC’s is LA-solvable, then it is satisfiable. The converse does

not hold as we now show.

Theorem 2

There are sets of constrained Horn clauses which are satisfiable and not LA-solvable.

Proof. Let PCfibonacci be the set of clauses that encode the validity of the Fibonacci

specification (‡). PCfibonacci is satisfiable, because r fibonacci(N, F) holds iff F is

the N-th Fibonacci number, and hence the bodies of G1, . . . , G6 are false. (This fact

will also be proved by the automatic method presented in Section 4.)

Now we prove, by contradiction, that PCfibonacci is not LA-solvable. Suppose

that there exists an LA-solution Σ of PCfibonacci. Let Σ(r fibonacci(N, F)) be a

constraint c(N, F). To keep our proof simple, we assume that c(N, F) is defined by a

conjunction of linear arithmetic inequalities (that is, c(N, F) is a convex constraint),

but our argument can easily be generalized to any constraint in CLA. By the defi-

nition of LA-solution, we have that:
(P1) LA ̸|= ∃(N1≥0, N2=N1+1, N3=N2+1, F3>F1+F2, c(N1, F1), c(N2, F2), c(N3, F3))

(P2) M (OpSemfibonacci) |= ∀ (r fibonacci(N, F)→ c(N, F))

Property (P1) follows from the fact that, in particular, an LA-solution satisfies

goal G5. Property (P2) follows from the fact that an LA-solution satisfies all clauses

of OpSemfibonacci and M (OpSemfibonacci) defines the least r fibonacci relation

that satisfies those clauses.

From Property (P2) and from the fact that r fibonacci(N, F) holds iff F is the

N-th Fibonacci number (and hence F is an exponential function of N), it follows that

c(N,F) is a conjunction of the form c1(N, F), . . . , ck(N, F), where, for i = 1, . . . , k,

with k≥0, ci(N, F) is either (A) N>ai, for some integer ai, or (B) F>ai ·N+bi, for

some integers ai and bi. (No constraints of the form F<ai ·N+bi are possible, as

shown in Figure 1.)

r fibonacci(N; F)

c(N; F)

N

F

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

Figure 1. The relation r fibonacci(N,F) and the convex constraint c(N,F).

By replacing c(N1,F1), c(N2,F2), and c(N3,F3) by the corresponding conjunctions

of atomic constraints of the forms (A) and (B), and eliminating the occurrences of

F1, F2, N2, and N3, from (P1) we get:

(P3) LA ̸|=∃(N1≥0, F3>p1, . . . , F3>pn)

7

where, for i = 1, . . . , n, pi is a linear polynomial in the variable N1. Then, the

constraint N1≥0, F3>p1, . . . , F3>pn is satisfiable and Property (P3) is false. Thus,

the assumption that PCfibonacci is LA-solvable is false, and we get the thesis. �

4 Increasing the Power of LA-solving Methods by Linearization

A weakness of the LA-solving methods is that they look for LA-solutions con-

structed from single atoms, and by doing so they may fail to discover that a goal is

satisfiable because a conjunction of atoms in its premise is unsatisfiable, in spite of

the fact that each of its conjoint atoms is satisfiable. For instance, in our Fibonacci

example the premise of goal G5 contains three atoms with predicate r fibonacci and

our proof of Section 3 shows that, even if the premise of G5 is unsatisfiable, there

is no constraint which is an LA-solution of the clauses defining r fibonacci that,

when substituted for each r fibonacci atom, makes that premise false. Thus, the

notion of LA-solution shows some weakness when dealing with nonlinear clauses,

that is, clauses whose premise contains more than one atom (besides constraints).

In this section we present an automatic transformation of constrained Horn

clauses that has the objective of increasing the power of LA-solving methods.

The core of the transformation, called linearization, takes a set of possibly non-

linear constrained Horn clauses and transforms it into a set of linear clauses, that is,

clauses whose premise contains at most one atom (besides constraints). After per-

forming linearization, the LA-solving methods are able to exploit the interactions

among several atoms, instead of dealing with each atom individually. In particular,

an LA-solution of the linearized set of clauses will map a conjunction of atoms to a

constraint. We will show that linearization preserves the existence of LA-solutions

and, in some cases (including our Fibonacci example), transforms a set of clauses

which is not LA-solvable into a set of clauses that is LA-solvable.

Our transformation technique is made out of the following two steps:

(1) RI: Removal of the interpreter, and (2) LIN: Linearization.

These steps are performed by using the transformation rules for CLP programs pre-

sented in (Etalle and Gabbrielli 1996), that is: unfolding (which consists in applying

a resolution step and a constraint satisfiability test), definition (which introduces a

new predicate defined in terms of old predicates), and folding (which redefines old

predicates in terms of new predicates introduced by the definition rule).

4.1 RI: Removal of the Interpreter

This step is a variant of the removal of the interpreter transformation presented

in (De Angelis et al. 2014a). In this step a specialized definition for rprog is derived

by transforming the CLP program OpSem, thereby getting a new CLP program

OpSemRI where there are no occurrences of the predicates initCf, finalCf, reach,

and tr, which as already mentioned encodes the interpreter of the imperative lan-

guage in which prog is written. (See appendix for more details.)

By a simple extension of the results presented in (De Angelis et al. 2014a), it can

be shown that the RI transformation always terminates, preserves satisfiability,

8

and transforms OpSem into a set of linear clauses over the integers. It can also be

shown that the removal of the interpreter preserves LA-solvability. Thus, we have

the following result.

Theorem 3

Let OpSem be a CLP program constructed starting from any given imperative

program prog. Then the RI transformation terminates and derives a CLP program

OpSemRI such that:

(1) OpSemRI is a set of linear clauses over the integers;

(2) OpSem ∪Aux ∪ Fpcorr is satisfiable iff OpSemRI ∪Aux ∪ Fpcorr is satisfiable;

(3) OpSem ∪Aux ∪Fpcorr is LA-solvable iff OpSemRI ∪Aux ∪Fpcorr is LA-solvable.

In the Fibonacci example, the input of the RI transformation is OpSemfibonacci.

The output of the RI transformation consists of the following three clauses:

E1. r fibonacci(N,F):- N>=0, U=1, V=0, T=0, r(N,U,V,T,N1,F,V1,T1).

E2. r(N,U,V,T,N,U,V,T):- N=<0.

E3. r(N,U,V,T,N2,U2,V2,T2):- N>=1, N1=N-1, U1=U+V, V1=U, T1=U,

r(N1,U1,V1,T1,N2,U2,V2,T2).

where r is a new predicate symbol introduced by the RI transformation.

As stated by Theorem 3, OpSemRI is a set of clauses over the integers. Since the

clauses of the specification Spec define computable functions from Zs to Z, without
loss of generality we may assume that also the clauses in Aux ∪Fpcorr are over the

integers (Sebelik and Stepánek 1982). From now on we will only deal with clauses

over the integers, and we will feel free to omit the qualification ‘over the integers’.

4.2 LIN: Linearization

The linearization transformation takes as input the set OpSemRI ∪Aux ∪Fpcorr of

constrained Horn clauses and derives a new, equisatisfiable set TransfCls of linear

constrained Horn clauses.

In order to perform linearization, we assume that Aux is a set of linear clauses.

This assumption, which is not restrictive because any computable function on the

integers can be encoded by linear clauses (Sebelik and Stepánek 1982), simplifies

the proof of termination of the transformation.

The linearization transformation is described in Figure 2. Its input is constructed

by partitioning OpSemRI ∪Aux ∪Fpcorr into a set LCls of linear clauses and a set

NLGls of nonlinear goals. LCls consists of Aux, OpSemRI (which, by Theorem 3, is

a set of linear clauses), and the subset of linear goals in Fpcorr. NLGls consists of

the set of nonlinear goals in Fpcorr.

When applying linearization we use the following transformation rule.

Unfolding Rule. Let Cls be a set of constrained Horn clauses. Given a clause C of

the form H ← c,Ls,A,Rs, let us consider the set {Ki ← ci ,Bi | i = 1, . . . ,m} made

out of the (renamed apart) clauses of Cls such that, for i=1, . . . ,m, A is unifiable

with Ki via the most general unifier ϑi and (c, ci)ϑi is satisfiable. By unfolding C

with respect to A using Cls, we derive the set {(H ← c, ci ,Ls,Bi ,Rs)ϑi | i =

1, . . . ,m} of clauses.

9

Input : (i) A set LCls of linear clauses, and (ii) a set Gls of nonlinear goals.
Output : A set TransfCls of linear clauses.

Initialization: NLCls := Gls; Defs := ∅; TransfCls := LCls;

while there is a clause C in NLCls do
Unfolding: From clause C derive a set U(C) of clauses by unfolding C with respect to
every atom occurring in its body using LCls;
Rewrite each clause in U(C) to a clause of the form H ← c, A1, . . . ,Ak , such that, for
i = 1, . . . , k , Ai is of the form p(X1, . . . ,Xm);

Definition&Folding:
F (C) := U (C);
for every clause E ∈ F (C) of the form H ← c, A1, . . . ,Ak do

if in Defs there is no clause of the form newp(X1, . . . ,Xt) ← A1, . . . ,Ak , where
{X1, . . . ,Xt} = vars(A1, . . . ,Ak) ∩ vars(H , c)

then add newp(X1, . . . ,Xt)← A1, . . . ,Ak to Defs and to NLCls;
F (C) := (F (C)− {E}) ∪ {H ← c, newp(X1, . . . ,Xt)}

end-for

NLCls := NLCls− {C}; TransfCls := TransfCls ∪ F(C);

end-while

Figure 2. LIN: The linearization transformation.

It is easy to see that, since LCls is a set of linear clauses, only a finite number

of new predicates can be introduced by any sequence of applications of Defini-

tion&Folding, and hence the linearization transformation terminates. Moreover,

the use of the unfolding, definition, and folding rules according to the conditions

indicated in (Etalle and Gabbrielli 1996), guarantees the equivalence with respect

to the least LA-model, and hence the equisatisfiability of LCls ∪Gls and TransfCls.

Thus, we have the following result.

Theorem 4 (Termination and Correctness of Linearization)

Let LCls be a set of linear clauses and Gls be a set of nonlinear goals. The lin-

earization transformation terminates for the input set of clauses LCls ∪ Gls, and

the output TransfCls is a set of linear clauses. Moreover, LCls ∪ Gls is satisfiable

iff TransfCls is satisfiable. �

Let us consider again the Fibonacci example. We apply the linearization transfor-

mation to the set {E1,E2,E3} of linear clauses, and to the nonlinear goal G5. For

brevity, we omit to consider the cases where the goals G1, . . . ,G4,G6 are taken as

input to the linearization transformation.

After Initialization we have that NLCls = {G5}, Defs = ∅, and TransfCls =

{E1,E2,E3}. By applying the Unfolding step to G5 we derive:
C1. false :- N1>= 0, N2=N1+1, N3=N2+1, F3>F1+F2, U=1, V=0,

r(N1,U,V,V,X1,F1,Y1,Z1), r(N2,U,V,V,X2,F2,Y2,Z2),

r(N3,U,V,V,X3,F3,Y3,Z3).

Next, by Definition&Folding, the following clause is added to NLCls and Defs:
C2. new1(N1,U,V,F1,N2,F2,N3,F3) :- r(N1,U,V,V,X1,F1,Y1,Z1),

r(N2,U,V,V,X2,F2,Y2,Z2), r(N3,U,V,V,X3,F3,Y3,Z3).

and clause C1 is folded using C2, thereby deriving the following linear clause:
C3. false :- N1>= 0, N2=N1+1, N3=N2+1, F3>F1+F2, U=1, V=0,

new1(N3,U,V,F3,N2,F2,N1,F1).

At the end of the first execution of the body of the while-do loop we have: NLCls =

10

{C2}, Defs = {C2}, and TransfCls = {E1,E2,E3,C3}. Now, the linearization trans-

formation continues by processing clause C2. During its execution, linearization

introduces two new predicates defined by the following two clauses:
C4. new2(N,U,V,F) :- r(N,U,V,V,X,F,Y,Z).

C5. new3(N2,U,V,F2,N1,F1) :- r(N1,U,V,V,X1,F1,Y1,Z1), r(N2,U,V,V,X2,F2,Y2,Z2).

The transformation terminates when all clauses derived by unfolding can be

folded using clauses in Defs, without introducing new predicates. The output of

the transformation is a set of linear clauses (listed in the appendix) which is LA-

solvable, as reported on line 4 of Table 1 in the next section.

In general, there is no guarantee that we can automatically transform any given

satisfiable set of clauses into an LA-solvable one. In fact, such a transformation

cannot be algorithmic because, for constrained Horn clauses, the problem of satis-

fiability is not semidecidable, while the problem of LA-solvability is semidecidable

(indeed, the set of symbolic interpretations is recursively enumerable and the prob-

lem of checking whether or not a symbolic interpretation is an LA-solution is de-

cidable). However, the linearization transformation cannot decrease LA-solvability,

as the following theorem shows.

Theorem 5 (Monotonicity with respect to LA-solvability)

Let TransfCls be obtained by applying the linearization transformation to LCls ∪
Gls. If LCls ∪Gls is LA-solvable, then TransfCls is LA-solvable. �
Since there are cases where LCls ∪ Gls is not LA-solvable, while TransfCls is

LA-solvable (see the Fibonacci example above and some more examples in the

following section), as a consequence of Theorem 5 we get that the combination of

LA-solving and linearization is strictly more powerful than LA-solving alone.

5 Experimental Results

We have implemented our verification method by using the VeriMAP system (De An-

gelis et al. 2014b). The implemented tool consists of four modules, which we have

depicted in Figure 3. The first module, given the imperative program prog and

its specification Spec, generates the set PC of constrained Horn clauses (see Theo-

rem 1). PC is then given as input to the module RI that removes the interpreter.

Then, the module LIN performs the linearization transformation. Finally, the re-

sulting linear clauses are passed to the LA-solver, consisting of VeriMAP together

with an SMT solver, which is either Z3 (de Moura and Bjørner 2008) or Math-

SAT (Cimatti et al. 2013) or Eldarica (Rümmer et al. 2013).

Figure 3. Our software model checker that uses the linearization module LIN.

We performed an experimental evaluation on a set of programs taken from the

literature, including some programs from (Felsing et al. 2014) obtained by applying

11

strength reduction, a real-world optimization technique1. In Table 1 we report the

results of our experiments2.

One can see that linearization takes very little time compared to the total ver-

ification time. Moreover, linearization is necessary for the verification of 14 out

of 19 programs (including fibonacci), which otherwise cannot be proved correct

with respect to their specifications. In the two columns under LA-solving-1 we re-

port the results obtained by giving as input to the Z3 and Eldarica solvers the

set PC generated by the RI module. Under LA-solving-1 we do not have a column

for MathSAT, because the version of this solver used in our experiments (namely,

MSATIC3) cannot deal with nonlinear CHC’s, and therefore it cannot be applied

before linearization. In the last three columns of Table 1 we report the results ob-

tained by giving as input to VeriMAP (and the solvers Z3, MatSAT, and Eldarica,

respectively) the clauses obtained after linearization.

Unsurprisingly, for the verification problems where linearization is not necessary,

our technique may deteriorate the performance, although in most of these problems

the solving time does not increase much.

Program RI
LA-solving-1

LIN
LA-solving-2: VeriMAP &

Z3 Eldarica Z3 MathSAT Eldarica

1. binary division 0.02 4.16 TO 0.04 17.36 17.87 20.98
2. fast multiplication 2 0.02 TO 3.71 0.01 1.07 1.97 7.59
3. fast multiplication 3 0.03 TO 4.56 0.02 2.59 2.54 9.31
4. fibonacci 0.01 TO TO 0.01 2.00 47.74 6.97
5. Dijkstra fusc 0.01 1.02 3.80 0.05 2.14 2.80 10.26
6. greatest common divisor 0.01 TO TO 0.01 0.89 1.78 0.04
7. integer division 0.01 TO TO 0.01 0.88 1.90 2.86
8. 91-function 0.01 1.27 TO 0.06 117.97 14.24 TO
9. integer multiplication 0.02 TO TO 0.01 0.52 14.76 0.54

10. remainder 0.01 TO TO 0.01 0.87 1.70 3.16
11. sum first integers 0.01 TO TO 0.01 1.79 2.30 6.81
12. lucas 0.01 TO TO 0.01 2.04 8.39 9.46
13. padovan 0.01 TO TO 0.01 2.24 TO 11.62
14. perrin 0.01 TO TO 0.02 2.23 TO 11.89
15. hanoi 0.01 TO TO 0.01 1.81 2.07 6.59
16. digits10 0.01 TO TO 0.01 4.52 3.10 6.54
17. digits10-itmd 0.06 TO TO 0.04 TO 10.26 12.38
18. digits10-opt 0.08 TO TO 0.10 TO TO 15.80
19. digits10-opt100 0.01 TO TO 0.02 TO 58.99 8.98

Table 1. Columns RI and LIN show the times (in seconds) taken for removal of the

interpreter and linearization. The two columns under LA-solving-1 show the times

taken by Z3 and Eldarica for solving the problems after RI alone. The three columns

under LA-solving-2 show the times taken by VeriMAP together with Z3, MathSAT,

and Eldarica, after RI and LIN. The timeout TO occurs after 120 seconds.

1 https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/
10151361643253920

2 The VeriMAP tool, source code and specifications for the programs are available at:
http://map.uniroma2.it/linearization

12

6 Conclusions and Related Work

We have presented a method for proving partial correctness specifications of pro-

grams, given as Hoare triples of the form {φ} prog {ψ}, where the assertions φ and ψ

are predicates defined by a set of possibly recursive, definite CLP clauses. Our ver-

ification method is based on: Step (1) a translation of a given specification into a

set of constrained Horn clauses (that is, a CLP program together with one or more

goals), Step (2) an unfold/fold transformation strategy, called linearization, which

derives linear clauses (that is, clauses with at most one atom in their body), and

Step (3) an LA-solver that attempts to prove the satisfiability of constrained Horn

clauses by interpreting predicates as linear arithmetic constraints.

We have formally proved that the method which uses linearization is strictly

more powerful than the method that applies Step (3) immediately after Step (1). We

have also developed a proof-of-concept implementation of our method by using the

VeriMAP verification system (De Angelis et al. 2014b) together with various state-

of-the-art solvers (namely, Z3 (de Moura and Bjørner 2008), MathSAT (Cimatti

et al. 2013), and Eldarica (Rümmer et al. 2013)), and we have shown that our

method works on several verification problems. Although these problems refer to

quite simple specifications, some of them cannot be solved by using the above

mentioned solvers alone.

The use of transformation-based methods in the field of program verification

has recently gained popularity (see, for instance, (Albert et al. 2007; De Angelis

et al. 2014a; Fioravanti et al. 2013; Kafle and Gallagher 2015; Leuschel and Massart

2000; Lisitsa and Nemytykh 2008; Peralta et al. 1998)). However, fully automated

methods based on various notions of partial deduction and CLP program specializa-

tion cannot achieve the same effect as linearization. Indeed, linearization requires

the introduction of new predicates corresponding to conjunctions of old predicates,

whereas partial deduction and program specialization can only introduce new predi-

cates that correspond to instances of old predicates. In order to derive linear clauses,

one could apply conjunctive partial deduction (De Schreye et al. 1999), which es-

sentially is equivalent to unfold/fold transformation. However, to the best of our

knowledge, this application of conjunctive partial deduction to the field of program

verification has not been investigated so far.

The use of linear arithmetic constraints for program verification has been first pro-

posed in the field of abstract interpretation (Cousot and Cousot 1977), where these

constraints are used for approximating the set of states that are reachable during

program execution (Cousot and Halbwachs 1978). In the field of logic programming,

abstract interpretation methods work similarly to LA-solving for constrained Horn

clauses, because they both look for interpretations of predicates as linear arith-

metic constraints that satisfy the program clauses (see, for instance, (Benoy and

King 1997)). Thus, abstract interpretation methods suffer from the same theoretical

limitations we have pointed out in this paper for LA-solving methods.

One approach that has been followed for overcoming the limitations related

to the use of linear arithmetic constraints is to devise methods for generating

polynomial invariants and proving specifications with polynomial arithmetic con-

13

straints (Rodŕıguez-Carbonell and Kapur 2007a; Rodŕıguez-Carbonell and Kapur

2007b). This approach also requires the development of solvers for polynomial con-

straints, which is a very complex task on its own, as in general the satisfiability of

these constraints on the integers is undecidable (Matijasevic 1970). In contrast, the

approach presented in this paper has the objective of transforming problems which

would require the proof of nonlinear arithmetic assertions into problems which can

be solved by using linear arithmetic constraints. We have shown some examples

(such as the fibonacci program) where we are able to prove specifications whose

post-condition is an exponential function.

An interesting issue for future research is to identify general criteria to answer the

following question: Given a class D of constraints and a class H of constrained Horn

clauses, does the satisfiability of a finite set of clauses in H imply its D-solvability?
Theorem 2 provides a negative answer to this question when D is the class of LA

constraints and H is the class of all constrained Horn clauses.

7 Acknowledgments

We thank the participants in the Workshop VPT ’15 on Verification and Program

Transformation, held in London on April 2015, for their comments on a preliminary

version of this paper. This work has been partially supported by the National Group

of Computing Science (GNCS-INDAM).

References

Albert, E., Gómez-Zamalloa, M., Hubert, L., and Puebla, G. 2007. Verification of
Java Bytecode Using Analysis and Transformation of Logic Programs. In Practical As-
pects of Declarative Languages, M. Hanus, Ed. Lecture Notes in Computer Science 4354.
Springer, 124–139.

Apt, K. R., de Boer, F. S., and Olderog, E.-R. 2009. Verification of Sequential and
Concurrent Programs, Third ed. Springer.

Benoy, F. and King, A. 1997. Inferring argument size relationships with CLP(R).
In Proceedings of the 6th International Workshop on Logic Program Synthesis and
Transformation, LOPSTR ’96, Stockholm, Sweden, August 28-30, 1996, J. P. Gallagher,
Ed. Lecture Notes in Computer Science 1207. Springer, 204–223.

Bjørner, N., McMillan, K., and Rybalchenko, A. 2012. Program verification as
satisfiability modulo theories. In Proceedings of the 10th International Workshop on
Satisfiability Modulo Theories, SMT-COMP ’12. 3–11.

Cimatti, A., Griggio, A., Schaafsma, B., and Sebastiani, R. 2013. The MathSAT5
SMT Solver. In Proceedings of TACAS, N. Piterman and S. Smolka, Eds. Lecture Notes
in Computer Science 7795. Springer, 93–107.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixpoints. In Pro-
ceedings of the 4th ACM-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL ’77. ACM, 238–252.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, POPL ’78. ACM, 84–96.

14

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014a. Program
verification via iterated specialization. Science of Computer Programming 95, Part 2,
149–175. Selected and extended papers from Partial Evaluation and Program Manipu-
lation 2013.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014b. VeriMAP:
A Tool for Verifying Programs through Transformations. In Proceedings of the 20th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS ’14. Lecture Notes in Computer Science 8413. Springer, 568–574.
Available at: http://www.map.uniroma2.it/VeriMAP.

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS ’08. Lecture Notes in Computer Science 4963. Springer,
337–340.

De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., and
Sørensen, M. H. 1999. Conjunctive Partial Deduction: Foundations, Control, Al-
gorithms, and Experiments. Journal of Logic Programming 41, 2–3, 231–277.

Etalle, S. and Gabbrielli, M. 1996. Transformations of CLP modules. Theoretical
Computer Science 166, 101–146.

Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., and Ulbrich, M. 2014. Au-
tomating Regression Verification. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14. ACM, 349–360.

Fioravanti, F., Pettorossi, A., Proietti, M., and Senni, V. 2013. Generalization
strategies for the verification of infinite state systems. Theory and Practice of Logic
Programming. Special Issue on the 25th Annual GULP Conference 13, 2, 175–199.

Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. Syn-
thesizing software verifiers from proof rules. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12. 405–416.

Hoare, C. 1969. An Axiomatic Basis for Computer Programming. CACM 12, 10 (Octo-
ber), 576–580, 583.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: A survey. Journal of
Logic Programming 19/20, 503–581.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A Sym-
bolic Execution Tool for Verification. In Proceedings 24th International Conference
on Computer Aided Verification, CAV ’12. Lecture Notes in Computer Science 7358.
Springer, 758–766. http://paella.d1.comp.nus.edu.sg/tracer/.

Kafle, B. and Gallagher, J. P. 2015. Constraint Specialisation in Horn Clause Ver-
ification. In Proceedings of the 2015 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’15, Mumbai, India, January 15–17, 2015. ACM, 85–90.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer, Berlin. 2nd Edition.

Leuschel, M. and Massart, T. 2000. Infinite state model checking by abstract interpre-
tation and program specialization. In Proceedings of the 9th International Workshop
on Logic-based Program Synthesis and Transformation (LOPSTR ’99), Venezia, Italy,
A. Bossi, Ed. Lecture Notes in Computer Science 1817. Springer, 63–82.

Lisitsa, A. and Nemytykh, A. P. 2008. Reachability analysis in verification via super-
compilation. Int. J. Found. Comput. Sci. 19, 4, 953–969.

Matijasevic, Y. V. 1970. Enumerable sets are diophantine. Doklady Akademii Nauk
SSSR (in Russian) 191, 279–282.

Peralta, J. C., Gallagher, J. P., and Saglam, H. 1998. Analysis of Imperative
Programs through Analysis of Constraint Logic Programs. In Proceedings of the 5th
International Symposium on Static Analysis, SAS ’98, G. Levi, Ed. Lecture Notes in
Computer Science 1503. Springer, 246–261.

15

Podelski, A. and Rybalchenko, A. 2007. ARMC: The Logical Choice for Software
Model Checking with Abstraction Refinement. In Practical Aspects of Declarative
Languages, PADL ’07, M. Hanus, Ed. Lecture Notes in Computer Science 4354. Springer,
245–259.

Reynolds, C. J. 1998. Theories of Programming Languages. Cambridge University
Press.

Rodŕıguez-Carbonell, E. and Kapur, D. 2007a. Automatic generation of polynomial
invariants of bounded degree using abstract interpretation. Sci. Comput. Program. 64, 1,
54–75.

Rodŕıguez-Carbonell, E. and Kapur, D. 2007b. Generating all polynomial invariants
in simple loops. J. Symb. Comput. 42, 4, 443–476.

Rümmer, P., Hojjat, H., and Kuncak, V. 2013. Disjunctive interpolants for Horn-
clause verification. In Proceedings of the 25th International Conference on Computer
Aided Verification, CAV ’13, Saint Petersburg, Russia, July 13–19, 2013, N. Sharygina
and H. Veith, Eds. Lecture Notes in Computer Science 8044. Springer, 347–363.

Sebelik, J. and Stepánek, P. 1982. Horn clause programs for recursive functions. In
Logic Programming, K. L. Clark and S.-A. Tärnlund, Eds. Academic Press, 325–340.

16

Appendix

For the proof of Theorem 1 we need the following lemma.

Lemma 1. (i) The relation rprog defined by OpSem is a functional relation, that is,

M (OpSem) |= ∀p1,. . ., ps , y1, y2.rprog(p1,. . ., ps , y1)∧rprog(p1,. . ., ps , y2)→y1=y2.

(ii) A program prog terminates for an environment δ0 such that δ0(z1)=p1,. . .,

δ0(zs)=ps and pre(p1,. . ., ps) holds, iff

M (OpSem) |= pre(p1,. . ., ps)→ ∃y . rprog(p1,. . ., ps , y).

Proof. Since the program prog is deterministic, the predicate rprog defined byOpSem

is a functional relation (which might not be total on pre, as prog might not ter-

minate). Moreover, a program prog, with variables z1, . . . , zs , terminates for an

environment δ0 such that: (i) δ0(z1)= p1, . . . , δ0(zs)= ps , and (ii) δ0 satisfies pre,

iff ∃y . rprog(p1, . . . , ps , y) holds in M (OpSem). �

Proof of Theorem 1 (Partial Correctness).

Let domr (X1, . . . ,Xs) be a predicate that represents the domain of the functional

relation rprog. We assume that domr (X1, . . . ,Xs) is defined by a set Dom of clauses,

using predicate symbols not in OpSem ∪ Spec, such that

M (OpSem ∪Dom) |= (1)

∀X1, . . . ,Xs .((∃Y .rprog(X1, . . . ,Xs ,Y)↔ domr (X1, . . . ,Xs))

Let us denote by Spec♯ the set of clauses obtained from Spec by replacing each clause

f (X1, . . . ,Xs ,Y) ← B by the clause f (X1, . . . ,Xs ,Y) ← domr (X1, . . . ,Xs),B .

Then, for all integers p1, . . . , ps , y ,

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , y) implies M (Spec) |= f (p1, . . . , ps , y) (2)

Moreover, let us denote by Spec′ the set of clauses obtained from Spec♯ by replacing

all occurrences of f by rprog. We show that M (OpSem ∪Aux ∪Dom) |= Spec′.

Let S be any clause in Spec′. If S belongs to Aux, then M (OpSem ∪ Aux) |= S .

Otherwise, S is of the form rprog(X1, . . . ,Xs ,Y) ← domr (X1, . . . ,Xs), B̃ and, by

construction, in Fpcorr there are two goals

G1: false← Y >Z , rprog(X1, . . . ,Xs ,Z), B̃ , and

G2: false← Y <Z , rprog(X1, . . . ,Xs ,Z), B̃

such that OpSem ∪Aux ∪ {G1,G2} is satisfiable. Then,
M (OpSem ∪Aux) |= ¬∃(Y ̸= Z ∧ rprog(X1, . . . ,Xs ,Z) ∧ B̃)

Since M (OpSem∪Dom) |= rprog(X1, . . . ,Xs ,Z)→ domr (P1, . . . ,Ps), we also have

that

M (OpSem∪Aux∪Dom) |=¬∃(Y ̸=Z∧domr (X1, . . . ,Xs)∧rprog(X1, . . . ,Xs ,Z)∧B̃)

From the functionality of rprog it follows that

M (OpSem ∪Aux ∪Dom) |= ¬rprog(X1, . . . ,Xs ,Y)

↔ (¬∃Z · rprog(X1, . . . ,Xs ,Y) ∨ (rprog(X1, . . . ,Xs ,Z) ∧Y ̸=Z))

and hence, by using (1),

M (OpSem ∪Aux ∪Dom) |= ¬∃(domr (X1, . . . ,Xs) ∧ ¬rprog(X1, . . . ,Xs ,Y) ∧ B̃)

Thus, we have that

17

M (OpSem ∪Aux ∪Dom) |= ∀(domr (X1, . . . ,Xs) ∧ B̃ → rprog(X1, . . . ,Xs ,Y))

that is, clause S is true inM (OpSem∪Aux∪Dom). We can conclude thatM (OpSem∪
Aux∪Dom) is a model of Spec′∪Dom, and since M (Spec′∪Dom) is the least model

of Spec′ ∪Dom, we have that

M (Spec′ ∪Dom) ⊆ M (OpSem ∪Aux ∪Dom) (3)

Next we show that, for all integers p1, . . . , ps , y ,

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , y) iff M (OpSem) |= rprog(p1, . . . , ps , y) (4)

Only If Part of (4). Suppose that M (Spec♯ ∪ Dom) |= f (p1, . . . , ps , y). Then, by

construction,

M (Spec′ ∪Dom) |= rprog(p1, . . . , ps , y)

and hence, by (3),

M (OpSem ∪Aux ∪Dom) |= rprog(p1, . . . , ps , y)

Since rprog does not depend on predicates in Aux ∪Dom,

M (OpSem) |= rprog(p1, . . . , ps , y)

If Part of (4). Suppose that M (OpSem) |= rprog(p1, . . . , ps , y).

Then, by definition of rprog,

M (Dom) |= domr (p1, . . . , ps) (5)

and

M (Spec) |= pre(p1, . . . , ps) (6)

Thus, by (6) and Condition (3.1) of Definition 1, there exists z such that

M (Spec) |= f (p1, . . . , ps , z) (7)

By (5) and (7),

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , z) (8)

By the Only If Part of (4),

M (OpSem) |= rprog(p1, . . . , ps , z)

and by the functionality of rprog, z = y . Hence, by (8),

M (Spec♯ ∪Dom) |= f (p1, . . . , ps , y)

Let us now prove partial correctness. If M (Spec) |= pre(p1, . . . , ps) and prog termi-

nates, that is, M (Dom) |= domr (p1, . . . , ps), then for some integer y , M (OpSem) |=
rprog(p1, . . . , ps , y). Thus, by (4), M (Spec♯∪Dom) |= f (p1, . . . , ps , y) and hence, by

(2),M (Spec) |= f (p1, . . . , ps , y). Suppose that the postcondition ψ is f (p1, . . . , ps , zk).

Then, by Condition (3.2) of Definition 1, y = zk .

Thus, {φ} prog {ψ}. �

Removal of the Interpreter

Here we report the variant of the transformation presented in (De Angelis et al.

2014a) that we use in this paper to perform the removal of the interpreter. In this

transformation we use the function Unf (C ,A, Cls) defined as the set of clauses

derived by unfolding a clause C with respect to an atom A using the set Cls of

clauses (see the unfolding rule in Section 4.2).

18

The predicate reach is defined as follows:

reach(X ,X)←
reach(X ,Z)← tr(X ,Y), reach(Y ,Z)

where, as mentioned in Section 2, tr is a (nonrecursive) predicate representing one

transition step according to the operational semantics of the imperative language.

In order to perform the Unfolding step, we assume that the atoms occurring in

bodies of clauses are annotated as either unfoldable or not unfoldable. This annota-

tion ensures that any sequence of clauses constructed by unfolding w.r.t. unfoldable

atoms is finite. In particular, the atoms with predicate initCf , finalCf , and tr are

unfoldable. The atoms of the form reach(cf1, cf2) are unfoldable if cf1 is not associ-

ated with a while or goto command. Other annotations based on a different analysis

of program OpSem can be used.

Input: Program OpSem.

Output: Program OpSemRI such that, for all integers p1, . . . ,ps ,zk ,

rprog(p1, . . . ,ps ,zk)∈M (OpSem) iff rprog(p1, . . . ,ps ,zk)∈M (OpSemRI).

Initialization:

OpSemRI := ∅; Defs := ∅;
InCls :={rprog(P1,. . .,Ps ,Zk)← initCf (C0,P1,. . .,Ps), reach(C0,Ch),finalCf (Ch ,Zk)};
while in InCls there is a clause C which is not a constrained fact do

Unfolding:

SpC := Unf(C ,A,OpSem), where A is the leftmost atom in the body of C ;

while in SpC there is a clause D whose body contains an occurrence of an

unfoldable atom A do

SpC := (SpC− {D}) ∪ Unf(D ,A,OpSem)

end-while;

Definition & Folding:

while in SpC there is a clause E of the form: H ← e, reach(cf1, cf2)

do
if in Defs there is no clause of the form: newp(V)← reach(cf1, cf2)

where V is the set of variables occurring in reach(cf1, cf2)

then add the clause N : newp(V)← reach(cf1, cf2) to Defs and InCls;

SpC := (SpC− {E}) ∪ {H ← e,newp(V)}
end-while;

InCls := InCls− {C}; OpSemRI := OpSemRI ∪ SpC;

end-while;

RI: Removal of the Interpreter.

Let us now prove Theorem 3 stating the relevant properties of the RI transforma-

tion.

The RI transformation terminates. The termination of the Unfolding step is guar-

anteed by the unfoldable annotations. Indeed, (i) the repeated unfolding of the un-

foldable atoms with predicates initCf , finalCf , and tr, always terminates because

19

those atoms have no recursive clauses, (ii) by the definition of the semantics of the

imperative program, the repeated unfolding of an atom of the form reach(cf1, cf2)

eventually derives a new reach(cf3, cf4) atom where cf3 is either a final configura-

tion or a configuration associated with a while or goto command, and in both cases

unfolding terminates. The termination of the Definition & Folding step follows

from the fact that SpC is a finite set of clauses.

The outer while loop terminates because a finite set of new predicate definitions of

the form newp(V) ← reach(cf1, cf2) can be introduced. Indeed, each configuration

cf is represented as a term cf(LC,E)), where LC is a labeled command and E is an

environment (see Example 1). An environment is represented as a list of (v ,X) pairs

where v is a variable identifier and X is its value, that is, a logical variable whose

value may be subject to a given constraint. Considering that: (i) the labeled com-

mands and the variable identifiers occurring in an imperative program are finitely

many, and (ii) predicate definitions of the form newp(V)← reach(cf1, cf2) abstract

away from the constraints that hold on the logical variables occurring in cf1 and

cf2, we can conclude that there are only finitely many such clauses (modulo variable

renaming).

Point 1: OpSemRI is a set of linear clauses over the integers. By construction, every

clause inOpSemRI is of the formH ← c,B , where (i) H is either rprog(P1, . . . ,Ps ,Zk)

or newp(V), for some new predicate newp and tuple of variables V , and (ii) B is

either absent or of the form newp(V), for some new predicate newp and tuple of

variables V . Thus, every clause is a linear clause over the integers.

Point 2: OpSem∪Aux ∪Fpcorr is satisfiable iff OpSemRI∪Aux ∪Fpcorr is satisfiable.
From the correctness of the unfolding, definition, and folding rules with respect to

the least model semantics of CLP programs (Etalle and Gabbrielli 1996), it follows

that, for all integers p1, . . . ,ps ,zk ,

rprog(p1, . . . ,ps ,zk)∈M (OpSem) iff rprog(p1, . . . ,ps ,zk)∈M (OpSemRI) (†1)
OpSem∪Aux∪Fpcorr is satisfiable iff for every ground instance G of a goal in Fpcorr,

M (OpSem∪Aux) |= G . Since the only predicate of OpSem on which G may depend

is rprog, by (†1), we have that M (OpSem∪Aux) |= G iff M (OpSemRI ∪Aux) |= G .

Finally, M (OpSemRI ∪Aux) |= G for every ground instance G of a goal in Fpcorr,

iff OpSemRI ∪Aux ∪ Fpcorr is satisfiable.

Point 3: OpSem ∪ Aux ∪ Fpcorr is LA-solvable iff OpSemRI ∪ Aux ∪ Fpcorr is

LA-solvable.

Suppose that OpSem ∪Aux ∪Fpcorr is LA-solvable, and let Σ be an LA-solution

of OpSem ∪ Aux ∪ Fpcorr. Now we construct an LA-solution ΣRI of OpSemRI ∪
Aux ∪ Fpcorr. To this purpose it is enough to define a symbolic interpretation for

the new predicates introduced by RI.

For any predicate newp introduced by RI via a clause of the form:

newp(V)← reach(cf1, cf2)

we define a symbolic interpretation as follows:

ΣRI(newp(V)) = Σ(reach(cf1, cf2))

Moreover, ΣRI is identical to Σ for the atoms with predicate occurring in OpSem.

20

Now we have to prove that ΣRI is indeed an LA-solution of OpSemRI ∪ Aux ∪
Fpcorr. This proof is similar to the proof of Theorem 5 (actually, simpler, because

RI introduces new predicates defined by single atoms, while LIN introduces new

predicates defined by conjunctions of atoms), and is omitted.

Vice versa, if ΣRI is an LA-solution of OpSemRI ∪ Aux ∪ Fpcorr, we construct

an LA-solution Σ of OpSem ∪Aux ∪ Fpcorr by defining

Σ(reach(cf1, cf2)) = ΣRI(newp(V)). �

Proof of Theorem 4

Let LCls be a set of linear clauses and Gls be a set of nonlinear goals. We split the

proof of Theorem 4 in three parts:

Termination: The linearization transformation LIN terminates for the input set of

clauses LCls ∪Gls;

Linearity: The output TransfCls of LIN is a set of linear clauses;

Equisatisfiability: LCls ∪Gls is satisfiable iff TransfCls is satisfiable.

(Termination) EachUnfolding andDefinition&Folding step terminates. Thus,

in order to prove the termination of LIN it is enough to show that the while loop

is executed a finite number of times, that is, a finite number of clauses are added

to NLCls. We will establish this finiteness property by showing that there exists an

integer M such that every clause added to NLCls is of the form:

newp(X1, . . . ,Xt)← A1, . . . ,Ak (†2)
where: (i) k ≤ M , (ii) for i = 1, . . . , k , Ai is of the form p(X1, . . . ,Xm), and

(iii) {X1, . . . ,Xt} ⊆ vars(A1, . . . ,Ak).

Indeed, let M be the maximal number of atoms occurring in the body of a goal

in Gls, to which NLCls is initialized. Now let us consider a clause C in NLCls and

assume that in the body of C there are at most M atoms. The clauses in the set

LCls used for unfolding C are linear, and hence in the body of each clause belonging

to the set U (C) obtained after the Unfolding step, there are at most M atoms.

Thus, each clause in U (C) is of the form H ← c,A1, . . . ,Ak , with k ≤ M . Since

the body of every new clause introduced by the subsequent Definition&Folding

step is obtained by dropping the constraint from the body of a clause in U (C), we

have that every clause added to NLCls is of the form (†2), with k ≤ M . Thus, LIN

terminates.

(Linearity) TransfCls is initialized to the set LCls of linear clauses. Moreover, each

clause added to TransfCls is of the form H ← c, newp(X1, . . . ,Xt), and hence is

linear.

(Equisatisfiability) In order to prove that LIN ensures equisatisfiability, let us adapt

to our context the basic notions about the unfold/fold transformation rules for CLP

programs presented in (Etalle and Gabbrielli 1996).

Besides the unfolding rule of Section 4.2, we also introduce the following definition

and folding rules.

Definition Rule. By definition we introduce a clause of the form newp(X)← G ,

where newp is a new predicate symbol and X is a tuple of variables occurring in G.

Folding Rule. Given a clause E : H ← c,G and a clause D : newp(X)← G intro-

21

duced by the definition rule. Suppose that, X = vars(G) ∩ vars(H,c). Then by

folding E using D we derive H ← c,newp(X).

From a set Cls of clauses we can derive a new set TransfCls of clauses either by

adding a new clause to Cls using the definition rule or by: (i) selecting a clause C

in Cls, (ii) deriving a new set TransfC of clauses using one or more transformation

rules among unfolding and folding, and (iii) replacing C by TransfC in Cls. We can

apply a new sequence of transformation rules starting from TransfCls and iterate

this process at will.

The following theorem is an immediate consequence of the correctness results for

the unfold/fold transformation rules of CLP programs (Etalle and Gabbrielli 1996).

Theorem 6 (Correctness of the Transformation Rules)

Let the set TransfCls be derived from Cls by a sequence of applications of the

unfolding, definition and folding transformation rules. Suppose that every clause

introduced by the definition rule is unfolded at least once in this sequence. Then,

Cls is satisfiable iff TransfCls is satisfiable.

Now, equisatisfiability easily follows from Theorem 6. Indeed, the Unfolding

and Definition & Folding steps of LIN are applications of the unfolding, defi-

nition, and folding rules (strictly speaking, the rewriting performed after unfolding

is not included among the transformation rules, but obviously preserves all LA-

models). Moreover, every clause introduced during the Definition & Folding

step is added to NCls and unfolded in a subsequent step of the transformation.

Thus, the hypotheses of Theorem 6 are fulfilled, and hence we have that LCls ∪Gls

is satisfiable iff TransfCls is satisfiable. �

Linearized clauses for Fibonacci.

The set of linear constrained Horn clauses obtained after applying LIN is made out

of clauses E1, E2, E3, and C3, together with the following clauses:

new1(N1,U,V,U,N2,U,N3,U):- N1=<0, N2=<0, N3=<0.

new1(N1,U,V,U,N2,U,N3,F3):- N1=<0, N2=<0, N4=N3-1, W=U+V, N3>=1,new2(N4,W,U,F3).

new1(N1,U,V,U,N2,F2,N3,U):- N1=<0, N4=N2-1, W=U+V, N2>=1, N3=<0,new2(N4,W,U,F2).

new1(N1,U,V,U,N2,F2,N3,F3):- N1=<0, N4=N2-1, N2>=1, N5=N3-1, N3>=1,

new3(N4,W,U,F2,N5,F3).

new1(N1,U,V,F1,N2,U,N3,U):- N4=N1-1, W=U+V, N1>=1, N2=<0, N3=<0,new2(N4,W,U,F1).

new1(N1,U,V,F1,N2,U,N3,F3):- N4=N1-1, N1>=1, N2=<0, N5=N3-1, W=U+V, N3>=1,

new3(N4,W,U,F1,N5,F3).

new1(N1,U,V,F1,N2,F2,N3,U):- N4=N1-1, N1>=1, N5=N2-1, W=U+V, N2>=1, N3=<0,

new3(N4,W,U,F1,N5,F2).

new1(N1,U,V,F1,N2,F2,N3,F3):- N4=N1-1, N1>=1, N5=N2-1, N2>=1, N6=N3-1, W=U+V,

N3>=1, new1(N4,W,U,F1,N5,F2,N6,F3).

new2(N,U,V,U):- N=<0.

new2(N,U,V,F):- N2=N-1, W=U+V, N>=1, new2(N2,W,U,F).

new3(N1,U,V,U,N2,U):- N1=<0, N2=<0.

new3(N1,U,V,U,N2,F2):- N1=<0, N3=N2-1, W=U+V, N2>=1, new2(N3,W,U,F2).

new3(N1,U,V,F1,N2,F2):- N3=N1-1, N1>=1, N4=N2-1, W=U+V, N2>=1,

new3(N3,W,U,F1,N4,F2).

new3(N1,U,V,F1,N2,U):- N3=N1-1, W=U+V, N1>=1, N2=<0, new2(N3,W,U,F1).

22

Proof of Theorem 5 (Monotonicity with respect to LA-Solvability).

Suppose that the set LCls∪Gls of constrained Horn clauses is LA-solvable, and let

TransfCls be obtained by applying LIN to LCls ∪Gls. Let Σ be an LA-solution of

LCls∪Gls. We now construct an LA-solution of TransfCls. For any predicate newp

introduced by LIN via a clause of the form:

newp(X1, . . . ,Xt)← A1, . . . ,Ak

we define a symbolic interpretation Σ′ as follows:

Σ′(newp(X1, . . . ,Xt)) = Σ(A1) ∧ . . . ∧ Σ(Ak)

Now, we are left with the task of proving that Σ′ is indeed an LA-solution of

TransfCls. The clauses in TransfCls are either of the form

false← c,newq(X1, . . . ,Xu)

or of the form

newp(X1, . . . ,Xt)← c,newq(X1, . . . ,Xu)

where newp and newq are predicates introduced by LIN. We will only consider the

more difficult case where the conclusion is not false.

The clause newp(X1, . . . ,Xt) ← c,newq(X1, . . . ,Xu) has been derived (see the

linearization transformation LIN in Figure 2) in the following two steps.

(Step i) Unfolding newp(X1, . . . ,Xt)← A1, . . . ,Ak w.r.t. all atoms in its body using

k clauses in LCls:

A1 ← c1,B1 . . . Ak ← ck ,Bk

where some of the Bi ’s can be the true and c ≡ c1, . . . , ck , thereby deriving

newp(X1, . . . ,Xt)← c1, . . . , ck ,B1, . . . ,Bk

(Without loss of generality we assume that the atoms in the body of the clauses

are equal to, instead of unifiable with, the heads of the clauses in LCls.)

(Step ii) Folding newp(X1, . . . ,Xt) ← c1, . . . , ck ,B1, . . . ,Bk using a clause of the

form:

newq(X1, . . . ,Xu)← B1, . . . ,Bk

Thus, for newq(X1, . . . ,Xu)) we have the following symbolic interpretation:

Σ′(newq(X1, . . . ,Xu)) = Σ(B1) ∧ . . . ∧ Σ(Bk)

To prove that Σ′ is an LA-solution of TransfCls, we have to show that

LA |= ∀(c ∧ Σ′(newq(X1, . . . ,Xu))→ Σ′(newp(X1, . . . ,Xt)))

Assume that

LA |= c ∧ Σ′(newq(X1, . . . ,Xu))

Then, by definition of Σ′,

LA |= c ∧ Σ(B1) ∧ . . . ∧ Σ(Bk)

Since Σ is an LA-solution of LCls, we have that:

LA |= ∀(c1 ∧ Σ(B1)→ Σ(A1)) . . . LA |= ∀(ck ∧ Σ(Bk)→ Σ(Ak))

and hence

LA |= Σ(A1) ∧ . . . ∧ Σ(Ak)

Thus, by definition of Σ′,

LA |= Σ′(newp(X1, . . . ,Xt))· �

23

