
Program Specialization for Verifying Infinite

State Systems: An Experimental Evaluation

Fabio Fioravanti1, Alberto Pettorossi2, Maurizio Proietti3, and Valerio Senni2

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

2 DISP, University of Rome Tor Vergata, Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. We address the problem of the automated verification of
temporal properties of infinite state reactive systems. We present some
improvements of a verification method based on the specialization of
constraint logic programs (CLP). First, we reformulate the verification
method as a two-phase procedure: (1) in the first phase a CLP spec-
ification of an infinite state system is specialized with respect to the
initial state of the system and the temporal property to be verified, and
(2) in the second phase the specialized program is evaluated by using
a bottom-up strategy. In this paper we propose some new strategies for
performing program specialization during the first phase. We evaluate
the effectiveness of these new strategies, as well as that of some old
strategies, by presenting the results of experiments performed on sev-
eral infinite state systems and temporal properties. Finally, we compare
the implementation of our specialization-based verification method with
various constraint-based model checking tools. The experimental results
show that our method is effective and competitive with respect to the
methods used in those other tools.

1 Introduction

One of the most challenging problems in the verification of reactive systems is
the extension of the model checking technique (see [9] for a thorough overview)
to infinite state systems. In model checking the evolution over time of an infinite
state system is modelled as a binary transition relation over an infinite set of
states and the properties of that evolution are specified by means of propositional
temporal formulas. In particular, in this paper we consider the Computation Tree

Logic (CTL), which is a branching time propositional temporal logic by which
one can specify, among others, the so-called safety and liveness properties [9].

Unfortunately, the verification of CTL formulas for infinite state systems is,
in general, an undecidable problem. In order to cope with this limitation, var-
ious decidable subclasses of systems and formulas have been identified (see, for
instance, [1,15]). Other approaches enhance finite state model checking by using
more general deductive techniques (see, for instance, [33,37]) or using abstrac-

tions, by which one can compute conservative approximations of the set of states
verifying a given property (see, for instance, [2,6,8,11,19,20]).

Also logic programming and constraint logic programming (CLP) have been
proposed as frameworks for specifying and verifying properties of reactive sys-
tems. Indeed, the fixpoint semantics of logic programming languages allows us
to easily represent the fixpoint semantics of various temporal logics [14,30,34].
Moreover, constraints over the integers or the rationals can be used to provide
finite representations of infinite sets of states [14,18].

However, for programs that specify infinite state systems, the proof proce-
dures normally used in constraint logic programming, such as the extensions to
CLP of SLDNF resolution and tabled resolution [7], very often diverge when try-
ing to check some given temporal properties. This is due to the limited ability of
these proof procedures to cope with infinitely failed derivations. For this reason,
instead of simply applying program evaluation, many logic programming-based
verification systems make use of reasoning techniques such as: (i) abstract inter-

pretation [4,14] and (ii) program transformation [16,26,28,31,35].
In this paper we further develop the verification method presented in [16]

and we assess its practical value. That method is applicable to specifications of
CTL properties of infinite state systems encoded as constraint logic programs
and it makes use of program specialization.

The specific contributions of this paper are the following. First, we have
reformulated the specialization-based verification method of [16] as a two-phase
method. In Phase (1) the CLP specification is specialized with respect to the
initial state of the system and the temporal property to be verified, and in
Phase (2) the construction of the perfect model of the specialized program is
performed via a bottom-up evaluation. The main goal of Phase (1) is to derive
a specialized program for which the bottom-up model construction of Phase (2)
terminates. We have shown in an experimental way that, indeed, Phase (2)
terminates in most examples without the need for abstractions.

We have defined various generalization strategies which can be used during
Phase (1) of our verification method for controlling when and how to perform
generalization. The selection of a good generalization strategy is not a trivial
task: the selected strategy must guarantee the termination of the specialization
phase and should also provide a good balance between precision (that is, the
number of properties that are proved) and verification time. Indeed, the use of
a too coarse generalization strategy may prevent the proof of the properties of
interest, while an unnecessarily precise strategy may lead to verification times
which are too high. Since the states of the systems we consider are encoded as
n-tuples of rationals, our generalization strategies have been specifically designed
for CLP programs using linear inequations over rationals as constraints.

We have implemented our strategies using the MAP transformation sys-
tem [29] and we have compared them in terms of precision and efficiency on
several infinite state systems taken from the literature. Finally, we have compared
our MAP implementation with some constraint-based model checkers for infinite
state systems and, in particular, with ALV [39], DMC [14], and HyTech [21].

The paper is structured as follows. In Section 2 we recall how CTL properties
of infinite state systems can be encoded as locally stratified CLP programs. In
Section 3 we present our two-phase verification method. In Section 4 we describe

2

various strategies that can be applied during the specialization phase and, in
particular, the generalization strategies used for ensuring termination of that
phase. In Section 5 we report on the experiments we have performed by using a
prototype implemented on our MAP transformation system.

2 Specifying CTL Properties by CLP Programs

We will follow the approach presented in [9] and we will model an infinite state
system as a Kripke structure. The properties to be verified will be specified as
formulas of the Computation Tree Logic (CTL). The fact that a CTL formula ϕ
holds in a state s of a Kripke structure K will be denoted by K,s |= ϕ.

A Kripke structure 〈S, I,R, L〉, where S is a set of states, I ⊆ S is the set
of initial states, R is a transition relation, and L is a labeling function, can be
encoded as a CLP program as follows. (1) A state in S is encoded as an n-tuple of
the form 〈t1, . . . , tn〉, where for i=1, . . . , n, the term ti is either a rational number
or an element of a finite domain. For reasons of simplicity, when denoting a state
we will feel free to use a single variable X , instead of an n-tuple of variables of
the form 〈X1, . . . , Xn〉.
(2) An initial state X in I is encoded as a clause of the form:

initial(X)← c(X), where c(X) is a constraint.

(3) The transition relation R is encoded as a set of clauses of the form:

t(X,Y)← c(X,Y)

where c(X,Y) is a constraint. The state Y is called a successor state of X . We
also introduce a predicate ts such that, for every state X , ts(X,Ys) holds iff
Ys is a list of all the successor states of X , that is, for every state X , the state
Y belongs to the list Ys iff t(X,Y) holds. In [17] the reader will find: (i) an
algorithm for deriving the clauses defining ts from the clauses defining t, and
also (ii) conditions that guarantee that Ys is a finite list.

(4) The elementary properties which are associated with each state X by the
labeling function L, are encoded as a set of clauses of the form:

elem(X, e)← c(X)

where e is an elementary property and c(X) is a constraint.

The satisfaction relation |= can be encoded by a predicate sat defined by the
following clauses [16] (see also [28,30] for similar encodings):

1. sat(X,F)← elem(X,F)

2. sat(X,not(F))← ¬sat(X,F)

3. sat(X, and(F1, F2))← sat(X,F1), sat(X,F2)

4. sat(X, ex (F))← t(X,Y), sat(Y, F)

5. sat(X, eu(F1, F2))← sat(X,F2)

6. sat(X, eu(F1, F2))← sat(X,F1), t(X,Y), sat(Y, eu(F1, F2))

7. sat(X, af (F))← sat(X,F)

8. sat(X, af (F))← ts(X,Ys), sat all(Ys , af (F))

9. sat all ([], F)←
10. sat all ([X |Xs], F)← sat(X,F), sat all (Xs , F)

We assume the perfect model semantics for our CLP programs.

3

Note that all the CTL operators considered in [9] can be defined in terms
of ex , eu, and af. In particular, for every CTL formula ϕ, ef (ϕ) can be defined
as eu(true, ϕ) and eg(ϕ) can be defined as not(af (not(ϕ))). By restricting the
operators to ex , eu, and af , we are able to provide the straightforward encoding
of the CTL satisfaction relation as the constraint logic program shown above.
Note, however, that by using this subset of operators, we cannot rewrite all
formulas in negation normal form (where negation appears in front of elementary
properties only), which is sometimes used in model checking [9]. Dealing with
formulas in negation normal form avoids the use of a non-monotonic immediate
consequence operator, but it requires the construction of both the least and the
greatest fixpoint of that operator. The use of greatest fixpoints would force us
to prove the correctness of the program transformation rules we use for program
specialization, while, if we use least fixpoints only (which are the only fixpoints
required for defining the perfect model semantics) the correctness of those rules
is an immediate consequence of the results in [36].
Given a CTL formula ϕ we define a predicate prop as follows:

prop ≡def ∀X(initial (X)→ sat(X,ϕ))
This definition can be encoded by the following two clauses:

γ1 : prop ← ¬negprop

γ2 : negprop ← initial (X), sat(X,not(ϕ))

The correctness of the encoding of CTL is stated by the following Theorem 1
(whose proof is given in [17]), where PK denotes the constraint logic program
consisting of clauses 1–10 together with the clauses defining the predicates initial ,
t, ts, and elem . Note that program PK ∪ {γ1, γ2} is locally stratified and, hence,
it has a unique perfect model which will be denoted by M(PK ∪ {γ1, γ2}) [3].

Theorem 1 (Correctness of Encoding). Let K be a Kripke structure, let I

be the set of initial states of K, and let ϕ be a CTL formula. Then,

for all states s∈I, K, s |= ϕ iff prop ∈M(PK ∪ {γ1, γ2}).

Example 1. Let us consider the reactive system depicted in Figure 1, where a
state 〈X1, X2〉 which is a pair of rationals, is denoted by the term s(X1, X2). In
any initial state of this system we have that X1≤ 0 and X2 =0. There are two
transitions: one from state s(X1, X2) to state s(X1, X2−1) if X1 ≥ 1, and one
from state s(X1, X2) to state s(X1, X2+1) if X1≤2.

&%
'$�'

&
W

X1≥1

X2 := X2−1
s(X1,X2)

� $
%�

�

X1≤2

X2 := X2+1

Fig. 1. A reactive system. The transitions do not change the value of X1.

The Kripke structure K which models that system is defined as follows. The
initial states are given by the clause:

11. initial (s(X1, X2))← X1≤0, X2 =0
The transition relation R is given by the clauses:

12. t(s(X1, X2), s(Y1, Y2))← X1≥1, Y1 =X1, Y2 =X2−1

4

13. t(s(X1, X2), s(Y1, Y2))← X1≤2, Y1 =X1, Y2 =X2+1
The elementary property negative is given by the clause:

14. elem(s(X1, X2),negative)← X2<0
Let PK denote the program consisting of clauses 1–14. We omit the clauses
defining the predicate ts, which are not needed in this example.

Suppose that we want to verify that in every initial state s(X1, X2), where
X1≤0 and X2 =0, the CTL formula not(eu(true,negative)) holds, that is, from
any initial state it cannot be reached a state s(X ′

1, X
′
2) where X ′

2<0. By using
the fact that not(not(ϕ)) is equivalent to ϕ, this property is encoded as follows:

γ1: prop← ¬negprop

γ2: negprop ← initial (X), sat(X, eu(true,negative)) �

3 Verifying Infinite State Systems by Specializing CLP

Programs

In this section we present a method for checking whether or not prop ∈M(PK ∪
{γ1, γ2}), where PK ∪ {γ1, γ2} is a CLP specification of an infinite state system
and prop is a predicate encoding the satisfiability of a given CTL formula.

As already mentioned, the proof procedures normally used in constraint
logic programming, such as the extensions to CLP of SLDNF resolution and
tabled resolution, very often diverge when trying to check whether or not prop ∈
M(PK∪{γ1, γ2}) by evaluating the query prop. This is due to the limited ability
of these proof procedures to cope with infinite failure.

Also the bottom-up construction of the perfect model M(PK ∪ {γ1, γ2}) of-
ten diverges, because it does not take into account the information about the
query prop to be evaluated, the initial states of the system, and the formula to
be verified. Indeed, by a naive bottom-up evaluation, the clauses of PK may
generate infinitely many atoms of the form sat(s, ψ). For instance, given a
state s0, an elementary property f that holds in s0, and an infinite sequence
{si | i ∈ N} of distinct states such that, for every i ∈ N, t(si+1, si) holds,
clauses 5 and 6 generate by bottom-up evaluation the infinitely many atoms
of the form: (i) sat(s0, f), sat(s0, eu(true, f)), sat(s0, eu(true, eu(true, f))), . . . ,
and of the form: (ii) sat(si, eu(true, f)), for every i ∈ N.

In this paper we will show that the termination of the bottom-up construc-
tion of the perfect model can be improved by a prior application of program
specialization. In particular, in this section we will present a verification algo-
rithm which is a reformulation of the method proposed in [16] and consists of two
phases: Phase (1), in which we specialize the program PK∪{γ1, γ2} with respect
to the query prop, thereby deriving a new program Ps whose perfect model Ms
satisfies the following equivalence: prop ∈ M(PK ∪ {γ1, γ2}) iff prop ∈ Ms, and
Phase (2), in which we construct Ms by a bottom-up evaluation.

The specialization phase modifies the PK ∪ {γ1, γ2} by incorporating into
the specialized program Ps the information about the initial states and the
formula to be verified. The bottom-up evaluation of Ps may terminate more
often than the bottom-up evaluation of PK ∪ {γ1, γ2} because: (i) it generates
only specialized atoms corresponding to the subformulas of the formula to be

5

verified, and (ii) it avoids the generation of an infinite set of sat(s, ψ) atoms
where the state s in unreachable from the initial states.

The Verification Algorithm
Input : The program PK ∪ {γ1, γ2}. Output : The perfect model Ms of a CLP
program Ps such that prop∈M(PK ∪ {γ1, γ2}) iff prop∈Ms.
(Phase 1) Specialize(PK ∪ {γ1, γ2}, Ps);
(Phase 2) BottomUp(Ps,Ms)

The Specialize procedure of Phase (1) makes use of the following transforma-
tion rules only: definition introduction, positive unfolding, constrained atomic
folding, removal of clauses with unsatisfiable body, and removal of subsumed
clauses. Thus, Phase (1) is simpler than the specialization technique presented
in [16] which uses also some extra rules such as negative unfolding, removal of
useless clauses, and contextual constraint replacement.

The Procedure Specialize

Input : The program PK ∪ {γ1, γ2}. Output : A stratified program Ps such that
prop ∈M(PK ∪ {γ1, γ2}) iff prop ∈M(Ps).

Ps := {γ1}; InDefs := {γ2}; Defs := ∅;
while there exists a clause γ in InDefs

do Unfold(γ, Γ);
Generalize&Fold(Defs , Γ,NewDefs , Φ);
Ps := Ps ∪ Φ;
InDefs := (InDefs − {γ}) ∪ NewDefs ; Defs := Defs ∪ NewDefs ;

end-while

The Unfold procedure takes as input a clause γ ∈ InDefs of the form H ←
c(X), sat(X,ψ), where ψ is a ground term denoting a CTL formula, and returns
as output a set Γ of clauses derived from γ as follows. The Unfold procedure first
unfolds once γ w.r.t. sat(X,ψ) and then applies zero or more times the unfolding
rule as long as in the body of a clause derived from γ there is an atom of one
of the following forms: (i) initial (s), (ii) t(s1, s2), (iii) ts(s, ss), (iv) elem(s, e),
(v) sat(s, e), where e is a constant, (vi) sat(s,not(ψ1)), (vii) sat(s, and(ψ1, ψ2)),
(viii) sat(s, ex (ψ1)), and (ix) sat all (ss , ψ1), where ss is a non-variable list. Then
the set of clauses derived from γ by applying the unfolding rule is simplified by
removing: (i) every clause whose body contains an unsatisfiable constraint, and
(ii) every clause which is subsumed by a clause of the form H ← c, where c is
a constraint. Due to the structure of the clauses in PK, the Unfold procedure
terminates for any γ ∈ InDefs .

The Generalize&Fold procedure takes as input the set Γ of clauses produced
by the Unfold procedure and the set Defs of clauses, called definitions. A def-
inition in Defs is a clause of the form newp(X) ← d(X), sat(X,ψ) which can
be used for folding. The Generalize&Fold procedure introduces a set NewDefs

of new definitions (which are then added to Defs) and, by folding the clauses
in Γ using the definitions in Defs ∪ NewDefs , derives a new set Φ of clauses

6

which are added to the program Ps. An uncontrolled application of the Gen-

eralize&Fold procedure may lead to the introduction of infinitely many new
definitions and, therefore, it may make the Specialize procedure not to termi-
nate. In order to guarantee termination, we will extend to constraint logic pro-
grams some techniques which have been proposed for controlling generalization
in positive supercompilation [38] and partial deduction [24,27]. More details on
the Generalize&Fold procedure will be given in the next section.

The output program Ps of the Specialize procedure is a stratified program and
the procedure BottomUp computes the perfect model Ms of Ps by considering a
stratum at a time, starting from the lowest stratum and going up to the highest
stratum of Ps (see, for instance, [3]). Obviously, the model Ms may be infinite
and the BottomUp procedure may not terminate.

In order to get a terminating procedure, we could compute an approximation
of Ms by applying abstract interpretation techniques [10]. Indeed, in order to
prove that prop∈Ms, we could construct a set A⊆Ms such that prop∈A. Sev-
eral abstract interpretation techniques have been proposed for definite CLP pro-
grams (see [22] for a tool that implements many such techniques based on polyhe-
dra). However, integrating approximation mechanisms with the bottom-up con-
struction of the perfect model, requires us to define suitable extensions of those
techniques which compute both over-approximations and under-approximations
of models, because of the presence of negation. In this paper we will not ad-
dress the issue of defining those extensions and we will focus our attention on
the design of the Specialize procedure only. In Section 5 we show that after
the application of our Specialize procedure, the construction of the model Ms
terminates in many significant cases.

Example 2. Let us consider the reactive system K of Example 1. We want to
check whether or not prop ∈M(PK∪{γ1, γ2}). Now we have that: (i) by using a
traditional Prolog system, the evaluation of the query prop does not terminate
in the program PK ∪ {γ1, γ2} because negprop has an infinitely failed SLD tree,
(ii) by using the XSB tabled logic programming system, the query prop does not
terminate because infinitely many sat atoms are tabled, and (iii) the bottom-up
construction of M(PK ∪ {γ1, γ2}) does not terminate because of the presence of
clauses 5 and 6 as we have indicated at the beginning of this section.

By applying the Specialize procedure to the program PK ∪ {γ1, γ2} (with a
suitable generalization strategy, as illustrated in the next section), we derive the
following specialized program Ps:
γ1. prop ← ¬negprop

γ′2. negprop ← X1 ≤ 0, X2 = 0, new1(X1, X2)
γ3. new1(X1, X2)← X1 ≤ 0, X2 = 0, Y1 = X1, Y2 = 1, new2(Y1, Y2)
γ4. new2(X1, X2)← X1 ≤ 0, X2 ≥ 0, Y1 = X1, Y2 = X2 + 1, new2(Y1, Y2)

Note that the Specialize procedure has propagated through the program Ps the
constraint X1 ≤ 0, X2 = 0 characterizing the initial states (see clause 11 of
Example 1). This constraint, in fact, occurs in clause γ3 and its generalization
X1 ≤ 0, X2 ≥ 0 occurs in clause γ4. The BottomUp procedure computes the
perfect model of Ps, which is Ms = {prop}, in a finite number of steps. Thus,
prop ∈M(PK ∪ {γ1, γ2}). �

7

Most model checkers provide witnesses of existential formulas, when these formu-
las hold, and counterexamples of universal formulas, when these formulas do not
hold [9]. Our encoding of the Kripke structure can easily be extended to provide
witnesses of formulas of the form eu(ϕ1, ϕ2) and counterexamples of formulas
of the form af (ϕ) by adding to the predicate sat an extra argument that recalls
the sequence of states (or transitions) constructed during the verification of a
given formula. For details, the reader may refer to [17].

4 Generalization Strategies

The design of a powerful generalization strategy should meet the following two
conflicting requirements: (i) the introduction of new definitions that are as gen-
eral as possible to guarantee the termination of the Specialize procedure, and
(ii) the introduction of new definitions that are not too general to guarantee
the termination of the BottomUp procedure. In this section we present several
generalization strategies for coping with those conflicting requirements.

These strategies combine various by now standard techniques used in the
fields of program transformation and static analysis, such as well-quasi orderings,
widening, and convex hull operators, and variants thereof [4,10,24,25,27,31,38].
All these strategies guarantee the termination of the Specialize procedure. How-
ever, since in general the verification problem is undecidable, the assessment of
the various generalization strategies, both in terms of precision and verification
time, can only be done by an experimental evaluation. That evaluation will be
presented in Section 5.

4.1 The Generalize&Fold Procedure

The Generalize&Fold procedure makes use of a tree of definitions, called Defini-

tion Tree, whose nodes are labelled by the clauses in Defs∪{γ2}. By construction
there is a bijection between the set of nodes of the Definition Tree and Defs∪{γ2}
and, thus, we will identify each node with its label. The root of the Definition
Tree is labelled by clause γ2 (recall that {γ2} is the initial value of InDefs) and
the children of a clause γ in Defs∪{γ2} are the clauses NewDefs derived after ap-
plying the procedures Unfold(γ, Γ) and Generalize&Fold(Defs , Γ,NewDefs , Φ).
Similarly to [24,25,27,38], our Generalize&Fold procedure is based on the com-
bined use of well-quasi orderings and clause generalization operators. The well-
quasi orderings determine when to generalize and guarantee that generalization
is eventually applied, while generalization operators determine how to gener-
alize and guarantee that each definition can be generalized a finite number of
times only.

Let C be the set of all constraints and D be a fixed interpretation for the
constraints in C. We assume that: (i) every constraint in C is a finite conjunction
of atomic constraints (conjunction will be denoted by comma), and (ii) C is closed
under projection. The projection of a constraint c onto a tuple of variables X ,
denoted project(c,X), is a constraint such that D |= ∀X (project(c,X)↔ ∃Y c),
where Y is the tuple of variables occurring in c and not in X . We define a partial
order ⊑ on C as follows: for any two constraints c1 and c2 in C, we have that
c1 ⊑ c2 iff D |= ∀ (c1 → c2).

8

Definition 1 (Well-Quasi Ordering -). A well-quasi ordering (or wqo, for
short) on a set S is a reflexive, transitive, binary relation - such that, for every
infinite sequence e0, e1, . . . of elements of S, there exist i and j such that i < j
and ei - ej . Given e1 and e2 in S, we write e1 ≈ e2 if e1 - e2 and e2 - e1. We
say that a wqo - is thin iff for all e ∈ S, the set {e′ ∈ S | e ≈ e′} is finite.

Definition 2 (Generalization Operator ⊖). Let - be a thin wqo on the set
C of constraints. A binary operator ⊖ on C is a generalization operator w.r.t. -

iff for all constraints c and d in C, we have: (i) d ⊑ c ⊖ d, and (ii) c ⊖ d - c.
(Note that, in general, ⊖ is not commutative.)

The Procedure Generalize&Fold

Input : (i) a set Defs of definitions, (ii) a set Γ of clauses obtained from a clause γ
by the Unfold procedure, (iii) a thin wqo -, and (iv) a generalization opera-
tor ⊖ w.r.t. -.
Output : (i) A set NewDefs of new definitions, and (ii) a set Φ of folded clauses.

NewDefs := ∅ ;Φ := Γ ;
while in Φ there exists a clause η: H ← e,G1, L,G2, where L is either sat(X,ψ)
or ¬sat(X,ψ) do

Generalize: Let ep(X) be project(e,X).
1. if in Defs there exists a clause δ: newp(X) ← d(X), sat(X,ψ) such that

ep(X) ⊑ d(X) (modulo variable renaming)
then NewDefs := NewDefs

2. elseif there exists a clause α in Defs such that:
(i) α is of the form newq(X)← b(X), sat(X,ψ), and (ii) α is the most
recent ancestor of γ in the Definition Tree such that b(X) - ep(X)

then NewDefs := NewDefs ∪ {newp(X)← b(X)⊖ ep(X), sat(X,ψ)}
3. else NewDefs := NewDefs ∪ {newp(X)← ep(X), sat(X,ψ)}
Fold: Φ := (Φ− {η}) ∪ {H ← e,G1,M,G2}

whereM is newp(X), if L is sat(X,ψ), and M is ¬newp(X), if L is ¬sat(X,ψ)

end-while

The following theorem, whose proof is a simple variant of that of Theorem 3
in [17], establishes that the Specialize procedure always terminates and preserves
the perfect model semantics.

Theorem 2 (Termination and Correctness of the Specialize Procedure).
For every input program PK∪{γ1, γ2}, the Specialize procedure terminates. If Ps
is the output program of the Specialize procedure, then Ps is stratified (and thus,

locally stratified) and prop ∈M(PK) iff prop ∈M(Ps).

4.2 Well-Quasi Orderings and Generalization Operators on Linear
Constraints

In our verification experiments we will consider the set Link of constraints de-
fined as follows. Every constraint c ∈ Link is the conjunction of m (≥0) distinct

atomic constraints a1, . . . , am and, for i = 1, . . . ,m, (1) ai is of the form either
pi ≤ 0 or pi < 0, and (2) pi is a polynomial of the form q0 + q1X1 + . . .+ qkXk,
where X1, . . . , Xk are distinct variables and q0, q1, . . . , qk are integer coefficients.

9

An equation r= s stands for the conjunction of the two inequations r≤ s and
s ≤ r. In the sequel, when we write c =def a1, . . . , am we mean that the ai’s
are the atomic constraints of c. The constraints in Link are interpreted over the
rationals in the usual way.

Well-Quasi Orderings. Now we present three wqo’s between constraints in
Link, which are based on the integer coefficients of the polynomials. The first wqo
is an adaptation to Link of the homeomorphic embedding operator [24,25,27,38]
and the other two are wqo’s based on the maximum and on the sum, respectively,
of the absolute values of the coefficients occurring in a constraint.

(W1) The wqo HomeoCoeff, denoted by -HC , compares sequences of absolute
values of integer coefficients occurring in the polynomials. The -HC wqo is
based on the notion of homeomorphic embedding and takes into account the
commutativity and the associativity of addition and conjunction. Given two
polynomials with integer coefficients p1 =def q0 + q1X1 + . . . + qkXk, and
p2 =def r0 + r1X1 + . . .+ rkXk, we have that p1 -HC p2 iff there exists a permu-
tation 〈ℓ0, . . . , ℓk〉 of the indexes 〈0, . . . , k〉 such that, for i=0, . . . , k, |qi| ≤ |rℓi |.
Given two atomic constraints a1 =def p1 < 0 and a2 =def p2 < 0, we have
that a1 -HC a2 iff p1 -HC p2. Similarly, if we are given the atomic constraints
a1 =def p1 ≤ 0 and a2 =def p2 ≤ 0. Given two constraints c1 =def a1, . . . , am,

and c2 =def b1, . . . , bn we have that c1 -HC c2 iff there exist m distinct indexes
ℓ1, . . . , ℓm, with m≤n, such that ai -HC bℓi , for i = 1, . . . ,m.

(W2) The wqo MaxCoeff, denoted by -MC , compares the maximum absolute
value of coefficients occurring in the polynomials. For any atomic constraint a of
the form p < 0 or p ≤ 0, where p is q0 +q1X1+ . . .+qkXk, we define maxcoeff (a)
to be max{|q0|, |q1|, . . . , |qk|}. Given two atomic constraints a1 =def p1< 0 and
a2 =def p2 < 0, we have that a1 -MC a2 iff maxcoeff (a1) ≤ maxcoeff (a2).
Similarly, if we are given the atomic constraints a1 =def p1≤0 and a2 =def p2≤0.
Given two constraints c1 =def a1, . . . , am, and c2 =def b1, . . . , bn, we have that
c1 -MC c2 iff, for i = 1, . . . ,m, there exists j ∈ {1, . . . , n} such that ai -MC bj .

(W3) The wqo SumCoeff, denoted by -SC , compares the sum of the absolute val-
ues of the coefficients occurring in the polynomials. For any atomic constraint a
of the form p < 0 or p ≤ 0, where p is q0 + q1X1 + . . . + qkXk, , we define
sumcoeff (a) to be

∑k

j=0
|qj |. Given two atomic constraints a1 =def p1 < 0 and

a2 =def p2< 0, we have that a1 -SC a2 iff sumcoeff (a1)≤ sumcoeff (a2). Simi-
larly, if we are given the atomic constraints a1 =def p1≤ 0 and a2 =def p2≤ 0.
Given two constraints c1 =def a1, . . . , am, and c2 =def b1, . . . , bn, we have that
c1 -SC c2 iff, for i = 1, . . . ,m, there exists j ∈ {1, . . . , n} such that ai -SC bj .

The relation -HC is contained both in the relation -MC and in the rela-
tion -SC . Thus, generalization is applied less often when using -HC , instead of
-MC or -SC . The following table provides some examples of these relations and,
in particular, it shows that the relations -MC and -SC are not comparable.

a1 a2 a1 -HC a2 a1 -MC a2 a1 -SC a2

1−2X1 <0 3+X1 <0 yes yes yes

2−2X1+X2 <0 1+3X1 <0 no yes no

1+3X1 <0 2−2X1+X2 <0 no no yes

10

Generalization Operators. Now we present some generalization operators
on Link which we use in the verification examples of the next section.

(G1) Given any two constraints c and d, the generalization operator Top, de-
noted ⊖T , returns true. It can be shown that ⊖T is indeed a generalization
operator with respect to any of the wqo’s HomeoCoeff, MaxCoeff, and Sum-

Coeff. The Top operator forgets all information about its operands and often
determines an over-generalization of the specialized program (see Section 5).

(G2) Given any two constraints c =def a1, . . . , am, and d, the generalization
operator Widen, denoted ⊖W , returns the constraint ai1, . . . , air, such that
{ai1, . . . , air} = {ah | 1 ≤ h ≤ m and d ⊑ ah}. Thus, Widen keeps all atomic
constraints of c that entail d (see [10] for a similar operator used in static pro-
gram analysis). It can be shown that ⊖W is indeed a generalization operator
with respect to any of the wqo’s HomeoCoeff, MaxCoeff, and SumCoeff.

(G3) Given any two constraints c =def a1, . . . , am, and d =def b1, . . . , bn, the gen-
eralization operator WidenPlus, denoted ⊖WP , returns the conjunction ai1, . . . ,

air, bj1, . . . , bjs, where: (i) {ai1, . . . , air} = {ah | 1 ≤ h≤m and d ⊑ ah}, and
(ii) {bj1, . . . , bjs} = {bk | 1≤ k ≤ n and bk - c}, where - is a given thin wqo.
Thus, WidenPlus is similar to Widen but, together with the atomic constraints
of c that entail d, WidenPlus also returns some of the atomic constraints of d.
It can be shown that ⊖WP is indeed a generalization operator with respect to
both the wqo MaxCoeff (in this case - is -MC) and the wqo SumCoeff (in this
case - is -SC). However, in general, ⊖WP is not a generalization operator with
respect to HomeoCoeff, because the constraint c⊖WP d may contain more atomic
constraints than c and, thus, it may not be the case that (c⊖WP d) -HC c.

We define our last generalization operator by combining ⊖WP with the convex

hull operator, which sometimes is used to discover program invariants [10]. The
convex hull of two constraints c and d in Link, denoted by ch(c, d), is the least
(with respect to the ⊑ ordering) constraint h in Link such that c ⊑ h and d ⊑ h.

Given a thin wqo - and a generalization operator ⊖, we define the general-
ization operator ⊖CH as follows: for any two constraints c and d, c ⊖CH d =def

c⊖ch(c, d). From the definitions of the operators ⊖ and ch one can easily derive
that the operator ⊖CH is indeed a generalization operator for c and d, that is,
(i) d ⊑ c⊖CH d, and (ii) c⊖CH d - c.

(G4) Given any two constraints c and d, we define the generalization operator
CHWidenPlus, denoted ⊖CHWP , as follows: c⊖CHWP d =def c⊖WP ch(c, d).

Note that if we combine the Top operator and the convex hull operator, we
get again the Top operator and, similarly, if we combine the Widen operator and
the convex hull operator, we get again the Widen operator.

The ⊑ ordering on constraints in Link can be extended to an ordering, also
denoted ⊑, on the generalization operators, as follows: ⊖1 ⊑ ⊖2 iff for all con-
straints c and d, c ⊖1 d ⊑ c ⊖2 d. For the generalization operators presented
above, it can be shown that: (i) ⊖WP ⊑ ⊖W ⊑ ⊖T , (ii) ⊖CHWP ⊑ ⊖W , and
(iii) ⊖WP and ⊖CHWP are not comparable.

The following table shows the application of some generalization operators
on constraints of Lin2 when considering the MaxCoeff wqo.

11

c −X1≤0, −2+X1≤0 1−X1≤0, −2+X1≤0 −X1≤0, X2≤0

d 2−X1≤0, 1−X2 ≤0 −X1≤0 1−X1≤0, −1+X2≤0

c ⊖W d −X1≤0 true −X1≤0

c ⊖WP d 2−X1≤0, 1−X2 ≤0 −X1≤0 1−X1≤0, −1+X2≤0

−X1≤0, −1+X2≤0,
c ⊖CHWP d −X1≤0 −X1≤0

−X1+X2≤0

5 Experimental Evaluation

In this section we present the results of the experiments we have performed
on several examples of verification of infinite state reactive systems. We have
implemented the verification algorithm presented in Section 2 using MAP [29],
an experimental system for transforming constraint logic programs. The MAP
system is implemented in SICStus Prolog 3.12.8 and uses the clpq library to
operate on constraints.

We have considered the following mutual exclusion protocols and we have
verified some of their properties. (i) Bakery [14]: we have verified safety (that is,
mutual exclusion) and liveness (that is, starvation freedom) in the case of two
processes, and safety in the case of three processes; (ii) MutAst [23]: we have
verified safety in the case of two processes; (iii) Peterson [32]: we have verified
safety in the case of N (≥2) processes by considering a counting abstraction [12]
of the protocol; and (iv) Ticket [14]: we have verified safety and liveness in the
case of two processes.

We have also verified safety properties of the following cache coherence proto-
cols: (v) Berkeley RISC, (vi) DEC Firefly, (vii) IEEE Futurebus+, (viii) Illinois

University, (ix) MESI, (x) MOESI, (xi) Synapse N+1, and (xii) Xerox PARC

Dragon. We have considered the parameterized versions of the protocols (v)–(xii)
which are designed for an arbitrary number of processors, and we have applied
our verification method to the versions derived by using the counting abstraction
technique described in [12].

Then we have verified safety properties of the following systems. (xiii) Bar-

ber [5]: we have considered a parameterized version of this protocol with a single
barber process and an arbitrary number of customer processes; (xiv) Bounded

Buffer and Unbounded Buffer : we have considered protocols for two producers
and two consumers which communicate via either a bounded or an unbounded
buffer, respectively (the encodings of these protocols are taken from [14]);
(xv) CSM, which is a central server model described in [13]; (xvi) Insertion Sort

and Selection Sort : we have considered the problem of checking array bounds
of these two sorting algorithms, parameterized with respect to the size of the
array, as presented in [14]; (xvii) Office Light Control [39], which is a protocol
for controlling how office lights are switched on and off, depending on room oc-
cupancy; (xviii) Reset Petri Nets, which are Petri Nets augmented with reset

arcs: we have considered a reachability problem for a net which is a variant of
one presented in [26] (unlike [26], we have assumed that in the nets there is no

12

bound on the number of tokens that can reside in a single place and, therefore,
our nets are infinite state systems).

Table 1 shows the results of running the MAP system on the above examples
by choosing different combinations of a wqo W and a generalization operator G
among those introduced in Section 4. In the sequel we will denote any of these
combinations by W&G. The combinations MaxCoeff &CHWidenPlus, MaxCo-

eff &Top, and MaxCoeff &Widen have been omitted because they give results
which are very similar to those obtained by using SumCoeff, instead of Max-

Coeff. We have omitted also the combinations HomeoCoeff &CHWidenPlus and
HomeoCoeff &WidenPlus because, as already mentioned in Section 4, these com-
binations do not satisfy the conditions given in Definition 2, and thus, they do
not guarantee termination of the specialization strategy.

Now we compare the various generalization strategies with respect to pre-

cision (that is, number of properties proved) and specialization time (that is,
time taken by the Specialize procedure). As expected, we have that precision
increases when we consider generalization operators that generalize less (that is,
precision is anti-monotonic with respect to the ⊑ relation). Indeed, the use of
generalization operators that generalize less, may produce specialized programs
that better exploit the knowledge about both the initial state and the property
to be proved. In particular, if we use the SumCoeff wqo in conjunction with the
various generalization operators, then the most precise generalization operator
is WidenPlus (23 properties proved out of 23), followed by CHWidenPlus (22),
Widen (18), and finally Top (17). Similar results are obtained by using the other
wqo’s introduced in Section 4.

We also have that specialization time increases when we consider generaliza-
tion operators that generalize less (that is, specialization time is anti-monotonic
with respect to the ⊑ relation). This is due to the fact that generalization op-
erators that generalize less may introduce more definitions and, therefore, the
specialization phase may take more time. In particular, if we use the SumCoeff

wqo, then the shortest specialization time is relative to Top (the sum of the
specialization times of all examples is 1860 ms), followed by Widen (4720 ms),
CHWidenPlus (6280 ms), and finally, WidenPlus (12710 ms). Similar results are
obtained by using the other wqo’s.

Finally, the results of our experiments shown in Table 1 confirm the fact that
the use of a wqo for which the Specialize procedure performs fewer generaliza-
tion steps, also determines the introduction of more definitions. Therefore, we
have that precision and specialization time increase if we use the HomeoCoeff

operator, instead of either the MaxCoeff operator or the SumCoeff operator.
In particular, if we compare the two columns of Table 1 for the Widen general-
ization operator we have that: (i) the Specialize procedure terminates by using
the HomeoCoeff wqo if and only if it terminates by using the SumCoeff wqo,
and (ii) if we consider the examples where the Specialize procedure terminates,
the sum of the specialization times is 5080 ms for HomeoCoeff and 3830 ms for
SumCoeff. A similar result is obtained by comparing the two columns of Table 1
for the Top generalization operator. However, in our examples the increase of
precision due to the use of the HomeoCoeff wqo, instead of the SumCoeff wqo,

13

was actually confirmed in a weak sense only: for every example the property
is verified with HomeoCoeff &Widen if and only if it is verified by SumCoeff &
Widen (and similarly, for Top, instead of Widen).

In summary, if we consider the tradeoff between precision and verification
time, the generalization strategy SumCoeff &WidenPlus outperforms the others,
closely followed by the generalization strategy MaxCoeff &WidenPlus. In partic-
ular, the generalization strategies based on either the homeomorphic embedding
(that is, HomeoCoeff) or the widening and convex hull operators (that is, Widen

and CHWidenPlus) turn out not to be the best strategies in our examples.
In order to compare the implementation of our verification method using

MAP with other constraint-based model checking tools for infinite state systems
available in the literature, we have performed the verification examples described
in Table 1 also on the following systems: (i) ALV [39], which combines BDD-
based symbolic manipulation for boolean and enumerated types, with a solver
for linear constraints on integers, (ii) DMC [14], which computes (approximated)
least and greatest models of CLP(R) programs, and (iii) HyTech [21], a model
checker for hybrid systems which handles constraints on reals. All experiments
with the MAP, ALV, DMC, and HyTech systems have been performed on an
Intel Core 2 Duo E7300 2.66GHz under the operating system Linux. Table 2 re-
ports the results obtained by using various options available in those verification
systems.

Table 2 indicates that, in terms of precision, MAP with the SumCoeff &
WidenPlus option is the best system (23 properties proved out of 23), followed
by DMC with the A option (19 out of 23), ALV with the default option (18 out
of 23), and, finally, HyTech with the Bw (backward reachability) option (17 out
of 23). Among the above mentioned systems, HyTech (Bw) has the best average
running time (70 ms per proved property), followed by MAP and DMC (both
820 ms), and ALV (8480 ms). This result is explained by the fact that HyTech
with the Bw option tries to prove a safety property with a very simple strategy,
that is, by constructing the reachability set backwards from the property to be
proved, while the other systems apply more sophisticated techniques. Note also
that the average verification times are affected by the peculiar behaviour on some
specific examples. For instance, in the Bounded Buffer and the Unbounded Buffer
examples the MAP system has longer verification times with respect to the other
systems, because these examples can be easily verified by backward reachability,
and this makes the MAP specialization phase unnecessary. On the opposite side,
MAP is much more efficient than the other systems in the Peterson N example
and the CSM example.

6 Conclusions

In this paper we have proposed some improvements of the method presented
in [16] for verifying infinite state reactive systems. First, we have reformulated
the verification method as a two-phase method: in Phase (1) a CLP specifica-
tion of the reactive system is specialized with respect to the initial state and
the temporal property to be verified, and in Phase (2) the perfect model of
the specialized program is constructed in a bottom-up way. For Phase (1) we

14

Generalization G: WidenPlus CHWidenPlus Widen Top

EXAMPLE wqo W: MC SC SC HC SC HC SC

Bakery2 (safety) 30 20 20 20 60 20 40
30 20 20 20 40 10 30

Bakery2 (liveness) 80 70 80 40 130 60 100
60 50 60 20 90 40 60

Bakery3 (safety) 180 160 180 150 750 2850 3010
170 150 170 150 380 670 680

MutAst 70 140 440 110 370 2740 2490
70 140 420 100 320 310 220

Peterson N 210 230 1370 ∞ ∞ ∞ ∞
210 230 1370 260 250 20 30

Ticket (safety) 20 40 20 20 30 30 30
10 30 10 10 20 30 20

Ticket (liveness) 110 110 120 90 100 100 110
60 60 70 50 50 60 60

Berkeley RISC 30 30 200 40 50 20 30
30 30 170 30 30 10 20

DEC Firefly 30 20 340 140 120 90 80
30 20 160 60 60 30 20

IEEE Futurebus+ 100 2460 47260 47340 47200 15570 15630
100 270 290 230 230 40 30

Illinois University 40 20 40 80 70 100 90
30 10 40 50 50 30 30

MESI 30 30 130 40 50 70 70
30 30 120 30 40 20 20

MOESI 50 60 180 160 160 100 100
50 50 80 60 60 30 30

Synapse N+1 10 10 10 10 10 20 20
10 10 10 10 10 10 10

XeroxPARCDragon 30 40 280 70 70 50 50
30 40 260 50 50 20 20

Barber 1210 1170 2740 48300 29030 ∞ ∞
1170 1130 2620 3090 1620 660 410

Bounded Buffer 3520 3540 6790 340 340 40 20
2040 2060 6780 140 140 20 20

Unbounded Buffer 3890 3890 410 ∞ ∞ ∞ ∞
360 360 410 110 100 20 10

CSM 6380 6580 4710 ∞ ∞ ∞ ∞
6300 6300 4700 430 440 20 20

Insertion Sort 90 100 160 60 70 100 80
90 100 150 60 50 30 20

Selection Sort ∞ 190 200 ∞ ∞ ∞ ∞
770 180 200 80 70 60 40

Office Light Control 50 50 50 50 50 40 30
40 40 40 40 40 30 30

Reset Petri Nets 0 0 ∞ ∞ ∞ ∞ ∞
0 0 10 0 10 10 10

Table 1. Comparison of various generalization strategies used by the MAP system.
For each example we have two lines: the first one shows the total verification time
(Phases 1 and 2 of our Verification Algorithm) and the second one shows the program
specialization time (Phase 1 only). HC , MC , and SC denote the wqo HomeoCoeff,
MaxCoeff, and SumCoeff, respectively. Times are expressed in milliseconds (ms). The
precision is 10 ms. ‘0’ means termination in less than 10 ms. ‘∞’ means no answer
within 100 seconds.

15

MAP ALV DMC HyTech
EXAMPLE SC&WidenPlus default A F L noAbs Abs Fw Bw

Bakery2 (safety) 20 20 30 90 30 10 30 ∞ 20
Bakery2 (liveness) 70 30 30 90 30 60 70 × ×
Bakery3 (safety) 160 580 570 ∞ 600 460 3090 ∞ 360

MutAst 140 ⊥ ⊥ 910 ⊥ 150 1370 70 130
Peterson N 230 71690 ⊥ ∞ ∞ ∞ ∞ 70 ∞
Ticket (safety) 40 ∞ 80 30 ∞ ∞ 60 ∞ ∞
Ticket (liveness) 110 ∞ 230 40 ∞ ∞ 220 × ×

Berkeley RISC 30 10 ⊥ 20 60 30 30 ∞ 20
DEC Firefly 20 10 ⊥ 20 80 50 80 ∞ 20
IEEE Futurebus+ 2460 320 ⊥ ∞ 670 4670 9890 ∞ 380
Illinois University 20 10 ⊥ ∞ 140 70 110 ∞ 20

MESI 30 10 ⊥ 20 60 40 60 ∞ 20
MOESI 60 10 ⊥ 40 100 50 90 ∞ 10
Synapse N+1 10 10 ⊥ 10 30 0 0 ∞ 0
Xerox PARC Dragon 40 20 ⊥ 40 340 70 120 ∞ 20

Barber 1170 340 ⊥ 90 360 140 230 ∞ 90
Bounded Buffer 3540 0 10 ∞ 20 20 30 ∞ 10
Unbounded Buffer 3890 10 10 40 40 ∞ ∞ ∞ 20
CSM 6580 79490 ⊥ ∞ ∞ ∞ ∞ ∞ ∞

Insertion Sort 100 40 60 ∞ 70 30 80 ∞ 10
Selection Sort 190 ∞ 390 ∞ ∞ ∞ ∞ ∞ ∞
Office Light Control 50 20 20 30 20 10 10 ∞ ∞
Reset Petri Nets 0 ∞ ⊥ ∞ 10 0 0 ∞ 10

Table 2. Comparison of verification times for the MAP, ALV, DMC, and HyTech sys-
tems. Times are expressed in milliseconds (ms). The precision is 10 ms. (i) ‘0’ means
termination in less than 10 ms. (ii) ‘⊥’ means termination with the answer ‘unable
to verify’. (iii) ‘∞’ means no answer within 100 seconds. (iv) ‘×’ means that the test
has not been performed (indeed, HyTech has no built-in for checking liveness). For the
MAP system we show the total verification time with the SumCoeff &WidenPlus option
(see the second column of Table 1). For the ALV system we have four options: default,
A (with approximate backward fixpoint computation), F (with approximate forward
fixpoint computation), and L (with computation of loop closures for accelerating reach-
ability). For the DMC system we have two options: noAbs (without abstraction) and
Abs (with abstraction). For the HyTech system we have two options: Fw (forward
reachability) and Bw (backward reachability).

16

have considered various specialization strategies which employ different well-
quasi orderings and generalization operators to guarantee the termination of the
specialization. Some of the well-quasi orderings and generalization operators we
use, are adapted from similar notions already known in the area of static analysis
of programs [4,10] and program specialization [24,25,27,31,38] (see, in particular,
the notions of convex hull, widening, and homeomorphic embedding).

We have applied these specialization strategies to several examples of infinite
state systems taken from the literature, and we have compared the results in
terms of precision (that is, the number of properties which have been proved)
and efficiency (that is, the time taken for the proofs). On the basis of our ex-
perimental results we have found that some strategies outperform the others. In
particular, in our examples the strategies based on the convex hull, widening,
and homeomorphic embedding, do not appear to be the best strategies.

Then, we have applied other tools for the verification of infinite state systems
(in particular, ALV [39], DMC [14], and HyTech [21]) to the same set of examples.
The experiments show that our specialization-based verification system is quite
competitive.

Our approach is closely related to other verification methods for infinite state
systems based on the specialization of (constraint) logic programs [26,28,31].
However, unlike the approach proposed in [26,28] we use constraints, which give
us very powerful means for dealing with infinite sets of states. The specialization-
based verification method presented in [31] consists of one phase only, incorporat-
ing top-down query directed specialization and bottom-up answer propagation.
That method is restricted to definite constraint logic programs and makes use of
a generalization technique which combines widening and convex hull operations
for ensuring termination. Unfortunately, in [31] only two examples of verification
have been presented (the Bakery protocol and a Petri net) and no verification
times are reported and, thus, it is hard to compare that method with our method.

Another approach based on program transformation for verifying parame-
terized (and, hence, infinite state) systems has been presented in [35]. It is an
approach based on unfold/fold transformations which are more general than the
ones used by us. However, the strategy for guiding the unfold/fold rules proposed
in [35] works in fully automatic mode in a small set of examples only.

Finally, we would like to mention that our verification method can be re-
garded as complementary to the methods for the verification of infinite state
systems based on abstractions [2,4,8,11,14,19,20]. These methods work by con-
structing approximations of the set of reachable states that satisfy a given prop-
erty. In contrast, the specialization technique applied during Phase (1) of our
method, transforms the program for computing sets of states, but it does not
change the set of states satisfying the property of interest. Moreover, during
Phase (2) we perform an exact computation of the perfect model of the trans-
formed program.

Further enhancements of infinite state verification could be achieved by com-
bining program specialization and abstraction. In particular, an extension of our
method could be done by replacing the bottom-up, exact computation of the

17

perfect model performed in Phase (2), by an approximated computation in the
style of [4,14]. (As already mentioned, this extension would require the computa-
tion of both over-approximations and under-approximations of models, because
of the presence of negation.) An interesting direction for future research is the
study of optimal combinations, both in terms of precision and verification time,
of techniques for abstraction and program specialization.

Acknowledgements

We thank the anonymous referees for very valuable comments. We also thank
John Gallagher for providing the code of some of the systems considered in
Section 5.

References
1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-

rems for infinite-state systems. Proc. LICS’96, pages 313–321. IEEE Press, 1996.
2. P. A. Abdulla, G. Delzanno, N. Ben Henda, and A. Rezine. Monotonic abstrac-

tion (On efficient verification of parameterized systems). International Journal of

Foundations of Computer Science, 20(5):779–801, 2009.
3. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of

Logic Programming, 19, 20:9–71, 1994.
4. G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal

logic: A direct approach to design and implementation. Proc. LPAR 2010, LNAI
6355, pages 27–45. Springer, 2010.

5. T. Bultan. BDD vs. constraint-based model checking: An experimental evaluation
for asynchronous concurrent systems. Proc. TACAS 2000, LNCS 1785, pages 441–
455. Springer, 2000.

6. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: symbolic representations, approximations, and ex-
perimental results. ACM TOPLAS, 21(4):747–789, 1999.

7. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. JACM, 43(1), 1996.

8. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM

Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.
9. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. Proc. POPL’78, pages 84–96. ACM Press, 1978.

11. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19(2):253–291, 1997.

12. G. Delzanno. Constraint-based verification of parameterized cache coherence pro-
tocols. Formal Methods in System Design, 23(3):257–301, 2003.

13. G. Delzanno, J. Esparza, and A. Podelski. Constraint-based analysis of broadcast
protocols. Proc. CSL ’99, LNCS 1683, pages 50–66. Springer, 1999.

14. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-

national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.
15. J. Esparza. Decidability of model checking for infinite-state concurrent systems.

Acta Informatica, 34(2):85–107, 1997.
16. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite

state systems by specializing constraint logic programs. Proc. VCL’01, Tech. Rep.
DSSE-TR-2001-3, pages 85–96. University of Southampton, UK, 2001.

17. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying infinite state systems by
specializing constraint logic programs. Report 657, IASI-CNR, Roma, Italy, 2007.

18

18. L. Fribourg and H. Olsén. Proving safety properties of infinite state systems by
compilation into Presburger arithmetic. Proc. CONCUR’97, LNCS 1243, pages
96–107. Springer, 1997.

19. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check: New
algorithms for the coverability problem of WSTS. J. Comput. Syst. Sci., 72(1):180–
203, 2006.

20. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking
using modal transition systems. In Proceedings of CONCUR ’01, Lecture Notes in
Computer Science 2154, pages 426–440. Springer, 2001.

21. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for
hybrid systems. International Journal on Software Tools for Technology Transfer,
1(1-2):110–122, 1997.

22. K. S. Henriksen, G. Banda, and J. P. Gallagher. Experiments with a convex
polyhedral analysis tool for logic programs. In Proc. WLPE 2007. CoRR, 2007.

23. D. Lesens and H. Säıdi. Abstraction of parameterized networks. Electronic Notes

of Theoretical Computer Science, 9:41, 1997.
24. M. Leuschel. Improving homeomorphic embedding for online termination. Proc.

LOPSTR’98, LNCS 1559, pages 199–218. Springer, 1999.
25. M. Leuschel. Homeomorphic embedding for online termination of symbolic meth-

ods. In The Essence of Computation, LNCS 2566, pages 379–403. Springer, 2002.
26. M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other well-

structured transition systems by partial deduction. Proc. CL 2000, LNAI 1861,
pages 101–115. Springer, 2000.

27. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Transactions on

Programming Languages and Systems, 20(1):208–258, 1998.
28. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-

tation and program specialization. Proc. LOPSTR’99, LNCS 1817, pages 63–82.
Springer, 2000.

29. The MAP Transformation System. www.iasi.cnr.it/∼proietti/system.html, 2010.
30. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic

model-checking. Proc. CL 2000, LNAI 1861, pages 384–398. Springer, 2000.
31. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of

CLP programs. Proc. LOPSTR 2002, LNCS 2664, pages 90–108, 2003.
32. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing

Letters, 12(3):115–116, 1981.
33. A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic

verification. Proc. CAV’96, LNCS 1102, pages 184–195. Springer, 1996.
34. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,

T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
Proc.CAV’97, LNCS 1254, pages 143–154. Springer, 1997.

35. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrish-
nan, and S. A. Smolka. Verification of parameterized systems using logic program
transformations. Proc. TACAS 2000, LNCS 1785, pages 172–187. Springer, 2000.

36. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer

Science, 86:107–139, 1991.
37. H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. Formal

Methods in System Design, 15:49–74, 1999.
38. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-

compilation. Proc. ILPS’95, pages 465–479. MIT Press, 1995.
39. T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An infinite-state model

checker for reactive software specifications. Formal Methods in System Design,
35(3):325–367, 2009.

19

