
A Logic-Based Method for Business Process Knowledge

Base Management1

Antonio De Nicola

, Michele Missikoff


, Maurizio Proietti


, Fabrizio Smith

,

 IASI-CNR, Viale Manzoni 30, 00185, Rome, Italy
 DIEI, Università degli Studi de L’Aquila, Italy

{antonio.denicola, michele.missikoff, maurizio.proietti,

fabrizio.smith}@iasi.cnr.it

Abstract. In this paper we present the BPAL platform aimed at the

management of Business Process Knowledge Bases. It includes a logic-based

language for BP modeling and a reasoning mechanism providing support to BP

designers in several services. Firstly, the definition of a BP meta-model (MM)

consisting of a set of rules that guide the BP designers in their work. Secondly,

given a BP, the BPAL platform allows for the automatic verification of the

compliance of a given BP w.r.t. the defined MM. Finally, the execution

semantics of a BP is given in term of its instances (referred to as traces) to

provide two basic services; checking if an execution of a BP has been carried

out in accordance with the corresponding definition (process log analysis);

simulating possible executions by automatic traces generation. The proposed

platform is open since the meta-model can be easily modified to codify

different classes of BP, to comply with specific needs of an enterprise.

Keywords: business process, knowledge bases, modeling language, Horn logic,

BPAL.

1 Introduction

Business Process (BP) management is constantly gaining popularity in various

industrial sectors, especially in medium to large enterprises, and in the public

administration. BP modeling is a complex human activity, requiring a special

competence and, typically, the use of a BP design tool. Many tools (e.g., Intalio

BPMS Designer, Tibco Business Studio), today available on the market (open source

or free of charge) support the design of BP diagrams and the production of XML-

based representations, such as BPEL or XPDL. Many of these tools, beside the

generation of XML code, are able to provide, additional services, such as some forms

of verification and the simulation of the designed processes. The availability of the

mentioned tools has further pushed the diffusion of several languages (e.g., BPMN

1 This work is partially supported by the Tocai Project (http://www.dis.uniroma1.it/~tocai/),

funded by the FIRB Programme of the Italian Ministry of University and Research (MIUR).

[6], EPC [14]) used both in the academic and in the industrial realities. However, the

use of these languages still present a number of drawbacks caused by the lack of a

formal semantics, that leads to possible ambiguities in the defined diagrams, and of a

guiding method to support the designer in producing high quality BP diagrams.

Furthermore, the storage and retrieval of BPs (and their fragment) is managed in a

primitive way, based on XML files or internal (opaque) representations.

In this paper we propose the BPAL (Business Process Abstract Language) [7]

platform, aimed at the construction, management, and querying of a Business Process

Knowledge Bases (BPKB), with a logic-based representation. The proposed approach

provides: (i) a formal semantics to BPs, (ii) guidelines for BP modelers in building

better quality BPs, (iii) a query language. In this paper we elaborate the first two

points, while the third point., i.e. the query services, is currently under investigation.

In essence, here we illustrate the possibility to: (i) use BPAL to build a meta-model

that specifies the rules to build a well-formed BP, (ii) model a BP with BPAL

sentences (BPAL BP Schema); (iii) use the BPAL method to verify business process

schema well-formedness with respect to the given meta-model; (iv) verify if a given

process trace, i.e., the actual execution of a BP, is compliant with a well-formed BP

Schema; (v) simulate a BP execution by generating all the possible traces (when

finite).

The BPAL platform is characterized by both a formal foundation and a high level

of practical usability. The formal foundation is rooted in the logic-based approach of

the BPAL notation. The practical usability is guaranteed by the fact that BPAL

platform has not been conceived as an alternative to existing BP tools but, conversely,

it intends to be associated to the existing BP modeling tools enhancing their

functionalities.

The rest of this paper is organized as follows. In Section 2 some relevant related

works are presented. The BPAL language for business process modeling and

verification is described in Section 3. Section 4 presents the BPAL meta-model and in

Section 5 the execution semantics (in term of execution traces) of a BPAL BP schema

is described. In Section 6 an overview of the BPAL platform, consisting of the well-

formedness verification service, the execution log analysis, and traces generation

service, is presented. Finally, conclusions in Section 7 end the paper.

2 Related Works

In the literature, much attention is given to BP modeling, since its application to the

management of complex processes and systems [9] is an important issue in business

organizations. It appears increasingly evident that a good support to BP management

requires reliable BP modeling methods and tools. Such reliability can be achieved

only if the adopted method is based on formal foundations. In this perspective, our

work is related to the formal BP languages for the specification, the verification, and

analysis of business processes.

Formal semantics of process modeling languages is usually defined in terms of a

mapping to Petri nets [1]. Petri nets represent a powerful formal paradigm to support

automatic analysis and verification of BPs within a procedural approach. However,

seen the inherent operational nature of Petri Nets, they are not well suited as a

foundation for BPKBs. Furthermore, by using Petri Nets, it is difficult to provide a

“meta-level” that can be used to guide and constrain business process modeling.

A different philosophy is represented by a declarative, logic-based approach [2],

[3]. A logical approach appears more suited to build a BPKB, with the possibility to

manipulate, query, retrieve, compose complex BP diagrams. There are proposals

where a process is modeled by a set of constraints (business rules) that must be

satisfied during execution: these proposals provide a partial representation of a BP

that overlooks the procedural view, i.e., the control flow among activities. [2]

proposes ConDec, a declarative flow language to define process models that can be

represented as conjunction of Linear Temporal Logic formulae. This approach allows

to verify properties by using model checking techniques. [3] proposes a verification

method based on Abductive Logic Programming (ALP) and, in particular, the SCIFF

framework [4], that is an ALP rule-based language and a family of proof procedures

for specification and verification of event-based systems.

PSL (Process Specification Language) [5], is a language to support the exchange of

process information among systems. A PSL ontology is organized into PSL-CORE

and a partially ordered set of extensions. Axioms are first-order sentences written in

the Knowledge Interchange Format (KIF). The PSL-CORE axiomatizes a set of

intuitive semantic primitives (e.g., activities, activity occurrences, time points, and

objects) allowing to describe the fundamental concepts of a process. The expressive

power of PSL is increased by a set of extensions that introduce new terminology and

the logical formalization to express information involving concepts that are not

explicitly specified in PSL-Core.

[2], [3], [5] are based on rigorous mathematical foundations but they propose a

paradigm shift from traditional process modeling approaches that is difficult to be

understood and, consequently, to be accepted by business people. Furthermore, their

focus is more on the (partial) representation of BPs aiming at guaranteeing certain

formal properties, without a clear aim at the structuring and management of a BPKB.

The BPAL framework is positioned among the logic-based languages but with a full

capability of representing the control flow of a BP; furthermore, it aims at

complementing a typical BP management tool to provide additional services. In

essence, with respect to existing logic-based proposals, it is characterized by: (i)

enhanced adoptability, since we propose a progressive approach where a business

expert can start with the (commercial) tool and notation of his/her choice and then

enrich its functionalities with BPAL; (ii) the possibility of specifying a meta-model

that imposes quality characteristics to all the produced BP diagrams; (iii) the

possibility to automatically verifying the well-formedness of the modeled BP

diagrams; (iv) the possibility to automatically verify that a BP execution (i.e., a BP

trace) has been achieved in accordance with the BP specification; finally (v) the

possibility of automatically generate all the possible traces2 of a given BP.

2 Please note that in this work we address acyclic diagrams admitting a finite set of finite traces.

3 The BPAL Approach for BP Modeling and Verification

In this section we present the BPAL modeling language. BPAL is a rule-based

formalism (grounded in Horn Logic), that provides an integrated support to the

building of a BPKB, characterized by three levels: (i) the meta-level, where we define

the meta-model, establishing the rules for building well-formed BPs; (ii) the schema

level, where we define the BP schemas, in accordance with the given meta-model;

(iii) the ground level, where we represent the BP instances, i.e., the traces that are

produced by the execution of a BP. For the formalization of BPAL we use standard

notions of first order logic and logic programming [8].

3.1 The BPAL Language

In this paper, for sake of brevity, we focus on a core subset of BP modeling

constructs. These constructs are common to the most used and widely accepted BP

languages (e.g., BPMN, UML activity diagrams, EPC) and, in particular, such a core

is based on BPMN 2.0 specification [6].

 From a formal point of view, the BPAL language consists of two syntactic

categories: (i) a set Const of BPAL constants denoting entities to be used in the

specification of a business process schema (e.g., business activities, events, and

gateways) and (ii) a set Pred of predicates denoting relationships among BPAL

entities (e.g., activity(Invoicing)). In particular, there are two kinds of predicates in

BPAL: unary and relational predicates. Unary predicates specify the types of the

entities of a business process schema while relational predicates describe the

sequencing of flow elements in all possible executions of the process (e.g.,

seq(Invoicing, PayingInvoice).

Finally, a BPAL business process schema (BP) is specified by a set of ground facts

(i.e., atomic formulas) of the form 𝑝(𝐶1 , … , 𝐶𝑛), where pPred and 𝐶1, … , 𝐶𝑛 Const.

3.2 BPAL Entities

The types of the entities of a business process schema are represented by the

following set of predicates:

 flow_el(_el): _el is a flow element, that is, any atomic component appearing in the

control flow. A flow element is either an activity or an event or a gateway;

 activity(_act): _act is a business activity, the key element of the business process;

 event(_ev): _ev is an event that occurs during the process execution. An event is of

one of the following three types: (i) a start event, which starts the business process,

(ii) an intermediate event, and (iii) an end event, which ends the business process.

These three types of events are specified by the three predicates start_ev(_start),

end_ev(_end), and int_ev(_int);

 gateway(_gat): _gat is a gateway. A gateway is either a branch or a merge point,

whose types are specified by the predicates branch_pt(_gat) and mrg_pt(_gat),

respectively. A branch (or merge) point can be either a parallel, or an inclusive, or

an exclusive branch (or merge) point. Each type of branch or merge point is

specified by a corresponding unary predicate.

3.3 Relational Predicates

BPAL provides predicates to model parallel (i.e., AND), exclusive (i.e., XOR), and

inclusive (i.e., OR) branching/merging of the control flow. They are:

 par_branch(gat,el1,el2)3: gat is a parallel branch point (i.e., a parallel fork) from

which the business process branches to two sub-processes started by el1 and el2.

The two sub-processes started by el1 and el2 are executed in parallel;

 par_mrg(el1,el2,gat): gat is a parallel merge point (i.e., a join) where the two sub-

processes ended by el1 and el2 are synchronized, that is, both sub-processes must

be completed in order to proceed;

 inc_dec4 (gat,el1,el2): gat is an inclusive decision point from which the business

process branches to two sub-processes started by el1 and el2. At least one of the

sub-processes started by el1 and el2 is executed;

 inc_mrg(el1,el2,gat): gat is an inclusive merge point. At least one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed;

 exc_dec(gat,el1,el2): gat is an exclusive decision point from which the business

process branches to two sub-processes started by el1 and el2. Exactly one of the

sub-processes started by el1 and el2 is executed;

 exc_mrg(el1,el2,gat): gat is an exclusive merge point. Exactly one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed;

 seq(el1,el2): the flow element el1 is immediately followed by el2.

To better present the BPAL approach, we briefly introduce a fragment of an

eProcurement process that will be used as a running example throughout the rest of

the paper. An ACME supplier company receives a purchase order from a buyer and

sends back an invoice. The buyer receives the invoice and makes the payment to the

bank. In the meanwhile, the supplier prepares a gift for the buyer if she/he is classified

as golden client, otherwise he prepares a brochure. After receiving the payment

clearance from the bank, the supplier sends the goods to the buyer.

 The Figure 1 reports a BPMN diagram that illustrates the fragment of the

eProcurement process from the supplier perspective. The same process is reported in

Table 1 encoded as a BPAL BP Schema.

3 Note that we represent only binary branches, while they are n-ary in the general case. This

limitation is made for presentation purposes and can be easily removed.
4 Note that inclusive and exclusive gateways, in their general formulation, are associated with a

condition. For instance, exc_dec tests a condition to select the path where the process flow

will continue.

Fig. 1. BPMN specification of a fragment of an eProcurement example

start_ev(Start)

activity(ReceivingPO)

activity(Invoicing)

activity(WaitingPaymentClearence)

activity(PreparingGift)

activity(PreparingBrochure)

activity(SendingGoods)

par_branch_pt(Gat1)

par_mrg_pt(Gat2)

exc_dec_pt(Gat3)

exc_mrg_pt(Gat4)

end_ev(End)

seq(Start,ReceivingPO)

seq(ReceivingPO,Gat1)

seq(Invoicing,WaitingPaymentClearence)

seq(Gat2,SendingGoods)

seq(SendingGoods,End)

par_branch(Gat1,Invoicing,Gat3)

par_mrg(WaitingPaymentClearence,Gat4,Gat2)

exc_dec(Gat3,PreparingBrochure,PreparingGift)

exc_mrg(PreparingBrochure,PreparingGift,Gat4)

Table 1. BPAL BPS of the eProcurement example

4 BPAL Meta-Model

The first service provided by BPAL is the possibility of defining a BP meta-model

that will represent a guiding framework for the BP designer. In this paper, as an

example, we show how to impose structured BPs by means of a BPAL meta-model.

According to [10], a strictly structured BP can be defined as follows: it consists of m

sequential blocks, T1 …Tm. Each block Ti is either elementary, i.e., it is an activity, or

complex. A complex block i) starts with a branch node (a parallel, inclusive or

exclusive gateway) that is associated with exactly one merge node of the same kind

that ends the block, ii) each path in the workflow graph originating in a branch node

leads to its corresponding merge node and consists of n sequential blocks (simple or

complex). It is worth noting that removing the structured assumption leads to several

weaknesses [11]. Among them, error patterns [12] such as deadlocks, livelocks and

dead activities cannot manifest in a structured BPS.

The presence of a meta-model allows us to automatically prove the first

fundamental property: the fact that a BPAL process schema has been built in the

respect of the meta-model guidelines, i.e., it is syntactically correct. We will refer to

such a property as well-formedness. We formalize this notion by means of a set of

S
u

p
p

li
e
r

yes

Receiving

PO

Invoicing

Preparing

gift

Waiting

payment

clearence+ Sending

goods

no

+

Is the buyer a

GoldenClient?

Preparing

brochure

rules (i.e., a first order logic theory) MM consisting of three sets of meta-rules: (1) a

set K of schema constraints (in the form of first order formulas), (2) a set F of process

composition rules (in the form of Horn clauses) and (3) a set I of inclusion axioms

among the BPAL entities. All formulas in MM are universally quantified in front and,

for sake of simplicity, we omit to write those quantifiers explicitly.

The set K of schema constrains (Table 2) consists of three subsets: (i) the domain

constraints, (ii) the type constraints, and (iii) the uniqueness constraints.

Schema constraint Example

Domain constraints are formulas expressing

the relationships among BPAL unary

predicates.

A flow element cannot be an activity and an

event at the same time.

activity(x)   event(x)

Type constraints are rules specifying the

types of the arguments of relational

predicates.

A parallel branch is defined among a parallel

branch point and two flow elements.

par_branch(x,l,r)  par_branch_pt(x) 

flow_el(l)  flow_el(r)

Uniqueness Constraints are rules expressing

that the precedence relations between flow

elements are specified in an unambiguous

way:

branching uniqueness constraints asserting

that every (parallel, inclusive, exclusive)

branching point has exactly one pair of

successors.

merging uniqueness constraints asserting that

every merge point has exactly one pair of

predecessors.

sequence uniqueness constraints asserting

that, by the seq predicate, we can specify at

most one successor and at most one

predecessor of any flow element.

Example of sequence uniqueness constraint:

seq(x,y)  seq(x,z)  y=z

seq(x,z)  seq(y,z)  x=y

Table 2. BPAL schema constraints and supporting examples

The set F of process composition rules provides the guidelines for building a well-

formed BP. Then, in formal terms, it is possible to verify if a process respects such

rules by means of a predicate wf_proc(s,e) which holds if the business process started

by the event s and ended by the event e is well-formed. In Table 3, some rules are

reported that inductively define what is a well-formed process (wf-proc) by means of

the notion of sub-process and its well-formedness (wf_sub_proc).

The set I of inclusion axioms (e.g., event(x)  flow_el(x)) defines a taxonomy

among the BPAL entities, as informally described in Section 3.2

Process composition rule Intuitive Diagram

F1. A business process schema is well-

formed if (i) it is started by a start event s, (ii)

it is ended by an end event e, and (iii) the

sub-process from s to e is a well-formed sub-

process constructed according to rules F2-F6:

(start_ev(s)  wf_sub_proc(s,e) end_ev(e))

 wf_proc(s,e)

A well-formed process:

F2. Any activity/event or sequence of two

activities/events is a well-formed sub-

process:

activity(x)  wf_sub_proc(x,x)

int_ev(x)  wf_sub_proc(x,x)

seq(x,y)  wf_sub_proc(x,y)

So, the simplest well-formed process is

graphically represented as:

F3. A sub-process is well-formed if it can be

decomposed into a concatenation of two well-

formed sub-processes:

wf_sub_proc(x,y)  wf_sub_proc(y,z) 

wf_sub_proc(x,z)

A well-formed sub-process:

F4. A sub-process started by a branch point x

and ended by a merge point y is well-formed

if (i) x and y are of the same type, and (ii)

both branches contain two well-formed sub-

processes5:

par_branch(x,l,r)  wf_sub_proc(l,m) 

wf_sub_proc(r,s)  par_mrg(m,s,y) 

wf_sub_proc(x,y)

A well-formed sub-process including merge

and branch points:

Table 3. BPAL process composition rules and supporting diagrammatic description

We are now ready to give a definition of the well-formedness of a BP schema B.

We say that B is well-formed if:

(i) every schema constraint C in K can be inferred from BFI, and

(ii) for every start event S and end event E, wf_process(S,E) can be inferred from

BFI.

5 The rules F5 and F6 defining the predicate wf_sub_process(x,y) in the cases where x is an

inclusive or an exclusive decision gateway are similar and are omitted.

5 BPAL Execution Traces

An execution of a business process is a sequence of instances of activities (or events)

called steps. Steps are denoted by constants taken from a set Step disjoint from Const.

Thus, a possible execution of a business process is a sequence [𝑠1, 𝑠2,…, 𝑠𝑛], where

𝑠1, 𝑠2,…, 𝑠𝑛  Step, called a trace. The instance relation between steps and activities

(or events) is specified by a binary predicate inst(step,activity). For example,

inst(RPO1, ReceivingPO) states that the step RPO1 is an activity instance of

ReceivingPO.

A trace is correct w.r.t. a well-formed business process schema B if it is

conformant to B according to the intended semantics of the BPAL relational

predicates (as informally described in Section 3.3). Below we present a formal

definition of the notion of a correct trace. Let us first give some examples by referring

to the example in Figure 1. Below we list two correct traces of the business process

schema corresponding to the above BPMN specification:

 [s,r,i,pG,w,sG,e]

 [s,r,i,w,pB,sG,e]

where inst(s,Start), inst(r,ReceivingPO), inst(i,Invoicing), inst(w,WaitingPayment

Clearence), inst(pG,PreparingGift), inst(pB,PreparingBrochure), inst(sG,Sending

Goods), inst(e,End).

 Note that the sub-traces [I,pG,w] of the first trace and [i,w,pB] of the second trace

are the interleaving of the sub-trace [i,w] with the two branches going out from the

exclusive branch point.

We now introduce a predicate trace(t), which holds if t is a correct trace, with

respect to a BP, of the form [𝑠1, 𝑠2,…, 𝑠𝑛], where 𝑠1 is an instance of a start event and

𝑠𝑛 is an instance of an end event. The predicate trace(t) is defined by a set T of rules

(in the form of Horn clauses), called trace rules. These rules have a double nature,

since they can be used to check correctness but also for generating correct traces.

Each trace rule corresponds to a process composition rule, for lack of space, here we

list only the trace rules corresponding to the composition rules presented in Section

4.2. The trace axioms are defined by induction on the length of the trace t.

T1. A sequence [s1,…,e1] of steps is a correct trace if: (i) s1 is an instance of a start event, (ii)

e1 is an instance of an end event, and (iii) [s1,…,e1] is a correct sub-trace from s1 to e1

constructed according to the sets of rules T2-T6:

start_ev(s)  inst(s1,s)  sub_trace(s1,t,e1)  end_ev(e)  inst(e1,e)  trace(t)

T2. Any instance of an activity/event or a sequence of instances of activities/events is a correct

sub-trace.

inst(x1,x)  activity(x)  sub_trace(x1,[x1],x1)

inst(x1,x)  int_ev(x)  sub_trace(x1,[x1],x1)

inst(x1,x)  inst(y1,y)  seq(x,y)  act_or_ev_seq([x1,y1],t)  sub_trace(x1,t,y1)

where the predicate act_or_ev_seq([x1,y1],t) holds iff t is the sequence obtained from [x1,y1]

by deleting the steps which are not instances of activities or events.

T3. A trace is correct if it can be decomposed into a concatenation of two correct sub-traces:

sub_trace(x1,t1,y1)  sub_trace(y1,t2,z1)  concatenation(t1,t2,t)  sub_trace(x1,t,z1)

where the concatenation of [x1,…,xm] and [y1,y2,..,yn] is [x1,..,xm,y2,…,yn] if xm =y1 and

[x1,..,xm,y1,y2,…,yn] otherwise.

T4. In the case where x1 is an instance of a parallel branch point, the correctness of a sub-trace

t from x1 to z1 is defined by the following rule6:

inst(x1,x)  inst(l1,l)  inst(r1,r)  par_branch(x,l,r) inst(m1,m)  sub_trace(l1,t1,m1)

inst(s1,s)  sub_trace(r1,t2,s1)  inst(y1,y),par_mrg(m,s,y),interleaving(t1,t2,t)

  sub_trace(x1,t,y1)

where the predicate interleaving(t1,t2,t) holds iff t is a sequence such that: (i) the elements of t

are the elements of t2 together with the elements of t2 and (ii) for i=(1,2) x precedes y in ti iff

x precedes y in t.

Table 4. BPAL Trace rules

We say that a trace t is correct w.r.t. a BPAL BP schema B if trace(t) can be

inferred from BT.

6 The BPAL Platform

In this section we briefly present the logical architecture of the BPAL platform with

the key services: (1) verification of the well-formedness of a BPS, (2) log analysis,

and (3) trace generation.

In the BPAL platform, the service for verifying the well-formedness of a BP is

performed as depicted in Figure 2. A BPMN graphical specification of a given BP-1

business process is exported from the existing tool as XPDL file and translated into a

set of BPAL ground facts by means of the service XPDL2BPAL, thereby producing

the BP schema B. Then B is passed to the reasoning engine as a logic program

together with the meta-model MM, i.e., the set F of composition rules, the set K of

constraints, and the set I of inclusion rules. Please note that BFI is a set of Horn

clauses and, therefore, it is translated to a DATALOG program in a straightforward

way. The schema constraints in K are translated to DATALOG queries too. The

reasoning engine, aimed at inferring the well-formedness of B, is implemented by

using the XSB logic programming and deductive database system7. The union of B,

F, I, and K makes up the BPKB on which to activate the reasoning process by

running the query wf_proc (start,end) for any given start event start and end event

end.

6 For sake of concision we omit the sets T5, T6 for the inclusive and exclusive branch points.
7 The XSB Logic Programming System. Version 3.1, Aug. 2007, http://xsb.sourceforge.net.

The log analysis and trace generation services are performed by translating the

knowledge base TB to a Prolog program in the reasoning engine. As above, this

translation is straightforward, as TB is a set of Horn clauses.

Fig. 2. Architecture of the Well-Formedness Service

The log analysis service consists in checking whether or not a given trace t is

correct w.r.t. the well-formed BP B. This task is performed by the reasoning engine

by running a query of the type trace(t), where t is the trace to be checked (Figure 3.a).

The trace generation service consists in generating all correct traces (Figure 3.b).

This task is performed by running a query of the type trace(T), where T is a free

variable.

Fig. 3. a) Architecture of the Log Analysis and b) Traces Generation Service

7 Conclusions and Future Work

In this paper we presented a platform to manage a BPKB, with the intent to

complement existing business modeling tools by providing advanced reasoning

services. The proposed BPKB is articulated in three levels: meta-model, BP schemas,

BP execution traces. The illustrated services are: the well-formedness verification

service, the log analysis, and trace generation service. The platform is based on the

BPAL formal representation language. A first evaluation of the services in the

eProcurement domain shows the viability of the approach.

The proposed solution establishes a logic-based framework that we intend to

expand in several directions. The first direction concerns the tight integration of

business ontologies (i.e., structural knowledge) represented by OPAL [13], and the

behavioral knowledge, represented by BPAL. The integration with an ontology will

allow advanced services for the BP query and the Business Rules (BRs)

representation and management. For the latter, we intend to develop an extended

framework where BPs and BRs are integrated and jointly analyzed to check if, for

instance, there are processes that violate newly issued rules. A second direction will

be to investigate the problem of Business Process Reengineering, with the aim to

explore the possibility of manipulating a set of business processes to produce a new,

optimized (e.g., in terms of process length or aggregating sub-processes that are

shared by different BPs) set of reengineered BPs.

References

1. Reisig W. and Rozenberg G., editors. Lectures on Petri Nets I: Basic Models,volume

1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

2. Pesic, M., van der Aalst, W.M.P: A Declarative Approach for Flexible Business Processes

Management. In BPM 2006 Workshops, LNCS 4103. pp. 169-180, 2006.

3. Montali, M., et al.: Verification from Declarative Specifications Using Logic

Programming. In ICLP 2008, LNCS 5366, pp. 440–454, 2008.

4. Alberti, M., et al.: Verifiable agent interaction in abductive logic programming: the SCIFF

framework. ACM Transactions on Computational Logics , 9(4):1-43, 2008.

5. Conrad, B., Gruninger, M.: Psl: A semantic domain for flow models. Software and

Systems Modeling, 4(2):209–231, May 2005.

6. OMG: Business Process Model and Notation. Version 2.0, August 2009,

http://www.omg.org/spec/BPMN/2.0.

7. De Nicola A., Lezoche M., Missikoff M.. An Ontological Approach to Business Process

Modeling. IICAI 2007, Pune, India, 17 -19 Dicembre, 2007.

8. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

9. Dumas M., van der Aalst W., ter Hofstede A.H.M.: Process-Aware Information Systems.

WILEY-INTERSCIENCE, 2005.

10. Eder J., Gruber W.: A Meta Model for Structured Workflows Supporting Workflow

Transformations. In Proc. of ADBIS 2002, Bratislava, Slovakia, September 8-11, 2002.

11. Combi C. and Gambini M. Flaws in the Flow: The Weakness of Unstructured Business

Process Modeling Languages Dealing with Data. LNCS, vol. 5870 Springer Berlin, 2009.

12. van Dongen B.F., Mendling J., and van der Aalst W.M.P.. Structural Patterns for

Soundness of Business Process Models. In Proc. of EDOC 2006, China, 2006.

13. D’Antonio F., Missikoff M., Taglino F., Formalizing the OPAL eBusiness ontology

design patterns with OWL, in Proc of I-ESA 2007.

14. Scheer A.-W., Thomas O., Adam O.. Process Modeling Using Event-Driven Process

Chains. In “Process-Aware Information Systems”. Edited by M. Dumas, W. van der

AAlst, A.H.M ter Hofstede. WILEY-INTERSCIENCE, Pages 119-145, (2005).

http://www.springerlink.com/content/105633/?p=8a69d2408d3247299aeb8702ad4aab90&pi=0

