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Abstract. We present a method for verifying properties of time-aware
business processes, that is, business processes where time constraints on
the activities are explicitly taken into account. Business processes are
specified using an extension of the Business Process Modeling Notation
(BPMN) and durations are defined by constraints over integer numbers.
The definition of the operational semantics is given by a set OpSem
of constrained Horn clauses (CHCs). Our verification method consists
of two steps. (Step 1) The specialization of OpSem with respect to a
given business process and a given temporal property to be verified. This
specialization produces a set of CHCs whose satisfiability is equivalent to
the validity of the given property. (Step 2) The use of any state-of-the-art
solver for CHCs to check the satisfiability of such sets of clauses. We have
implemented our verification method using the VeriMAP transformation
system and the Z3 solver for CHCs.

1 Introduction

A business process, or BP for short, consists of a set of activities, performed in
coordination within a single organization, which realize a business goal [31,34].
The Business Process Model and Notation, or BPMN for short, is one of the most
popular graphical languages proposed for visualizing business processes [27]. The
primary goal of BPMN is to provide a standard notation that can be understood
by all business stakeholders, which include the business analysts who define and
modify the processes, the technical developers in charge of their implementation,
and the business managers who monitor and manage the processes.

A BPMN model is a procedural, semi-formal description of the order of ex-
ecution of the activities of a given process and how these activities must coor-
dinate, abstracting away from many other aspects of the process itself, such as
the manipulation of data and the duration of the activities. However, for many
analysis tasks these aspects are very significant in practice and should be taken
? This work has been partially funded by INdAM-GNCS (Italy).
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into consideration. In particular, the duration of the activities is crucial when we
want to reason about time constraints (such as deadlines or earliest completion
times) that should be satisfied by the executions of the process.

Various approaches for BP modeling with duration and time constraints have
been proposed in the literature (see [6] for a recent survey). Some of these ap-
proaches define the semantics of time-aware BPMN models by means of for-
malisms such as time Petri nets [24], timed automata [32], and process alge-
bras [35]. Properties of these models can then be verified by using very effective
reasoning tools available for those formalisms [4,14,22].

However, the above mentioned formalisms and tools may not be adequate if
we want to complement time-based reasoning with general purpose logical rea-
soning, which is often needed if we take into account more complex aspects of
knowledge manipulation activities relative to business processes. For instance,
some verification approaches make use of ontology-based reasoning about the
business domain where processes are executed [30,33], while others combine rea-
soning on the finite-state process behavior with reasoning on the manipulation
of data objects of infinite types such as databases or integers [2,9,29].

Thus, in view of an integration of various reasoning tasks needed to analyze
business processes from different perspectives, we propose a logic-based approach
to modeling and verifying time-aware business processes.

The main contributions of the paper are the following. We present a logic-
based language to specify time-aware BPMN models, where time and duration
of activities are explicitly represented. Then we define an operational seman-
tics of time-aware BPMN models by means of deduction rules that allow us
to infer the time intervals when a particular activity is in execution or ‘is en-
acting’, using the BPMN terminology. Next, in order to prove properties of
time-aware BPMN models, we follow a transformational approach similar to the
one proposed in [11] for the verification of imperative programs. First, we con-
sider an encoding OpSem of the operational semantics of business processes into
Constrained Horn Clauses (CHCs) [5] (or, equivalently, Constraint Logic Pro-
grams [20]). Then, we specialize OpSem with respect to the time-aware BPMN
model under consideration and the temporal property of interest, thereby de-
riving a new set of CHCs whose satisfiability is equivalent to (and thus implies)
the validity of the property to be verified. Finally, we use the state-of-the-art
solver Z3 [12] for CHCs to check the satisfiability of such set of clauses.

Since the CHCs are generated in an automatic way by the CHC specializer
from the formal definition of the semantics of the BPMN models, and the CHC
solvers are general purpose reasoning systems, our approach is, to a large extent,
parametric with respect to other extensions of BP models one may want to
consider in the future. Moreover, recent advances in the field of CHC solving
can be exploited to get very effective reasoning tools for verifying other classes
of properties of business processes besides the temporal ones.

The paper is structured as follows. In Section 2 we recall some basic notions
about Constrained Horn Clauses (CHCs) over integer numbers and Business
Process Model and Notation (BPMN). In Section 3 we present our logic-based
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language for specifying time-aware BPMN models and the operational semantics
of the language. In Section 4 we present the CHC encoding of the semantics and
the transformation techniques for specializing OpSem with respect to a given
time-aware BPMN model and a given property. In Section 5 we report on the
implementation of the verification technique we have made using the VeriMAP
transformation and verification system [10], and the CHC solver Z3. Finally, in
Section 6 we discuss related work in the field of Business Process verification.

2 Preliminaries

In the next two subsections we recall some basic notions concerning constrained
Horn clauses and the Business Process Model and Notation.

We consider time to be a discrete quantity and we consider the ‘time line’
to be the set of integers. However, our approach applies directly to dense or
continuous time as well.

2.1 Constrained Horn Clauses over Integers

First we need the following notions about constraints, constrained Horn clauses,
and constraint logic programming. For related notions not familiar to the reader,
we refer to [20,23].

Constraints are defined as follows. Let RelOp be the set of predicate symbols
{=, 6=,≤,≥, <,>}. If p1 and p2 are linear polynomials with integer variables and
coefficients, then p1Rp2, with R∈RelOp, is an atomic constraint. A constraint c
is a (possibly empty) conjunction of atomic constraints. An atom is a formula of
the form p(t1, . . . , tm), where p is a predicate symbol not in RelOp and t1, . . . , tm
are terms constructed as usual from variables, constants, and function symbols.
In particular, we assume that there are two predicate symbols true and false of
arity 0, and a predicate symbol eq denoting identity. A constrained Horn clause
(or simply, a clause) is an implication of the form A← c,G, where the conclusion
(or head) A is an atom, and the premise (or body) ‘c,G’ is the conjunction
of a constraint c and a (possibly empty) conjunction G of atoms. The empty
conjunction is identified with true. A constrained fact is a clause of the form
A← c, and if c is true we will call it simply a fact. A constrained goal (or simply,
a goal) is a clause of the form false← c,G. Given a formula ϕ, vars(ϕ) denotes
the set of variables occurring in ϕ. A clause C is said to be ground if vars(C) = ∅.

Given a set P of clauses, Z-interpretation is defined to be an interpretation I
of P such that: (i) true holds in I, (ii) false does not hold in I, (iii) I is the
usual interpretation over the set of the integer numbers Z for the constraints,
and (iv) I is the Herbrand interpretation for predicate and function symbols
not in RelOp ∪ {true, false,+,×} (in particular, eq(x, y) holds if and only if x
and y are identical terms in the Herbrand universe). For any formula ϕ we write
Z |= ϕ if ϕ holds in all Z-interpretations. A Z-model of P is a Z-interpretationM
such that every clause of P holds in M . A set of CHCs is satisfiable if it has
a Z-model. (Note that a set of CHCs may be unsatisfiable if it contains goals.)
Every satisfiable set P of CHCs has a unique least Z-model, denoted M(P) [20].
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2.2 Business Processes Model and Notation

A BPMN model is defined through a diagram drawn by using graphical con-
structs representing flow objects and sequence flows (sequence flows will also be
called flows for short). That diagram can be extended, if so desired, to include
information about data flow, resource allocation (for instance, how the work to
be done is assigned to the participants in the process), and exception handling
(for instance, how erroneous behaviors should be handled).

For reasons of simplicity, in this paper we will only consider a subset of the
flow objects and sequence flows that can occur in a BPMN model, but our ap-
proach can easily be extended to full BPMN. The flow objects we will consider are
of three kinds: either (i) tasks, denoted by rounded rectangles, or (ii) events, de-
noted by circles, or (iii) gateways, denoted by diamonds. Tasks represent atomic
units of work performed within the process. Events denote something that hap-
pens during the execution, or the enactment, using the BPMN terminology, of a
business process. We will only consider the start event and the end event, which
starts and ends the process enactment, respectively. Gateways model the branch-
ing and merging of activities. There are several types of gateways in BPMN, each
of which can be a branch gateway if it has a single incoming flow and multiple
outgoing flows, or a merge gateway if it has multiple incoming flows and a single
outgoing flow. We will consider the following gateways: (i) the parallel branch
gateway that activates all the outgoing flows at the same time instant, (ii) the
parallel merge gateway that activates the outgoing flow when all the incoming
flows have been activated (that is, the parallel merge synchronizes the incoming
flows) (iii) the exclusive branch gateway that (non-deterministically) activates
exactly one out of the (possibly many) outgoing flows, and (iv) the exclusive
merge gateway that activates the single outgoing flow upon activation of one
of the (possibly many) incoming flows. The diamonds representing parallel and
exclusive gateways are labeled by ‘+’ and ‘×’, respectively.

A sequence flow, denoted by an arrow, links two flow objects and denotes a
control flow relation, that is, it states that the control flow can pass from the
source to the target flow object. If there is a sequence flow from x to y, then x
is a predecessor of y and y is a successor of x. A path in a BPMN model is a
sequence of flow objects such that every pair of consecutive objects is connected
by a sequence flow.

We assume that BPMN models are well-formed, that is, they satisfy the
following properties: (1) every process contains a unique start event and a unique
end event, (2) every flow object occurs on a path from the start event to the end
event, (3) the start event has exactly one successor and no predecessor, (4) the
end event has exactly one predecessor and no successor, (5) branch gateways
have exactly one predecessor and at least one successor, while merge gateways
have at least one predecessor and exactly one successor, (6) tasks have exactly
one predecessor and one successor, and (7) on every cyclic path there is at least
one occurrence of a task (that is, no cycles through gateways only are allowed).

In Figure 1 we show the BPMN model of a purchase order process, called PO,
describing a interaction pattern between an e-commerce vendor and a customer.
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Fig. 1. The BPMN model of the purchase order process P O.

At the beginning of the purchase order process the customer adds one or
more items to the shopping cart. Then, he pays for all the items, and the vendor
(i) issues the invoice and sends it to the customer, and also (ii) prepares the order
ships it by a standard or an express delivery method. The process terminates
when the invoice has been sent and the order has been delivered.

3 Specification and Semantics of Business Processes
In this section we introduce the notion of a Business Process Specification, which
formally represents a business process by means of set of Constrained Horn
Clauses, and we define the operational semantics of a BPS.

3.1 Business Process Specification via CHCs
A Business Process Specification, or BPS for short, contains: (i) a set of ground
facts that specify the flow objects and the sequence flows between them, and
(ii) a set of constrained facts that specify the duration of each flow object.

We will use the following predicates: (i) flow-object(x): x is either a task, or an
event, or a gateway; (ii) task(x): x is a task; (iii) start(x) and end(x): x is a start
event and an end event, respectively; (iv) exc-branch(x) and exc-merge(x): x is
an exclusive branch and exclusive merge gateway, respectively; (v) par-branch(x)
and par-merge(x): x is a parallel branch and a parallel merge gateway, respec-
tively; (vi) seq(x, y): there is a sequence flow from x to y; (vii) duration(x, d):
the enactment of the flow object x takes d units of time to be completed.

In the Business Process Specification we assume that: (i) for every task x
there exists a single clause of the form duration(x, d)←dmin≤d≤dmax, where
dmin and dmax are positive integer constants representing the minimal and the
maximal time duration of x, respectively, and (ii) for every event and gateway x
there exists a single clause of the form duration(x, 0) (that is, the enactment of
any event or gateway takes no time).

The CHC specification of the BPMN process PO of Figure 1 is shown in
Table 3.1. Note that a BPS is always satisfiable because it contains no goals,
and hence it has a least Z-model.

Our formalization of a BPS also includes a set of clauses that represent the
meta-model of any BPS. In particular, these meta-model clauses express: (i) the
disjointness properties of the sets of its flow objects (for instance, we have the
clause: false← task(X), par-branch(X)), and (ii) the well-formedness properties
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task(ai). task(pt). task(ii). task(si). task(po). task(sd). task(ed).
start(s). end(e). exc_merge(g1). exc_branch(g2). par_branch(g3).
exc_branch(g4). exc_merge(g5). par_merge(g6).
seq(s,g1). seq(g1,ai). seq(ai,g2). seq(g2,g1). seq(g2,pt). seq(pt,g3).
seq(g3,ii). seq(g3,po). seq(ii,si). seq(si,g6). seq(po,g4). seq(g4,sd).
seq(sd,g5). seq(g4,ed). seq(ed,g5). seq(g5,g6). seq(g6,e).
duration(s,0). duration(e,0). duration(g1,0). duration(g2,0).
duration(g3,0). duration(g4,0). duration(g5,0). duration(g6,0).
duration(ai,D):- D>=1, D=<6. % add item
duration(pt,D):- D>=1, D=<2. % pay total
duration(ii,D):- D>=1, D=<2. % issue invoice
duration(si,D):- D>=1, D=<3. % send invoice
duration(po,D):- D>=3, D=<5. % prepare order
duration(sd,D):- D>=2, D=<4. % standard delivery
duration(ed,D):- D>=1, D=<3. % express delivery

Table 3.1. BPS for the purchase order process P O of Figure 1.

corresponding to Conditions (1)–(7) of Section 2.2. This second set of clauses is
as follows:
(c1) eq(X,Y )←start(X), start(Y ) and eq(X,Y )←end(X), end(Y );
(c2) seqq(S,X)←start(S),flow-object(X) and seqq(X,E)←flow-object(X), end(E)

where seqq is the reflexive, transitive closure of seq;
(c3) eq(Y, Z)←start(S), seq(S, Y ), seq(S,Z) and false←start(S), seq(Y, S);
(c4) eq(Y, Z)←end(E), seq(Y,E), seq(Z,E) and false←end(E), seq(E, Y );
(c5) eq(Y, Z)←par-branch(X), seq(Y,X), seq(Z,X) and

eq(Y,Z)←par-merge(X), seq(X,Y ), seq(X,Z)
and, similarly, for the exc-branch and exc-merge gateways;

(c6) eq(Y, Z)← task(X), seq(X,Y ), seq(X,Z) and
eq(Y,Z)← task(X), seq(Y,X), seq(Z,X);

(c7) false←gateway-path(X,X)
where gateway-path(X,Y ) is a predicate that holds iff there is a path
from X to Y made out of gateways only.

Note that the existence of at least one predecessor and at least one successor
for any task or gateway (required by Conditions (5) and (6) of Section 2.2) is
enforced by the clauses at Point (c2).

A BPS B is well-formed if clauses (c1)–(c7) hold in the least Z-model of B.

3.2 Operational Semantics
We start off by introducing the notion of a state at a time instant t. A state s is
a pair 〈F, t〉, where F is a set of terms, called fluents, representing the properties
that hold at the time instant t in Z. Let States be the set of states.

A fluent is a term of one of the following forms, for any flow object x:
(i) begins(x), which represents the beginning of the execution, or enactment,
of x, (ii) completes(x), which represents that x has completed its execution, and
(iii) enables(x, y), which represents that x upon completion of its execution en-
ables the execution of its successor y, and (iv) enacting(x, r), which represents
that the enactment of x requires r units of time to completion (for this reason r is
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also called the residual time of x). From these definitions it follows that begins(x)
is equivalent to enacting(x, r), where r is the duration of x, and completes(x) is
equivalent to enacting(x, 0). (This redundant representation of fluents allows us
to write simpler rules for the operational semantics below.)

The operational semantics is defined by a binary transition relation−→ which
is a subset of States × States and is derived according to the rules below. In
the rules for −→, besides the predicates introduced in Section 3.1, we use the
following ones: (i) not-par-branch(x), which holds if x is not a parallel branch,
and (ii) not-par-merge(x), which holds if x is not a parallel merge.

(S1)
begins(x)∈F duration(x, d)

〈F, t〉 −→ 〈(F \ {begins(x)}) ∪ {enacting(x, d)}, t〉

(S2)
completes(x)∈F par-branch(x)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s) | seq(x, s)}, t〉

(S3)
completes(x)∈F not-par-branch(x) seq(x, s)
〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s)}, t〉

(S4)
∀p seq(p, x)→ enables(p, x) ∈ F par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x) | enables(p, x) ∈ F}) ∪ {begins(x)}, t〉

(S5)
enables(p, x)∈F not-par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x)}) ∪ {begins(x)}, t〉

(S6)
enacting(x, 0)∈F

〈F, t〉 −→ 〈(F \ {enacting(x, 0)}) ∪ {completes(x)}, t〉

(S7)
no-other-premises(F ) ∃x∃r enacting(x, r)∈F m>0

〈F, t〉 −→ 〈F 	m, t+m〉
where: (i) no-other-premises(F ) holds iff none of the rules S1–S6 has its
premise true, (ii) m = min{r | enacting(x, r) ∈ F}, and (iii) F 	m is the
set F of fluents where every enacting(x, r) is replaced by enacting(x, r−m).

Note that rule (S7) is the only rule that formalizes the flow of time, as it in-
fers transitions of the form 〈F, t〉 −→ 〈F ′, t+m〉, with m > 0. In contrast,
rules (S1)–(S6) infer instantaneous state transitions of the form 〈F, t〉 −→ 〈F ′, t〉.

Now let us explain the meaning of rules (S1)–(S7).
(S1) If the execution of a flow object x begins at time t, then, at the same time t,

x is enacting and its residual time is the duration d of x;
(S2) If the execution of the parallel branch x completes at time t, then x enables

all its successors at time t;
(S3) If the execution of x completes at time t and x is not a parallel branch,

then x enables precisely one of its successors at time t (in particular, this
case occurs when x is a task);

(S4) If all the predecessors of x have enabled the parallel merge x at time t, then
the execution of x begins at time t;
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(S5) If at least one predecessor p of x enables x at time t and x is not a parallel
merge, then the execution of x begins at time t (in particular, this case
occurs when x is a task);

(S6) If a flow object x is enacting at time t with residual time 0, then the
execution of x completes at time t;

(S7) Let us assume that at time t: (i) none of rules (S1)–(S6) can be applied,
(ii) there at least one task whose execution requires r (>0) units of time to
get to completion (recall that among the flow objects, tasks only may have
positive residual time), and (iii) m is the least among the residual times of
all the tasks which are in execution (that is, enacting). Then every task x
that is in execution at time t with residual time r, is in execution at time
t+m with residual time r −m.

We say that state 〈F ′, t′〉 is reachable from state 〈F, t〉, if 〈F, t〉 −→∗ 〈F ′, t′〉,
where −→∗ denotes the reflexive, transitive closure of the transition relation −→.
The initial state is the pair 〈{begins (s)}, 0〉, where s denotes the start event.

Note that in our formalization we cannot represent multiple, concurrent exe-
cutions of the same flow object, because a state is a set of fluents. However, this
limitation can easily be overcome by considering multisets of fluents.

4 Encoding Time-Dependent Properties into CHCs

In this section we show the CHC interpreter that encodes the operational se-
mantics of business processes and we show how to encode the time-dependent
properties to be verified. We also briefly present two transformation techniques:
(RI): a technique for performing the removal of the interpreter (see [11,28] for

more details), whereby deriving a set of clauses that can be submitted
to automatic tools for satisfiability checking such as the Z3 [12] or the
Eldarica [18] solvers for CHCs, and

(PE): a technique for reducing the size of the set of CHCs generated by the
RI technique. This PE technique is based on a suitable notion of predicate
equivalence (see Section 4.3) that may be used, if so desired, for improving
the time and space efficiency of the satisfiability checking.

4.1 Encoding the Operational Semantics in CHCs

A state 〈F, t〉 of the operational semantics is encoded by a term of the form
s(F,T), where F is a list encoding the set F of fluents and T encodes the time in-
stant t at which the fluents of F hold. The transition relation −→ between states
and its reflexive, transitive closure −→∗ are encoded by the binary predicates tr
and reach, respectively, whose defining clauses are shown in Table 4.2. In the
body of the clauses, we have underlined the atoms that encode the premises of
the rules of the operational semantics.

The predicate member(X,L) selects an element X from the list L. The pred-
icate update(F,R,A,FU) holds iff FU is the list obtained from the list F by
removing all the elements of R and adding all the elements of A. The predi-
cate no_other_premises(F) holds iff the premise of every rule in {S1, . . . , S6}
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is false. The predicate mintime(Enacts,M) holds iff Enacts is a list of terms of
the form enacting(X,R) and M is the minimum value of R for the elements of
Enacts. The predicate decrease_residual_times(Enacts,M,EnactsU) holds
iff EnactsU is the list of terms obtained by replacing every element of Enacts,
of the form enacting(X,R), by the term enacting(X,RU) where RU = R-M. The
predicates sublist(S,L) and findall(X,G,L) have the usual meaning.

S1. tr(s(F,T), s(FU,T)) :- member(begins(X),F), duration(X,D),
update(F,[begins(X)],[enacting(X,D)],FU).

S2. tr(s(F,T), s(FU,T)) :- member(completes(X),F), par_branch(X),
findall(enables(X,S),(seq(X,S)),Enbls),
update(F,[completes(X)],Enbls,FU).

S3. tr(s(F,T), s(FU,T)) :- member(completes(X),F), not_par_branch(X),seq(X,S),
update(F,[completes(X)],[enables(X,S)],FU).

S4. tr(s(F,T), s(FU,T)) :- member(enables(_,X),F), par_merge(X),
findall(enables(P,X),(seq(P,X)),Enbls),
sublist(Enbls,F), update(F,Enbls,[begins(X)],FU).

S5. tr(s(F,T), s(FU,T)) :- member(enables(P,X),F), not_par_merge(X),
update(F,[enables(P,X)],[begins(X)],FU).

S6. tr(s(F,T), s(FU,T)) :- member(enacting(X,R),F), R=0,
update(F,[enacting(X,R)],[completes(X)],FU).

S7. tr(s(F,T), s(FU,TU)) :- no_other_premises(F), member(enacting(_,_),F),
findall(Y,(Y=enacting(X,R),member(Y,F)),Enacts),
mintime(Enacts,M), M>0,
decrease_residual_times(Enacts,M,EnactsU),
update(F,Enacts,EnactsU,FU), TU=T+M.

R1. reach(S,S).
R2. reach(S,S2) :- tr(S,S1), reach(S1,S2).

Table 4.2. The CHC interpreter for the operational semantics of time-aware BPs.

4.2 Encoding Time-Dependent Properties

By using the reach predicate and integer constraints, we can specify many useful
time-dependent properties. In particular, we can specify safety properties (stat-
ing that ‘no unsafe state can be reached’), schedulability properties (stating that
a process will be completed within a given deadline), response properties (stat-
ing that, whenever a task is executed, another task will be executed within a
given time).

In order to see how we encode time-dependent properties of business pro-
cesses, we consider a property of the process PO stating that, whenever the
customer pays and the process PO completes, then completion occurs within 9
time units after payment. By using the reachability relation −→∗, this property
can be written as follows:
Q: if 〈{begins (s)}, 0〉 −→∗ 〈{completes(pt)}, tpt〉 −→∗ 〈{completes(e)}, te〉,

then te≤ tpt+9
The reader can check that Q holds for the process PO because, in the worst case,
the time needed for preparing and delivering the order is actually 9 time units
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and this time is greater than the time needed for issuing and sending the invoice,
which is 5 time units. The property Q is encoded by the following goal (where
s(_,_) is the constructor for states, while the constant s of arity 0 denotes the
start event):
Q. false :- Ts = 0, Tpt > Ts, Te > Tpt + 9,

reach(s([begins(s)],Ts), s([completes(pt)],Tpt)),
reach(s([completes(pt)],Tpt), s([completes(e)],Te)).

The clauses S1–S7,R1,R2,Q, together with the clauses encoding the process PO,
will be collectively referred to as the interpreter I. We have that the property Q
is valid for the process PO iff the set I of CHCs is satisfiable.

Despite several tools have been developed for checking the satisfiability of
constrained Horn clauses, none of them can effectively be leveraged in our ex-
ample. Constraint logic programming systems [20] are focused on proving the
unsatisfiability of sets of clauses, rather then their satisfiability, and they may
fail to terminate for the given set I because a clause for reach is recursive (note,
in particular that the add_item task can be executed an unbounded number of
times). State-of-the-art CHC solvers [12,18] also fail because the predicates in I
are defined over lists and structured terms (not just integers) and they depend
on the findall predicate, which is not available in those solvers.

In order to be able to effectively use off-the-shelf CHC solvers for checking
the validity of time-dependent properties, we apply the so-called removal of the
interpreter transformation, denoted RI [11,28]. This transformation is a program
specialization strategy based on unfold/fold transformation rules, which takes
the program I as input and produces as output a program Isp that is equivalent
to I with respect to satisfiability. Indeed, by the correctness of the unfold/fold
transformation rules [13], we have that I is satisfiable iff Isp is satisfiable.

A notable effect of applying the transformation RI, which removes the in-
terpreter, is that the program Isp contains no occurrences of the predicates and
terms used for encoding the operational semantics and the process PO. In par-
ticular, the clauses of Isp will be of the form A← c,G, where the arguments of
the atoms are variables and c is a constraint. For instance, the goal Q expressing
the property Q above is transformed into the following goal:
Q1. false :- A = 0, B =< 2, C =< 6, D =< 5, E > 0, F-E > 9, B >= 1, C >= 1, D >= 3,

new1(C,A,E), new2(B,D,E,F).
The new predicates new1 and new2 have been introduced by the definition rule,
and the extra constraints have been derived by the unfolding rule. We refer
to [11] for the details of the transformation. The whole set of clauses derived by
the transformation RI is listed in the online Appendix A.14 . The satisfiability
of this derived set of clauses can be proved in a fully automatic way by using
the Z3 CHC solver, as it will be shown in Section 5.

4.3 Predicate Equivalence

Now we present a transformation, called predicate equivalence, denoted PE, that
allows us to reduce the size of a set of constrained Horn clauses when suitable
4 Available at http://map.uniroma2.it/lopstr16/appendix.pdf

http://map.uniroma2.it/lopstr16/appendix.pdf
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equivalences between predicates hold. Since predicate equivalence is undecidable
in general, we introduce a restricted, decidable notion of equivalence based on
constraint equivalence and predicate renaming.

First we need some preliminary notions. Let ∃Y (c1, G1) and ∃Z (c2, G2)
be two existentially quantified conjunctions of constraints and atoms, where
Y ∩vars(c2, G2)=∅ and Z∩vars(c1, G1) = ∅ (we extend, in the obvious way, to
tuples of variables notions defined for variables and sets of variables). We say
that ∃Y (c1, G1) and ∃Z (c2, G2) are equivalent modulo constraints, if there exists
a renaming substitution {Y ′/Z ′} for (c1, G1), with Y ′⊆Y and Z ′⊆Z, such that:
(i) G1{Y ′/Z ′} = G2, modulo reordering of atoms, and
(ii) Z |= ∀(∃U c1{Y ′/Z ′} ↔ ∃V c2), where U=Y −Y ′ and V =Z−Z ′.

For instance, ∃Y (X ≥ Y, p(X,Y )) and ∃V,W (X ≥ V, V ≥ W, p(X,W ))
are equivalent modulo constraints. Clearly, if ∃Y (c1, G1) and ∃Z (c2, G2) are
equivalent modulo constraints, then Z |= ∀(∃Y (c1, G1)↔ ∃Z (c2, G2)).

Let P be a set of CHCs. By Pred(P ) we denote the set of predicate symbols
occurring in P . A predicate renaming for P is a, possibly not injective, mapping
π : Pred(P )→ Q, where Q is a set of predicate symbols. Given a set S of formulas
with predicates in Pred(P ), π(S) is a new set of formulas obtained by replacing,
for all predicates p∈Pred(P ), every occurrence of p in S by π(p).

For every k ≥ 1, let X be a fixed k-tuple of distinct variables. Without
loss of generality, we assume that for every k-ary predicate p ∈ Pred(P ), all
clauses are of the form p(X)← B, where B is a conjunction of constraints and
atoms. By Bodies(p(X), P ) we denote the set {B | p(X)← B is a clause in P}.
We write Bodies(p(X), P ) ≡ Bodies(q(X), P ) if there exists a bijection
η : Bodies(p(X), P )→ Bodies(q(X), P ) such that, for every B∈Bodies(p(X), P ),
∃Y B and ∃Z η(B) are equivalent modulo constraints, where Y is the tuple of
variables occurring in B and not in X, and Z is the tuple of variables occurring
in η(B) and not in X.

Definition 1 (Predicate Equivalence). Let P be a set of clauses and E =
{P1, . . . , Pn} be a partition of Pred(P ). For i = 1, . . . , n, let ei be a predicate
symbol in Pi, and π : Pred(P ) → {e1, . . . , en} be a predicate renaming for P
such that, for i = 1, . . . , n, π(p)=ei iff p∈Pi.

The partition E is a cp-equivalence on P if, for i = 1, ..., n, given any two
predicates p, q in Pi, p and q have the same arity k and, for any fixed k-tuple X
of distinct variables, π(Bodies(p(X), P )) ≡ π(Bodies(q(X), P )).

Note that one can compute the coarsest cp-equivalence on P by a greatest
fixpoint construction starting from the partition where all predicate symbols
belong to the same equivalence class.

Given a cp-equivalence E on P together with the predicate renaming π con-
sidered in Definition 1, we can transform P into a set π̃(P,E) of clauses in two
steps: (i) we remove from P all clauses whose head predicate does not appear in
the range of π, and (ii) we apply π to the remaining clauses.

Theorem 1. For any cp-equivalence E on a set P of clauses, P is satisfiable
iff π̃(P,E) is satisfiable.



12 E. De Angelis et al.

Checking the satisfiability of π̃(P,E) is often more efficient than checking the
satisfiability of P , specially when we use solvers, like Z3, that construct a model
of each predicate. Indeed, when checking the satisfiability of π̃(P,E), the solver
has to construct, for each equivalence class E, a model of one predicate only.

To see an example of cp-equivalence, let us consider the following subset of
the 51 clauses derived by the removal of the interpreter in our PO example (the
complete listing of those clauses is given in the online Appendix A.25):
new5(A,B,C,D) :- A=0, new21(B,C,D).
new5(A,B,C,D) :- A=0, B=0, E=<3, E>=1, new10(E,C,D).
new5(A,B,C,D) :- B=0, E=<3, E>=1, new7(A,E,C,D).
new5(A,B,C,D) :- E=0, F=-A+B, G=A+C, A-B=<0, A>0, new5(E,F,G,D).
new5(A,B,C,D) :- E=0, F=A-B, G=B+C, B>0, A-B>=0, new5(F,E,G,D).
new4(A,B,C,D) :- A=0, new21(B,C,D).
new4(A,B,C,D) :- A=0, B=0, E=<3, E>=1, new10(E,C,D).
new4(A,B,C,D) :- B=0, E=<3, E>=1, new6(A,E,C,D).
new4(A,B,C,D) :- E=0, F=-A+B, G=A+C, A-B=<0, A>0, new4(E,F,G,D).
new4(A,B,C,D) :- E=0, F=A-B, G=B+C, B>0, A-B>=0, new4(F,E,G,D).

The partition E = {{new5, new4}, {new7, new6}, {new21}, {new10}} of the set
of predicates occurring in the above clauses is a cp-equivalence. The predicate
renaming associated with E is:

π(new5)=π(new4)=new4 π(new7)=π(new6)=new6
π(new21)=new21 π(new10)=new10.

By applying the predicate equivalence transformation to the whole set of 51
clauses, we get an equisatisfiable set of 35 clauses. In particular, in the resulting
set the clauses for new5 are no longer present and all occurrences of new5 are
replaced by new4.

5 Automated Verification
We have implemented the Removal of the Interpreter (RI) and the Predicate
Equivalence (PE) transformations presented in Section 4.2 and Section 4.3, re-
spectively, by using the VeriMAP transformation system [10].

We use these transformations for verifying properties of business processes
in the following two different ways:
(i) ‘RI; Z3’, that is, we execute RI, and then we check the satisfiability of the

clauses generated by RI by applying the solver Z36 [12], and
(ii) ‘RI; PE; Z3’, that is, we execute RI, then PE, and finally we check the

satisfiability of the clauses generated by PE by applying the solver Z3.
In Table 5.3 we report the results obtained by using our prototype implementa-
tion for the following business processes:
(1) the Purchase Order (PO) shown in Figure 1, consisting of 7 tasks, 6 gateways,

and 17 flows,
(2) the Request Day Off Approval (RDOA), adapted from [19], consisting of

7 tasks, 4 gateway, 14 flows and representing the activities involving a com-
pany’s leadership to approve an employee’s request for a day off,

5 Available at http://map.uniroma2.it/lopstr16/appendix.pdf
6 v4.4.2, master branch as of 2016-02-18, with the Duality fixed-point engine [25]

http://map.uniroma2.it/lopstr16/appendix.pdf
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(3) the ST-segment Elevation Myocardial Infarction (STEMI ), adapted from [7],
consisting of 11 tasks, 6 gateways, 22 flows and representing an excerpt of
the triage process for hospital admission, and

(4) the STEMI with Coronary Care Unit admission (STEMI+CCU ), adapted
from [8], consisting of 26 tasks, 18 gateways, and 52 flows and representing
an extension of STEMI which also includes the activities for admitting a
patient to the Coronary Care Unit.

For these processes we have considered ten temporal properties (denoted P1–P10
in Table 5.3),7 each one being of the form: if some reachability properties between
states hold, then some constraints between their associated time instants hold.

The experiments have been performed on an Intel Core i5-2467M 1.60GHz
processor with 4GB of memory under GNU/Linux OS.

Business Prop- RI Z3 an- PE Z3 cls time
Process erty time cls time1 swer time cls time2 reduction speedup

PO
P 1 0.49 51 0.82 true 0.05 35 0.57 0.31 1.44
P 2 0.27 51 0.68 true 0.05 37 0.53 0.27 1.28
P 3 0.35 12 0.10 false 0.04 12 0.10 0.00 1.00

RDOA P 4 0.14 20 0.31 false 0.03 16 0.22 0.20 1.41

STEMI
P 5 0.34 52 1.04 true 0.05 43 0.88 0.17 1.18
P 6 0.31 7 0.09 false 0.02 7 0.09 0.00 1.00
P 7 0.36 67 1.62 true 0.06 56 1.60 0.16 1.01

STEMI P 8 1.58 226 10.70 true 0.17 181 9.75 0.20 1.10

+CCU P 9 0.14 29 30.17 false 0.03 23 11.62 0.21 2.60
P 10 0.10 15 2.08 false 0.03 15 2.08 0.00 1.00

Table 5.3. Columns ‘RI.time’ and ‘RI.cls’ denote the time taken by RI and the number
of clauses generated by RI, respectively. Column ‘Z3.time1’ denotes the time taken by
Z3 when executed after RI. Column ‘answer’ tells us whether or not the property
holds. Columns ‘PE.time’ and ‘PE.cls’ denote the time taken by PE and the number
of clauses generated by PE, respectively. Column ‘Z3.time2’ denotes the time taken by
Z3 when executed after PE. The reduction of the number of clauses (cls reduction) is
RI.cls − PE.cls

RI.cls
and the time speedup is Z3.time1

Z3.time2
. Times are in seconds.

In Table 5.3 we have not reported the results of applying the solver Z3 directly
to the clauses encoding the given business processes and properties. Indeed, as
already mentioned in Section 4.2, Z3 is not able to prove the satisfiability of
those clauses, if one does not first apply the transformation RI.

The transformation RI is quite efficient and takes less than half a second for
all properties with the exception of property P8, which generates 226 clauses.
The time taken by Z3 for the verification of the properties (with or without
the preliminary application of PE) is generally small (indeed, it is not greater
than 1.62 seconds), with the exception of properties P8–P10 referring to the
most complex business process we have considered, which is the STEMI+CCU
process.
7 The VeriMAP tool and the encodings of the examples of Table 5.3 are available at

http://map.uniroma2.it/lopstr16/VeriMAP_lopstr16-linux_x86_64.tar.gz

http://map.uniroma2.it/lopstr16/VeriMAP_lopstr16-linux_x86_64.tar.gz
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Note also that the transformation PE often reduces the number of clauses
generated by RI and speeds up the satisfiability check performed by Z3. More-
over, in our examples PE never deteriorates the total verification time in any
significant way, in the sense that the time taken by ‘RI; PE; Z3’ is never signifi-
cantly greater than the time taken by ‘RI; Z3’.

6 Related Work
Several papers have proposed approaches to model business processes with time
constraints and, in particular, duration [1,7,15,16,35] (see [6] for a recent survey).

The approach of Arbab et al. [1] provides a translation of BPMN into the
coordination language Reo. Due to Constraint Automata semantics of Reo, in
principle this translation allows formal reasoning about BPMN processes de-
pending on time and resources. However, the paper does not provide any for-
malized verification technique.

The workflow conceptual model proposed by Combi and Posenato [7] enables
the specification and analysis of time constraints in business processes. They
propose temporal constructs for expressing various kinds of time constraints, and
also introduce the notion of controllability for workflow schemata. Controllability
ensures the executability of a workflow for any duration of the tasks performed
by the ‘external world’. Unfortunately, the algorithms for testing controllability
presented in [7] may require a costly, exhaustive exploration of the search space.

Gonzalez del Foyo and Silva consider workflow diagrams extended with task
durations and the latest execution deadline of each task [15]. They provide a
translation into Time Petri Nets [3] (where clocks are associated with transitions
in the net) and use the tool TINA [4] to answer schedulability questions.

The approach proposed by Gagné and Trudel [16] enables the specification
of temporal constraints (such as ‘As Soon As Possible’) and temporal depen-
dencies. However, unlike the approach presented here, no automated verification
mechanism of time-dependent properties is provided.

The approach proposed by Wong and Gibbons [35] uses a timed semantic
function which takes a diagram describing a collaboration, and returns a CSP
process [17] that models the timed behavior of that diagram, by using the notion
of a relative time in the form of delays chosen non-deterministically within given
intervals. Properties are then verified by using the FDR system [14].

The proposal by Watahiki et al. [32] and other proposals surveyed in [6] use
Timed Automata to model business processes with time constraints. They also
use the UPPAAL tool [22] for the automatic proof of the properties of interest.

As already mentioned in the Introduction, the translations into formalisms
such as Timed Automata, Time Petri Nets, and CSP, may not be adequate when
taking into consideration properties of business processes that require general
purpose logical reasoning.

Finally, we would like to mention work on modeling and analyzing business
processes with explicit time representation based on the Event Calculus [21] (see,
for instance, [26]). However, the Event Calculus lacks a simple translation into
constrained Horn clauses (in particular, it makes use of negation), and hence it
cannot be directly handled by CHC solvers.
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7 Conclusions
We have presented a logic-based language to specify BPMN models where time
and duration of activities are explicitly represented. The language enables the
specification of time constraints, given in the form of lower and upper bounds
associated with the duration of tasks. These are useful features with an intuitive
meaning that allow the specifier to annotate activities with some time restric-
tions. The language supports the specification of a wide range of time-dependent
properties such as the schedulability and the response time.

The main advantage of our approach is that it allows us to automatically
generate constrained Horn clauses from the formal definition of the semantics
of the BPMN models and the time-dependent properties of interest. Then, by
exploiting recent advances in the field of CHC solving, we get very effective
reasoning tools for verifying properties of business processes. Finally, since our
approach is parametric with respect to the language used for modeling processes,
it is possible to incorporate various extensions of that language with little effort.
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