# Program Specialization for Verifying Infinite State Systems: An Experimental Evaluation

Fabio Fioravanti<sup>1</sup>, Alberto Pettorossi<sup>2</sup>, Maurizio Proietti<sup>3</sup>, and Valerio Senni<sup>2</sup>

<sup>1</sup> Dipartimento di Scienze, University 'G. D'Annunzio', Pescara, Italy fioravanti@sci.unich.it
<sup>2</sup> DISP, University of Rome Tor Vergata, Rome, Italy {pettorossi,senni}@disp.uniroma2.it
<sup>3</sup> CNR-IASI, Rome, Italy maurizio.proietti@iasi.cnr.it

Abstract. We address the problem of the automated verification of temporal properties of infinite state reactive systems. We present some improvements of a verification method based on the specialization of constraint logic programs (CLP). First, we reformulate the verification method as a two-phase procedure: (1) in the first phase a CLP specification of an infinite state system is specialized with respect to the initial state of the system and the temporal property to be verified, and (2) in the second phase the specialized program is evaluated by using a bottom-up strategy. In this paper we propose some new strategies for performing program specialization during the first phase. We evaluate the effectiveness of these new strategies, as well as that of some old strategies, by presenting the results of experiments performed on several infinite state systems and temporal properties. Finally, we compare the implementation of our specialization-based verification method with various constraint-based model checking tools. The experimental results show that our method is effective and competitive with respect to the methods used in those other tools.

### 1 Introduction

One of the most challenging problems in the verification of reactive systems is the extension of the model checking technique (see [9] for a thorough overview) to infinite state systems. In model checking the evolution over time of an infinite state system is modelled as a binary transition relation over an infinite set of states and the properties of that evolution are specified by means of propositional temporal formulas. In particular, in this paper we consider the *Computation Tree Logic* (CTL), which is a branching time propositional temporal logic by which one can specify, among others, the so-called *safety* and *liveness* properties [9].

Unfortunately, the verification of CTL formulas for infinite state systems is, in general, an undecidable problem. In order to cope with this limitation, various *decidable subclasses* of systems and formulas have been identified (see, for instance, [1,15]). Other approaches enhance finite state model checking by using more general *deductive* techniques (see, for instance, [33,37]) or using *abstractions*, by which one can compute conservative approximations of the set of states verifying a given property (see, for instance, [2,6,8,11,19,20]). Also logic programming and constraint logic programming (CLP) have been proposed as frameworks for specifying and verifying properties of reactive systems. Indeed, the fixpoint semantics of logic programming languages allows us to easily represent the fixpoint semantics of various temporal logics [14,30,34]. Moreover, constraints over the integers or the rationals can be used to provide finite representations of infinite sets of states [14,18].

However, for programs that specify infinite state systems, the proof procedures normally used in constraint logic programming, such as the extensions to CLP of SLDNF resolution and tabled resolution [7], very often diverge when trying to check some given temporal properties. This is due to the limited ability of these proof procedures to cope with infinitely failed derivations. For this reason, instead of simply applying program evaluation, many logic programming-based verification systems make use of reasoning techniques such as: (i) *abstract interpretation* [4,14] and (ii) *program transformation* [16,26,28,31,35].

In this paper we further develop the verification method presented in [16] and we assess its practical value. That method is applicable to specifications of CTL properties of infinite state systems encoded as constraint logic programs and it makes use of program specialization.

The specific contributions of this paper are the following. First, we have reformulated the specialization-based verification method of [16] as a two-phase method. In Phase (1) the CLP specification is specialized with respect to the initial state of the system and the temporal property to be verified, and in Phase (2) the construction of the perfect model of the specialized program is performed via a bottom-up evaluation. The main goal of Phase (1) is to derive a specialized program for which the bottom-up model construction of Phase (2) terminates. We have shown in an experimental way that, indeed, Phase (2) terminates in most examples without the need for abstractions.

We have defined various generalization strategies which can be used during Phase (1) of our verification method for controlling when and how to perform generalization. The selection of a good generalization strategy is not a trivial task: the selected strategy must guarantee the termination of the specialization phase and should also provide a good balance between precision (that is, the number of properties that are proved) and verification time. Indeed, the use of a too coarse generalization strategy may prevent the proof of the properties of interest, while an unnecessarily precise strategy may lead to verification times which are too high. Since the states of the systems we consider are encoded as n-tuples of rationals, our generalization strategies have been specifically designed for CLP programs using linear inequations over rationals as constraints.

We have implemented our strategies using the MAP transformation system [29] and we have compared them in terms of precision and efficiency on several infinite state systems taken from the literature. Finally, we have compared our MAP implementation with some constraint-based model checkers for infinite state systems and, in particular, with ALV [39], DMC [14], and HyTech [21].

The paper is structured as follows. In Section 2 we recall how CTL properties of infinite state systems can be encoded as locally stratified CLP programs. In Section 3 we present our two-phase verification method. In Section 4 we describe various strategies that can be applied during the specialization phase and, in particular, the generalization strategies used for ensuring termination of that phase. In Section 5 we report on the experiments we have performed by using a prototype implemented on our MAP transformation system.

# 2 Specifying CTL Properties by CLP Programs

We will follow the approach presented in [9] and we will model an infinite state system as a *Kripke structure*. The properties to be verified will be specified as formulas of the *Computation Tree Logic* (CTL). The fact that a CTL formula  $\varphi$  holds in a state s of a Kripke structure  $\mathcal{K}$  will be denoted by  $\mathcal{K}, s \models \varphi$ .

A Kripke structure  $\langle S, I, R, L \rangle$ , where S is a set of states,  $I \subseteq S$  is the set of initial states, R is a transition relation, and L is a labeling function, can be encoded as a CLP program as follows. (1) A state in S is encoded as an *n*-tuple of the form  $\langle t_1, \ldots, t_n \rangle$ , where for  $i=1, \ldots, n$ , the term  $t_i$  is either a rational number or an element of a finite domain. For reasons of simplicity, when denoting a state we will feel free to use a single variable X, instead of an *n*-tuple of variables of the form  $\langle X_1, \ldots, X_n \rangle$ .

- (2) An initial state X in I is encoded as a clause of the form:
- $initial(X) \leftarrow c(X)$ , where c(X) is a constraint.
- (3) The transition relation R is encoded as a set of clauses of the form:  $t(X,Y) \leftarrow c(X,Y)$

where c(X, Y) is a constraint. The state Y is called a *successor state* of X. We also introduce a predicate ts such that, for every state X, ts(X, Ys) holds iff Ys is a list of all the successor states of X, that is, for every state X, the state Y belongs to the list Ys iff t(X, Y) holds. In [17] the reader will find: (i) an algorithm for deriving the clauses defining ts from the clauses defining t, and also (ii) conditions that guarantee that Ys is a finite list.

(4) The elementary properties which are associated with each state X by the labeling function L, are encoded as a set of clauses of the form:

 $elem(X, e) \leftarrow c(X)$ 

where e is an elementary property and c(X) is a constraint.

The satisfaction relation  $\models$  can be encoded by a predicate *sat* defined by the following clauses [16] (see also [28,30] for similar encodings):

- 1.  $sat(X, F) \leftarrow elem(X, F)$
- 2.  $sat(X, not(F)) \leftarrow \neg sat(X, F)$
- 3.  $sat(X, and(F_1, F_2)) \leftarrow sat(X, F_1), sat(X, F_2)$
- 4.  $sat(X, ex(F)) \leftarrow t(X, Y), sat(Y, F)$
- 5.  $sat(X, eu(F_1, F_2)) \leftarrow sat(X, F_2)$
- 6.  $sat(X, eu(F_1, F_2)) \leftarrow sat(X, F_1), t(X, Y), sat(Y, eu(F_1, F_2))$
- 7.  $sat(X, af(F)) \leftarrow sat(X, F)$
- 8.  $sat(X, af(F)) \leftarrow ts(X, Ys), sat\_all(Ys, af(F))$
- 9.  $sat\_all([], F) \leftarrow$
- 10.  $sat\_all([X|Xs], F) \leftarrow sat(X, F), sat\_all(Xs, F)$

We assume the perfect model semantics for our CLP programs.

Note that all the CTL operators considered in [9] can be defined in terms of ex, eu, and af. In particular, for every CTL formula  $\varphi$ ,  $ef(\varphi)$  can be defined as  $eu(true, \varphi)$  and  $eg(\varphi)$  can be defined as  $not(af(not(\varphi)))$ . By restricting the operators to ex, eu, and af, we are able to provide the straightforward encoding of the CTL satisfaction relation as the constraint logic program shown above. Note, however, that by using this subset of operators, we cannot rewrite all formulas in negation normal form (where negation appears in front of elementary properties only), which is sometimes used in model checking [9]. Dealing with formulas in negation normal form avoids the use of a non-monotonic immediate consequence operator, but it requires the construction of both the least and the greatest fixpoint of that operator. The use of greatest fixpoints would force us to prove the correctness of the program transformation rules we use for program specialization, while, if we use least fixpoints only (which are the only fixpoints required for defining the perfect model semantics) the correctness of those rules is an immediate consequence of the results in [36].

Given a CTL formula  $\varphi$  we define a predicate *prop* as follows:

 $prop \equiv_{def} \forall X(initial(X) \to sat(X, \varphi))$ 

This definition can be encoded by the following two clauses:

 $\gamma_1: prop \leftarrow \neg negprop$ 

 $\gamma_2$ : negprop  $\leftarrow$  initial(X), sat(X, not( $\varphi$ ))

The correctness of the encoding of CTL is stated by the following Theorem 1 (whose proof is given in [17]), where  $P_{\mathcal{K}}$  denotes the constraint logic program consisting of clauses 1–10 together with the clauses defining the predicates *initial*, t, ts, and *elem*. Note that program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  is locally stratified and, hence, it has a unique perfect model which will be denoted by  $M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  [3].

**Theorem 1 (Correctness of Encoding).** Let  $\mathcal{K}$  be a Kripke structure, let I be the set of initial states of  $\mathcal{K}$ , and let  $\varphi$  be a CTL formula. Then,

for all states  $s \in I$ ,  $\mathcal{K}, s \models \varphi$  iff  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$ .

*Example 1.* Let us consider the reactive system depicted in Figure 1, where a state  $\langle X_1, X_2 \rangle$  which is a pair of rationals, is denoted by the term  $s(X_1, X_2)$ . In any initial state of this system we have that  $X_1 \leq 0$  and  $X_2 = 0$ . There are two transitions: one from state  $s(X_1, X_2)$  to state  $s(X_1, X_2-1)$  if  $X_1 \geq 1$ , and one from state  $s(X_1, X_2)$  to state  $s(X_1, X_2+1)$  if  $X_1 \leq 2$ .



**Fig. 1.** A reactive system. The transitions do not change the value of  $X_1$ .

The Kripke structure  $\mathcal{K}$  which models that system is defined as follows. The initial states are given by the clause:

11.  $initial(s(X_1, X_2)) \leftarrow X_1 \le 0, X_2 = 0$ The transition relation R is given by the clauses: 12.  $t(s(X_1, X_2), s(Y_1, Y_2)) \leftarrow X_1 \ge 1, Y_1 = X_1, Y_2 = X_2 - 1$  13.  $t(s(X_1, X_2), s(Y_1, Y_2)) \leftarrow X_1 \le 2, Y_1 = X_1, Y_2 = X_2 + 1$ 

The elementary property *negative* is given by the clause:

14.  $elem(s(X_1, X_2), negative) \leftarrow X_2 < 0$ 

Let  $P_{\mathcal{K}}$  denote the program consisting of clauses 1–14. We omit the clauses defining the predicate ts, which are not needed in this example.

Suppose that we want to verify that in every initial state  $s(X_1, X_2)$ , where  $X_1 \leq 0$  and  $X_2 = 0$ , the CTL formula not(eu(true, negative)) holds, that is, from any initial state it cannot be reached a state  $s(X'_1, X'_2)$  where  $X'_2 < 0$ . By using the fact that  $not(not(\varphi))$  is equivalent to  $\varphi$ , this property is encoded as follows:

 $\gamma_1: prop \leftarrow \neg negprop$ 

 $\gamma_2$ : negprop  $\leftarrow$  initial(X), sat(X, eu(true, negative))

# 3 Verifying Infinite State Systems by Specializing CLP Programs

In this section we present a method for checking whether or not  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$ , where  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  is a CLP specification of an infinite state system and *prop* is a predicate encoding the satisfiability of a given CTL formula.

As already mentioned, the proof procedures normally used in constraint logic programming, such as the extensions to CLP of SLDNF resolution and tabled resolution, very often diverge when trying to check whether or not  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  by evaluating the query *prop*. This is due to the limited ability of these proof procedures to cope with infinite failure.

Also the bottom-up construction of the perfect model  $M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  often diverges, because it does not take into account the information about the query *prop* to be evaluated, the initial states of the system, and the formula to be verified. Indeed, by a naive bottom-up evaluation, the clauses of  $P_{\mathcal{K}}$  may generate infinitely many atoms of the form  $sat(s, \psi)$ . For instance, given a state  $s_0$ , an elementary property f that holds in  $s_0$ , and an infinite sequence  $\{s_i \mid i \in \mathbb{N}\}$  of distinct states such that, for every  $i \in \mathbb{N}$ ,  $t(s_{i+1}, s_i)$  holds, clauses 5 and 6 generate by bottom-up evaluation the infinitely many atoms of the form: (i)  $sat(s_0, f), sat(s_0, eu(true, f)), sat(s_0, eu(true, eu(true, f))), \ldots$ , and of the form: (ii)  $sat(s_i, eu(true, f))$ , for every  $i \in \mathbb{N}$ .

In this paper we will show that the termination of the bottom-up construction of the perfect model can be improved by a prior application of program specialization. In particular, in this section we will present a verification algorithm which is a reformulation of the method proposed in [16] and consists of two phases: Phase (1), in which we specialize the program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  with respect to the query *prop*, thereby deriving a new program  $P_{\mathcal{S}}$  whose perfect model  $M_{\mathcal{S}}$ satisfies the following equivalence:  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  iff  $prop \in M_{\mathcal{S}}$ , and Phase (2), in which we construct  $M_{\mathcal{S}}$  by a bottom-up evaluation.

The specialization phase modifies the  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  by incorporating into the specialized program  $P_s$  the information about the initial states and the formula to be verified. The bottom-up evaluation of  $P_s$  may terminate more often than the bottom-up evaluation of  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  because: (i) it generates only specialized atoms corresponding to the subformulas of the formula to be verified, and (ii) it avoids the generation of an infinite set of  $sat(s, \psi)$  atoms where the state s in unreachable from the initial states.

# The Verification Algorithm

Input: The program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$ . Output: The perfect model  $M_s$  of a CLP program  $P_s$  such that  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  iff  $prop \in M_s$ . (Phase 1)  $Specialize(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}, P_s)$ ; (Phase 2)  $BottomUp(P_s, M_s)$ 

The *Specialize* procedure of Phase (1) makes use of the following transformation rules only: definition introduction, positive unfolding, constrained atomic folding, removal of clauses with unsatisfiable body, and removal of subsumed clauses. Thus, Phase (1) is simpler than the specialization technique presented in [16] which uses also some extra rules such as negative unfolding, removal of useless clauses, and contextual constraint replacement.

#### The Procedure Specialize

Input: The program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$ . Output: A stratified program  $P_s$  such that  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  iff  $prop \in M(P_s)$ .

 $\begin{array}{ll} P_{s} := \{\gamma_{1}\}; & InDefs := \{\gamma_{2}\}; & Defs := \emptyset; \\ while & \text{there exists a clause } \gamma \text{ in } InDefs \\ do & Unfold(\gamma, \Gamma); \\ & Generalize\&Fold(Defs, \Gamma, NewDefs, \Phi); \\ & P_{s} := P_{s} \cup \Phi; \\ & InDefs := (InDefs - \{\gamma\}) \cup NewDefs; & Defs := Defs \cup NewDefs; \\ end-while \end{array}$ 

The Unfold procedure takes as input a clause  $\gamma \in InDefs$  of the form  $H \leftarrow c(X), sat(X, \psi)$ , where  $\psi$  is a ground term denoting a CTL formula, and returns as output a set  $\Gamma$  of clauses derived from  $\gamma$  as follows. The Unfold procedure first unfolds once  $\gamma$  w.r.t.  $sat(X, \psi)$  and then applies zero or more times the unfolding rule as long as in the body of a clause derived from  $\gamma$  there is an atom of one of the following forms: (i) initial(s), (ii)  $t(s_1, s_2)$ , (iii) ts(s, ss), (iv) elem(s, e), (v) sat(s, e), where e is a constant, (vi)  $sat(s, not(\psi_1))$ , (vii)  $sat(s, and(\psi_1, \psi_2))$ , (viii)  $sat(s, ex(\psi_1))$ , and (ix)  $sat\_all(ss, \psi_1)$ , where ss is a non-variable list. Then the set of clauses derived from  $\gamma$  by applying the unfolding rule is simplified by removing: (i) every clause whose body contains an unsatisfiable constraint, and (ii) every clause which is subsumed by a clause of the form  $H \leftarrow c$ , where c is a constraint. Due to the structure of the clauses in  $P_{\mathcal{K}}$ , the Unfold procedure terminates for any  $\gamma \in InDefs$ .

The Generalize&Fold procedure takes as input the set  $\Gamma$  of clauses produced by the Unfold procedure and the set Defs of clauses, called definitions. A definition in Defs is a clause of the form  $newp(X) \leftarrow d(X), sat(X, \psi)$  which can be used for folding. The Generalize&Fold procedure introduces a set NewDefs of new definitions (which are then added to Defs) and, by folding the clauses in  $\Gamma$  using the definitions in Defs  $\cup$  NewDefs, derives a new set  $\Phi$  of clauses which are added to the program  $P_s$ . An uncontrolled application of the Generalize & Fold procedure may lead to the introduction of infinitely many new definitions and, therefore, it may make the Specialize procedure not to terminate. In order to guarantee termination, we will extend to constraint logic programs some techniques which have been proposed for controlling generalization in positive supercompilation [38] and partial deduction [24,27]. More details on the Generalize&Fold procedure will be given in the next section.

The output program  $P_s$  of the *Specialize* procedure is a *stratified* program and the procedure Bottom Up computes the perfect model  $M_s$  of  $P_s$  by considering a stratum at a time, starting from the lowest stratum and going up to the highest stratum of  $P_s$  (see, for instance, [3]). Obviously, the model  $M_s$  may be infinite and the *BottomUp* procedure may not terminate.

In order to get a terminating procedure, we could compute an approximation of  $M_s$  by applying abstract interpretation techniques [10]. Indeed, in order to prove that  $prop \in M_S$ , we could construct a set  $A \subseteq M_S$  such that  $prop \in A$ . Several abstract interpretation techniques have been proposed for definite CLP programs (see [22] for a tool that implements many such techniques based on polyhedra). However, integrating approximation mechanisms with the bottom-up construction of the perfect model, requires us to define suitable extensions of those techniques which compute both over-approximations and under-approximations of models, because of the presence of negation. In this paper we will not address the issue of defining those extensions and we will focus our attention on the design of the *Specialize* procedure only. In Section 5 we show that after the application of our *Specialize* procedure, the construction of the model  $M_8$ terminates in many significant cases.

Example 2. Let us consider the reactive system  $\mathcal{K}$  of Example 1. We want to check whether or not  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$ . Now we have that: (i) by using a traditional Prolog system, the evaluation of the query prop does not terminate in the program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  because *negprop* has an infinitely failed SLD tree, (ii) by using the XSB tabled logic programming system, the query *prop* does not terminate because infinitely many sat atoms are tabled, and (iii) the bottom-up construction of  $M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\})$  does not terminate because of the presence of clauses 5 and 6 as we have indicated at the beginning of this section.

By applying the *Specialize* procedure to the program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$  (with a suitable generalization strategy, as illustrated in the next section), we derive the following specialized program  $P_s$ :

- $\gamma_1$ . prop  $\leftarrow \neg negprop$
- $\gamma_2'. \quad negprop \leftarrow X_1 \leq 0, \ X_2 = 0, \ new1(X_1, X_2)$
- $\begin{array}{l} \gamma_3. \quad new1(X_1,X_2) \leftarrow X_1 \leq 0, \ X_2 = 0, \ Y_1 = X_1, \ Y_2 = 1, \ new2(Y_1,Y_2) \\ \gamma_4. \quad new2(X_1,X_2) \leftarrow X_1 \leq 0, \ X_2 \geq 0, \ Y_1 = X_1, \ Y_2 = X_2 + 1, \ new2(Y_1,Y_2) \end{array}$

Note that the Specialize procedure has propagated through the program  $P_S$  the constraint  $X_1 \leq 0$ ,  $X_2 = 0$  characterizing the initial states (see clause 11 of Example 1). This constraint, in fact, occurs in clause  $\gamma_3$  and its generalization  $X_1 \leq 0, X_2 \geq 0$  occurs in clause  $\gamma_4$ . The *BottomUp* procedure computes the perfect model of  $P_s$ , which is  $M_s = \{prop\}$ , in a finite number of steps. Thus,  $prop \in M(P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}).$ 

Most model checkers provide witnesses of existential formulas, when these formulas hold, and counterexamples of universal formulas, when these formulas do not hold [9]. Our encoding of the Kripke structure can easily be extended to provide witnesses of formulas of the form  $eu(\varphi_1, \varphi_2)$  and counterexamples of formulas of the form  $af(\varphi)$  by adding to the predicate sat an extra argument that recalls the sequence of states (or transitions) constructed during the verification of a given formula. For details, the reader may refer to [17].

# 4 Generalization Strategies

The design of a powerful generalization strategy should meet the following two conflicting requirements: (i) the introduction of new definitions that are as general as possible to guarantee the termination of the *Specialize* procedure, and (ii) the introduction of new definitions that are not too general to guarantee the termination of the *BottomUp* procedure. In this section we present several generalization strategies for coping with those conflicting requirements.

These strategies combine various by now standard techniques used in the fields of program transformation and static analysis, such as *well-quasi orderings*, *widening*, and *convex hull* operators, and variants thereof [4,10,24,25,27,31,38]. All these strategies guarantee the termination of the *Specialize* procedure. However, since in general the verification problem is undecidable, the assessment of the various generalization strategies, both in terms of precision and verification time, can only be done by an experimental evaluation. That evaluation will be presented in Section 5.

#### 4.1 The Generalize&Fold Procedure

The Generalize&Fold procedure makes use of a tree of definitions, called Definition Tree, whose nodes are labelled by the clauses in  $Defs \cup \{\gamma_2\}$ . By construction there is a bijection between the set of nodes of the Definition Tree and  $Defs \cup \{\gamma_2\}$ and, thus, we will identify each node with its label. The root of the Definition Tree is labelled by clause  $\gamma_2$  (recall that  $\{\gamma_2\}$  is the initial value of InDefs) and the children of a clause  $\gamma$  in  $Defs \cup \{\gamma_2\}$  are the clauses NewDefs derived after applying the procedures  $Unfold(\gamma, \Gamma)$  and Generalize&Fold(Defs,  $\Gamma$ , NewDefs,  $\Phi$ ). Similarly to [24,25,27,38], our Generalize&Fold procedure is based on the combined use of well-quasi orderings and clause generalization operators. The wellquasi orderings determine when to generalize and guarantee that generalization is eventually applied, while generalization operators determine how to generalize and guarantee that each definition can be generalized a finite number of times only.

Let  $\mathcal{C}$  be the set of all constraints and  $\mathcal{D}$  be a fixed interpretation for the constraints in  $\mathcal{C}$ . We assume that: (i) every constraint in  $\mathcal{C}$  is a finite conjunction of atomic constraints (conjunction will be denoted by comma), and (ii)  $\mathcal{C}$  is closed under projection. The projection of a constraint c onto a tuple of variables X, denoted project(c, X), is a constraint such that  $\mathcal{D} \models \forall X \ (project(c, X) \leftrightarrow \exists Yc)$ , where Y is the tuple of variables occurring in c and not in X. We define a partial order  $\sqsubseteq$  on  $\mathcal{C}$  as follows: for any two constraints  $c_1$  and  $c_2$  in  $\mathcal{C}$ , we have that  $c_1 \sqsubseteq c_2$  iff  $\mathcal{D} \models \forall (c_1 \rightarrow c_2)$ .

**Definition 1 (Well-Quasi Ordering**  $\preceq$ ). A well-quasi ordering (or wqo, for short) on a set S is a reflexive, transitive, binary relation  $\preceq$  such that, for every infinite sequence  $e_0, e_1, \ldots$  of elements of S, there exist i and j such that i < j and  $e_i \preceq e_j$ . Given  $e_1$  and  $e_2$  in S, we write  $e_1 \approx e_2$  if  $e_1 \preceq e_2$  and  $e_2 \preceq e_1$ . We say that a wqo  $\preceq$  is thin iff for all  $e \in S$ , the set  $\{e' \in S \mid e \approx e'\}$  is finite.

**Definition 2 (Generalization Operator**  $\ominus$ ). Let  $\preceq$  be a thin wqo on the set C of constraints. A binary operator  $\ominus$  on C is a *generalization* operator w.r.t.  $\preceq$  iff for all constraints c and d in C, we have: (i)  $d \sqsubseteq c \ominus d$ , and (ii)  $c \ominus d \preceq c$ . (Note that, in general,  $\ominus$  is not commutative.)

#### The Procedure Generalize&Fold

Input: (i) a set Defs of definitions, (ii) a set  $\Gamma$  of clauses obtained from a clause  $\gamma$  by the Unfold procedure, (iii) a thin wqo  $\preceq$ , and (iv) a generalization operator  $\ominus$  w.r.t.  $\preceq$ .

*Output*: (i) A set *NewDefs* of new definitions, and (ii) a set  $\Phi$  of folded clauses. *NewDefs* :=  $\emptyset$ ;  $\Phi$  :=  $\Gamma$ ;

while in  $\Phi$  there exists a clause  $\eta: H \leftarrow e, G_1, L, G_2$ , where L is either  $sat(X, \psi)$  or  $\neg sat(X, \psi)$  do

GENERALIZE: Let  $e_p(X)$  be project(e, X).

- 1. if in Defs there exists a clause  $\delta$ :  $newp(X) \leftarrow d(X), sat(X, \psi)$  such that  $e_p(X) \sqsubseteq d(X)$  (modulo variable renaming) then NewDefs := NewDefs
- 2. elseif there exists a clause  $\alpha$  in Defs such that: (i)  $\alpha$  is of the form  $newq(X) \leftarrow b(X)$ ,  $sat(X, \psi)$ , and (ii)  $\alpha$  is the most
  - recent ancestor of  $\gamma$  in the Definition Tree such that  $b(X) \preceq e_p(X)$

then NewDefs := NewDefs  $\cup$  {newp(X)  $\leftarrow$  b(X)  $\ominus$  e<sub>p</sub>(X), sat(X,  $\psi$ )}

3. else NewDefs := NewDefs  $\cup$  {newp(X)  $\leftarrow$   $e_p(X)$ , sat(X,  $\psi$ )}

FOLD:  $\Phi := (\Phi - \{\eta\}) \cup \{H \leftarrow e, G_1, M, G_2\}$ 

where M is newp(X), if L is  $sat(X, \psi)$ , and M is  $\neg newp(X)$ , if L is  $\neg sat(X, \psi)$ end-while

The following theorem, whose proof is a simple variant of that of Theorem 3 in [17], establishes that the *Specialize* procedure always terminates and preserves the perfect model semantics.

**Theorem 2 (Termination and Correctness of the** Specialize **Procedure).** For every input program  $P_{\mathcal{K}} \cup \{\gamma_1, \gamma_2\}$ , the Specialize procedure terminates. If  $P_s$  is the output program of the Specialize procedure, then  $P_s$  is stratified (and thus, locally stratified) and prop  $\in M(P_{\mathcal{K}})$  iff prop  $\in M(P_s)$ .

# 4.2 Well-Quasi Orderings and Generalization Operators on Linear Constraints

In our verification experiments we will consider the set  $Lin_k$  of constraints defined as follows. Every constraint  $c \in Lin_k$  is the conjunction of  $m (\geq 0)$  distinct atomic constraints  $a_1, \ldots, a_m$  and, for  $i = 1, \ldots, m$ , (1)  $a_i$  is of the form either  $p_i \leq 0$  or  $p_i < 0$ , and (2)  $p_i$  is a polynomial of the form  $q_0 + q_1X_1 + \ldots + q_kX_k$ , where  $X_1, \ldots, X_k$  are distinct variables and  $q_0, q_1, \ldots, q_k$  are integer coefficients.

An equation r = s stands for the conjunction of the two inequations  $r \leq s$  and  $s \leq r$ . In the sequel, when we write  $c =_{def} a_1, \ldots, a_m$  we mean that the  $a_i$ 's are the atomic constraints of c. The constraints in  $Lin_k$  are interpreted over the rationals in the usual way.

Well-Quasi Orderings. Now we present three wqo's between constraints in  $Lin_k$ , which are based on the integer coefficients of the polynomials. The first wqo is an adaptation to  $Lin_k$  of the homeomorphic embedding operator [24,25,27,38] and the other two are wqo's based on the maximum and on the sum, respectively, of the absolute values of the coefficients occurring in a constraint.

(W1) The wqo HomeoCoeff, denoted by  $\preceq_{HC}$ , compares sequences of absolute values of integer coefficients occurring in the polynomials. The  $\preceq_{HC}$  wqo is based on the notion of homeomorphic embedding and takes into account the commutativity and the associativity of addition and conjunction. Given two polynomials with integer coefficients  $p_1 =_{def} q_0 + q_1X_1 + \ldots + q_kX_k$ , and  $p_2 =_{def} r_0 + r_1X_1 + \ldots + r_kX_k$ , we have that  $p_1 \preceq_{HC} p_2$  iff there exists a permutation  $\langle \ell_0, \ldots, \ell_k \rangle$  of the indexes  $\langle 0, \ldots, k \rangle$  such that, for  $i=0,\ldots,k$ ,  $|q_i| \leq |r_{\ell_i}|$ . Given two atomic constraints  $a_1 =_{def} p_1 < 0$  and  $a_2 =_{def} p_2 < 0$ , we have that  $a_1 \preceq_{HC} a_2$  iff  $p_1 \preceq_{HC} p_2$ . Similarly, if we are given the atomic constraints  $a_1 =_{def} p_1 \leq 0$  and  $a_2 =_{def} p_2 \leq 0$ . Given two constraints  $c_1 =_{def} a_1, \ldots, a_m$ , and  $c_2 =_{def} b_1, \ldots, b_n$  we have that  $c_1 \preceq_{HC} c_2$  iff there exist m distinct indexes  $\ell_1, \ldots, \ell_m$ , with  $m \leq n$ , such that  $a_i \preccurlyeq_{HC} b_{\ell_i}$ , for  $i = 1, \ldots, m$ .

(W2) The wqo MaxCoeff, denoted by  $\preceq_{MC}$ , compares the maximum absolute value of coefficients occurring in the polynomials. For any atomic constraint a of the form p < 0 or  $p \le 0$ , where p is  $q_0 + q_1 X_1 + \ldots + q_k X_k$ , we define maxcoeff (a) to be  $max\{|q_0|, |q_1|, \ldots, |q_k|\}$ . Given two atomic constraints  $a_1 =_{def} p_1 < 0$  and  $a_2 =_{def} p_2 < 0$ , we have that  $a_1 \preceq_{MC} a_2$  iff  $maxcoeff(a_1) \leq maxcoeff(a_2)$ . Similarly, if we are given the atomic constraints  $a_1 =_{def} p_1 \leq 0$  and  $a_2 =_{def} p_2 \leq 0$ . Given two constraints  $c_1 =_{def} a_1, \ldots, a_m$ , and  $c_2 =_{def} b_1, \ldots, b_n$ , we have that  $c_1 \preceq_{MC} c_2$  iff, for  $i = 1, \ldots, m$ , there exists  $j \in \{1, \ldots, n\}$  such that  $a_i \preceq_{MC} b_j$ . (W3) The wqo SumCoeff, denoted by  $\preceq_{SC}$ , compares the sum of the absolute values of the coefficients occurring in the polynomials. For any atomic constraint aof the form p < 0 or  $p \leq 0$ , where p is  $q_0 + q_1 X_1 + \ldots + q_k X_k$ , we define sumcoeff(a) to be  $\sum_{j=0}^{k} |q_j|$ . Given two atomic constraints  $a_1 =_{def} p_1 < 0$  and  $a_2 =_{def} p_2 < 0$ , we have that  $a_1 \preceq_{SC} a_2$  iff  $sumcoeff(a_1) \leq sumcoeff(a_2)$ . Similarly, if we are given the atomic constraints  $a_1 =_{def} p_1 \leq 0$  and  $a_2 =_{def} p_2 \leq 0$ . Given two constraints  $c_1 =_{def} a_1, \ldots, a_m$ , and  $c_2 =_{def} b_1, \ldots, b_n$ , we have that  $c_1 \preceq_{SC} c_2$  iff, for  $i = 1, \ldots, m$ , there exists  $j \in \{1, \ldots, n\}$  such that  $a_i \preceq_{SC} b_j$ .

The relation  $\preceq_{HC}$  is contained both in the relation  $\preceq_{MC}$  and in the relation  $\preceq_{SC}$ . Thus, generalization is applied less often when using  $\preceq_{HC}$ , instead of  $\preceq_{MC}$  or  $\preceq_{SC}$ . The following table provides some examples of these relations and, in particular, it shows that the relations  $\preceq_{MC}$  and  $\preceq_{SC}$  are not comparable.

| $a_1$          | $a_2$          | $a_1 \precsim_{H\!C} a_2$ | $a_1 \precsim_{MC} a_2$ | $a_1 \precsim_{SC} a_2$ |
|----------------|----------------|---------------------------|-------------------------|-------------------------|
| $1 - 2X_1 < 0$ | $3 + X_1 < 0$  | yes                       | yes                     | yes                     |
| $2-2X_1+X_2<0$ | $1 + 3X_1 < 0$ | no                        | yes                     | no                      |
| $1+3X_1 < 0$   | $2-2X_1+X_2<0$ | no                        | no                      | yes                     |

**Generalization Operators.** Now we present some generalization operators on  $Lin_k$  which we use in the verification examples of the next section.

(G1) Given any two constraints c and d, the generalization operator Top, denoted  $\ominus_T$ , returns *true*. It can be shown that  $\ominus_T$  is indeed a generalization operator with respect to any of the wqo's *HomeoCoeff*, *MaxCoeff*, and *SumCoeff*. The *Top* operator forgets all information about its operands and often determines an over-generalization of the specialized program (see Section 5).

(G2) Given any two constraints  $c =_{def} a_1, \ldots, a_m$ , and d, the generalization operator Widen, denoted  $\ominus_W$ , returns the constraint  $a_{i1}, \ldots, a_{ir}$ , such that  $\{a_{i1}, \ldots, a_{ir}\} = \{a_h \mid 1 \leq h \leq m \text{ and } d \sqsubseteq a_h\}$ . Thus, Widen keeps all atomic constraints of c that entail d (see [10] for a similar operator used in static program analysis). It can be shown that  $\ominus_W$  is indeed a generalization operator with respect to any of the wqo's HomeoCoeff, MaxCoeff, and SumCoeff.

(G3) Given any two constraints  $c =_{def} a_1, \ldots, a_m$ , and  $d =_{def} b_1, \ldots, b_n$ , the generalization operator WidenPlus, denoted  $\ominus_{WP}$ , returns the conjunction  $a_{i1}, \ldots, a_{ir}, b_{j1}, \ldots, b_{js}$ , where: (i)  $\{a_{i1}, \ldots, a_{ir}\} = \{a_h \mid 1 \leq h \leq m \text{ and } d \sqsubseteq a_h\}$ , and (ii)  $\{b_{j1}, \ldots, b_{js}\} = \{b_k \mid 1 \leq k \leq n \text{ and } b_k \preceq c\}$ , where  $\preceq$  is a given thin wqo. Thus, WidenPlus is similar to Widen but, together with the atomic constraints of c that entail d, WidenPlus also returns some of the atomic constraints of d. It can be shown that  $\ominus_{WP}$  is indeed a generalization operator with respect to both the wqo MaxCoeff (in this case  $\preceq$  is  $\preceq_{MC}$ ) and the wqo SumCoeff (in this case  $\preceq$  is  $\preceq_{SC}$ ). However, in general,  $\ominus_{WP}$  is not a generalization operator with respect to the the constraints than c and, thus, it may not be the case that  $(c \ominus_{WP} d) \preceq_{HC} c$ .

We define our last generalization operator by combining  $\ominus_{WP}$  with the *convex* hull operator, which sometimes is used to discover program invariants [10]. The *convex* hull of two constraints c and d in  $Lin_k$ , denoted by ch(c, d), is the least (with respect to the  $\sqsubseteq$  ordering) constraint h in  $Lin_k$  such that  $c \sqsubseteq h$  and  $d \sqsubseteq h$ .

Given a thin wqo  $\preceq$  and a generalization operator  $\ominus$ , we define the generalization operator  $\ominus_{CH}$  as follows: for any two constraints c and d,  $c \ominus_{CH} d =_{def} c \ominus ch(c, d)$ . From the definitions of the operators  $\ominus$  and ch one can easily derive that the operator  $\ominus_{CH}$  is indeed a generalization operator for c and d, that is, (i)  $d \sqsubseteq c \ominus_{CH} d$ , and (ii)  $c \ominus_{CH} d \preceq c$ .

(G4) Given any two constraints c and d, we define the generalization operator *CHWidenPlus*, denoted  $\ominus_{CHWP}$ , as follows:  $c \ominus_{CHWP} d =_{def} c \ominus_{WP} ch(c, d)$ .

Note that if we combine the *Top* operator and the convex hull operator, we get again the *Top* operator and, similarly, if we combine the *Widen* operator and the convex hull operator, we get again the *Widen* operator.

The  $\sqsubseteq$  ordering on constraints in  $Lin_k$  can be extended to an ordering, also denoted  $\sqsubseteq$ , on the generalization operators, as follows:  $\ominus_1 \sqsubseteq \ominus_2$  iff for all constraints c and d,  $c \ominus_1 d \sqsubseteq c \ominus_2 d$ . For the generalization operators presented above, it can be shown that: (i)  $\ominus_{WP} \sqsubseteq \ominus_W \sqsubseteq \ominus_T$ , (ii)  $\ominus_{CHWP} \sqsubseteq \ominus_W$ , and (iii)  $\ominus_{WP}$  and  $\ominus_{CHWP}$  are not comparable.

The following table shows the application of some generalization operators on constraints of  $Lin_2$  when considering the *MaxCoeff* wqo.

| с                    | $-X_1 \le 0, \ -2 + X_1 \le 0$   | $1 - X_1 \le 0, \ -2 + X_1 \le 0$ | $-X_1 \le 0, X_2 \le 0$                             |
|----------------------|----------------------------------|-----------------------------------|-----------------------------------------------------|
| d                    | $2 - X_1 \le 0, \ 1 - X_2 \le 0$ | $-X_1 \leq 0$                     | $1 - X_1 \le 0, \ -1 + X_2 \le 0$                   |
| $c\ominus_W d$       | $-\!X_1\!\le\!0$                 | true                              | $-X_1 \le 0$                                        |
| $c \ominus_{W\!P} d$ | $2 - X_1 \le 0, \ 1 - X_2 \le 0$ | $-X_1 \leq 0$                     | $1 - X_1 \le 0, \ -1 + X_2 \le 0$                   |
| $c \ominus_{CHWP} d$ | $-X_1 \le 0$                     | $-X_1 \leq 0$                     | $-X_1 \le 0, \ -1 + X_2 \le 0, \\ -X_1 + X_2 \le 0$ |

### 5 Experimental Evaluation

In this section we present the results of the experiments we have performed on several examples of verification of infinite state reactive systems. We have implemented the verification algorithm presented in Section 2 using MAP [29], an experimental system for transforming constraint logic programs. The MAP system is implemented in SICStus Prolog 3.12.8 and uses the clpq library to operate on constraints.

We have considered the following *mutual exclusion* protocols and we have verified some of their properties. (i) *Bakery* [14]: we have verified safety (that is, mutual exclusion) and liveness (that is, starvation freedom) in the case of two processes, and safety in the case of three processes; (ii) *MutAst* [23]: we have verified safety in the case of two processes; (iii) *Peterson* [32]: we have verified safety in the case of  $N (\geq 2)$  processes by considering a *counting abstraction* [12] of the protocol; and (iv) *Ticket* [14]: we have verified safety and liveness in the case of two processes.

We have also verified safety properties of the following *cache coherence* protocols: (v) *Berkeley RISC*, (vi) *DEC Firefly*, (vii) *IEEE Futurebus+*, (viii) *Illinois University*, (ix) *MESI*, (x) *MOESI*, (xi) *Synapse N+1*, and (xii) *Xerox PARC Dragon*. We have considered the *parameterized* versions of the protocols (v)–(xii) which are designed for an arbitrary number of processors, and we have applied our verification method to the versions derived by using the counting abstraction technique described in [12].

Then we have verified safety properties of the following systems. (xiii) Barber [5]: we have considered a parameterized version of this protocol with a single barber process and an arbitrary number of customer processes; (xiv) Bounded Buffer and Unbounded Buffer: we have considered protocols for two producers and two consumers which communicate via either a bounded or an unbounded buffer, respectively (the encodings of these protocols are taken from [14]); (xv) CSM, which is a central server model described in [13]; (xvi) Insertion Sort and Selection Sort: we have considered the problem of checking array bounds of these two sorting algorithms, parameterized with respect to the size of the array, as presented in [14]; (xvii) Office Light Control [39], which is a protocol for controlling how office lights are switched on and off, depending on room occupancy; (xviii) Reset Petri Nets, which are Petri Nets augmented with reset arcs: we have considered a reachability problem for a net which is a variant of one presented in [26] (unlike [26], we have assumed that in the nets there is no bound on the number of tokens that can reside in a single place and, therefore, our nets are infinite state systems).

Table 1 shows the results of running the MAP system on the above examples by choosing different combinations of a wqo W and a generalization operator Gamong those introduced in Section 4. In the sequel we will denote any of these combinations by W&G. The combinations MaxCoeff&CHWidenPlus, MaxCoeff&Top, and MaxCoeff&Widen have been omitted because they give results which are very similar to those obtained by using SumCoeff, instead of Max-Coeff. We have omitted also the combinations HomeoCoeff&CHWidenPlus and HomeoCoeff&WidenPlus because, as already mentioned in Section 4, these combinations do not satisfy the conditions given in Definition 2, and thus, they do not guarantee termination of the specialization strategy.

Now we compare the various generalization strategies with respect to precision (that is, number of properties proved) and specialization time (that is, time taken by the Specialize procedure). As expected, we have that precision increases when we consider generalization operators that generalize less (that is, precision is anti-monotonic with respect to the  $\Box$  relation). Indeed, the use of generalization operators that generalize less, may produce specialized programs that better exploit the knowledge about both the initial state and the property to be proved. In particular, if we use the SumCoeff wqo in conjunction with the various generalization operators, then the most precise generalization operator is WidenPlus (23 properties proved out of 23), followed by CHWidenPlus (22), Widen (18), and finally Top (17). Similar results are obtained by using the other wqo's introduced in Section 4.

We also have that specialization time increases when we consider generalization operators that generalize less (that is, specialization time is anti-monotonic with respect to the  $\sqsubseteq$  relation). This is due to the fact that generalization operators that generalize less may introduce more definitions and, therefore, the specialization phase may take more time. In particular, if we use the *SumCoeff* wqo, then the shortest specialization time is relative to *Top* (the sum of the specialization times of all examples is 1860 ms), followed by *Widen* (4720 ms), *CHWidenPlus* (6280 ms), and finally, *WidenPlus* (12710 ms). Similar results are obtained by using the other wqo's.

Finally, the results of our experiments shown in Table 1 confirm the fact that the use of a wqo for which the *Specialize* procedure performs fewer generalization steps, also determines the introduction of more definitions. Therefore, we have that precision and specialization time increase if we use the *HomeoCoeff* operator, instead of either the *MaxCoeff* operator or the *SumCoeff* operator. In particular, if we compare the two columns of Table 1 for the *Widen* generalization operator we have that: (i) the *Specialize* procedure terminates by using the *HomeoCoeff* wqo if and only if it terminates by using the *SumCoeff* wqo, and (ii) if we consider the examples where the *Specialize* procedure terminates, the sum of the specialization times is 5080 ms for *HomeoCoeff* and 3830 ms for *SumCoeff*. A similar result is obtained by comparing the two columns of Table 1 for the *Top* generalization operator. However, in our examples the increase of precision due to the use of the *HomeoCoeff* wqo, instead of the *SumCoeff* wqo, was actually confirmed in a weak sense only: for every example the property is verified with *HomeoCoeff&Widen* if and only if it is verified by *SumCoeff& Widen* (and similarly, for *Top*, instead of *Widen*).

In summary, if we consider the tradeoff between precision and verification time, the generalization strategy SumCoeff & WidenPlus outperforms the others, closely followed by the generalization strategy MaxCoeff & WidenPlus. In particular, the generalization strategies based on either the homeomorphic embedding (that is, HomeoCoeff) or the widening and convex hull operators (that is, Widen and CHWidenPlus) turn out not to be the best strategies in our examples.

In order to compare the implementation of our verification method using MAP with other constraint-based model checking tools for infinite state systems available in the literature, we have performed the verification examples described in Table 1 also on the following systems: (i) ALV [39], which combines BDD-based symbolic manipulation for boolean and enumerated types, with a solver for linear constraints on integers, (ii) DMC [14], which computes (approximated) least and greatest models of CLP(R) programs, and (iii) HyTech [21], a model checker for hybrid systems which handles constraints on reals. All experiments with the MAP, ALV, DMC, and HyTech systems have been performed on an Intel Core 2 Duo E7300 2.66GHz under the operating system Linux. Table 2 reports the results obtained by using various options available in those verification systems.

Table 2 indicates that, in terms of precision, MAP with the SumCoeff &WidenPlus option is the best system (23 properties proved out of 23), followed by DMC with the A option (19 out of 23), ALV with the *default* option (18 out of 23), and, finally, HyTech with the Bw (backward reachability) option (17 out of 23). Among the above mentioned systems, HyTech (Bw) has the best average running time (70 ms per proved property), followed by MAP and DMC (both 820 ms), and ALV (8480 ms). This result is explained by the fact that HyTech with the Bw option tries to prove a safety property with a very simple strategy, that is, by constructing the reachability set backwards from the property to be proved, while the other systems apply more sophisticated techniques. Note also that the average verification times are affected by the peculiar behaviour on some specific examples. For instance, in the Bounded Buffer and the Unbounded Buffer examples the MAP system has longer verification times with respect to the other systems, because these examples can be easily verified by backward reachability, and this makes the MAP specialization phase unnecessary. On the opposite side, MAP is much more efficient than the other systems in the Peterson N example and the CSM example.

#### 6 Conclusions

In this paper we have proposed some improvements of the method presented in [16] for verifying infinite state reactive systems. First, we have reformulated the verification method as a two-phase method: in Phase (1) a CLP specification of the reactive system is specialized with respect to the initial state and the temporal property to be verified, and in Phase (2) the perfect model of the specialized program is constructed in a bottom-up way. For Phase (1) we

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           |
| Bakery3 (safety) 180 160 180 150 750 2850 301                                                                                                                    |
|                                                                                                                                                                  |
| 170 150 170 150 380 670 68                                                                                                                                       |
| MutAst 70 140 440 110 370 2740 249                                                                                                                               |
| $\begin{bmatrix} 70 & 140 \\ 210 & 220 \end{bmatrix} = \begin{bmatrix} 70 & 320 \\ 100 & 320 \end{bmatrix} = \begin{bmatrix} 310 & 22 \\ 310 & 22 \end{bmatrix}$ |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| Berkeley RISC 30 30 200 40 50 20 3                                                                                                                               |
| 30 30 170 30 30 10 2                                                                                                                                             |
| DEC Firefly 30 20 340 140 120 90 8                                                                                                                               |
| 30 	20 	160 	60 	60 	30 	2                                                                                                                                       |
| IEEE Futurebus+ $100 \ 2460 \ 47260 \ 47340 \ 47200 \ 15570 \ 1563$                                                                                              |
| $100 \ 270$ $290 \ 230 \ 230 \ 40 \ 3$                                                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             |
| 30 10 40 50 50 30 3                                                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             |
| Subarse $N \perp 1$ 10 10 10 10 20 2                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             |
| Xerox PARC Dragon $30$ $40$ $280$ $70$ $70$ $50$ $5$                                                                                                             |
|                                                                                                                                                                  |
| Barber 1210 1170 2740 48300 29030 $\infty$ $\infty$                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| Bounded Buffer 3520 3540 6790 340 340 40 2                                                                                                                       |
| 2040 2060 6780 140 140 20 2                                                                                                                                      |
| Unbounded Buffer $3890 \ 3890 \ 410 \ \infty \ \infty \ \infty$                                                                                                  |
| 360  360  410  110  100  20  1                                                                                                                                   |
| $CSM \qquad 6380  6580 \qquad 4710  \infty  \infty  \infty  \infty$                                                                                              |
| 6300  6300  4700  430  440  20  2                                                                                                                                |
| Insertion Sort         90         100         160         60         70         100         8                                                                    |
| $90 	ext{ 100} 	ext{ 150} 	ext{ 60 	ext{ 50}} 30 	ext{ 2}$                                                                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                           |
| $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$                                                                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |
|                                                                                                                                                                  |

**Table 1.** Comparison of various generalization strategies used by the MAP system. For each example we have two lines: the first one shows the *total verification time* (Phases 1 and 2 of our Verification Algorithm) and the second one shows the *program specialization time* (Phase 1 only). *HC*, *MC*, and *SC* denote the wqo *HomeoCoeff*, *MaxCoeff*, and *SumCoeff*, respectively. Times are expressed in milliseconds (ms). The precision is 10 ms. '0' means termination in less than 10 ms. ' $\infty$ ' means no answer within 100 seconds.

| EXAMPLE                                | MAP<br>SC&WidenPlus | default  | ALV<br>A | F        | L        | DN<br>noAbs | AC<br>Abs | $Hy'_{Fw}$     | $Fech \\ Bw$ |
|----------------------------------------|---------------------|----------|----------|----------|----------|-------------|-----------|----------------|--------------|
| Bakery2 (safety)<br>Bakery2 (liveness) | 20<br>70            | 20<br>30 | 30<br>30 | 90<br>90 | 30<br>30 | 10<br>60    | 30<br>70  | $\infty$       | 20<br>×      |
| Bakery3 (safety)                       | 160                 | 580      | 570      | $\infty$ | 600      | 460         | 3090      | $\hat{\infty}$ | 360          |
| MutAst                                 | 140                 | $\perp$  | $\perp$  | 910      | $\perp$  | 150         | 1370      | 70             | 130          |
| Peterson N                             | 230                 | 71690    | $\perp$  | $\infty$ | $\infty$ | $\infty$    | $\infty$  | 70             | $\infty$     |
| Ticket (safety)                        | 40                  | $\infty$ | 80       | 30       | $\infty$ | $\infty$    | 60        | $\infty$       | $\infty$     |
| Ticket (liveness)                      | 110                 | $\infty$ | 230      | 40       | $\infty$ | $\infty$    | 220       | ×              | ×            |
| Berkeley RISC                          | 30                  | 10       | $\perp$  | 20       | 60       | 30          | 30        | $\infty$       | 20           |
| DEC Firefly                            | 20                  | 10       | $\perp$  | 20       | 80       | 50          | 80        | $\infty$       | 20           |
| IEEE Futurebus+                        | 2460                | 320      | $\perp$  | $\infty$ | 670      | 4670        | 9890      | $\infty$       | 380          |
| Illinois University                    | 20                  | 10       | $\perp$  | $\infty$ | 140      | 70          | 110       | $\infty$       | 20           |
| MESI                                   | 30                  | 10       | $\perp$  | 20       | 60       | 40          | 60        | $\infty$       | 20           |
| MOESI                                  | 60                  | 10       | $\perp$  | 40       | 100      | 50          | 90        | $\infty$       | 10           |
| Synapse N+1                            | 10                  | 10       | $\perp$  | 10       | 30       | 0           | 0         | $\infty$       | 0            |
| Xerox PARC Dragon                      | 40                  | 20       | $\perp$  | 40       | 340      | 70          | 120       | $\infty$       | 20           |
| Barber                                 | 1170                | 340      | $\perp$  | 90       | 360      | 140         | 230       | $\infty$       | 90           |
| Bounded Buffer                         | 3540                | 0        | 10       | $\infty$ | 20       | 20          | 30        | $\infty$       | 10           |
| Unbounded Buffer                       | 3890                | 10       | 10       | 40       | 40       | $\infty$    | $\infty$  | $\infty$       | 20           |
| CSM                                    | 6580                | 79490    | $\perp$  | $\infty$ | $\infty$ | $\infty$    | $\infty$  | $\infty$       | $\infty$     |
| Insertion Sort                         | 100                 | 40       | 60       | $\infty$ | 70       | 30          | 80        | $\infty$       | 10           |
| Selection Sort                         | 190                 | $\infty$ | 390      | $\infty$ | $\infty$ | $\infty$    | $\infty$  | $\infty$       | $\infty$     |
| Office Light Control                   | 50                  | 20       | 20       | 30       | 20       | 10          | 10        | $\infty$       | $\infty$     |
| Reset Petri Nets                       | 0                   | $\infty$ | $\perp$  | $\infty$ | 10       | 0           | 0         | $\infty$       | 10           |

**Table 2.** Comparison of verification times for the MAP, ALV, DMC, and HyTech systems. Times are expressed in milliseconds (ms). The precision is 10 ms. (i) '0' means termination in less than 10 ms. (ii) ' $\perp$ ' means termination with the answer 'unable to verify'. (iii) ' $\infty$ ' means no answer within 100 seconds. (iv) ' $\times$ ' means that the test has not been performed (indeed, HyTech has no built-in for checking liveness). For the MAP system we show the total verification time with the *SumCoeff & WidenPlus* option (see the second column of Table 1). For the ALV system we have four options: *default*, A (with approximate backward fixpoint computation), F (with approximate forward fixpoint computation), and L (with computation of loop closures for accelerating reachability). For the DMC system we have two options: *noAbs* (without abstraction) and *Abs* (with abstraction). For the HyTech system we have two options: *Fw* (forward reachability) and *Bw* (backward reachability).

have considered various specialization strategies which employ different wellquasi orderings and generalization operators to guarantee the termination of the specialization. Some of the well-quasi orderings and generalization operators we use, are adapted from similar notions already known in the area of static analysis of programs [4,10] and program specialization [24,25,27,31,38] (see, in particular, the notions of convex hull, widening, and homeomorphic embedding).

We have applied these specialization strategies to several examples of infinite state systems taken from the literature, and we have compared the results in terms of precision (that is, the number of properties which have been proved) and efficiency (that is, the time taken for the proofs). On the basis of our experimental results we have found that some strategies outperform the others. In particular, in our examples the strategies based on the convex hull, widening, and homeomorphic embedding, do not appear to be the best strategies.

Then, we have applied other tools for the verification of infinite state systems (in particular, ALV [39], DMC [14], and HyTech [21]) to the same set of examples. The experiments show that our specialization-based verification system is quite competitive.

Our approach is closely related to other verification methods for infinite state systems based on the specialization of (constraint) logic programs [26,28,31]. However, unlike the approach proposed in [26,28] we use constraints, which give us very powerful means for dealing with infinite sets of states. The specializationbased verification method presented in [31] consists of one phase only, incorporating top-down query directed specialization and bottom-up answer propagation. That method is restricted to definite constraint logic programs and makes use of a generalization technique which combines widening and convex hull operations for ensuring termination. Unfortunately, in [31] only two examples of verification have been presented (the Bakery protocol and a Petri net) and no verification times are reported and, thus, it is hard to compare that method with our method.

Another approach based on program transformation for verifying parameterized (and, hence, infinite state) systems has been presented in [35]. It is an approach based on unfold/fold transformations which are more general than the ones used by us. However, the strategy for guiding the unfold/fold rules proposed in [35] works in fully automatic mode in a small set of examples only.

Finally, we would like to mention that our verification method can be regarded as complementary to the methods for the verification of infinite state systems based on abstractions [2,4,8,11,14,19,20]. These methods work by constructing approximations of the set of reachable states that satisfy a given property. In contrast, the specialization technique applied during Phase (1) of our method, transforms the program for computing sets of states, but it does not change the set of states satisfying the property of interest. Moreover, during Phase (2) we perform an exact computation of the perfect model of the transformed program.

Further enhancements of infinite state verification could be achieved by combining program specialization and abstraction. In particular, an extension of our method could be done by replacing the bottom-up, exact computation of the perfect model performed in Phase (2), by an approximated computation in the style of [4,14]. (As already mentioned, this extension would require the computation of both over-approximations and under-approximations of models, because of the presence of negation.) An interesting direction for future research is the study of optimal combinations, both in terms of precision and verification time, of techniques for abstraction and program specialization.

# Acknowledgements

We thank the anonymous referees for very valuable comments. We also thank John Gallagher for providing the code of some of the systems considered in Section 5.

#### References

- P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state systems. *Proc. LICS'96*, pages 313–321. IEEE Press, 1996.
- P. A. Abdulla, G. Delzanno, N. Ben Henda, and A. Rezine. Monotonic abstraction (On efficient verification of parameterized systems). *International Journal of Foundations of Computer Science*, 20(5):779–801, 2009.
- K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of Logic Programming, 19, 20:9–71, 1994.
- G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal logic: A direct approach to design and implementation. *Proc. LPAR 2010*, LNAI 6355, pages 27–45. Springer, 2010.
- T. Bultan. BDD vs. constraint-based model checking: An experimental evaluation for asynchronous concurrent systems. *Proc. TACAS 2000*, LNCS 1785, pages 441– 455. Springer, 2000.
- T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer variables: symbolic representations, approximations, and experimental results. ACM TOPLAS, 21(4):747–789, 1999.
- W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. JACM, 43(1), 1996.
- E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.
- 9. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
- P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. Proc. POPL'78, pages 84–96. ACM Press, 1978.
- D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems. ACM Transactions on Programming Languages and Systems, 19(2):253-291, 1997.
- G. Delzanno. Constraint-based verification of parameterized cache coherence protocols. Formal Methods in System Design, 23(3):257–301, 2003.
- G. Delzanno, J. Esparza, and A. Podelski. Constraint-based analysis of broadcast protocols. Proc. CSL '99, LNCS 1683, pages 50–66. Springer, 1999.
- G. Delzanno and A. Podelski. Constraint-based deductive model checking. International Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.
- J. Esparza. Decidability of model checking for infinite-state concurrent systems. Acta Informatica, 34(2):85–107, 1997.
- F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state systems by specializing constraint logic programs. *Proc. VCL'01*, Tech. Rep. DSSE-TR-2001-3, pages 85–96. University of Southampton, UK, 2001.
- 17. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying infinite state systems by specializing constraint logic programs. Report 657, IASI-CNR, Roma, Italy, 2007.

- L. Fribourg and H. Olsén. Proving safety properties of infinite state systems by compilation into Presburger arithmetic. *Proc. CONCUR'97*, LNCS 1243, pages 96–107. Springer, 1997.
- G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check: New algorithms for the coverability problem of WSTS. J. Comput. Syst. Sci., 72(1):180– 203, 2006.
- P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using modal transition systems. In *Proceedings of CONCUR '01*, Lecture Notes in Computer Science 2154, pages 426–440. Springer, 2001.
- T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems. *International Journal on Software Tools for Technology Transfer*, 1(1-2):110–122, 1997.
- K. S. Henriksen, G. Banda, and J. P. Gallagher. Experiments with a convex polyhedral analysis tool for logic programs. In *Proc. WLPE 2007.* CoRR, 2007.
- D. Lesens and H. Saïdi. Abstraction of parameterized networks. *Electronic Notes* of Theoretical Computer Science, 9:41, 1997.
- M. Leuschel. Improving homeomorphic embedding for online termination. Proc. LOPSTR'98, LNCS 1559, pages 199–218. Springer, 1999.
- 25. M. Leuschel. Homeomorphic embedding for online termination of symbolic methods. In *The Essence of Computation*, LNCS 2566, pages 379–403. Springer, 2002.
- M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other wellstructured transition systems by partial deduction. *Proc. CL 2000*, LNAI 1861, pages 101–115. Springer, 2000.
- M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and polyvariance in partial deduction of normal logic programs. ACM Transactions on Programming Languages and Systems, 20(1):208–258, 1998.
- M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and program specialization. *Proc. LOPSTR'99*, LNCS 1817, pages 63–82. Springer, 2000.
- 29. The MAP Transformation System. www.iasi.cnr.it/~proietti/system.html, 2010.
- U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic model-checking. Proc. CL 2000, LNAI 1861, pages 384–398. Springer, 2000.
- J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs. Proc. LOPSTR 2002, LNCS 2664, pages 90–108, 2003.
- G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters, 12(3):115–116, 1981.
- A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic verification. Proc. CAV'96, LNCS 1102, pages 184–195. Springer, 1996.
- 34. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift, and D. S. Warren. Efficient model checking using tabled resolution. *Proc. CAV'97*, LNCS 1254, pages 143–154. Springer, 1997.
- A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka. Verification of parameterized systems using logic program transformations. *Proc. TACAS 2000*, LNCS 1785, pages 172–187. Springer, 2000.
- H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer Science, 86:107–139, 1991.
- H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. Formal Methods in System Design, 15:49–74, 1999.
- M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercompilation. Proc. ILPS'95, pages 465–479. MIT Press, 1995.
- T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An infinite-state model checker for reactive software specifications. *Formal Methods in System Design*, 35(3):325–367, 2009.