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Abstract. In this paper we present the BPAL platform that includes a logic-

based language for business process (BP) modeling and a reasoning mechanism 

providing support for several tasks. Firstly, the definition of a BP meta-model 

(MM) consisting of a set of rules that guide the BP designers in their work. 

Secondly, given a BP, the BPAL platform allows for the automatic verification 

of the compliance (well-formedness) of a given BP w.r.t. the defined MM. 

Finally, the execution semantics of a BP is given in term of its instances 

(referred to as traces) to provide services for i) checking if the actual execution 

of a BP has been carried out in accordance with the corresponding definition, ii) 

simulating executions by trace generation. The proposed platform is open since 

it can easily be enhanced by adding other logic-based modeling, reasoning, and 

querying functionalities. 

Keywords: business process, modeling language, Horn logic, BPAL. 

1  Introduction 

Business Process (BP) management is constantly gaining popularity in various 

industrial sectors, especially in medium to large enterprises, and in the public 

administration. BP modeling is a complex human activity, requiring a special 

competence and, typically, the use of a BP design tool. Several tools2 are today 

available on the market, open source or free of charge. Many of these tools are able to 

provide, besides a graphical editor, additional services, such as some forms of 

verification, simulation of the designed processes, execution or (semi) automatic 

generation of executable code (e.g., in the form of BPEL3 code). The availability of 

the mentioned tools has further pushed the diffusion of several languages (e.g., 

                                                           
1 This work is partially supported by the Tocai Project (http://www.dis.uniroma1.it/~tocai/), 

funded by the FIRB Programme of the Italian Ministry of University and Research (MIUR). 
2 See for instance: Intalio BPMS Designer, Tibco Business Studio, ProcessMaker, YAWL, 

JBPM, Enhydra Shark 
3 Business Process Execution Language. See: http://www.oasis-open.org/specs/#wsbpelv2.0 
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BPMN [7], EPC [15]) used both in the academic and in the industrial realities. But, 

despite the growing academic interest and the penetration in the business domain, 

heterogeneous and ad-hoc solutions that often lack a formal semantics have been so 

far proposed to deal with the different perspectives that are of interest for an effective 

BP management: workflow modeling, business rules representation, integration of 

organizational and data models, data flow, query and retrieval of BP fragments, 

enactment, reengineering, log analysis, process mining.   

This paper mainly intends to lay the formal foundations of a platform for BP 

modeling and verification. The proposed platform is centered around BPAL (Business 

Process Abstract Language) [8], a logic-based language for modeling the dynamic 

behavior of a business process from a workflow perspective. BPAL relies on a 

formalism, Horn clause logic, that is particularly well-suited for its use within a wider 

knowledge representation framework (for instance in conjunction with rule based 

ontology languages [19,20]) with an uniform semantics. The use of a logic-based 

uniform approach makes the BPAL platform open to further extensions and to the 

easy integration of more advanced functionalities, such as reasoning services for 

verifying consistency properties and methods for querying BP repositories, which can 

be supported by tools already developed in the area of logic programming. 

BPAL is a rule-based formalism that provides an integrated support to the 

following three levels: (i) the BP meta-model, where we define the meta-model, 

establishing the rules for building well-formed BPs; (ii) the schema level, where we 

define the BP schemas, in accordance with the given meta-model; (iii) the ground 

level, where we represent the BP instances, i.e., the traces that are produced by the 

execution of a BP. The reasoning support provided by the BPAL platform allows the 

BP designer to: (i) verify business process schema well-formedness with respect to 

the given meta-model; (ii) verify if a given process trace, i.e., the actual execution of a 

BP, is compliant with a well-formed BP schema; (iii) simulate a BP execution by 

generating all possible traces (which are finitely many, whenever the BP schema is 

well-formed). 

The BPAL platform is characterized by both a solid formal foundation and a high 

level of practical usability. The formal foundation is rooted in the logic-based 

approach of the BPAL language. The practical usability is guaranteed by the fact that 

BPAL platform has not been conceived as an alternative to existing BP tools but, 

conversely, it intends to be associated to the existing BP modeling tools enhancing 

their functionalities.  

The rest of this paper is organized as follows. In Section 2 some relevant related 

works are presented. The BPAL language for business process modeling and 

verification is described in Section 3. Section 4 presents the BPAL meta-model and in 

Section 5 the execution semantics (in term of execution traces) of a BPAL BP schema 

is described. In Section 6 an overview of the BPAL platform, consisting of the well-

formedness verification service, the trace analysis, and traces generation service, is 

presented. Finally, conclusions in Section 7 end the paper.  
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2 Related Works 

In the literature, much attention is given to BP modeling, as its application to the 

management of complex processes and systems [10] is an important issue in business 

organizations. It appears increasingly evident that a good support to BP management 

requires reliable BP modeling methods and tools. Such reliability can be achieved 

only if the adopted method is based on formal foundations. In this perspective, our 

work is related to the formal BP languages for the specification, the verification, and 

analysis of business processes. The BPAL framework is positioned among the logic-

based languages but, with respect to existing proposals, it is characterized by 

enhanced adaptability, since we propose a progressive approach where a business 

expert can start with the (commercial) tool and notation of his/her choice and then 

enrich its functionalities with BPAL. 

Formal semantics of process modeling languages (e.g., the BPMN case is 

discussed in [1]) is usually defined in terms of a mapping to Petri nets [2]. Petri nets 

represent a powerful formal paradigm to support automatic analysis and verification 

of BPs within a procedural approach. A different approach is represented by the logic-

based formalisms. A logical approach appears more suited to manipulate, query, 

retrieve, compose BP diagrams. Furthermore, by using Petri Nets, it is difficult to 

provide a “meta-level” that can be used to guide and constrain business process 

modeling, verifying properties at the intensional level. 

As already mentioned, a different approach to formal BP specification is 

represented by a logic-based declarative approach [3,4]. Here a process is modeled by 

a set of constraints (business rules) that must be satisfied during execution: these 

proposals provide a partial representation of a BP that overlooks the procedural view, 

i.e., the control flow among activities. [3] proposes ConDec, a declarative flow 

language to define process models that can be represented as conjunction of Linear 

Temporal Logic formulas. This approach allows the BP designer to verify properties 

by using model checking techniques. [4] proposes a verification method based on 

Abductive Logic Programming (ALP) and, in particular, the SCIFF framework [5], 

that is an ALP rule-based language and a family of proof procedures for specification 

and verification of event-based systems. [3,4], are based on rigorous mathematical 

foundations but they propose a paradigm shift from traditional process modeling 

approaches that is difficult to be understood and, consequently, to be accepted by 

business people. Such approaches are mostly intended to complement and extend 

fully procedural languages rather than replace them, as in the case of Declare4, which 

is implemented within the YAWL5 workflow management system. 

PSL (Process Specification Language) [6], defines a logic-based neutral 

representation for manufacturing processes. A PSL ontology is organized into PSL-

CORE and a partially ordered set of extensions. The PSL-CORE axiomatizes a set of 

intuitive semantic primitives (e.g., activities, activity occurrences, time points, and 

objects) enabling the description of the fundamental concepts of processes, while a set 

of extensions introduce new terminology and its logical formalization. Although PSL 

                                                           
4  http://www.win.tue.nl/declare/ 
5  http://www.yawlfoundation.org/ 

http://www.win.tue.nl/declare/
http://www.yawlfoundation.org/
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is defined in first order logic, which in principle makes behavioral specifications in 

PSL amenable to automated reasoning, we are not aware of PSL implementations for 

the modeling, verification or enactment of BPs, since it is intended mostly as a 

language to support the exchange of process information among systems. 

Concurrent Transaction Logic (CTR) [17] is a formalism for declarative 

specification, analysis, and execution of transactional processes, that has been also 

applied to modeling and reasoning about workflows and services [18]. CTR formulas 

extend Horn clauses by introducing three new connectives: serial conjunction, which 

denotes sequential executions, concurrent conjunction, which denotes concurrent 

execution, and isolation, which denotes transactional executions. The model-theoretic 

semantics of CTR formulas is defined over paths, i.e., sequences of states. These 

formulas can be compiled for the execution6 in a Prolog environment. Unlike a CTR 

formula, a BPAL process specification (i.e., the Horn clauses specifying the meta-

model, the process schema, and the trace semantics) can be directly viewed as an 

executable logic program and, hence: (i) a BPAL specification can be queried by any 

Prolog system without need of a special purpose compiler, (ii) BPAL traces are 

explicitly represented and can be directly analyzed and manipulated, and (iii) other 

knowledge representation applications (e.g., ontology management systems) can 

easily be integrated by providing a suitable translation to logic programming.   

3 The BPAL Language 

BPAL is a logic-based language that has been conceived to provide a declarative 

modeling method capable of fully capturing the procedural knowledge in a business 

process. BPAL constructs are common to the most used and widely accepted BP 

modeling languages (e.g., BPMN, UML activity diagrams, EPC) and, in particular, its 

core is based on BPMN 2.0 specification [7]. Furthermore, the design principles of 

the language follow the MOF paradigm7 with the four levels briefly reported below:  

M3: Meta-metalevel. The top level is represented by the logical formalism that is 

applied to describe the lower levels. In particular we adopted Horn logic, due to 

its widespread popularity and the mature technological support provided by the 

numerous Prolog systems which are available. 

M2: Metalevel. Here it is defined the meta-model, establishing the rules for 

building well-formed BPs. 

M1: Schema level. This is the modeling level where it is defined the BP schema, in 

accordance with the given meta-model, that represents the business logic of the 

process.  

M0: Trace level. This is the ground level, used to model the executions of a 

business process, in accordance with the corresponding BP schema.  

                                                           
6 http://flora.sourceforge.net/ 
7OMG, (2006), Meta Object Facility (MOF) Core Specification V2.0, 

http://www.omg.org/docs/formal/06-01-01.pdf. 
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 From a formal point of view, the BPAL language consists of two syntactic 

categories: (i) a set Entities of constants denoting entities to be used in the 

specification of a business process schema (e.g., business activities, events, and 

gateways) and (ii) a set Pred of predicates denoting relationships among BPAL 

entities. Finally, a BPAL business process schema (BPS) is specified by a set of 

ground facts (i.e., atomic formulas) of the form           , where p Pred and 

         Entities.  

     The entities occurring in a BPS are represented by the following set of predicates: 

flow_el(el): el is a flow element, that is, any atomic component appearing in the 

control flow. A flow element is either an activity or an event or a gateway;  

activity(act): act is a business activity, the key element of the business process; 

event(ev): ev is an event that occurs during the process execution. An event is of one 

of the following three types: (i) a start event, which starts the business process, (ii) 

an intermediate event, and (iii) an end event, which ends the business process. 

These three types of events are specified by the three predicates start_ev(start), 

end_ev(end), and int_ev(int); 

gateway(gat): gat is a gateway. A gateway is either a branch or a merge point, whose 

types are specified by the predicates branch_pt(gat) and mrg_pt(gat), respectively. 

A branch (or merge) point can be either a parallel, or an inclusive, or an exclusive 

branch (or merge) point. Each type of branch or merge point is specified by a 

corresponding unary predicate. 

Furthermore BPAL provides a set of relational predicates to model primarily the 

sequencing of activities. Then, in case of branching flows, BPAL provides parallel 

(i.e., AND), exclusive (i.e., XOR), and inclusive (i.e., OR) branching/merging of the 

control flow. Here we adopted the standard semantics for branching and merging 

points: 

seq(el1,el2): the flow element el1 is immediately followed by el2.  

par_branch(gat,el1,el2)8: gat is a parallel branch point from which the business 

process branches to two sub-processes started by el1 and el2 executed in parallel; 

par_mrg(el1,el2,gat): gat is a parallel merge point where the two sub-processes 

ended by el1 and el2 are synchronized; 

inc_branch (gat,el1,el2)9: gat is an inclusive branch point from which the business 

process branches to two sub-processes started by el1 and el2. At least one of the 

sub-processes started by el1 and el2 is executed; 

inc_mrg(el1,el2,gat): gat is an inclusive merge point. At least one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed; 

                                                           
8 We represent only binary branches, while they are n-ary in the general case. This limitation is 

made for presentation purposes and can be easily removed. 
9 Inclusive and exclusive gateways, in their general formulation, are associated with a condition. 

For instance, exc_dec tests a condition to select the path where the process flow will 

continue. 
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exc_branch(gat,el1,el2): gat is an exclusive branch point from which the business 

process branches to two sub-processes started by el1 and el2 executed in mutual 

exclusion; 

exc_mrg(el1,el2,gat): gat is an exclusive merge point. Exactly one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed; 

To better present the BPAL approach, we briefly introduce as a running example a 

fragment of an eProcurement. An ACME supplier company receives a purchase order 

from a buyer and sends back an invoice. The buyer receives the invoice and makes 

the payment to the bank. In the meanwhile, the supplier prepares a gift for the buyer if 

she/he is classified as golden client, otherwise he prepares a brochure. After receiving 

the payment clearance from the bank, the supplier sends the goods to the buyer. 

The Figure 1 reports a BPMN diagram that illustrates the fragment of the 

eProcurement process from the supplier perspective. The same process is reported in 

Table 1 encoded as a BPAL BPS. 

 

Fig. 1. BPMN specification of a fragment of an eProcurement example 

Table 1. BPAL BPS of the eProcurement example 

start_ev(Start) 

activity(ReceivingPO) 

activity(Invoicing) 

activity(WaitingPaymentClearence) 

activity(PreparingGift) 

activity(PreparingBrochure) 

activity(SendingGoods) 

par_branch_pt(Gat1) 

par_mrg_pt(Gat2) 

exc_branch_pt(Gat3) 

exc_mrg_pt(Gat4) 

end_ev(End) 

seq(Start,ReceivingPO) 

seq(ReceivingPO,Gat1) 

seq(Invoicing,WaitingPaymentClearence) 

seq(Gat2,SendingGoods) 

seq(SendingGoods,End) 

par_branch(Gat1,Invoicing,Gat3) 

par_mrg(WaitingPaymentClearence,Gat4,Gat2) 

exc_branch(Gat3,PreparingBrochure,PreparingGift) 

exc_mrg(PreparingBrochure,PreparingGift,Gat4) 
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4 BPAL Meta-Model  

The first service provided by BPAL enables the BP designer to check the 

compliance of a BPS with the BP meta-model, i.e., with a set of rules that constitute a 

guidance for the construction of the BP.  

In this paper the main assumption imposed by the BPAL meta-model is the 

structuredness. According to [11], a strictly structured BP can be defined as follows: 

it consists of m sequential blocks, T1 …Tm. Each block Ti is either elementary, i.e., it is 

an activity, or complex. A complex block i) starts with a branch node (a parallel, 

inclusive or exclusive gateway) that is associated with exactly one merge node of the 

same kind that ends the block, ii) each path in the workflow graph originating in a 

branch node leads to its corresponding merge node and consists of n sequential blocks 

(simple or complex). It is worth noting that removing the structured assumption leads 

to several weaknesses [12]. Among them, error patterns [13] such as deadlocks, 

livelocks and dead activities cannot manifest in a structured BPS.  

The presence of a meta-model allows us to automatically prove the first 

fundamental property: the fact that a BPAL process schema has been built in the 

respect of the meta-model. We will refer to such a property as well-formedness.  

In the rest of this section we describe the core of the meta-model of BPAL by 

means of a set of rules (i.e., a first order logic theory) MM, which specifies when a 

BP is well-formed, i.e., it is syntactically correct. MM consists of three sets of meta-

rules10: (1) a set I of inclusion axioms among the BPAL entities, (2) a set K of schema 

constraints (in the form of first order formulas), and (3) a set F of process 

composition rules (in the form of Horn clauses). 

The set I of inclusion axioms defines a taxonomy among the BPAL entities, as 

informally described in Section 3. They are reported in Table 2.  

Table 2. BPAL inclusion axioms 

event(x)   flow_el(x) 

activity(x)   flow_el(x) 

gateway(x)   flow_el(x) 

start_ev(x)  event(x)  

int_ev(x)  event(x) 

end_ev(x)  event(x) 

branch_pt(x)  gateway(x) 

mrg_pt(x)  gateway(x) 

par_branch_pt(x)  branch_pt(x) 

exc_branch_pt(x)  branch_pt(x) 

inc_branch_pt(x)  branch_pt(x) 

par_mrg_pt(x)  mrg_pt(x) 

exc_mrg_pt(x)  mrg_pt(x) 

inc_mrg_pt(x)  mrg_pt(x) 

 

The set K of schema constrains (Table 3) consists of three subsets: (i) the domain 

constraints, (ii) the type constraints, and (iii) the uniqueness constraints.  

 

 

                                                           
10 All formulas in MM are universally quantified in front and, for sake of simplicity, we will 

omit to write those quantifiers explicitly. 
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Table 3. BPAL schema constraints and supporting examples 

Schema constraint Example 

Domain constraints are formulas expressing 

the relationships among BPAL unary 

predicates. 

A flow element cannot be an activity and an 

event at the same time. 

activity(x)   event(x) 

Type constraints are rules specifying the 

types of the arguments of relational 

predicates. 

A parallel branch is defined among a parallel 

branch point and two flow elements. 

 

par_branch(x,l,r)  par_branch_pt(x)  

flow_el(l)  flow_el(r) 

Uniqueness Constraints are rules expressing 

that the precedence relations between flow 

elements are specified in an unambiguous 

way: 

branching uniqueness constraints asserting 

that every (parallel, inclusive, exclusive) 

branching point has exactly one pair of 

successors. 

merging uniqueness constraints asserting that 

every merge point has exactly one pair of 

predecessors. 

sequence uniqueness constraints asserting 

that, by the seq predicate, we can specify at 

most one successor and at most one 

predecessor of any flow element. 

Example of sequence uniqueness constraint: 

 

seq(x,y)  seq(x,z)  y=z 

seq(x,z)  seq(y,z)  x=y 

 

The set F of process composition rules provides the guidelines for building a well-

formed BPS. Then, in formal terms, it is possible to verify if a process respects such 

rules by means of a predicate wf_proc(s,e) which holds if the business process started 

by the event s and ended by the event e is well-formed. In Table 4, some rules are 

reported that inductively define what is a well-formed process (wf_proc) by means of 

the notion of sub-process and its well-formedness (wf_sub_proc). 

We are now ready to give a definition of the well-formedness of a BP schema B. 

We say that B is well-formed if: 

(i) every schema constraint C in K can be inferred from BFI, and 

(ii) for every start event S and end event E, wf_process(S,E) can be inferred from 

BFI. 
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Table 4. BPAL process composition rules and supporting diagrammatic description 

Process composition rule Intuitive Diagram 

F1. A business process schema is well-

formed if (i) it is started by a start event s, (ii) 

it is ended by an end event e, and (iii) the 

sub-process from s to e is a well-formed sub-

process constructed according to rules F2-F6: 

(start_ev(s)  wf_sub_proc(s,e) end_ev(e)) 

 wf_proc(s,e) 

A well-formed process: 

 

 

F2. Any activity/event or sequence of two 

activities/events is a well-formed sub-

process: 

activity(x)   wf_sub_proc(x,x) 

int_ev(x)   wf_sub_proc(x,x) 

seq(x,y)   wf_sub_proc(x,y) 

So, the simplest well-formed process is 

graphically represented as: 

 

F3. A sub-process is well-formed if it can be 

decomposed into a concatenation of two well-

formed sub-processes: 

wf_sub_proc(x,y)  wf_sub_proc(y,z)   

wf_sub_proc(x,z) 

A well-formed sub-process: 

 

F4. A sub-process started by a branch point  x 

and ended by a merge point y is well-formed 

if (i) x and y are of the same type, and (ii) 

both branches contain two well-formed sub-

processes11:  

par_branch(x,l,r)  wf_sub_proc(l,m)  

wf_sub_proc(r,s)  par_mrg(m,s,y)  

wf_sub_proc(x,y) 

A well-formed sub-process including merge 

and branch points: 

 

 

5 BPAL Execution Traces 

An execution of a business process is a sequence of instances of activities called 

steps; the latter may also represent instances of events. Steps are denoted by constants 

taken from a set Step disjoint from Entities. Thus, a possible execution of a business 

process is a sequence [  ,   ,…,   ], where   ,   ,…,     Step, called a trace. The 

instance relation between steps and activities (or events) is specified by a binary 

                                                           
11 The rules F5 and F6 defining the predicate wf_sub_process(x,y) in the cases where x is an 

inclusive or an exclusive decision gateway are similar and are omitted. 
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predicate inst(step,activity). For example, inst(RPO1, ReceivingPO) states that the 

step RPO1 is an activity instance of ReceivingPO.  

Table 2. BPAL Trace rules 

T1. A sequence [s1,…,e1] of steps is a correct trace if: (i) s1 is an instance of a start event, (ii) 

e1 is an instance of an end event, and (iii) [s1,…,e1] is a correct sub-trace from s1 to e1 

constructed according to the sets of rules T2-T6: 

start_ev(s)  inst(s1,s)  sub_trace(s1,t,e1)  end_ev(e)  inst(e1,e)  trace(t) 

 

T2. Any instance of an activity/event or a sequence of instances of activities/events is a correct 

sub-trace.  

inst(x1,x)  activity(x)  sub_trace(x1,[x1],x1) 

inst(x1,x)  int_ev(x)  sub_trace(x1,[x1],x1) 

inst(x1,x)  inst(y1,y)  seq(x,y)  act_or_ev_seq([x1,y1],t)  sub_trace(x1,t,y1) 

where the predicate act_or_ev_seq([x1,y1],t) holds iff t is the sequence obtained from [x1,y1] 

by deleting the steps which are not instances of activities or events. 

 

T3. A trace is correct if it can be decomposed into a concatenation of two correct sub-traces: 

sub_trace(x1,t1,y1)  sub_trace(y1,t2,z1)  concatenation(t1,t2,t)  sub_trace(x1,t,z1) 

where the concatenation of [x1,…,xm] and [y1,y2,..,yn] is [x1,..,xm,y2,…,yn] if xm =y1 and 

[x1,..,xm,y1,y2,…,yn] otherwise. 

 

T4. In the case where x1 is an instance of a parallel branch point, the correctness of a sub-trace 

t from x1 to z1 is defined by the following rule12: 

inst(x1,x)  inst(l1,l)  inst(r1,r)  par_branch(x,l,r) inst(m1,m)  sub_trace(l1,t1,m1) 

inst(s1,s)   sub_trace(r1,t2,s1)  inst(y1,y),par_mrg(m,s,y),interleaving(t1,t2,t) 

  sub_trace(x1,t,y1) 

where the predicate interleaving(t1,t2,t) holds iff t is a sequence such that: (i) the elements of t 

are the elements of t2 together with the elements of t2 and (ii) for i=(1,2) x precedes y in ti iff 

x precedes y in t.  

 

 

A trace is correct w.r.t. a well-formed business process schema B if it is 

conformant to B according to the intended semantics of the BPAL relational 

predicates (as informally described in Section 3). Below we present a formal 

definition of the notion of a correct trace. Let us first give some examples by referring 

to the example in Figure 1. Below we list two correct traces of the business process 

schema corresponding to the above BPMN specification: 

[s,r,i,pG,w,sG,e] 

[s,r,i,w,pB,sG,e]  

                                                           
12 For sake of concision we omit the sets T5, T6 for the inclusive and exclusive branch points. 



An Open Platform for Business Process Modeling and Verification  11 

where inst(s,Start), inst(r,ReceivingPO), inst(i,Invoicing), inst(w,WaitingPayment 

Clearence), inst(pG,PreparingGift), inst(pB,PreparingBrochure), inst(sG,Sending 

Goods), inst(e,End). 

 Note that the sub-traces [I,pG,w] of the first trace and [i,w,pB] of the second trace 

are the interleaving of the sub-trace [i,w] with the two branches going out from the 

exclusive branch point. 

We now introduce a predicate trace(t), which holds if t is a correct trace, with 

respect to a BP, of the form [  ,   ,…,   ], where    is an instance of a start event and 

   is an instance of an end event. The predicate trace(t) is defined by a set T of rules 

(in the form of Horn clauses), called trace rules. These rules have a double nature, 

since they can be used to check correctness but also for generating correct traces. 

Each trace rule corresponds to a process composition rule and, for lack of space, in 

Table 5 we list only the trace rules corresponding to the composition rules presented 

in Section 4. The trace axioms are defined by induction on the length of the trace t. 

We say that a trace t is correct w.r.t. a BPAL BP schema B if trace(t) can be 

inferred from BT. 

6 The BPAL Platform 

In this section we briefly present the logical architecture of the BPAL platform with 

the key implemented reasoning services: (1) verification of the well-formedness of a 

BPS, (2) trace analysis, and (3) trace generation.  

In the BPAL platform the verification of well-formedness of a BPS is performed as 

depicted in Figure 2. The BPMN graphical specification of a given BP-1 business 

process is exported as XPDL13 (XML Process Definition Language) and translated 

into a set of BPAL ground facts by means of the service XPDL2BPAL, thereby 

producing the BPS B. Then B is passed to the reasoning engine together with the 

meta-model MM, i.e., the set F of composition rules, the set K of constraints, and the 

set I of inclusion axioms. Thus, the union of B, F, I, and K makes up a knowledge 

base from which we want to infer that B is well-formed. This inference task is 

performed by the BPAL reasoning engine which is implemented by using the XSB 

logic programming and deductive database system [16]. XSB extends the 

conventional Prolog systems with an operational semantics based on tabling, i.e., a 

mechanism for storing intermediate results and avoiding to prove sub-goals more than 

once. XSB has several advantages over conventional Prolog systems based on 

SLDNF-resolution (such as, SWI-Prolog and SICStus Prolog): (i) in many cases XSB 

is more efficient than conventional systems, (ii) it guarantees the termination of 

queries to DATALOG programs (i.e., Prolog programs without function symbols), 

and (iii) it often avoids to return several times the same answer to a given query. 

BFI is a set of Horn clauses and, therefore, it is translated to a Prolog program 

in a straightforward way. The schema constraints in K are translated to Prolog queries. 

For instance, the domain constraint activity(x)   event(x) is translated to the query: 

                                                           
13 http://www.wfmc.org/xpdl.html 
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?- activity(X), event(X). 

 

For the eProcurement example of Figure. 1, XSB answers „no‟ to this query, 

meaning that there is no X which is an activity and an event at the same time. Hence, 

this domain constraint is inferred from BFI.  

Moreover, for any given start event start and end event end, we can check whether 

or not  wf_proc (start,end) is inferred from BFI, by running the query: 

 

  ?- wf_proc(start,end). 

 

For the eProcurement example of Figure. 1, XSB answers „yes‟ to this query, 

meaning that wf_proc (start,end) is inferred from BFI and, thus, the well-

foundedness of B is verified. 

 

Fig. 2. Architecture of the well-formedness service 

The trace analysis and trace generation services are performed by translating the 

theory TB to a Prolog program in the reasoning engine. As above, this translation is 

straightforward, as TB is a set of Horn clauses. The trace analysis service consists in 

checking whether or not a given trace t is correct w.r.t. the well-formed BPS B. This 

task is performed by the reasoning engine by running a query of the type trace(t), 

where t is the trace to be checked (Figure 3.a). For instance, in the eProcurement 

example, XSB behaves as follows: 

 

?- trace([s,r,i,pG,w,sG,e]). 

yes 

?- trace([s,r,i,pG,pB,w,sG,e]). 

no 

 

Indeed, the first sequence is a correct trace and the second is not. 
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The trace generation service consists in generating all correct traces (Figure. 3.b). 

This task is performed by running a query of the type trace(T), where T is a free 

variable (Figure 3.a). In the eProcurement example, XSB behaves as follows:  

 

?- trace(T). 

T = [s,r,pG,i,w,sG,e]; 

T = [s,r,i,w,pG,sG,e]; 

T = [s,r,i,w,pB,sG,e]; 

T = [s,r,i,pG,w,sG,e]; 

T = [s,r,i,pB,w,sG,e]; 

T = [s,r,pB,i,w,sG,e]; 

no 

 

meaning that the above sequences are all and only the correct execution traces of the 

given BPS. 

 

 

Fig. 3. a) Architecture of the trace analysis and b) traces generation service 

7 Conclusions and future works 

In this paper we presented a platform to complement existing business modeling tools 

by providing advanced reasoning services: the well-formedness verification service, 

the trace analysis and the trace generation service. The platform is centered around 

the logic-based BPAL language. A first evaluation of the services in the eProcurement 

domain shows the viability of the approach.  

We intend to expand the BPAL platform in several directions. A first direction will 

be the tight integration of business ontologies (i.e., structural knowledge) represented 

by OPAL, and the behavioral knowledge, represented by BPAL. OPAL is an ontology 

representation framework supporting business experts in building a structural 
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ontology, i.e., where concepts are defined in terms of their information structure and 

static relationships. In building an OPAL ontology, knowledge engineers typically 

start from a set of upper level concepts, and proceed according to a paradigm that 

highlights the active entities (actors), passive entities (objects), and transformations 

(processes). The latter are represented only in their structural components, without 

modeling the behavioral issues, delegated to BPAL. As shown in [14], a significant 

core of an OPAL ontology can be formalized by a fragment of OWL, relying within 

the OWL-RL profile [19,20] an OWL subset designed for practical implementations 

using rule-based technologies such as logic programming. 

Another direction concerns the modeling and the verification of Business Rules 

(BRs). This is motivated by the fact that in real world applications the operation of an 

enterprise is regulated by a set of BPs that are often complemented by specific 

business rules. We intend to enhance the BPAL platform so as to support the 

integrated modeling of BPs and BRs. New reasoning services will also be needed  for 

analyzing those integrated models to check if, for instance, there are possible 

executions of processes that violate any given business rule. 

Since BPs play a growing role in business realities, we foresee a scenario where 

huge repositories of process models developed by different designers have to be 

managed. In such a scenario there will be the need for advanced reasoning systems 

aimed at query processing, for the retrieval of process fragments to be used in the 

design of new BP models, and at verifying that some desired properties hold. We 

intend to enhance the BPAL platform in such a way that we can issue several types of 

queries, both at intensional and extensional level. In particular, we are interested in 

the following three types of queries and combinations thereof. (1) Queries over BP 

schemas. Querying the BPS allows the search for certain patterns adopted in the 

design phase and the verification of constrains that descend from structural 

requirements to be done. (2) Queries over BP traces. Here the behavior at execution 

time is of interest, and the properties to be verified regard the temporal sequencing of 

activities in the set of correct traces. (3) Queries over the Business Ontology. Here the 

focus is on the domain entities (processes, actors, objects) and their relationships. 

Finally, on an engineering ground, we intend to investigate the problem of 

Business Process Reengineering, and explore the possibility of manipulating a set of 

business processes to produce a new, optimized (e.g., in terms of process length or 

aggregating sub-processes that are shared by different BPs) set of reengineered BPs. 
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