
An Open Platform for Business Process Modeling and

Verification1

Antonio De Nicola
1
, Michele Missikoff

1
, Maurizio Proietti

1
, Fabrizio Smith

1,2

1 IASI-CNR, Viale Manzoni 30, 00185, Rome, Italy
2 DIEI, Università degli Studi de L‟Aquila, Italy

{antonio.denicola, michele.missikoff, maurizio.proietti,

fabrizio.smith}@iasi.cnr.it

Abstract. In this paper we present the BPAL platform that includes a logic-

based language for business process (BP) modeling and a reasoning mechanism

providing support for several tasks. Firstly, the definition of a BP meta-model

(MM) consisting of a set of rules that guide the BP designers in their work.

Secondly, given a BP, the BPAL platform allows for the automatic verification

of the compliance (well-formedness) of a given BP w.r.t. the defined MM.

Finally, the execution semantics of a BP is given in term of its instances

(referred to as traces) to provide services for i) checking if the actual execution

of a BP has been carried out in accordance with the corresponding definition, ii)

simulating executions by trace generation. The proposed platform is open since

it can easily be enhanced by adding other logic-based modeling, reasoning, and

querying functionalities.

Keywords: business process, modeling language, Horn logic, BPAL.

1 Introduction

Business Process (BP) management is constantly gaining popularity in various

industrial sectors, especially in medium to large enterprises, and in the public

administration. BP modeling is a complex human activity, requiring a special

competence and, typically, the use of a BP design tool. Several tools2 are today

available on the market, open source or free of charge. Many of these tools are able to

provide, besides a graphical editor, additional services, such as some forms of

verification, simulation of the designed processes, execution or (semi) automatic

generation of executable code (e.g., in the form of BPEL3 code). The availability of

the mentioned tools has further pushed the diffusion of several languages (e.g.,

1 This work is partially supported by the Tocai Project (http://www.dis.uniroma1.it/~tocai/),

funded by the FIRB Programme of the Italian Ministry of University and Research (MIUR).
2 See for instance: Intalio BPMS Designer, Tibco Business Studio, ProcessMaker, YAWL,

JBPM, Enhydra Shark
3 Business Process Execution Language. See: http://www.oasis-open.org/specs/#wsbpelv2.0

2 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

BPMN [7], EPC [15]) used both in the academic and in the industrial realities. But,

despite the growing academic interest and the penetration in the business domain,

heterogeneous and ad-hoc solutions that often lack a formal semantics have been so

far proposed to deal with the different perspectives that are of interest for an effective

BP management: workflow modeling, business rules representation, integration of

organizational and data models, data flow, query and retrieval of BP fragments,

enactment, reengineering, log analysis, process mining.

This paper mainly intends to lay the formal foundations of a platform for BP

modeling and verification. The proposed platform is centered around BPAL (Business

Process Abstract Language) [8], a logic-based language for modeling the dynamic

behavior of a business process from a workflow perspective. BPAL relies on a

formalism, Horn clause logic, that is particularly well-suited for its use within a wider

knowledge representation framework (for instance in conjunction with rule based

ontology languages [19,20]) with an uniform semantics. The use of a logic-based

uniform approach makes the BPAL platform open to further extensions and to the

easy integration of more advanced functionalities, such as reasoning services for

verifying consistency properties and methods for querying BP repositories, which can

be supported by tools already developed in the area of logic programming.

BPAL is a rule-based formalism that provides an integrated support to the

following three levels: (i) the BP meta-model, where we define the meta-model,

establishing the rules for building well-formed BPs; (ii) the schema level, where we

define the BP schemas, in accordance with the given meta-model; (iii) the ground

level, where we represent the BP instances, i.e., the traces that are produced by the

execution of a BP. The reasoning support provided by the BPAL platform allows the

BP designer to: (i) verify business process schema well-formedness with respect to

the given meta-model; (ii) verify if a given process trace, i.e., the actual execution of a

BP, is compliant with a well-formed BP schema; (iii) simulate a BP execution by

generating all possible traces (which are finitely many, whenever the BP schema is

well-formed).

The BPAL platform is characterized by both a solid formal foundation and a high

level of practical usability. The formal foundation is rooted in the logic-based

approach of the BPAL language. The practical usability is guaranteed by the fact that

BPAL platform has not been conceived as an alternative to existing BP tools but,

conversely, it intends to be associated to the existing BP modeling tools enhancing

their functionalities.

The rest of this paper is organized as follows. In Section 2 some relevant related

works are presented. The BPAL language for business process modeling and

verification is described in Section 3. Section 4 presents the BPAL meta-model and in

Section 5 the execution semantics (in term of execution traces) of a BPAL BP schema

is described. In Section 6 an overview of the BPAL platform, consisting of the well-

formedness verification service, the trace analysis, and traces generation service, is

presented. Finally, conclusions in Section 7 end the paper.

An Open Platform for Business Process Modeling and Verification 3

2 Related Works

In the literature, much attention is given to BP modeling, as its application to the

management of complex processes and systems [10] is an important issue in business

organizations. It appears increasingly evident that a good support to BP management

requires reliable BP modeling methods and tools. Such reliability can be achieved

only if the adopted method is based on formal foundations. In this perspective, our

work is related to the formal BP languages for the specification, the verification, and

analysis of business processes. The BPAL framework is positioned among the logic-

based languages but, with respect to existing proposals, it is characterized by

enhanced adaptability, since we propose a progressive approach where a business

expert can start with the (commercial) tool and notation of his/her choice and then

enrich its functionalities with BPAL.

Formal semantics of process modeling languages (e.g., the BPMN case is

discussed in [1]) is usually defined in terms of a mapping to Petri nets [2]. Petri nets

represent a powerful formal paradigm to support automatic analysis and verification

of BPs within a procedural approach. A different approach is represented by the logic-

based formalisms. A logical approach appears more suited to manipulate, query,

retrieve, compose BP diagrams. Furthermore, by using Petri Nets, it is difficult to

provide a “meta-level” that can be used to guide and constrain business process

modeling, verifying properties at the intensional level.

As already mentioned, a different approach to formal BP specification is

represented by a logic-based declarative approach [3,4]. Here a process is modeled by

a set of constraints (business rules) that must be satisfied during execution: these

proposals provide a partial representation of a BP that overlooks the procedural view,

i.e., the control flow among activities. [3] proposes ConDec, a declarative flow

language to define process models that can be represented as conjunction of Linear

Temporal Logic formulas. This approach allows the BP designer to verify properties

by using model checking techniques. [4] proposes a verification method based on

Abductive Logic Programming (ALP) and, in particular, the SCIFF framework [5],

that is an ALP rule-based language and a family of proof procedures for specification

and verification of event-based systems. [3,4], are based on rigorous mathematical

foundations but they propose a paradigm shift from traditional process modeling

approaches that is difficult to be understood and, consequently, to be accepted by

business people. Such approaches are mostly intended to complement and extend

fully procedural languages rather than replace them, as in the case of Declare4, which

is implemented within the YAWL5 workflow management system.

PSL (Process Specification Language) [6], defines a logic-based neutral

representation for manufacturing processes. A PSL ontology is organized into PSL-

CORE and a partially ordered set of extensions. The PSL-CORE axiomatizes a set of

intuitive semantic primitives (e.g., activities, activity occurrences, time points, and

objects) enabling the description of the fundamental concepts of processes, while a set

of extensions introduce new terminology and its logical formalization. Although PSL

4 http://www.win.tue.nl/declare/
5 http://www.yawlfoundation.org/

http://www.win.tue.nl/declare/
http://www.yawlfoundation.org/

4 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

is defined in first order logic, which in principle makes behavioral specifications in

PSL amenable to automated reasoning, we are not aware of PSL implementations for

the modeling, verification or enactment of BPs, since it is intended mostly as a

language to support the exchange of process information among systems.

Concurrent Transaction Logic (CTR) [17] is a formalism for declarative

specification, analysis, and execution of transactional processes, that has been also

applied to modeling and reasoning about workflows and services [18]. CTR formulas

extend Horn clauses by introducing three new connectives: serial conjunction, which

denotes sequential executions, concurrent conjunction, which denotes concurrent

execution, and isolation, which denotes transactional executions. The model-theoretic

semantics of CTR formulas is defined over paths, i.e., sequences of states. These

formulas can be compiled for the execution6 in a Prolog environment. Unlike a CTR

formula, a BPAL process specification (i.e., the Horn clauses specifying the meta-

model, the process schema, and the trace semantics) can be directly viewed as an

executable logic program and, hence: (i) a BPAL specification can be queried by any

Prolog system without need of a special purpose compiler, (ii) BPAL traces are

explicitly represented and can be directly analyzed and manipulated, and (iii) other

knowledge representation applications (e.g., ontology management systems) can

easily be integrated by providing a suitable translation to logic programming.

3 The BPAL Language

BPAL is a logic-based language that has been conceived to provide a declarative

modeling method capable of fully capturing the procedural knowledge in a business

process. BPAL constructs are common to the most used and widely accepted BP

modeling languages (e.g., BPMN, UML activity diagrams, EPC) and, in particular, its

core is based on BPMN 2.0 specification [7]. Furthermore, the design principles of

the language follow the MOF paradigm7 with the four levels briefly reported below:

M3: Meta-metalevel. The top level is represented by the logical formalism that is

applied to describe the lower levels. In particular we adopted Horn logic, due to

its widespread popularity and the mature technological support provided by the

numerous Prolog systems which are available.

M2: Metalevel. Here it is defined the meta-model, establishing the rules for

building well-formed BPs.

M1: Schema level. This is the modeling level where it is defined the BP schema, in

accordance with the given meta-model, that represents the business logic of the

process.

M0: Trace level. This is the ground level, used to model the executions of a

business process, in accordance with the corresponding BP schema.

6 http://flora.sourceforge.net/
7OMG, (2006), Meta Object Facility (MOF) Core Specification V2.0,

http://www.omg.org/docs/formal/06-01-01.pdf.

An Open Platform for Business Process Modeling and Verification 5

 From a formal point of view, the BPAL language consists of two syntactic

categories: (i) a set Entities of constants denoting entities to be used in the

specification of a business process schema (e.g., business activities, events, and

gateways) and (ii) a set Pred of predicates denoting relationships among BPAL

entities. Finally, a BPAL business process schema (BPS) is specified by a set of

ground facts (i.e., atomic formulas) of the form , where p Pred and

 Entities.

 The entities occurring in a BPS are represented by the following set of predicates:

flow_el(el): el is a flow element, that is, any atomic component appearing in the

control flow. A flow element is either an activity or an event or a gateway;

activity(act): act is a business activity, the key element of the business process;

event(ev): ev is an event that occurs during the process execution. An event is of one

of the following three types: (i) a start event, which starts the business process, (ii)

an intermediate event, and (iii) an end event, which ends the business process.

These three types of events are specified by the three predicates start_ev(start),

end_ev(end), and int_ev(int);

gateway(gat): gat is a gateway. A gateway is either a branch or a merge point, whose

types are specified by the predicates branch_pt(gat) and mrg_pt(gat), respectively.

A branch (or merge) point can be either a parallel, or an inclusive, or an exclusive

branch (or merge) point. Each type of branch or merge point is specified by a

corresponding unary predicate.

Furthermore BPAL provides a set of relational predicates to model primarily the

sequencing of activities. Then, in case of branching flows, BPAL provides parallel

(i.e., AND), exclusive (i.e., XOR), and inclusive (i.e., OR) branching/merging of the

control flow. Here we adopted the standard semantics for branching and merging

points:

seq(el1,el2): the flow element el1 is immediately followed by el2.

par_branch(gat,el1,el2)8: gat is a parallel branch point from which the business

process branches to two sub-processes started by el1 and el2 executed in parallel;

par_mrg(el1,el2,gat): gat is a parallel merge point where the two sub-processes

ended by el1 and el2 are synchronized;

inc_branch (gat,el1,el2)9: gat is an inclusive branch point from which the business

process branches to two sub-processes started by el1 and el2. At least one of the

sub-processes started by el1 and el2 is executed;

inc_mrg(el1,el2,gat): gat is an inclusive merge point. At least one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed;

8 We represent only binary branches, while they are n-ary in the general case. This limitation is

made for presentation purposes and can be easily removed.
9 Inclusive and exclusive gateways, in their general formulation, are associated with a condition.

For instance, exc_dec tests a condition to select the path where the process flow will

continue.

6 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

exc_branch(gat,el1,el2): gat is an exclusive branch point from which the business

process branches to two sub-processes started by el1 and el2 executed in mutual

exclusion;

exc_mrg(el1,el2,gat): gat is an exclusive merge point. Exactly one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed;

To better present the BPAL approach, we briefly introduce as a running example a

fragment of an eProcurement. An ACME supplier company receives a purchase order

from a buyer and sends back an invoice. The buyer receives the invoice and makes

the payment to the bank. In the meanwhile, the supplier prepares a gift for the buyer if

she/he is classified as golden client, otherwise he prepares a brochure. After receiving

the payment clearance from the bank, the supplier sends the goods to the buyer.

The Figure 1 reports a BPMN diagram that illustrates the fragment of the

eProcurement process from the supplier perspective. The same process is reported in

Table 1 encoded as a BPAL BPS.

Fig. 1. BPMN specification of a fragment of an eProcurement example

Table 1. BPAL BPS of the eProcurement example

start_ev(Start)

activity(ReceivingPO)

activity(Invoicing)

activity(WaitingPaymentClearence)

activity(PreparingGift)

activity(PreparingBrochure)

activity(SendingGoods)

par_branch_pt(Gat1)

par_mrg_pt(Gat2)

exc_branch_pt(Gat3)

exc_mrg_pt(Gat4)

end_ev(End)

seq(Start,ReceivingPO)

seq(ReceivingPO,Gat1)

seq(Invoicing,WaitingPaymentClearence)

seq(Gat2,SendingGoods)

seq(SendingGoods,End)

par_branch(Gat1,Invoicing,Gat3)

par_mrg(WaitingPaymentClearence,Gat4,Gat2)

exc_branch(Gat3,PreparingBrochure,PreparingGift)

exc_mrg(PreparingBrochure,PreparingGift,Gat4)

S
u

p
p

li
e

r

yes

Receiving

PO

Invoicing

Preparing

gift

Waiting

payment

clearence+ Sending

goods

no

+

Is the buyer a

GoldenClient?

Preparing

brochure

An Open Platform for Business Process Modeling and Verification 7

4 BPAL Meta-Model

The first service provided by BPAL enables the BP designer to check the

compliance of a BPS with the BP meta-model, i.e., with a set of rules that constitute a

guidance for the construction of the BP.

In this paper the main assumption imposed by the BPAL meta-model is the

structuredness. According to [11], a strictly structured BP can be defined as follows:

it consists of m sequential blocks, T1 …Tm. Each block Ti is either elementary, i.e., it is

an activity, or complex. A complex block i) starts with a branch node (a parallel,

inclusive or exclusive gateway) that is associated with exactly one merge node of the

same kind that ends the block, ii) each path in the workflow graph originating in a

branch node leads to its corresponding merge node and consists of n sequential blocks

(simple or complex). It is worth noting that removing the structured assumption leads

to several weaknesses [12]. Among them, error patterns [13] such as deadlocks,

livelocks and dead activities cannot manifest in a structured BPS.

The presence of a meta-model allows us to automatically prove the first

fundamental property: the fact that a BPAL process schema has been built in the

respect of the meta-model. We will refer to such a property as well-formedness.

In the rest of this section we describe the core of the meta-model of BPAL by

means of a set of rules (i.e., a first order logic theory) MM, which specifies when a

BP is well-formed, i.e., it is syntactically correct. MM consists of three sets of meta-

rules10: (1) a set I of inclusion axioms among the BPAL entities, (2) a set K of schema

constraints (in the form of first order formulas), and (3) a set F of process

composition rules (in the form of Horn clauses).

The set I of inclusion axioms defines a taxonomy among the BPAL entities, as

informally described in Section 3. They are reported in Table 2.

Table 2. BPAL inclusion axioms

event(x) flow_el(x)

activity(x) flow_el(x)

gateway(x) flow_el(x)

start_ev(x) event(x)

int_ev(x) event(x)

end_ev(x) event(x)

branch_pt(x) gateway(x)

mrg_pt(x) gateway(x)

par_branch_pt(x) branch_pt(x)

exc_branch_pt(x) branch_pt(x)

inc_branch_pt(x) branch_pt(x)

par_mrg_pt(x) mrg_pt(x)

exc_mrg_pt(x) mrg_pt(x)

inc_mrg_pt(x) mrg_pt(x)

The set K of schema constrains (Table 3) consists of three subsets: (i) the domain

constraints, (ii) the type constraints, and (iii) the uniqueness constraints.

10 All formulas in MM are universally quantified in front and, for sake of simplicity, we will

omit to write those quantifiers explicitly.

8 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

Table 3. BPAL schema constraints and supporting examples

Schema constraint Example

Domain constraints are formulas expressing

the relationships among BPAL unary

predicates.

A flow element cannot be an activity and an

event at the same time.

activity(x) event(x)

Type constraints are rules specifying the

types of the arguments of relational

predicates.

A parallel branch is defined among a parallel

branch point and two flow elements.

par_branch(x,l,r) par_branch_pt(x)

flow_el(l) flow_el(r)

Uniqueness Constraints are rules expressing

that the precedence relations between flow

elements are specified in an unambiguous

way:

branching uniqueness constraints asserting

that every (parallel, inclusive, exclusive)

branching point has exactly one pair of

successors.

merging uniqueness constraints asserting that

every merge point has exactly one pair of

predecessors.

sequence uniqueness constraints asserting

that, by the seq predicate, we can specify at

most one successor and at most one

predecessor of any flow element.

Example of sequence uniqueness constraint:

seq(x,y) seq(x,z) y=z

seq(x,z) seq(y,z) x=y

The set F of process composition rules provides the guidelines for building a well-

formed BPS. Then, in formal terms, it is possible to verify if a process respects such

rules by means of a predicate wf_proc(s,e) which holds if the business process started

by the event s and ended by the event e is well-formed. In Table 4, some rules are

reported that inductively define what is a well-formed process (wf_proc) by means of

the notion of sub-process and its well-formedness (wf_sub_proc).

We are now ready to give a definition of the well-formedness of a BP schema B.

We say that B is well-formed if:

(i) every schema constraint C in K can be inferred from BFI, and

(ii) for every start event S and end event E, wf_process(S,E) can be inferred from

BFI.

An Open Platform for Business Process Modeling and Verification 9

Table 4. BPAL process composition rules and supporting diagrammatic description

Process composition rule Intuitive Diagram

F1. A business process schema is well-

formed if (i) it is started by a start event s, (ii)

it is ended by an end event e, and (iii) the

sub-process from s to e is a well-formed sub-

process constructed according to rules F2-F6:

(start_ev(s) wf_sub_proc(s,e) end_ev(e))

 wf_proc(s,e)

A well-formed process:

F2. Any activity/event or sequence of two

activities/events is a well-formed sub-

process:

activity(x) wf_sub_proc(x,x)

int_ev(x) wf_sub_proc(x,x)

seq(x,y) wf_sub_proc(x,y)

So, the simplest well-formed process is

graphically represented as:

F3. A sub-process is well-formed if it can be

decomposed into a concatenation of two well-

formed sub-processes:

wf_sub_proc(x,y) wf_sub_proc(y,z)

wf_sub_proc(x,z)

A well-formed sub-process:

F4. A sub-process started by a branch point x

and ended by a merge point y is well-formed

if (i) x and y are of the same type, and (ii)

both branches contain two well-formed sub-

processes11:

par_branch(x,l,r) wf_sub_proc(l,m)

wf_sub_proc(r,s) par_mrg(m,s,y)

wf_sub_proc(x,y)

A well-formed sub-process including merge

and branch points:

5 BPAL Execution Traces

An execution of a business process is a sequence of instances of activities called

steps; the latter may also represent instances of events. Steps are denoted by constants

taken from a set Step disjoint from Entities. Thus, a possible execution of a business

process is a sequence [, ,…,], where , ,…, Step, called a trace. The

instance relation between steps and activities (or events) is specified by a binary

11 The rules F5 and F6 defining the predicate wf_sub_process(x,y) in the cases where x is an

inclusive or an exclusive decision gateway are similar and are omitted.

10 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

predicate inst(step,activity). For example, inst(RPO1, ReceivingPO) states that the

step RPO1 is an activity instance of ReceivingPO.

Table 2. BPAL Trace rules

T1. A sequence [s1,…,e1] of steps is a correct trace if: (i) s1 is an instance of a start event, (ii)

e1 is an instance of an end event, and (iii) [s1,…,e1] is a correct sub-trace from s1 to e1

constructed according to the sets of rules T2-T6:

start_ev(s) inst(s1,s) sub_trace(s1,t,e1) end_ev(e) inst(e1,e) trace(t)

T2. Any instance of an activity/event or a sequence of instances of activities/events is a correct

sub-trace.

inst(x1,x) activity(x) sub_trace(x1,[x1],x1)

inst(x1,x) int_ev(x) sub_trace(x1,[x1],x1)

inst(x1,x) inst(y1,y) seq(x,y) act_or_ev_seq([x1,y1],t) sub_trace(x1,t,y1)

where the predicate act_or_ev_seq([x1,y1],t) holds iff t is the sequence obtained from [x1,y1]

by deleting the steps which are not instances of activities or events.

T3. A trace is correct if it can be decomposed into a concatenation of two correct sub-traces:

sub_trace(x1,t1,y1) sub_trace(y1,t2,z1) concatenation(t1,t2,t) sub_trace(x1,t,z1)

where the concatenation of [x1,…,xm] and [y1,y2,..,yn] is [x1,..,xm,y2,…,yn] if xm =y1 and

[x1,..,xm,y1,y2,…,yn] otherwise.

T4. In the case where x1 is an instance of a parallel branch point, the correctness of a sub-trace

t from x1 to z1 is defined by the following rule12:

inst(x1,x) inst(l1,l) inst(r1,r) par_branch(x,l,r) inst(m1,m) sub_trace(l1,t1,m1)

inst(s1,s) sub_trace(r1,t2,s1) inst(y1,y),par_mrg(m,s,y),interleaving(t1,t2,t)

 sub_trace(x1,t,y1)

where the predicate interleaving(t1,t2,t) holds iff t is a sequence such that: (i) the elements of t

are the elements of t2 together with the elements of t2 and (ii) for i=(1,2) x precedes y in ti iff

x precedes y in t.

A trace is correct w.r.t. a well-formed business process schema B if it is

conformant to B according to the intended semantics of the BPAL relational

predicates (as informally described in Section 3). Below we present a formal

definition of the notion of a correct trace. Let us first give some examples by referring

to the example in Figure 1. Below we list two correct traces of the business process

schema corresponding to the above BPMN specification:

[s,r,i,pG,w,sG,e]

[s,r,i,w,pB,sG,e]

12 For sake of concision we omit the sets T5, T6 for the inclusive and exclusive branch points.

An Open Platform for Business Process Modeling and Verification 11

where inst(s,Start), inst(r,ReceivingPO), inst(i,Invoicing), inst(w,WaitingPayment

Clearence), inst(pG,PreparingGift), inst(pB,PreparingBrochure), inst(sG,Sending

Goods), inst(e,End).

 Note that the sub-traces [I,pG,w] of the first trace and [i,w,pB] of the second trace

are the interleaving of the sub-trace [i,w] with the two branches going out from the

exclusive branch point.

We now introduce a predicate trace(t), which holds if t is a correct trace, with

respect to a BP, of the form [, ,…,], where is an instance of a start event and

 is an instance of an end event. The predicate trace(t) is defined by a set T of rules

(in the form of Horn clauses), called trace rules. These rules have a double nature,

since they can be used to check correctness but also for generating correct traces.

Each trace rule corresponds to a process composition rule and, for lack of space, in

Table 5 we list only the trace rules corresponding to the composition rules presented

in Section 4. The trace axioms are defined by induction on the length of the trace t.

We say that a trace t is correct w.r.t. a BPAL BP schema B if trace(t) can be

inferred from BT.

6 The BPAL Platform

In this section we briefly present the logical architecture of the BPAL platform with

the key implemented reasoning services: (1) verification of the well-formedness of a

BPS, (2) trace analysis, and (3) trace generation.

In the BPAL platform the verification of well-formedness of a BPS is performed as

depicted in Figure 2. The BPMN graphical specification of a given BP-1 business

process is exported as XPDL13 (XML Process Definition Language) and translated

into a set of BPAL ground facts by means of the service XPDL2BPAL, thereby

producing the BPS B. Then B is passed to the reasoning engine together with the

meta-model MM, i.e., the set F of composition rules, the set K of constraints, and the

set I of inclusion axioms. Thus, the union of B, F, I, and K makes up a knowledge

base from which we want to infer that B is well-formed. This inference task is

performed by the BPAL reasoning engine which is implemented by using the XSB

logic programming and deductive database system [16]. XSB extends the

conventional Prolog systems with an operational semantics based on tabling, i.e., a

mechanism for storing intermediate results and avoiding to prove sub-goals more than

once. XSB has several advantages over conventional Prolog systems based on

SLDNF-resolution (such as, SWI-Prolog and SICStus Prolog): (i) in many cases XSB

is more efficient than conventional systems, (ii) it guarantees the termination of

queries to DATALOG programs (i.e., Prolog programs without function symbols),

and (iii) it often avoids to return several times the same answer to a given query.

BFI is a set of Horn clauses and, therefore, it is translated to a Prolog program

in a straightforward way. The schema constraints in K are translated to Prolog queries.

For instance, the domain constraint activity(x) event(x) is translated to the query:

13 http://www.wfmc.org/xpdl.html

12 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

?- activity(X), event(X).

For the eProcurement example of Figure. 1, XSB answers „no‟ to this query,

meaning that there is no X which is an activity and an event at the same time. Hence,

this domain constraint is inferred from BFI.

Moreover, for any given start event start and end event end, we can check whether

or not wf_proc (start,end) is inferred from BFI, by running the query:

 ?- wf_proc(start,end).

For the eProcurement example of Figure. 1, XSB answers „yes‟ to this query,

meaning that wf_proc (start,end) is inferred from BFI and, thus, the well-

foundedness of B is verified.

Fig. 2. Architecture of the well-formedness service

The trace analysis and trace generation services are performed by translating the

theory TB to a Prolog program in the reasoning engine. As above, this translation is

straightforward, as TB is a set of Horn clauses. The trace analysis service consists in

checking whether or not a given trace t is correct w.r.t. the well-formed BPS B. This

task is performed by the reasoning engine by running a query of the type trace(t),

where t is the trace to be checked (Figure 3.a). For instance, in the eProcurement

example, XSB behaves as follows:

?- trace([s,r,i,pG,w,sG,e]).

yes

?- trace([s,r,i,pG,pB,w,sG,e]).

no

Indeed, the first sequence is a correct trace and the second is not.

An Open Platform for Business Process Modeling and Verification 13

The trace generation service consists in generating all correct traces (Figure. 3.b).

This task is performed by running a query of the type trace(T), where T is a free

variable (Figure 3.a). In the eProcurement example, XSB behaves as follows:

?- trace(T).

T = [s,r,pG,i,w,sG,e];

T = [s,r,i,w,pG,sG,e];

T = [s,r,i,w,pB,sG,e];

T = [s,r,i,pG,w,sG,e];

T = [s,r,i,pB,w,sG,e];

T = [s,r,pB,i,w,sG,e];

no

meaning that the above sequences are all and only the correct execution traces of the

given BPS.

Fig. 3. a) Architecture of the trace analysis and b) traces generation service

7 Conclusions and future works

In this paper we presented a platform to complement existing business modeling tools

by providing advanced reasoning services: the well-formedness verification service,

the trace analysis and the trace generation service. The platform is centered around

the logic-based BPAL language. A first evaluation of the services in the eProcurement

domain shows the viability of the approach.

We intend to expand the BPAL platform in several directions. A first direction will

be the tight integration of business ontologies (i.e., structural knowledge) represented

by OPAL, and the behavioral knowledge, represented by BPAL. OPAL is an ontology

representation framework supporting business experts in building a structural

14 Antonio De Nicola, Michele Missikoff, Maurizio Proietti, Fabrizio Smith

ontology, i.e., where concepts are defined in terms of their information structure and

static relationships. In building an OPAL ontology, knowledge engineers typically

start from a set of upper level concepts, and proceed according to a paradigm that

highlights the active entities (actors), passive entities (objects), and transformations

(processes). The latter are represented only in their structural components, without

modeling the behavioral issues, delegated to BPAL. As shown in [14], a significant

core of an OPAL ontology can be formalized by a fragment of OWL, relying within

the OWL-RL profile [19,20] an OWL subset designed for practical implementations

using rule-based technologies such as logic programming.

Another direction concerns the modeling and the verification of Business Rules

(BRs). This is motivated by the fact that in real world applications the operation of an

enterprise is regulated by a set of BPs that are often complemented by specific

business rules. We intend to enhance the BPAL platform so as to support the

integrated modeling of BPs and BRs. New reasoning services will also be needed for

analyzing those integrated models to check if, for instance, there are possible

executions of processes that violate any given business rule.

Since BPs play a growing role in business realities, we foresee a scenario where

huge repositories of process models developed by different designers have to be

managed. In such a scenario there will be the need for advanced reasoning systems

aimed at query processing, for the retrieval of process fragments to be used in the

design of new BP models, and at verifying that some desired properties hold. We

intend to enhance the BPAL platform in such a way that we can issue several types of

queries, both at intensional and extensional level. In particular, we are interested in

the following three types of queries and combinations thereof. (1) Queries over BP

schemas. Querying the BPS allows the search for certain patterns adopted in the

design phase and the verification of constrains that descend from structural

requirements to be done. (2) Queries over BP traces. Here the behavior at execution

time is of interest, and the properties to be verified regard the temporal sequencing of

activities in the set of correct traces. (3) Queries over the Business Ontology. Here the

focus is on the domain entities (processes, actors, objects) and their relationships.

Finally, on an engineering ground, we intend to investigate the problem of

Business Process Reengineering, and explore the possibility of manipulating a set of

business processes to produce a new, optimized (e.g., in terms of process length or

aggregating sub-processes that are shared by different BPs) set of reengineered BPs.

References

1. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis of

BPMN process models. In: Preprint 7115. Queensland University of Technology,

Brisbane, Australia (2007).

2. Reisig, W. and Rozenberg, G. editors: Lectures on Petri Nets I: Basic Models, volume

1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

3. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business Processes

Management. In BPM 2006 Workshops, LNCS 4103. pp. 169-180, 2006.

An Open Platform for Business Process Modeling and Verification 15

4. Montali, M., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.:

Verification from Declarative Specifications Using Logic Programming. In ICLP 2008,

LNCS 5366, pp. 440–454, 2008.

5. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable

agent interaction in abductive logic programming: the SCIFF framework. ACM

Transactions on Computational Logics, 9(4):1-43, 2008.

6. Conrad, B. and Gruninger, M.: Psl: A semantic domain for flow models. Software and

Systems Modeling, 4(2):209–231, May 2005.

7. OMG: Business Process Model and Notation. Version 2.0, August 2009,

http://www.omg.org/spec/BPMN/2.0.

8. De Nicola, A., Lezoche, M., Missikoff, M.: An Ontological Approach to Business Process

Modeling. 3rd Indian International Conference on Artificial Intelligence (IICAI 2007),

Pune, India, 17 -19 Dicembre, 2007.

9. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

10. Dumas, M., van der Aalst, W., ter Hofstede, A.H.M.: Process-Aware Information

Systems. WILEY-INTERSCIENCE, 2005.

11. Eder, J. and Gruber, W.: A Meta Model for Structured Workflows Supporting Workflow

Transformations. In Proc. 6th East European Conference on Advances in Databases and

Information Systems (ADBIS 2002), pp: 326-339, Bratislava, Slovakia, September 8-11,

2002.

12. Combi, C. and Gambini, M.: Flaws in the Flow: The Weakness of Unstructured Business

Process Modeling Languages Dealing with Data. OTM Conferences, volume 5870 of

Lecture Notes in Computer Science, pp. 42-59, Springer Berlin, 2009.

13. van Dongen, B.F., Mendling, J., and van der Aalst, W.M.P.: Structural Patternsfor

Soundness of Business Process Models. In Proceedings of EDOC 2006, Hong Kong,

China, 2006. IEEE.

14. D‟Antonio, F., Missikoff, M., Taglino, F.: Formalizing the OPAL eBusiness ontology

design patterns with OWL, in: Third International Conference on Interoperability for

Enterprise Applications and Software, I-ESA 2007.

15. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-Driven Process

Chains. In “Process-Aware Information Systems”. Edited by M. Dumas, W. van der

AAlst, A.H.M ter Hofstede. WILEY-INTERSCIENCE, Pages 119-145, (2005).

16. The XSB Logic Programming System. Version 3.1, Aug. 2007, http://xsb.sourceforge.net.

17. Bonner, A. J. and Kifer, M.: Concurrency and Communication in Transaction Logic. In

Joint International Conference and Symposium on Logic Programming, 1996.

18. Roman, D. and Kifer, M.: Reasoning about the Behavior of Semantic Web Services with

Concurrent Transaction Logic. In VLDB, 2007.

19. OWL 2: Profiles, http://www.w3.org/TR/owl2-profiles.

20. Grosof, B. N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining

Logic Programs with Description Logic, in: Proceedings of the 12th International

Conference on World Wide Web, ACM, 2003.

http://www.springerlink.com/content/105633/?p=8a69d2408d3247299aeb8702ad4aab90&pi=0
http://xsb.sourceforge.net/

