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Abstract
We present a method for automatically generating verification con-
ditions for a class of imperative programs and safety properties. Our
method is parametric with respect to the semantics of the impera-
tive programming language, as it specializes, by using unfold/fold
transformation rules, a Horn clause interpreter that encodes that se-
mantics.

We define a multi-step operational semantics for a fragment of
the C language and compare the verification conditions obtained
by using this semantics with those obtained by using a more tradi-
tional small-step semantics. The flexibility of the approach is fur-
ther demonstrated by showing that it is possible to easily take into
account alternative operational semantics definitions for modeling
new language features. Finally, we provide an experimental evalu-
ation of the method by generating verification conditions using the
multi-step and the small-step semantics for a few hundreds of pro-
grams taken from various publicly available benchmarks, and by
checking the satisfiability of these verification conditions by using
state-of-the-art Horn clause solvers. These experiments show that
automated verification of programs from a formal definition of the
operational semantics is indeed feasible in practice.

Categories and Subject Descriptors I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation, Program ver-
ification; F.3.1 [Logic and Meaning of Programs]: Semantics of
Programming Languages—Partial evaluation, Program analysis;
F.3.2 [Logic and Meaning of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Mechanical verification;
F.4.1 [Mathematical Logic and Formal Languages]: Mathemati-
cal Logic—Logic and constraint programming; D.2.4 [Software
Engineering]: Software/Program Verification—Formal methods,
Model checking

General Terms Languages, Theory, Verification

Keywords Software model checking, program verification, pro-
gram specialization, semantics of programming languages, verifi-
cation conditions, constraint logic programming, Horn clauses.
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1. Introduction
A well-established trend in the verification of program correctness
relies on the generation of verification conditions (VCs, for short)
from the program code [2, 9, 24]. Verification conditions are logical
formulas whose satisfiability implies program correctness and can
be verified, if at all possible,1 by using specialized theorem provers
or Satisfiabilty Modulo Theories (SMT) solvers [4, 15].

Recently, constrained Horn clauses have been proposed as a
common encoding format for software verification problems, thus
facilitating the interoperability of different software model check-
ers, and efficient solvers are available for checking the satisfiability
of Horn-based verification conditions [4, 12, 15, 23]. The notion of
a constrained Horn clause is equivalent to the notion of a clause in
Constraint Logic Programming (CLP) [26], where constraints can
refer to any first order theory. (The choice of the terminology very
much depends on the context of use.)

Typically, verification conditions are obtained by using a ver-
ification condition generator which is a special-purpose software
component that implements algorithms that are specifically tailored
to handle the (syntax and semantics of the) programming language
under consideration and the class of properties of interest.

A VC generator takes as input a program written in a given pro-
gramming language, and a property of that program to be verified,
and by applying axiomatic rules à la Floyd-Hoare, it produces as
output a set of verification conditions.

Building a VC generator for programs written in a different
language, or in an extension of the considered language, or even for
programs in the same language but with a different semantics (for
instance, small-step, or multi-step, or big-step semantics) requires
the design and the implementation of a new, ad hoc algorithm.

In this paper we present a method for generating verification
conditions that is based on the Horn clause encoding of the oper-
ational semantics of the programming language and uses program
specialization based on unfold/fold rules.

The use of CLP program specialization for analyzing programs
is not novel. In [36] it has been used for analyzing imperative
programs and in [1] for analyzing Java bytecode. In [13] VCs are
generated from a small-step semantics, for verifying imperative
programs using iterated specialization. Here we extend and further
develop the VC generation method of [13], and we demonstrate its
generality, flexibility, and the performance that we have achieved
in our implementation.

Given an imperative program P and a safety property, we in-
troduce a CLP program I , which defines a predicate unsafe such
thatP is safe if and only if the atom unsafe is not derivable from I .
The CLP program I is parametric with respect to the imperative

1 Recall that the problem of verifying program correctness is undecidable.



program P , the operational semantics of its imperative language,
the property to be proved, and the logic used for specifying the
property of interest (in this case, the reachability of an unsafe state).

The verification conditions are obtained by specializing pro-
gram I with respect to its parameters. The specialization process is
performed by applying semantics-preserving unfold/fold transfor-
mation rules [16] guided by a strategy designed for verification con-
dition generation (VCG strategy, for short). Thus, the correctness of
the verification conditions follows directly from the correctness of
the transformation rules used during program specialization.

In our approach, similarly to [6, 31, 35], we use a formal rep-
resentation of the operational semantics as an explicit parameter
of the verification problem. One of the most significant advantages
of this approach is that it enables the design of widely applica-
ble VC generators for programs written in different programming
languages, and for different operational semantics of the same lan-
guage, by making small modifications only. Additionally, having
a formal model of the operational semantics specified as a CLP
program facilitates the design of interpreters which are actually ex-
ecutable by a Prolog system.

The contributions of the paper can be summarized as follows.
- We have defined a multi-step operational semantics for a fragment
of the C language.
- We have designed a VCG strategy which is parametric with
respect to the operational semantics of the imperative language
under consideration and the logic used for specifying the property
of interest.
- We have compared the verification conditions obtained by apply-
ing our VCG strategy on the multi-step semantics, with those ob-
tained by using the same VCG strategy on a more traditional small-
step semantics. Indeed, although these two semantics are equivalent
with respect to the specification of the input-output behavior of the
programs, they show differences in the structure of the verification
conditions that are generated and the subsequent ability of an auto-
matic system to prove the program properties of interest.
- We have further demonstrated the flexibility of the approach by
showing that it is possible, with a very low effort, to take into
account alternative operational semantics definitions for modeling
new language features.
- Finally, we have empirically proved the feasibility of the approach
by performing an experimental evaluation. We have generated ver-
ification conditions using the multi-step semantics and small-step
semantics for a few hundreds of programs taken from various pub-
licly available benchmarks. We have also checked the satisfiabil-
ity of these verifications conditions by using state-of-the-art Horn
clause solvers such as QARMC [23], Z3 [15], and MathSAT [4].
Our experiments show that, when compared with the HSF(C) soft-
ware model checker [23], which makes use of an ad hoc technique
for generating VCs, our semantics-based approach to VC genera-
tion incurs in a relatively small increase of verification time and,
interestingly enough, determines a significant improvement of ac-
curacy over HSF(C) itself.

In conclusion, we have demonstrated that the use of program
specialization for generating VCs provides great flexibility with
little performance overhead, and thus it is viable also in the practice
of automatic program verification.

2. An Imperative Language and its Operational
Semantics

We consider programs written in an imperative language, subset
of the C intermediate Language (CIL) [34], manipulating objects
of elementary types, such as integers or characters. The language
presented in this paper, is an extension of that in [13]. In particular,
(i) functions can be recursively defined, (ii) there is an abort

command which causes the abrupt termination of the execution of
the program. The syntax of our language is shown in Table 1.

Language assumptions. We assume that in our language: (i) la-
bels are totally ordered and every label occurs in every program no
more than once, (ii) there are no blocks, nor structures, nor point-
ers, (iii) expressions have no side effects, but functions can have
side effects. Without loss of generality, we also assume that the last
command of every program is `h : halt and no other halt com-
mand occurs in the program.

In order to present the multi-step (MS) operational semantics of
our imperative language (see, for instance, [37]), we introduce the
following functions and data structures. Let the global variables of
a program be those introduced in the declarations of the program,
and the local variables of a function be those introduced in the
declarations of the function definition. We assume that the value of
every variable can be denoted by an integer.

A global environment δ : Vars → Z, is a function that maps
global variables to their integer values. A local environment σ :
Vars → Z, is a function that maps function parameters and local
variables to their integer values.

A configuration is a pair 〈〈c, γ〉〉, where: (i) c is a labelled com-
mand, and (ii) γ is either a pair 〈δ, σ〉 in case of regular execution
(the configuration is said to be regular) or a triple 〈⊥, δ, σ〉 in case
of an aborted execution (the configuration is said to be aborted),
where δ is a global environment, σ is a local environment, and⊥ is
a symbol denoting aborted execution.

Given a (local or global) environment ϕ, a variable x, and an
integer v, the term update(ϕ, x, v) denotes the environment ϕ′ that
is equal to ϕ, except that ϕ′(x)=v.

For any program P , for any label `, (i) at(`) denotes the com-
mand in P with label `, and (ii) nextlab(`) denotes the label of the
command that is written in P immediately after the command with
label `. Given a function f , the first command of f is called the
entry point of f and its label is denoted by firstlab(f). For any ex-
pression e, any global environment δ, and any local environment σ,
JeK δ σ is the integer value of e. For instance, if x is a global vari-
able and δ(x)=2, then Jx+1K δ σ = 3.

2.1 Multi-step semantics
The MS semantics is represented as a binary transition relation be-
tween configurations, denoted =⇒, which is defined by the follow-
ing rules R1–R5. As usual, by =⇒∗ we denote the reflexive, tran-
sitive closure of =⇒. If C1 =⇒ C2 or C1 =⇒∗ C2 we say that C1

is the source configuration and C2 is the target configuration.
(R1) Assignment. Let v be the integer JeK δ σ.
〈〈` :x=e, 〈δ, σ〉〉〉 =⇒ 〈〈at(nextlab(`)), update(〈δ, σ〉, x, v)〉〉

where update has been extended to pairs of functions with non
overlapping domains as follows: update(〈δ, σ〉, x, v) is

– 〈update(δ, x, v), σ〉, if x is a global variable,
– 〈δ, update(σ, x, v)〉, if x is a local variable or a function

parameter.
Informally, an assignment updates either the global environment δ
or the local environment σ.
(R2) Function call. During the execution a function definition
one of the following situations may occur: either execution aborts
(see rule (R2a)), or it proceeds regularly and the value of a given
expression is returned (see rule (R2r)).

Let {x1, . . . , xk} and {y1, . . . , yh} be the set of the formal
parameters and the set of the local variables, respectively, of the
function f .
(R2a)〈〈` :x=f(e1, . . . , ek), 〈δ, σ〉〉〉 =⇒ 〈〈`a : abort, 〈⊥, δ′, σ〉〉〉

if 〈〈at(firstlab(f)), 〈δ, σ〉〉〉 =⇒∗ 〈〈`a : abort, 〈⊥, δ′, σ′〉〉〉
where σ is a local environment used in the definition of f , the ex-
pressions e1, . . . , ek are evaluated in the caller environment and



x, y, . . . ∈ Vars (variable identifiers) f, g, . . . ∈ Functs (function identifiers)
`, `1, . . .∈ Labs (labels) const ∈ Z (integer constants, character constants, . . .)
type ∈ Types (int, char, . . .) uop, bop ∈ Ops (unary and binary operators: +,−,≤, . . .)
prog ::= decl∗ fundef ∗ lab cmd+ (programs) decl ::= type x (declarations)
fundef ::= type f (decl∗) { decl∗ lab cmd+ } (function definitions) lab cmd ::= ` : cmd (labelled commands)
expr ::= const | x | uop expr | expr bop expr (expressions)
cmd ::= x = expr | x = f (expr∗) | return expr | goto ` | if (expr) `1 else `2 | abort | halt (commands)

Table 1. Syntax of the imperative language under consideration. Superscripts + and ∗ denote non-empty and possibly empty finite sequences,
respectively. Commands occurring in sequences are possibly separated by semicolons.

their values are bound to the function parameters; σ is of the form:
{〈x1, Je1K δ σ〉, . . . , 〈xk, JekK δ σ〉, 〈y1, n1〉, . . . , 〈yh, nh〉}, for
some values n1, . . . , nh in Z (indeed, when the local variables
y1, . . . , yh are declared, they are not initialized).2

(R2r) 〈〈` :x=f(e1, . . . , ek), 〈δ, σ〉〉〉 =⇒
〈〈at(nextlab(`)), update(〈δ′, σ〉, x, JeK δ′ σ′)〉〉

if 〈〈at(firstlab(f)), 〈δ, σ〉〉〉 =⇒∗ 〈〈`r : return e, 〈δ′, σ′〉〉〉
Informally, a function call either (i) aborts, if the execution of the
function definition eventually leads to an aborted configuration, or
(ii) updates the environment using the value returned by the func-
tion definition and continues executing the command that occurs
after the function call.
(R3) Abort. 〈〈`a : abort, 〈δ, σ〉〉〉 =⇒ 〈〈`a : abort, 〈⊥, δ, σ〉〉〉
The abort command determines the move from a regular configu-
ration to an aborted configuration.
(R4) Conditional. Let v be the integer JeK δ σ.
〈〈` : if (e) `1 else `2, 〈δ, σ〉〉〉 =⇒ 〈〈at(`1), 〈δ, σ〉〉〉 if v 6=0

〈〈` : if (e) `1 else `2, 〈δ, σ〉〉〉 =⇒ 〈〈at(`2), 〈δ, σ〉〉〉 if v=0

Depending on the evaluation of the expression used in the condi-
tion, an if-then-else command follows either the ‘then’ branch or
the ‘else’ branch.
(R5) Jump. 〈〈` :goto `′, 〈δ, σ〉〉〉 =⇒ 〈〈at(`′), 〈δ, σ〉〉〉
The goto `′ command simply makes the program execution to
continue from the command with label `′.

Note that rules are given neither for the halt command, nor
the return commands, nor for aborted configurations (indeed,
rule (R3) for the abort command is applied only when the abort
command occurs in a regular configuration).

3. Encoding Program Safety using Constraint
Logic Programs

In this section we define program safety and we show how to
encode it as a CLP program.
Given a program P acting on the global variables z1, . . . , zr , we
define an initial configuration to be a triple: 〈〈`0 :c0, δInit, σInit〉〉,
where: (i) `0 : c0 is the first command of P , (ii) δInit is the initial
global environment of the form: {〈z1, n1〉, . . . , 〈zr, nr〉}, where
n1, . . . , nr are some given integers in Z, and (iii) the initial local
environment σInit is an empty function, that is, a function whose
domain is the empty set (indeed, there are no local variables in
the initial configuration). A final configuration is either an aborted
configuration or a configuration whose command is halt. An error
configuration is a final configuration that satisfies a given undesir-
able property as we now specify.
Safety. The safety of a program P is defined as the non-reachability
of an error configuration from an initial configuration through an
execution of P .

2 Since the values of the ni’s are left unspecified, this transition is nonde-
terministic.

We may formalize safety by means of an unsafety triple of the
form {{Init}}P {{Err}}, where Init denotes a set of initial configu-
rations, and Err denotes a set of error configurations. We say that
a program P is unsafe with respect to Init and Err, if there exist
Ci∈ Init and Ce∈Err such that Ci =⇒∗Ce. A program is said to
be safe if it is not unsafe.

Now we will show how to encode as a CLP program the multi-
step semantics and an unsafety triple.

3.1 CLP encoding of the interpreter for multi-step semantics
We assume that the reader is familiar with the basic notions of
constraint logic programming [26]. We will consider constraint
logic programs with linear constraints over the set Z of the integer
numbers. The semantics of a CLP program I is defined to be the
least Z-model of I , denotedM(I), that is, the least Z-interpretation
in which every clause of I is true [26].

The transition relation =⇒ between configurations and its re-
flexive, transitive closure =⇒∗ are encoded by the binary predi-
cates tr and reach, respectively. These predicates, shown in Ta-
ble 2, constitute the CLP interpreter for the multi-step semantics of
the imperative language under consideration. We have the clauses
relative to: (i) assignments (clause 1), (ii) function calls (clauses 2a
and 2r), (ii) aborts (clause 3), (iv) conditionals (clauses 4t and 4f),
(v) jumps (clause 5), (vi) environment updates (clauses 6 and 7)
and (vii) reachability of configurations (clauses 8 and 9).

Configurations are represented by using terms of the form
cf(cmd(L,C),Env), where: (i) L and C encode the label and the
command, respectively, (ii) Env is either a pair (D,S) or a triple
(bot,D,S), where bot represents the symbol ⊥, and D and S en-
code the global and the local environment, respectively.

The term asgn(X,expr(E)) encodes the assignment of the
value of the expression E to the variable X. The predicate
eval(E,(D,S),V) evaluates the expression E to the value V in
the global environment D and the local environment S. The predi-
cate eval list extends the applicability of the predicate eval to
a lists of expressions. The predicate beval(E,(D,S)) holds if the
value of the expression E is not 0 in the environment (D,S).

The predicate at(L,C) returns the command C with label L.
The predicate nextlab(L,L1) returns the label L1 of the com-
mand that is written immediately after the command with la-
bel L. The predicate firstlab(F,L1) returns the label L1 of the
first command of the definition of the function F. The predicate
build funenv(F,Vs,FEnv) takes as input the function identi-
fier F and the list Vs of the values of the actual parameters, retrieves
the definition of function F using the predicate fun, and builds the
local environment FEnv to be used for starting the execution of the
body of F.

The term ite(E,L1,L2) encodes the conditional command
(ite stands for if-then-else), and labels L1 and L2 specify where
to jump to, depending on the value of the expression E. The term
goto(L) encodes the jump to label L. The predicates global(X)
and local(X) hold if X denotes a global or a local variable, re-
spectively. The predicate update glocal(E,X,V,E1) updates the
(global or local) environment E and produces the new (global or lo-
cal) environment E1 by binding the variable X to the value V.



1. tr(cf(cmd(L,asgn(X,expr(E))), (D,S)), cf(cmd(L1,C), (D1,S1))) :-
eval(E,(D,S),V), update((D,S),X,V,(D1,S1)), nextlab(L,L1), at(L1,C).

2a.tr(cf(cmd(L,asgn(X,call(F,Es))), (D,S)), cf(cmd(LA,abort), (bot,D1,S))) :-
eval list(Es,D,S,Vs), build funenv(F,Vs,FEnv), firstlab(F,FL), at(FL,C),
reach(cf(cmd(FL,C), (D,FEnv)), cf(cmd(LA,abort), (bot,D1,S1))).

2r.tr(cf(cmd(L,asgn(X,call(F,Es))), (D,S)), cf(cmd(L2,C2), (D2,S2))) :-
eval list(Es,D,S,Vs), build funenv(F,Vs,FEnv), firstlab(F,FL), at(FL,C),
reach(cf(cmd(FL,C), (D,FEnv)), cf(cmd(LR,return(E)), (D1,S1))),
eval(E,(D1,S1),V), update((D1,S),X,V,(D2,S2)), nextlab(L,L2), at(L2,C2).

3. tr(cf(cmd(L,abort), (D,S)), cf(cmd(L,abort), (bot,D,S))).
4t. tr(cf(cmd(L,ite(E,L1,L2)), (D,S)), cf(cmd(L1,C), (D,S))) :- beval(E,(D,S)), at(L1,C).
4f.tr(cf(cmd(L,ite(E,L1,L2)), (D,S)), cf(cmd(L2,C), (D,S))) :- beval(not(E),(D,S)), at(L2,C).
5. tr(cf(cmd(L,goto(L1)), (D,S)), cf(cmd(L1,C), (D,S))) :- at(L1,C).
6. update((D,S),X,V,(D1,S)) :- global(X), update glocal(D,X,V,D1).
7. update((D,S),X,V,(D,S1)) :- local(X), update glocal(S,X,V,S1).
8. reach(C,C).
9. reach(C,C2) :- tr(C,C1), reach(C1,C2).

Table 2. The CLP interpreter for the multi-step operational semantics MS: the clauses for tr and reach.

3.2 CLP encoding of an unsafety triple
We encode any given unsafety triple {{Init}}P {{Err}} by the CLP
program I containing the following clause:
10. unsafe :- initConf(C), reach(C,C1), errorConf(C1).
together with the clauses defining: (i) the predicates tr and reach
that encode the interpreter, (ii) the predicates initConf and
errorConf that encode Init and Err, respectively, and (iii) the
predicates that encode the commands of the imperative program P
(among these last clauses we have those defining the predicate at).

Program I encodes the given unsafety triple in the sense that
the unsafety triple holds (and thus the program P is unsafe) iff the
atom unsafe belongs to the least Z-model of I . We can state the
following correctness result.
THEOREM 1. (Correctness of CLP Encoding) Let I be the CLP
encoding of any given unsafety triple {{Init}} P {{Err}}. The pro-
gram P is safe with respect to Init and Err iff unsafe /∈M(I).

The proof of this theorem is similar to the proof of Theorem 1
in [13]. However, in this paper: (i) we use a slightly different
representation of configurations (we do not use an execution stack),
and (ii) the predicate reach has two arguments, instead of one only
(this change is needed by the multi-step semantics MS for encoding
the reachability relation within function calls).

4. Automatic generation of Verification
Conditions by Program Specialization

In this section we present the Verification Condition Generation
strategy (VCG strategy, for short) that we use for automatically
generating verification conditions.

The VCG strategy (see Figure 1) takes as input the CLP pro-
gram I encoding an unsafety triple as shown is Section 3, and pro-
duces by program specialization a set VCs of verification condi-
tions, here encoded as the CLP program Isp, such that Isp is equiva-
lent to I with respect to the atom unsafe, that is, unsafe 6∈M(I)
iff unsafe 6∈M(Isp).

The VCG strategy works by performing the so-called removal
of the interpreter, that is, by removing the overhead caused by the
level of interpretation which is present in the initial program I ,
thereby generating the desired set Isp of CLP clauses, whose call
graph may be viewed as an abstraction of the control flow graph of
the imperative program P .

Now, due to undecidability limitations, there is no algorithm for
checking whether or not unsafe 6∈M(I). Moreover, even if one
restricts himself to decidable subclasses of programs and proper-
ties, it is very hard to construct efficient algorithms for showing

that unsafe 6∈M(I), thereby proving program safety, because in
general for that proof, one has to make deductions within mul-
tiple constraint theories. We are not aware of any available tool
which can perform in an automatic and effective way, the check
that unsafe 6∈M(I), starting directly from the program I encod-
ing of the unsafety triple.

In contrast, by relying on the fact that unsafe 6∈ M(I) iff
unsafe 6∈M(Isp) iff Isp∪{:- unsafe.} is satisfiable, we can prove
program safety by showing the satisfiability of Isp ∪{:- unsafe.}.
It turns out that this satisfiability check is often much easier than
the check that unsafe 6∈ M(I). This is due to the fact that the
VCG strategy, when it specializes the CLP program I and produces
the verification conditions Isp, compiles away both the references
to the commands of the program P and the references to the
operational semantics of the imperative programming language.
In practice, it is frequently the case that the satisfiability check
required for showing program safety can successfully be performed
by automatic tools which deal with Horn clauses with linear integer
arithmetic constraints (see, for instance, [4, 12, 15, 23]).

4.1 The VCG strategy
During the application of the VCG strategy we use the following
transformation rules: unfolding, definition introduction, and fold-
ing [16, 18]. In particular, VCG strategy unfolds the initConf and
errorConf predicates which characterize the initial and the error
configurations, the predicate tr encoding the operational seman-
tics, thereby exploring the control flow graph of program P . New
predicate definitions are introduced for calls to the recursive predi-
cate reach and are used for applying the folding rule.

Unfolding. Given a clause C of the form H :- c,L,A,R, where
H and A are atoms, c is a constraint, and L and R are (possibly
empty) conjunctions of atoms, let {Ki :- ci,Bi | i = 1, . . . ,m} be
the set of the (renamed apart) clauses in program I such that, for
i = 1, . . . ,m, A is unifiable with Ki via the most general unifier ϑi

and (c,ci)ϑi is satisfiable. We define the following function Unf:
Unf (C, A, I) = {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m}

Each clause in Unf (C, A, I) is said to be derived by unfolding C
w.r.t. A using I .

The application of the unfolding rule during specialization is
guided by annotations which tell whether or not the atoms that oc-
cur in bodies of clauses should be unfolded. These annotations en-
sure that any sequence of (sets of) clauses constructed by unfolding
is finite. The reader may refer to [29] for a survey on related tech-
niques.



In particular, every atom is marked by an unfolding annota-
tion, which is: either (i) unfoldable once, or (ii) fully unfoldable,
or (iii) non-unfoldable. An atom is said to be unfoldable if it is
annotated as unfoldable once or fully unfoldable.

For a clause C, an atom A which is unfoldable once, and a pro-
gram I , the unfolding rule derives the set Unf (C,A,I) of clauses.
For an atom A which is fully unfoldable, the unfolding rule de-
rives the set FullUnf (C,A,I) of clausesD defined as follows: either
(i) D∈Unf(C,A,I) and D contains no unfoldable atom in its body,
or (ii) D ∈ FullUnf (D′,B,I) for some D′ ∈Unf (C,A,I) and some
unfoldable atom B occurring in the body of D′. Informally, for an
atom A which is fully unfoldable, the unfolding rule is repeatedly
applied to all clauses which are directly or indirectly derived by
unfolding C w.r.t. A using I , until all unfoldable atoms have been
unfolded.3

Definition introduction. The VCG strategy makes use of the func-
tion Gen, called generalization operator, for introducing new pred-
icate definitions. Given a clause E: H :- e, reach(cf1,cf2),
Gen(E) returns a clause G: newr(X) :- reach(cf1,cf2) such
that: (i) newr is a new predicate symbol, and (ii) X is the set of
variables occurring in reach(cf1,cf2).

Note that, since the clauses produced by Gen keep no informa-
tion about the constraints on the variables in X, the number of such
clauses is finite (and depends on the number of the labeled com-
mands of program P ). This property will be used when proving the
termination of the VCG strategy.

For the purpose of generating VCs considered in this paper,
it suffices to use the simple generalization operator presented
above, which generalizes the constraint e occurring in the body of
clause E to the constraint true (which is left implicit in clause G)
and keeps the configurations unaltered.

For reasons of space, we omit to define alternative generaliza-
tion operators that keep some constraints (for instance, constraints
belonging to a finite abstract domain) or that partially abstract sub-
terms in the configurations (for instance, command labels) and may
derive definitions which are more general, and thus, obtain more
compact verification conditions.

More sophisticated generalization operators [19], which use
widening and convex-hull [7, 8] and take into account the set of
definitions already introduced, are needed when applying program
specialization for verifying program correctness [11, 13]. However,
in this paper we do not deal with specialization-based verification,
and we only address the problem of generating the verification
conditions.

Folding. Clause E: H :- e, reach(cf1,cf2) is folded by using
clauseG: newr(X) :- reach(cf1,cf2), thereby deriving the new
clause H :- e, newr(X).

The correctness of the folding rule guarantees that the clause
obtained by folding is equivalent to clause E with respect to the
least Z-model semantics [16, 18] (in our case, because the atom
newr(X) is equivalent, by definition, to the atom reach(cf1,cf2)).

Termination and Correctness of the VCG strategy
The VCG strategy has two potential sources of non-termination:
the loop within the UNFOLDING phase, and the UDF-cycle, that is
the outer loop containing the UNFOLDING and the DEFINITION-
INTRODUCTION & FOLDING phases. However, as already men-
tioned, the unfolding annotations of the atoms occurring in the body
of the clauses guarantee the termination of the UNFOLDING phase.
Moreover, we have shown above that the set of definitions which
can be introduced by using the Gen function, is finite, and thus

3 The order in which clauses and atoms in their bodies are selected for
unfolding is not relevant.

Input: Program I encoding a given unsafety triple.
Output: Program Isp encoding the verification conditions VCs, such
that unsafe∈M(I) iff unsafe∈M(Isp).
INITIALIZATION:
Isp := ∅;
InCls :={unsafe:-initConf(C),reach(C,C1),errorConf(C1)};
Defs := ∅;
while in InCls there is a clause C with an atom in its body do

UNFOLDING: SpC := Unf (C, A, I),
where A is the leftmost atom in the body of C;

while in SpC there is a clause D whose body contains an occur-
rence of an unfoldable atom A do
SpC := (SpC− {D}) ∪ U ,
where U = Unf (D, A, I), if A is unfoldable once, and

U = FullUnf (D, A, I), if A is fully unfoldable.
end-while;
DEFINITION-INTRODUCTION & FOLDING:
while in SpC there is a clause E of the form:

H :- e, L, reach(cf1,cf2), R
where H is either unsafe or an atom of the form newp(X), e is a
constraint, and L and R are possibly empty conjunctions of atoms
do

if in Defs there is a (renamed apart) clause D of the form:
newq(V) :- B

where V is the set of variables occurring in B and,
for some substitution ϑ, Bϑ = reach(cf1,cf2)

then SpC := (SpC− {E}) ∪ {H :- e, L,newq(V)ϑ,R};
else let Gen(E) be newr(V) :- reach(cf1,cf2)

where: (i) newr is a predicate symbol not occurring
in I ∪ Defs, and (ii) V is the set of variables occurring
in reach(cf1,cf2);
Defs := Defs ∪ {Gen(E)};
InCls := InCls ∪ {Gen(E)};
SpC := (SpC− {E}) ∪ {H :- e, L,newr(V),R}

end-while;
InCls := InCls− {C};
Isp := Isp ∪ SpC;

end-while;

Figure 1. The Verification Condition Generation (VCG) strategy.

the set InCls will eventually become empty. Hence the whole VCG
strategy terminates.

The correctness of the VCG strategy with respect to the least
model semantics is a direct consequence of the correctness of the
transformation rules [16, 20]. Thus, we have the following result.

THEOREM 2. (Termination and Correctness of the VCG strategy)
(i) The VCG strategy terminates. (ii) Let program Isp be the output
obtained by applying the VCG strategy on the input program I .
Then unsafe ∈M(I) iff unsafe ∈M(Isp).

4.2 Applying the VCG Strategy
Let us consider the interpreter for the multi-step semantics pre-
sented in Section 3. In this example we will see in action the Verifi-
cation Condition Generation strategy of Figure 1, when given in in-
put the encoding of the unsafety triple {{Init}} gcd {{Err}}, where
gcd is the following C program for computing the greatest common
divisor between two integers x and y, Init is the set of configura-
tions such that x≥ 1 ∧ y≥ 1, and Err is the set of configurations
such that x<0.



Program gcd
n1int x, y;
n2int sub(int a, int b) {
n3int r = a-b;
n4return r;
n5}
n6void main() {
n7while (x!=y)
n8if (x>y) x = sub(x,y);
n9else y = sub(y,x);
n10}

First, the source C program is translated into a program in the CIL
subset complying with the syntax of Table 1. In particular, this
translation replaces while loops by using conditionals and jumps.
Then, the resulting CIL program is encoded into a set of clauses. In
the gcd example, we derive the following clauses:
11. fun(sub,[a,b],[r],1).
12. at(1,asgn(r,minus(a,b))).
13. at(2,return(r)).
14. fun(main,[],[],3).
15. at(3,ite(neq(x,y),4,h)).
16. at(4,ite(gt(x,y),5,7)).
17. at(5,asgn(x,call(sub,[x,y]))).
18. at(6,goto(3)).
19. at(7,asgn(y,call(sub,[y,x]))).
20. at(8,goto(3)).
21. at(h,halt).
22. globals([x,y]).

where: (i) the predicate fun encodes function definitions, (ii) the
predicate at encodes labeled commands, and (iii) the predicate
globals encodes the list of identifiers for global variables. In
particular, clause 11 encodes the sub function, having two formal
parameters [a,b], one local variable [r], and whose definition
starts with the command with label 1 (encoded by clause 12).
Note that, by effect of the translation of C into CIL, the while
loop at line n7 has been encoded into the conditional (ite) of
clause 15 along with the jumps (goto) of clauses 18 and 20.
The first argument of the ite command is the condition of the
while loop. The second (third) argument is the label of the first
command occurring in the ‘then’ (‘else’, respectively) branch of
the conditional.

We also have the clauses for the initial and error configu-
rations: initConf(C,[X,Y]):- at(3,C), X>=1, Y>=1. and
errorConf(C,[X,Y]):- at(h,C), X=< -1. Note that initConf
refers to the entry point of the main function (encoded by clause 15),
and errorConf refers to the halt command (encoded by clause 21).
Since the focus of this paper is the generation of the verification
conditions, the properties characterizing the initial and error con-
figurations have intentionally been left simple, and restricted to
predicates definable by sets of non-recursive clauses. The inter-
ested reader may refer to [14] for more complex properties defined
by a set of possibly recursive Horn clauses.

In order to generate a set of VCs for the gcd program, we have
first to provide suitable unfolding annotations to the VCG strategy.
In particular, (i) atoms whose predicate symbol belongs to the
set {initConf, errorConf} are (annotated as) fully unfoldable;
(ii) atoms of the form tr( , ) are fully unfoldable if they are not
unifiable with the heads of clauses 2a and 2r, otherwise they are
unfoldable once; (iii) atoms of the form reach(cf(Cmd, ), ) are
non-unfoldable when Cmd is an if-then-else command, or the entry
point of a function definition, or a jump to a command different
from if-then-else, otherwise the reach atoms are unfoldable once.

In the following, for reasons of readability, we will omit the
round parentheses around the pair of lists denoting the global and
local environments. The VCG strategy starts off by performing the
UNFOLDING phase for the set InCls={10}.

By unfolding clause 10 w.r.t. the atom initConf(X), which is
fully unfoldable, we get:
23. unsafe:- X>=1, Y>=1,

reach(cf(cmd(3,ite(neq(x,y)),4,h),
[(x,X),(y,Y)],[]),C), errorConf(C).

Then, the UNFOLDING phase selects the fully unfoldable atom
errorConf(C), as it is the only unfoldable atom in clause 23 (note
that the reach( , ) atom is not unfoldable because its command
is an if-then-else). By unfolding errorConf(C) we get:

24. unsafe:- X>=1, Y>=1, X1=< -1,
reach(cf(cmd(3,ite(neq(x,y)),4,h),[(x,X),(y,Y)],[]),

cf(cmd(h,halt),[(x,X1),(y,Y1)],[]))).

We have that no unfoldable atom occurs in the body of clause 24.
Thus, we continue by executing the DEFINITION-INTRODUCTION
& FOLDING phase. In order to fold clause 24 the following clause
is introduced in Defs and added to InCls:
25. new3(X,Y,X1,Y1):-

reach(cf(cmd(3,ite(neq(x,y)),4,h),[(x,X),(y,Y)],[]),
cf(cmd(h,halt),[(x,X1),(y,Y1)],[]))).

where new3 is a new predicate symbol. By folding clause 24
w.r.t. the atom reach using clause 25 we get:
26. unsafe:- X>=1, Y>=1, X1=< -1, new3(X,Y,X1,Y1).

Since InCls 6=∅, we perform one more iteration of the UDF-cycle.
By unfolding clause 25 w.r.t. the atom in its body we get:

27. new3(X,Y,X1,Y1):- X=Y,
reach(cf(cmd(h,halt),[(x,X),(y,Y)],[]),

cf(cmd(h,halt),[(x,X1),(y,Y1)],[])).
28. new3(X,Y,X1,Y1):- X>=Y+1,

reach(cf(cmd(4,ite(gt(x,y)),5,7),[(x,X),(y,Y)],[]),
cf(cmd(h,halt),[(x,X1),(y,Y1)],[])).

29. new3(X,Y,X1,Y1):- X+1=<Y,
reach(cf(cmd(4,ite(gt(x,y)),5,7),[(x,X),(y,Y)],[]),

cf(cmd(h,halt),[(x,X1),(y,Y1)],[])).

Note that the symbolic evaluation of the while loop condition
neq(x,y) in clause 25 generates the three constraints X=Y (the exit
condition), X>=Y+1 and X+1=<Y in clauses 27–29.

We have that the atom in clause 27 is unfoldable, and hence, by
reflexivity of the reach predicate (clause 8), we get the following
constrained fact:
30. new3(X,Y,X,Y):- X=Y.

No unfoldable atom occurs in the body of clauses 28 and 29. In
order to fold clause 28 the following clause is introduced in Defs
and InCls:
31. new4(X,Y,X1,Y1):-

reach(cf(cmd(4,ite(gt(x,y)),5,7),[(x,X),(y,Y)],[]),
cf(cmd(h,halt),[(x,X1),(y,Y1)],[])).

By folding clauses 28 and 29 using clause 25 we get:
32. new3(X,Y,X1,Y1):- X>=Y+1, new4(X,Y,X1,Y1).
33. new3(X,Y,X1,Y1):- X+1=<Y, new4(X,Y,X1,Y1).

Since we have introduced a new definition, namely clause 31,
InCls 6= ∅ and we need to perform one more iteration of the UDF-
cycle. By unfolding clause 31 w.r.t. the atom reach we get:

34. new4(X,Y,X1,Y1):- X>=Y+1,
reach(cf(cmd(5,asgn(x,call(sub,[x,y]))),

[(x,X),(y,Y)],[]),
cf(C,[(x,X1),(y,Y1)],[])).

35. new4(X,Y,X1,Y1):- X=<Y,
reach(cf(cmd(7,asgn(y,call(sub,[y,x]))),

[(x,X),(y,Y)],[]),
cf(C,[(x,X1),(y,Y1)],[])).

Clauses 34 and 35 correspond to the ‘then’ and ‘else’ branches of
the conditional at lines n8 and n9, respectively, of the gcd program.

The atom occurring in clause 34 is unfoldable; after the execu-
tion of some unfolding steps we get:
36. new4(X,Y,X3,Y3):- X>=Y+1, A=X, B=Y, X2=R1,

reach(cf(cmd(1,asgn(r,minus(a,b))),
[(x,X),(y,Y)],[(a,A),(b,B),(r,R)]),

cf(cmd(2,return(r)),
[(x,X1),(y,Y1)],[(a,A1),(b,B1),(r,R1)]))),



reach(cf(cmd(3,ite(neq(x,y)),4,h),
[(x,X2),(y,Y1)],[]),

cf(cmd(h,halt),[(x,X3),(y,Y3)],[]))).

We observe that: (i) the command occurring in the first argument
of the first reach atom corresponds to the entry point of the sub
function, and (ii) the command occurring in the first argument of
the second reach atom is an ite command. Thus, none of the
atoms of clause 36 are unfoldable.

Note also that the local environments in the first argument of
the first reach atom is a list where new logical variables, namely
A, B, and R, are associated with the parameters and local variable
identifiers used by sum, that is, a, b, and r.

In order to fold the first atom occurring in the body of clause 36
the following clause is introduced:
37. new6(X,Y,A,B,R,X1,Y1,A1,B1,R1):-

reach(cf(cmd(1,asgn(r,minus(a,b))),
[(x,X),(y,Y)],[(a,A),(b,B),(r,R)]),

cf(cmd(2,return(r)),
[(x,X1),(y,Y1)],[(a,A1),(b,B1),(r,R1)]))).

By folding clause 36 using definition 37 we get:
38. new4(X,Y,X3,Y3):- X>=Y+1, A=X, B=Y, X2=R1,

new6(X,Y,A,B,R,X1,Y1,A1,B1,R1),
reach(cf(cmd(3,ite(neq(x,y)),4,h),

[(x,X2),(y,Y1)],[]),
cf(cmd(h,halt),[(x,X3),(y,Y3)],[]))).

In order to fold the second atom occurring in the body of clause 38
the VCG strategy does not require to introduce any new definition.
Indeed, it is possible to fold clause 38 using clause 25 in Defs and
we get:
39. new4(X,Y,X3,Y3):- X>=Y+1, A=X, B=Y, X2=R1,

new6(X,Y,A,B,R,X1,Y1,A1,B1,R1), new3(X2,Y1,X3,Y3).

Clause 35, corresponding to the ‘else’ branch, is processed in a
similar way, and we get:
40. new4(X,Y,X3,Y3):- X=<Y, A=Y, B=X, Y2=R1,

new6(X,Y,A,B,R,X1,Y1,A1,B1,R1), new3(X1,Y2,X3,Y3).

Since we introduced the new predicate new6 defined by clause 37,
we start a new iteration of the UDF-cycle. By unfolding clause 37
w.r.t. the atom in its body we get:
41. new6(X,Y,A,B,R,X1,Y1,A1,B1,R1):- R1=A-B,

reach(cf(cmd(2,return(r)),
[(x,X),(y,Y)],[(a,A),(b,B),(r,R)]),

cf(cmd(2,return(r)),
[(x,X1),(y,Y1)],[(a,A1),(b,B1),(r,R1)]))).

The atom reach in the above clause is unfoldable. After one more
unfolding step, by using the reflexivity of the reach predicate, we
get:
42. new6(X,Y,A,B,R,X,Y,A,B,R1):- R1=A-B.

Since InCls=∅, the VCG strategy terminates. The final, specialized
program consists of the following set VCMS of verification condi-
tions:
43. new6(X,Y,A,B,R,X,Y,A,B,R1):- R1=A-B.
44. new4(X,Y,X3,Y3):- X>=Y+1, A=X, B=Y, X2=R1,

new6(X,Y,A,B,R,X1,Y1,A1,B1,R1), new3(X2,Y1,X3,Y3).
45. new4(X,Y,X3,Y3):- X=<Y, A=Y, B=X, Y2=R1,

new6(X,Y,A,B,R,X1,Y1,A1,B1,R1), new3(X1,Y2,X3,Y3).
46. new3(X,Y,X,Y):- X=Y.
47. new3(X,Y,X1,Y1):- X>=Y+1, new4(X,Y,X1,Y1).
48. new3(X,Y,X1,Y1):- X+1=<Y, new4(X,Y,X1,Y1).

49. unsafe:- X>=1, Y>=1, X1=< -1, new3(X,Y,X1,Y1).

5. Multi-step and small-step semantics compared
Now we will compare the multi-step operational semantics MS
presented in Section 2 with a small-step operational semantics,
denoted SS, that extends and improves the semantics presented
in [13]. We will also discuss the main differences between the

verification conditions we derive by applying the VCG strategy for
these two different semantics.

The small-step semantics SS is similar to the multi-step seman-
tics MS in the case of expressions, assignments, conditionals, and
jumps.4 These two semantics differ in the way they deal with func-
tion calls and function return’s.

Before making the comparison between the MS and the SS se-
mantics, let us briefly recall the SS semantics for function calls
(see [13], for details). The SS semantics keeps an execution stack
(which is empty in the initial configurations), whose elements are
called activation frames. Each activation frame contains informa-
tion about a single function call. In particular, it includes (i) the
label where to jump after returning from the function call, (ii) the
variable used for storing the value returned by the call, and (iii) the
local environment to be used during the execution of the function.

Configurations are encoded as terms of the form cf(Cmd,D,T)
where Cmd is a labeled command, D is a global environment and T
is a stack of activation frames.

When a function call of the form ` : x = f(e1, . . . , ek) is en-
countered, the SS semantics ‘dives into’ the function definition and
makes a transition from the configuration containing the function
call to the configuration containing the entry point of f (that is, the
command at(firstlab(f))). When making this transition the SS se-
mantics pushes a new activation frame on top of the execution stack
as shown in the following clause:
tr(cf(cmd(L,asgn(X,call(F,Es))),D,T),

cf(cmd(FL,C),D,[frame(L1,X,FEnv)|T])) :-

nextlab(L,L1), loc env(T,S), eval list(Es,D,S,Vs),
build funenv(F,Vs,FEnv), firstlab(F,FL), at(FL,C).

When exiting from a function call, that is, when a command of the
form ` : return e is encountered, the topmost activation frame in
the execution stack is retrieved, and the caller environment is up-
dated using the value returned by the function call. Then, program
execution proceeds by popping the activation frame from the exe-
cution stack and jumping to the command which is written imme-
diately after the function call.
tr(cf(cmd(L,return(E)),D,[frame(L1,X,S)|T]),

cf(cmd(L1,C),D1,T1)) :-
eval(E,D,S,V), update(D,T,X,V,D1,T1), at(L1,C).

Unlike SS, the MS semantics does not need to keep an execution
stack for dealing with function calls. Indeed, when a function call
is encountered, MS ‘steps over’ the function definition and makes
a transition from the configuration containing the function call to
the configuration containing the command which is written imme-
diately after the function call. Since such transition can only be
performed if the function call terminates, MS checks that there ex-
ists a sequence of multiple transitions5 from the configuration con-
taining the entry point of the function definition to a configuration
containing either a return or an abort command occurring in the
function definition. To make that check possible, the MS semantics
requires the introduction of a reach predicate with two arguments
that encode the source and target configurations (see clauses 8 and
9 of Table 2), while for the SS semantics it suffices to use a reach
predicate with one argument only that stores the current configura-
tion.

Indeed, for the SS semantics, program unsafety is specified by
using the following clauses, where the predicate reach is unary
and encodes the reachability of an error configuration, not that of a
generic configuration as in the MS semantics.

4 Thus, we will not show the rules for these commands and the interested
reader may refer to [13].
5 Hence, the semantics has been called multi-step.



unsafe :- initConf(C), reach(C).
reach(C) :- tr(C,C1), reach(C1).
reach(C) :- errorConf(C).

As a consequence of these differences, the VCs generated by our
VCG strategy for the MS semantics are different from those gen-
erated for the SS semantics. In particular, in the case of the gcd
program, the VCG strategy for the SS semantics (and some suitable
unfolding annotations) generates the following set VCSS of verifi-
cation conditions:
50. new12(X,Y,A,B,R) :- X1=R, new3(X1,Y).

51. new11(X,Y,A,B,R) :- R1=A-B, new12(X,Y,A,B,R1).

52. new9(X,Y,A,B,R) :- Y1=R, new3(X,Y1).

53. new8(X,Y,A,B,R) :- R1=A-B, new9(X,Y,A,B,R1).

54. new7(X,Y) :- A=Y, B=X, new8(X,Y,A,B,R).

55. new6(X,Y) :- A=X, B=Y, new11(X,Y,A,B,R).

56. new4(X,Y) :- X>=Y+1, new6(X,Y).

57. new4(X,Y) :- X=<Y, new7(X,Y).

58. new3(X,Y) :- X=< -1, Y=X.

59. new3(X,Y) :- X+1=<Y, new4(X,Y).

60. new3(X,Y) :- X>=1+Y, new4(X,Y).

61. unsafe :- X>=1, Y>=1, new3(X,Y).

Linearity of VCs. The most evident difference between VCMS and
VCSS concerns the form of clauses they contain. Indeed, when
using SS, the generated VCs consist of linear Horn clauses (that
is, clauses having at most one atom in their body), while those
generated by using the multi-step semantics MS might contain
nonlinear clauses (see clauses 44 and 45). Again, this is due to
the fact that the predicate tr encoding the transition relation =⇒
for MS is defined in terms of the predicate reach encoding its
reflexive, transitive closure =⇒∗. Thus, the clauses obtained at the
end of the UNFOLDING phase of the VCG strategy may contain
multiple reach atoms in their body. We will see in Section 7
that linear clauses are typically easier to analyze than nonlinear
ones. Moreover, some Horn clause solvers are unable to deal with
nonlinear clauses [4, 12].
Size of VCs. Another visible difference is that VCSS is larger than
VCMS, both in the number of clauses and in the number of predi-
cates. This is due to the fact that VCSS contains distinct predicates
for different calls to the sub function (new8 and new11), thereby
causing an increase of the size of the VCs, whereas in VCMS a sin-
gle predicate is used (new6).

For the small-step semantics it would be possible to derive
VCs where a single predicate per function definition is introduced.
However, in order to derive such VCs, during the application of
the VCG strategy it is necessary to delay the introduction of the
new predicate relative to the return commands occurring in the
function definition until all the labels where to jump after executing
such commands are known.
Recursive functions. If functions can be recursively defined, MS
is probably a better choice than SS. Indeed, in this case the VCs
for the SS semantics would have to use a dynamic data structure
for keeping track of the execution stack, thus making the task of
verifying satisfiability much harder for Horn solvers. In contrast,
the multi-step semantics can easily deal with recursively defined
functions and produces nonlinear VCs whose satisfiability can be
checked by using SMT solvers supporting the UFLIA theory.6

Number of variables. The VCs occurring in VCMS and VCSS also
differ with respect to the number of variables occurring in atoms.
In particular, the number of variables in VCMS is twice the number
of variables in VCSS. This is a consequence of the different arity
of the reach predicate used in MS and SS. Indeed, in VCMS the
variables encode the identifiers occurring both in the source and
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target configurations of reach atoms, while in VCSS they encode
the identifiers occurring in the current configuration only.

We will see in Section 7 that the differences between the VCs
automatically generated using MS and SS have an impact on the ef-
fectiveness of the Horn clause solvers we use for verifying program
correctness.

6. Encoding variations of the semantics
One of the biggest advantages of a semantics-based approach to VC
generation via program specialization lies in its agility, that is, its
ability to rapidly adapt to changes in the semantics of the imperative
programming language under consideration. For example, it might
be desirable for a software verification engineer to start modeling
a core fragment of the language semantics. That fragment of the
semantics will be incrementally extended and refined by adding
support for language features which were initially ignored.

In this section, we will see how to extend the MS semantics
for supporting additional features and how easy it is to encode
such extensions in our VC generation framework, without having
to modify the VCG strategy.
Side-effect free functions. In general, functions may have side ef-
fects, that is, the value of the global variables may be altered by a
function call. However, if we know that a given function is side-
effect free, then we can use custom semantics rules that leave the
global environment unchanged, thus generating verification condi-
tions that are hopefully easier to verify.

Here is the rule for a function f that is side-effect free.
(R2rsef) 〈〈` :x=f(e1, . . . , ek), 〈δ, σ〉〉〉 =⇒

〈〈at(nextlab(`)), update(〈δ, σ〉, x, JeK δ σ′)〉〉
if 〈〈at(firstlab(f)), 〈δ, σ〉〉〉 =⇒∗ 〈〈`r : return e, 〈δ, σ′〉〉〉

If we use of this rule, instead of rule R2r, the number of logical
variables in the VCs decreases because there is no need to encode
the values of the global variables occurring in the target configura-
tion. Let us show an example of this fact. Consider again the gcd
program of Section 4.2. If we annotate the sub function as side-
effect free, either manually or by using an automated analysis, the
VCG strategy generates the following verification conditions:
62. new6(X,Y,A,B,R,A,B,R1):- R1=A-B.

63. new4(X,Y,X3,Y3):- X>=Y+1, A=X, B=Y, X2=R1,

new6(X,Y,A,B,R,A1,B1,R1), new3(X2,Y,X3,Y3).

64. new4(X,Y,X3,Y3):- X=<Y, A=Y, B=X, Y2=R1,

new6(X,Y,A,B,R,A1,B1,R1), new3(X,Y2,X3,Y3).

65. new3(X,Y,X,Y):- X=Y.

66. new3(X,Y,X1,Y1):- X>=Y+1, new4(X,Y,X1,Y1).

67. new3(X,Y,X1,Y1):- X+1=<Y, new4(X,Y,X1,Y1).

68. unsafe:- X>=1, Y>=1, X1=< -1, new3(X,Y,X1,Y1).

Note that in clause 62 the predicate new6, encoding the call to the
sub function, has two arguments less than the corresponding pred-
icate new6 in clause 43 above, which was obtained using rule R2r,
instead of R2rsef.
Undefined functions and assertions. When presenting the multi-
step semantics of our language we have assumed that there exists a
definition for every function that is called. Now we remove this as-
sumption and we allow programs to call functions whose definition
is unknown at verification time. In order to extend our semantics
with this new feature, we have (i) to restrict the applicability of the
rules (R2a) and (R2r) for function calls to defined functions only,
and (ii) to introduce two new rules for dealing with an undefined
function fu.
(R2au) 〈〈` :x=fu(e1,. . .,ek), 〈δ,σ〉〉〉 =⇒〈〈`a : abort, 〈⊥,δ′,σ′〉〉〉
This rule considers the case where the call to fu aborts. In this
case there is a transition to an aborted configuration. Note that the
environments δ′ and σ′ are unknown.



We also assume that, for each undefined function fu, it is given
an assertion assn(fu), which denotes an over-approximation of the
set of values which may be returned by fu.7

(R2ru) 〈〈` :x=fu(e1, . . . , ek), 〈δ, σ〉〉〉 =⇒
〈〈at(nextlab(`)), update(〈δ′, σ〉, x, v)〉〉

where v∈assn(fu).
This rule considers the case where the call to fu returns an un-
known value v satisfying the assertion on fu. In this case the caller
environment is updated by using v as the new value of variable x.

Let us now assume that the definition of the sub function of our
gcd program above is unknown. We only know that sub returns
a value x such that x ≥ 0. If we annotate the program with this
assertion, then we get the following VCs, where the atoms with
predicate new6, encoding the calls to the sub function, have been
replaced by the underlined constraints:
69. new4(X,Y,X3,Y3):- X>=Y+1, X2>=0, new3(X2,Y,X3,Y3).

70. new4(X,Y,X3,Y3):- X=<Y, Y2>=0, new3(X,Y2,X3,Y3).

71. new3(X,Y,X,Y):- X=Y.

72. new3(X,Y,X1,Y1):- X>=Y+1, new4(X,Y,X1,Y1).

73. new3(X,Y,X1,Y1):- X+1=<Y, new4(X,Y,X1,Y1).

74. unsafe:- X>=1, Y>=1, X1=< -1, new3(X,Y,X1,Y1).

Aborted stack traces. In case of an aborted execution, it might be
desirable, for debugging purposes, to record the call stack trace
containing the command labels and local environments which led
to the execution of the abort command.

This can be accomplished by adding to the configuration an
extra third component that stores the stack trace. We should also
make the following changes to the rules for the abort command
and the function call:
(R3st) 〈〈`a:abort, 〈δ, σ〉, [ ]〉〉=⇒〈〈`a:abort, 〈⊥, δ, σ〉, [(`a, σ)]〉〉
(R2ast) 〈〈` :x=f(e1, . . . , ek), 〈δ, σ〉, [ ]〉〉 =⇒

〈〈`a : abort, 〈⊥, δ′, σ〉, [(`, σ)|s]〉〉
if 〈〈at(firstlab(f)), 〈δ, σ〉, [ ]〉〉 =⇒∗ 〈〈`a : abort, 〈⊥, δ′, σ′〉, s〉〉
where stack traces are represented by using the familiar list notation.

Output commands. A new ‘print expr’ command could be intro-
duced for writing output. This requires adding a new output field to
the data structure used for representing configurations. That field
will contain a list of values (initially empty) which is left unaltered
by all commands except the print command, which appends to it
the result of the evaluation of the expression expr.

Mapping the verification conditions VCs to source code. We ob-
serve that the new definition clauses introduced by the VCG strat-
egy contain terms that encode the labeled commands of the im-
perative program. Therefore, if we extend this encoding to include
the line numbers where the commands occur in the source code
(such as numbers n1–n10 in the gcd example), then we can make
the VCG strategy to generate VCs where line numbers, labels, and
commands explicitly occur. Thus, we have an effective way of map-
ping VCs to lines and commands in the source code, and vice versa.

Tuning the VCG strategy. An added value of the rule-based trans-
formational approach to VC generation is that it gives the verifica-
tion engineer fine-grained control over the shape of the VCs which
can be generated. For example, as shown in the gcd example above,
simply by choosing to annotate as non-unfoldable the atoms corre-
sponding to if-then-else commands and function entry points, we
can avoid a well-known risk of potential exponential explosion of
the number of VCs, and automatically obtain an effect similar to
that described in [22].

7 Library functions usually provide some information about their specifica-
tions. For instance, the abs function of the GNU C Library is side-effect
free and returns a value greater than zero.

In some cases, however, if the number of consecutive if-then-
else commands is limited, we may allow the VCG strategy to
unfold these atoms and get sets of VCs which are considerably
smaller. For example, below is the set of VCs we would obtain
for gcd:
75. new3(X,Y,X,Y):- X=Y.
76. new3(X,Y,X2,Y2):- X1=X-Y,X>=Y+1, new3(X1,Y,X2,Y2).
77. new3(X,Y,X2,Y2):- Y1=Y-X,X+1=<Y, new3(X,Y1,X2,Y2).
78. unsafe:- X>=1, Y>=1, X1=< -1, new3(X,Y,X1,Y1).

Moreover, by simply changing the unfolding annotations, we may
reduce the set of unfoldable atoms to only those corresponding to
‘forward’ jumps (that is jumps to labels greater than the current la-
bel). The effect we obtain by doing so, is that the VCG strategy
essentially introduces a definition for each program point. For in-
stance, for the gcd example, we obtain the following set of VCs:
79. new17(X,Y,A,B,R,A,B,R). %return
80. new14(X,Y,A,B,R,A1,B1,R1) :- A-B=R, %asgn

new17(X,Y,A,B,R,A1,B1,R1).
81. new12(X,Y,X2,Y2) :- A=Y, B=X, R1=Y1, %sub

new14(X,Y,A,B,R,A1,B1,R1), new7(X,Y1,X2,Y2).
82. new11(X,Y,X2,Y2) :- A=X, B=Y, R1=X1, %sub

new14(X,Y,A,B,R,A1,B1,R1), new7(X1,Y,X2,Y2).
83. new8(X,Y,X1,Y1) :- X>=Y+1, new11(X,Y,X1,Y1). %then
84. new8(X,Y,X1,Y1) :- X=<Y, new12(X,Y,X1,Y1). %else
85. new7(X,Y,X1,Y1) :- X>=Y+1, new8(X,Y,X1,Y1). %loop
86. new7(X,Y,X1,Y1) :- X+1=<Y, new8(X,Y,X1,Y1). %loop
87. new4(X,Y,X1,Y1) :- new7(X,Y,X1,Y1). %main
88. unsafe :- A=< -1, B>=1, C>=1, new4(C,B,A,D).

7. Experimental evaluation
In this section we present the results of the experimental evaluation
we have performed for assessing the viability of our semantics-
based method for generating VCs. This experimental evaluation
is important because the form of the VCs may have a significant
impact on the efficiency and, more importantly, on the effectiveness
of the tools which are then used for checking their satisfiability,

We have applied our VCG strategy for generating the VCs for
several verification problems taken from the literature, using both
the SS and the MS semantics. Then, we have evaluated the quality
of the generated VCs by giving them as input to the following
state-of-the-art Horn solvers: (i) QARMC (the Horn solver of the
HSF(C) software model checking tool [23]), (ii) Z3 [15] using
the PDR engine, and (iii) MSATIC3 (a version of MathSAT [4]
optimized for Horn solving). In order to evaluate the efficiency of
our implementation we have also run the HSF(C) tool alone on the
same benchmark set.

The results of the experiments demonstrate that our method
improves the overall accuracy of HSF(C) with a little increase of
verification time, and, thus, it is viable in practice.

We also show the performance improvements that we have
obtained by improving the implementation of our VCG strategy.
Verification problems. We have considered a benchmark set of 320
verification problems written in the C language (227 of which are
safe and the remaining 93 are unsafe), taken from the benchmark
sets of various software model checking tools,8 whose size ranges
from a dozen to about three thousand lines of code. The C programs
of the problems we have considered and the VCs we have generated
are available at http://map.uniroma2.it/vcgen.
Implementation. We have implemented our approach as a part of
VeriMAP [12], a software model checking tool written in SICStus
Prolog and based on program transformation of CLP programs. Our

8 DAGGER (21 problems) TRACER (66 problems) and InvGen (68 prob-
lems), WHALE (7 problems) and from the TACAS Software Verification
Competition (149 problems). The remaining 9 problems are taken from the
literature.



n tVCG t ′VCG

Small-step

1. SSp
o 216 159.45 159.45

2. SS s
o 320 1235.96 35.58

3. SSp
f 317 4254.71 34.71

4. SS s
f 320 218.57 11.25

Multi-step 5. MS 318 364.43 7.70

Table 3. Times (in seconds) taken for the VC generation using
different language semantics and settings. The time limit is five
minutes. n is the number of programs out of 320, for which the
VCs were generated.

prototype implementation of the VC generator consists of three
modules. (1) A front-end module, based on the C Intermediate
Language (CIL) [34], that compiles the given verification problem
into a set of Horn clauses (such as the clauses for the at, initConf,
and errorConf predicates) using a custom implementation of the
CIL visitor pattern. (2) A back-end module, based on VeriMAP,
realizing the VCG strategy described in Section 4.1. (3) A module
that translates the generated VCs to the specific input format of the
solvers we have considered, that is, the constrained Horn clauses
dialect of QARMC and the SMT-LIBv2 format for the Z3 and
MSATIC3 solvers.
Technical resources. All experiments have been performed on an
Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under the GNU Linux operating system Ubuntu 12.10 (64 bit). A
time limit of five minutes has been set for all problems.
Generating the VCs. Now we discuss the performance and the scal-
ability of the VC generation process. In [13] we have shown that
our verification framework can be effectively used both for gener-
ating the VCs and for checking their satisfiability. In the present
work, besides experimenting with different formalizations of the
operational semantics, we have also implemented several improve-
ments for increasing the scalability of our method. In particular, we
have replaced the use of an inefficient implementation of the con-
straint satisfiability test based on a projecting operator (psat) [26]
with a more efficient one (sat), and we have introduced the use of
the findall Prolog predicate for computing FullUnf when unfold-
ing atoms annotated as fully unfoldable.

We report the results we have obtained in Table 3. Columns (n)
and (tVCG) report the total number of verification tasks for which
our tool was able to generate the VCs within the time limit of five
minutes, and the time taken for the generation, respectively.

Line 1 (SS p
o) reports the results obtained when the VCG strat-

egy uses the small-step SS semantics [13] with the psat operator
(denoted by superscript p) and unfoldable atoms can only be anno-
tated as unfoldable once (denoted by subscript o), not as fully un-
foldable. Line 2 reports the results obtained by replacing the psat
operator with the more efficient sat operator (denoted by super-
script s). Line 3 and 4 show the results obtained by enabling the
use of fully unfoldable annotations for all atoms with non-recursive
predicates (denoted by subscript f ) and by using psat and sat, re-
spectively.

The best performance is obtained by the SS semantics by using
the efficient satisfiability test and the fully unfoldable annotations
(SS s

f ) allowing us to produce the VCs for the whole benchmark set
in less than 4 minutes (see line 4). Note that if we use psat there are
always timed out problems.

With regard to the multi-step MS semantics, in line 5 we report
the results we obtained by using sat and fully unfoldable annota-
tions for all tr atoms, except those which can be unified with the
head of clauses 2a and 2r (see Table 2), whose body contains a
reach atom. This restriction is needed for guaranteeing the termi-

nation of the calls to the FullUnf procedure, but leads to an increase
of the VC generation time.9

Despite the increase of the VC generation time, the MS seman-
tics generates more compact VCs than those obtained by the SS se-
mantics. Indeed, by considering the 318 verification problems for
which both SS s

f and MS are able to generate VCs, the number of
clauses of the VCs generated using MS is 34% lower than that of
the VCs generated using SS s

f .
In order to evaluate the performance improvement on the VC

generation time we achieved by improving our implementation,
in Column (t ′VCG) we report the total time required to generate
the VCs on a subset of the benchmark set consisting of the 216
verification problems for which SS and MS are able to generate the
VCs whichever setting is used. We note that for this subset the VC
generation speedup with respect to SSp

o reaches 14× for SS s
f and

20× for MS.
In our experiments with different semantics we have also con-

sidered a subset of the benchmark set consisting of the SV-COMP
verification tasks systemc-transmitter∗ and systemc-token-
ring∗ (43 problems) whose size ranges from 450 LOC to 2

KLOC. On this subset the VC generation time using MS is always
lower than the one required to generate the VCs using SS s

f . More-
over, if we consider the hardest verification tasks in this set, namely
systemc-transmitter.16 unsafeil.c and systemc-token-
ring.15 unsafeil.c, the VC generation time using SSp

o is about
38 and 43 minutes, respectively. This time drops dramatically if we
generate the VCs using SS s

f (about 8.5s, for each problem) and MS
(about 2.5s, for each problem).

Solving the VCs (that is, proving satisfiability of the VCs). The
results we have obtained by running the Horn solvers QARMC,
Z3, and MSATIC3 on the VCs generated by our tool are reported
in Table 4. Line (c) reports the total number of correct answers,
which is the sum of the number of correct answers for safe and
unsafe problems reported at lines (s) and (u), respectively. Line (i)
reports the total number of incorrect answers, which is the sum of
the number of false alarms (safe problems that have been proved
unsafe) and missed bugs (unsafe problems that have been proved
safe) reported at lines (f ) and (m), respectively. Line (to) reports
the number of problems for which the tool did not provide any
conclusive answer within the time limit of five minutes. Line (n)
reports the total number of problems on which the tool has been
applied. Line (t VCG) reports the time taken by the execution of the
VCG strategy. Line (st) reports the time taken for solving the VCs,
that is, proving their satisfiability. Lines (tt) and (at) report the
total and average verification time, respectively. These times are
computed on the (correct or incorrect) answers, excluding the time
taken by problems which timed out. We have also reported in the
last column the results obtained by running the HSF(C) tool alone,
that is, using its own specific VC generator.

If we consider the VCs generated by applying the VCG strategy
using the SS and MS semantics, QARMC provides more correct
answers than Z3, MSATIC310 and, surprisingly, even than HSF(C).

Moreover, SS provides a higher precision (defined as the ratio
between the number of programs which has been shown to be safe
or unsafe, and the total number of programs) than MS. We note also
that Z3 is the solver that provides the highest number of correct
answers on unsafe problems.

9 Using MS we are not able to generate the VCs for two problems due to a
limitation in the number of arguments of compound terms in SICStus, when
building the head of a new definition clause. This limitation can be easily
overcome by using multiple terms or a list of terms, instead of a single term.
10 MSATIC3 is only able to deal with Horn clauses which are linear, possi-
bly after some preprocessing. However, in general the clauses produced by
using the MS semantics may be nonlinear.



Small-step(SS s
f ) Multi-step (MS) HSF(C)

QARMC Z3 MSATIC3 QARMC Z3 MSATIC3

c Correct answers 221 209 212 212 196 178 189
s safe problems 164 150 160 161 143 149 158
u unsafe problems 57 59 52 51 53 29 31
i Incorrect answers 5 0 2 3 0 0 12
f false alarms 3 0 0 1 0 0 3
m missed bugs 2 0 2 2 0 0 9
to Timed-out problems 94 111 106 103 122 140 119
n Total problems 320 320 320 318 318 318 320

t VCG VCG time 218.57 218.57 218.57 364.43 364.43 364.43 N/A
st Solving time 3423.75 3446.84 3008.81 2924.62 2618.21 1616.81 N/A
tt Total time 3642.32 3665.41 3227.38 3289.05 2982.64 1981.24 631.11
at Average Time 16.12 17.54 15.08 15.30 15.30 11.13 3.14

Table 4. Verification results using QARMC, Z3, MSATIC3, and HSF(C). The time limit is five minutes. Times are in seconds.

Unfortunately, when executed on the VCs generated by the
VCG strategy the Horn solvers also give some incorrect answers
which are due to missed bugs. These incorrect answers could be
eliminated by using a semantics that can deal with overflows dur-
ing the evaluation of arithmetic expressions returning unsigned in-
tegers.

Note that QARMC provides less incorrect answers than HSF(C).
Therefore, the overall correctness and precision of QARMC are im-
proved by the use of our VCG strategy. This result demonstrates
that, despite its generality, our method is also effective in practice.

If we examine line (at) reporting the average verification time,
the best performance is achieved by HSF(C) followed by MSATIC3
(whose verification times are 3.5–5 times higher) and QARMC
(about 5 times higher). (Recall that the verification times for
QARMC and MSATIC3 include the times for VC generation taken
by VeriMAP.)

The higher time taken by QARMC with respect to HSF(C) can
be justified by the fact that it solves more verification problems
whose size is substantial (up to two thousand lines of code). Indeed,
if we consider the set of 170 problems for which QARMC and
HSF(C) both provide an answer, the ratio between their verification
times decreases to about 3.8 for SS and 2.9 for MS. In this set
of problems there are eleven problems (SVCOMP13-locks-test-
locks∗) having the same structure, but different size, on which

QARMC is particularly slow. If we remove these examples from
the set, the ratio drops down to about 2.1 for SS and 1.2 for MS.

For QARMC, we also measured the overhead introduced by the
VCG strategy, computed as the ratio between the VCG time and
total time for the problems which did not time out. We found that
this overhead is quite low and ranges from about 1.3% for SS to
7.9% for MS.

8. Related work and Conclusions
Constraint logic programming, or equivalently constrained Horn
clause logic, has been shown to be a powerful, flexible formalism
to reason about the correctness of programs [12, 13, 21, 23, 24, 27,
28, 32, 36], and as a common intermediate language for exchanging
VCs between software verifiers [3, 10] to take advantage of the
many special purpose solvers that are available nowadays.

In this paper we have shown that program transformation tech-
niques, and more specifically, specialization of CLP programs, can
be effectively applied for automatically generating VCs in the form
of Horn clauses, starting from different CLP interpreters for the op-
erational semantics of the programming language and for the logic
in which the property of interest is specified.

Program specialization of a CLP interpreter for the small-step
operational semantics of an imperative language has been initially
proposed in [36]: in that approach the specialization process yields
a residual CLP program on which analysis techniques based on
abstract interpretation are subsequently applied. In [13] we pre-
sented a VC generation method overcoming some of the limita-
tions of [36]: we introduced support for (non-recursive) functions,
and improved scalability by encoding programs as sets of facts, in-
stead of terms. In this paper, we have further extended the work
of [13] by providing support for recursive functions and multi-step
semantics.

Our approach shares the same objective of [39], where generic
programming and monadic denotational semantics have been used
to define a compositional method for building VC generators,
which can be extended to new language features, or new languages.

A considerable effort has been placed in the area of automated
VC generation, as it is evident from the many tools currently avail-
able, such as ESC/Java [5], Boogie [2], and Why3 [17]. These tools
generate VCs by using Dijkstra’s weakest precondition calculus.

ESC/Java generates VCs for Java programs with (user-provided)
annotations. Boogie, besides using program annotations, takes ad-
vantage of abstract interpretation techniques to infer inductive in-
variants, and relies on front-ends that translate programs written in
different languages (e.g. C, .NET) into the intermediate BoogiePL
language. Similarly, the Why3 [17] verification platform gener-
ates VCs for C, Java, and Ada programs by converting them to an
intermediate specification and programming language (WhyML).
Similarly to Boogie, the Valigator tool [25], is able to infer loop
invariants but using different techniques (symbolic summation,
Gröbner basis computation, and quantifier elimination) and the
strongest postcondition calculus.

The approach we have presented in this paper is able, like
Boogie and Valigator, to automatically infer loop invariants. To
this purpose, we can configure the specialization strategy by using
suitable generalization operators [13]. Our method does not rely on
a specific calculus to generate the VCs, and it is parametric with
respect to the logic in which the property of interest is specified.

The generation of VCs based on theorem proving and opera-
tional semantics has been investigated in [31, 33]. In [33] the au-
thors present a proof of concept method to prove partial correctness
of programs that makes use of a small-step operational semantics.
The semantics is explicitly expressed in the logic, and the VCs are
generated as a by-product of the correctness proof. A related ap-
proach is described in [31], where an off-the-shelf theorem prover,
and an operational semantics, are converted into a VC generator.



The design of general purpose abstract interpreters, parameter-
ized with respect to the semantics of the programming language has
been investigated in [6] and implemented in the TVLA system [30].

Finally, we would like to mention the K rewriting-based frame-
work [38], which has been used for defining executable semantics
of several programming languages (including ANSI C).

We believe that the use of transformational methods can play a
key role in the development of highly parametric tools that support
the verification of programs starting from the formal definition of
the programming language semantics.
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