Verification of Sets of Infinite State Processes
Using Program Transformation

Fabio Fioravanti', Alberto Pettorossi?, Maurizio Proietti?

(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy
(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy

{fioravanti,adp,proietti}@iasi.rm.cnr.it

Abstract We present a method for the verification of safety proper-
ties of concurrent systems which consist of finite sets of infinite state
processes. Systems and properties are specified by using constraint logic
programs, and the inference engine for verifying properties is provided by
a technique based on unfold/fold program transformations. We deal with
properties of finite sets of processes of arbitrary cardinality, and in or-
der to do so, we consider constraint logic programs where the constraint
theory is the Weak Monadic Second Order Theory of k& Successors. Our
verification method consists in transforming the programs that specify
the properties of interest into equivalent programs where the truth of
these properties can be checked by simple inspection in constant time.
We present a strategy for guiding the application of the unfold/fold rules
and realizing the transformations in a semiautomatic way.

1 Introduction

Model checking is a well established technique for the verification of temporal
properties of concurrent systems consisting of a fized number of finite state pro-
cesses [6]. Recently, there have been various proposals to extend model checking
for verifying properties of systems consisting of an arbitrary number of infinite
state processes (see, for instance, [18,21,25]). The verification problem addressed
by these new proposals can be formulated as follows: given a system Sy consist-
ing of N infinite state processes and a temporal property ¢, prove that, for all
N, the system Sy verifies property .

The main difficulty of this verification problem is that most properties of
interest, such as safety and liveness properties, are undecidable for that class of
concurrent systems, and thus, there cannot be any complete method for their
verification. For this reason, all proposed methods resort to semiautomatic tech-
niques, based on either (i) mathematical induction, or (ii) reduction to finite
state model checking by abstraction.

This paper describes a method for verifying safety properties of systems con-
sisting of an arbitrary number of processes whose set of states can be either finite
or infinite. For reasons of simplicity, throughout this paper we will refer to these
processes as infinite state processes. Our method avoids the use mathematical
induction by abstracting away from the number N of processes actually present

in the system. Indeed, this parameter occurs in the encoding of neither the sys-
tems nor the safety properties to be verified. These encodings are expressed as
Constraint Logic Programs [14], CLP for short, whose constraints are formulas
of the Weak Monadic Second-order Theory of k Successors, denoted WSkS [28].
These programs will be called CLP(WSkS) programs. By using these encod-
ings, the actual cardinality of the set of processes present in the systems is not
required in the proofs of the properties of interest.

Our method uses unfold/fold transformations [5,20,26] as inference rules for
constructing proofs. There are other verification methods proposed in the litera-
ture which use program transformation or are based on CLP [7,12,13,17,19,22,23],
but those methods deal either with: (i) finite state systems [19,22], or (ii) infinite
state systems where the number N of infinite state processes is fixed in advance
[7,12,13,17], or (iii) parameterized systems, that is, systems consisting of an ar-
bitrary number of finite state processes [23]. A more detailed discussion of these
methods can be found in Section 6.

We assume that in our concurrent systems, every process evolves depending
on its local state, called the process state, and depending also on the state of the
other processes. Correspondingly, the whole system evolves and its global state,
called the system state, changes. We also assume that each process state consists
of a pair (n,s) € IN x CS, where IN denotes the set of natural numbers and
CS is a given finite set. n and s are called the counter and the control state of
the process, respectively. Notice that, during the evolution of the system, each
process may reach an infinite number of distinct states.

This notion of process state derives from the specification of the Bakery Pro-
tocol (see Section 3 below) where a process is viewed as a finite state automaton
which at each instante in time, is in a given control state and holds a natural
number in a counter. We think, however, that our notion of process state is
general enough to allow the specification of a large class of concurrent systems.

Since two distinct processes in a given system may have the same (counter,
control state) pair, a system state is a multiset of process states.

As usual in model checking, a concurrent system is specified as a Kripke
structure K = (S, Sy, R, E), where: (i) S is the set of system states, that is, the
set of multisets of (control state, counter) pairs, (ii) So C S is a set of initial
system states, (iii) R C S x S is a transition relation, and (iv) E C P(S) is a
finite set of elementary properties.

We also assume that for all (X,Y) € R, we have that Y = (X —{z}) U {y}
where: (i) ¢ and y are some process states, and (ii) the difference and union
operations are to be understood as multiset operations. Thus, a transition from
a system state to a new system state consists in replacing a process state by
a new process state. This assumption implies that: (i) the number of processes
in the concurrent systems does not change over time, and (ii) the concurrent
system is asynchronous, that is, the processes of the system do not necessarily
synchronize their actions.

We will address the problem of proving safety properties of systems. A safety
property is expressed by a formula of the Computational Tree Logic [6] (CTL,

for short) of the form —EF (unsafe), where unsafe is an elementary property and
EF is a temporal operator. The meaning of any such formula is given via the
satisfaction relation K, Xo = - EF (unsafe) which holds for a Kripke structure
K and a system state Xy iff there is no sequence of states Xy, X1, ..., X, such
that: (i) fori=0,...,n — 1, {X;, X;11) € R and (ii) X,, € unsafe.

We may extend our method to prove more complex properties, besides safety
properties. In particular, we may consider those properties which can be ex-
pressed by using, in addition to - and EF, other logical connectives and CTL
temporal operators. However, for reasons of simplicity, in this paper we deal with
safety properties only, and we do not consider nested temporal operators.

Now we outline our method for verifying that, for all initial system states X
of a given Kripke structure K, the safety property ¢ holds. We use the notions
of locally stratified program and perfect model and for them we refer to [2].

Verification Method.

Step 1. (System and Property Specification) We introduce: (i) a WSkS formula
init(X) which characterizes the initial system states, that is, X is an initial
system state iff init(X) holds, and (ii) a locally stratified CLP(WSkS) program
Px which defines a binary predicate sat such that for each system state X,

IC7X '=S01ff Sa’t(X7(p) € M(PIC) (T)
where M (Px) denotes the perfect model of the program Py.

Step 2. (Proof Method) We introduce a new predicate f defined by the following
CLP(WSKkS) clause F: f(X) « init(X), sat(X,y), where X is a variable. We
then apply the transformation rules of Section 4, and from program Px U {F'}
we derive a new program Py.
If the clause f(X) « init(X) occurs in Py then for all initial system states X,
we have that £, X = ¢ holds.

The choice of the perfect model as the semantics of the program Py requires a
few words of explanation. By definition, K, X = —¢ holds iff £, X = ¢ does not
hold, and by using (}), this fact can be expressed by the clause:
C: sat(X,—p) « —sat(X,p)

where — in the head of C is interpreted as a function symbol, while = in the body
of C is interpreted as negation by (finite or infinite) failure. Now, since clause C
is a locally stratified clause and the other clauses for sat do not contain negated
atoms (see Section 2.2), the semantics of negation by failure is the one captured
by the perfect model (recall that for locally stratified programs the perfect model
is identical to the stable model and also to the well-founded model [2]).

The paper is structured as follows. In Section 2 we describe Step 1 of our
verification method and we introduce CLP(WSkS) programs, that is, constraint
logic programs whose constraints are formulas in the WSkS theory. In Section
3 we illustrate our specification method by considering the case of a system of
N processes which use the Bakery Protocol for ensuring mutual exclusion [16].
In Section 4 we present Step 2 of our verification method and we see how it

is realized by applying suitable rules for program transformation. These rules
are adaptations to the case of locally stratified CLP(WSKkS) programs of the
unfold /fold rules for generic CLP programs presented in [9,12]. We also provide
a semiautomatic strategy for guiding the application of the transformation rules
and proving the properties of interest. In Section 5, we see our strategy in action
for the verification of a safety property the N-process Bakery Protocol. Finally,
in Section 6 we compare our paper with the literature in the field and we discuss
possible enhancements of our method.

2 System and Property Specification Using Constraint
Logic Programs over WSkS

In this section we illustrate Step 1 of our verification method and, in particular,
we indicate how to specify: (i) a system consisting of a set of infinite state
processes, and (ii) a safety property we want to prove. We specify the given
system by a Kripke structure K = (S, Sy, R, E) where: (i) S is the set of finite sets
of finite strings, which are ground terms of the WSkS theory, and (ii) So, R, and
E are specified by suitable WSkS formulas. We specify the given safety property
by defining a sat relation by means of a CLP program Px whose constraints are
WSKS formulas.

2.1 Constraint Logic Programs over WSkS

The Weak Monadic Second Order Theory of k Successors is a decidable theory
which can be used for expressing properties of finite sets of finite strings over an
alphabet of k symbols [27,28]. The syntax of WSKS is defined as follows. Let us
consider a set X' = {s1,...,5;} of k symbols, called successors, and a set Ivars
of individual variables. An individual term is either a string o or a string zo,
where z € Ivars and o € X*, where X* denotes the set of all finite strings of
successor symbols. By € we denote the empty string.

Let us also consider the set Svars of set variables ranged over by X,V ...

WSKS terms are either individual terms or set variables.

Atomic formulas of WSKS are either: (i) equalities between individual terms,
written t; =5, or (ii) inequalities between individual terms, written #; <ts, or
(iii) membership atomic formulas, written ¢t € X, where ¢ is an individual term
and X is a set variable.

The formulas of WSkS are constructed from the atomic formulas by means
of the usual logical connectives and the quantifiers over individual variables and
set variables. Given any two individual terms, t; and ¢, we will also write:
(i) t1 # t2 as a shorthand for — (¢, = t2), and (ii) #; < t2 as a shorthand for
t1<to A = (t1 =ts).

The semantics of WSkS formulas is defined by considering the interpretation
W with domain X* such that = is interpreted as string equality, < is interpreted

as the prefix ordering on strings, and € is interpreted as membership of a string

to a finite set of strings. We say that a closed WSkS formula ¢ holds iff the
satisfaction relation W |= ¢ holds. The relation W = ¢ is recursive [27].

A CLP(WSKS) program is a set of many-sorted first order formulas [8]. There
are three sorts: string, stringset, and tree, interpreted as finite strings, finite sets
of strings, and finite trees, respectively. We use many-sorted logic to avoid the
formation of meaningless clauses such as p(X,s1) < X =s1, where X is a set
variable of sort stringset and s; is a constant in X' of sort string.

CLP(WSKS) terms are either WSkS terms or ordinary terms (that is, terms
constructed out of variables, constants, and function symbols which are all dis-
tinct from those used for WSkS terms). The WSKS individual terms are assigned
the sort string, the WSKS set variables are assigned the sort stringset, and ordi-
nary terms are assigned the sort tree. Each predicate of arity n is assigned the
sort (i,...,in), where for j=1,...,n, i; is the sort of its j-th argument. For
instance, the predicate € is assigned the sort (string, stringset). We assume that
CLP(WSkS) programs are constructed by complying with the sorts of terms and
predicates.

An atom is an atomic formula whose predicate symbol is not in {<,=,€}.
As usual, a literal is either an atom or a negated atom. A CLP(WSKkS) clause is
of the form A ¢, Ly,..., Ly, where A is an atom, c is a formula of WSkS, and
Ly,...,L, are literals. We can extend to CLP(WSkS) programs the definitions
of locally stratified programs and perfect models, by adapting the corresponding
definitions which are given for logic programs [2].

2.2 The Specification Method

Now we present our method for specifying systems and their safety properties
by using CLP(WSkS) programs. Recall that a system is specified as a Kripke
structure (S, So, R, E) and a system state in S is a multiset of process states,
that is, a multiset of pairs (n,s) where n € IV is a counter and s € CS is a
control state. We assume that CS is a finite set {s1,...,s,} of symbols.

Now, let us indicate how to specify the four components of the Kripke struc-
ture.

(A) The Set S of System States. We consider the following set of succes-
sor symbols: X' = {1,2} U CS. A process state is represented as a term of the
form 1"s2™_ where: (i) 1” and 2™ are (possibly empty) strings of 1’s and 2’s,
respectively, and (ii) s is an element of CS. For a process state 1"s2™ we have
that: (i) the string 1™ represents its counter (the empty string e represents the
counter 0), and (ii) the symbol s represents its control state. The string 2™,
with different values of m, is used to allow different terms to represent the same
(counter, control state) pair, so that a set of terms each of which is of the form
1™s2™ can be used to represent a multiset of process states. Thus, a system state
in S, being a multiset of process states, is represented as a set of terms, each of
which is of the form 1™s2™.

Now we will show that process states and system states are expressible as
formulas in WSKS. First we need the following definitions (for clarifying the

reader’s ideas, here and in the sequel, we write between parentheses the intended
meanings):

—is-en(z) = IX (MyyeX = (y=e VvV Iz (y=21Az2€X))) NzeX)
(z is a term of the form 1" for some n >0, i.e., z is a counter)

— is-cs(z) = x=51 V... Vx=3s
(ze CS, i.e., x is a control state)

Here are the WSkS formulas which define process states and system states:

—ps(z) = 3IX (Vy yeX — (Inds y=ns A is-cn(n) A is-cs(s)) V
Jz (y=22 A zeX))) ANzeX)
(z is a process state, that is, a term of the form 1"s2™ for some n,m >0
and se€ CS)

— s8(X) =Vz (x€ X — ps(z)) (X is a system state, that is, a set of terms of
the form 1™s2™)

(B) The Set Sy of Initial System States. The set .Sy of initial system states
is specified by a WSkS formula init(X) where the set variable X is the only free
variable, that is, X € Sy iff W = init(X).

(C) The Transition Relation R. Now we describe the general form of the
WSkS formulas which can be used for defining the transition relation R. We
need the following two definitions:

— en(z,n) = ps(z) Ads-en(n) An<z A (Vy (y<z A is-en(y)) = y<n)
(n is the counter of process state x)

— ¢s(z,s) = ps(z) Ais-cs(s) A (y Tz (y<z A is-en(z) AN y=z5s)
(s is the control state of process state z)

We recall that a transition consists in replacing in a system state an old process
state by a new process state. This replacement is defined as follows (here and in
the sequel the angle brackets {,) are used only to improve readability and they
should not be considered as belonging to the syntax of WSkS):

— replace((ny, s1), X, {n2,52),Y) = ss(X) A ss(Y) A
Az (zeX A en(z,ny) A cs(z,s1)) A
Jy (YEY A cn(y,n2) A cs(y,s2)) A
Vz((2€X AN z#2x) o (€Y A z#£Y))
(Y = (X—{=}) U {y} for some process states z € X and y € Y such that:
(i) z has counter n; and control state s; and (ii) y has counter n, and control
state s7)

We assume that any given transition relation R is specified by a finite disjunction
of h formulas, that is, (X,Y) € Riff W | r(X,Y), where r(X,Y) =7 (X,Y) V
L Vrp(X,Y) and, fori =1,... b

— ri(X,Y) = 3ng Is; Ing Iss (replace({ny, s1),

X7 <n27 52)a Y) A
event;({n1,s1), X

,{na2, 82))

where event;({n1, s1), X, (na, s2)) is a WSkKS formula. In Section 3 we will present
some examples of these formulas.

(D) The Set E of Elementary Properties. Each elementary property n € E
of the system states is specified by a formula e(X) where the set variable X is
the only free variable, that is, X € n iff W = e(X).

To end this section we indicate how to specify a safety property of a system
by using a CLP(WSkS) program. Let us consider: (i) a system specified by a
Kripke structure K = (S, Sy, R, E) whose elementary properties are 7y, ...,0m,
specified by the formulas e;(X), ..., e, (X), respectively, and whose transition
relation is specified by 71 (X,Y)V...Vr,(X,Y), and (ii) a safety property of the
form —EF(n), where n is an elementary property. We introduce the following
CLP(WSkS) program Px:

sat(X M) + e (X)

sat(X Mm) — em(X)

sat(X,) < - sat(X,)

sat(X, EF (p)) « sat(X,)

sat(X EF(p)) + r(X,Y), sat(Y, EF (p))

sat(X EF(p)) « rp(X,Y), sat(Y, EF (p))

which specifies the safety property —EF(n) in the sense that, for every system
state X in S, the following holds [11]:

K,X | ~EF(n) iff sat(X,-EF(n)) € M(Pg)

Notice that the program Py is locally stratified w.r.t. the size of the second
argument of sat, and thus, it has a unique perfect model, denoted M (Px).

3 An Example of the Specification of a System and a
Property: The N-Process Bakery Protocol

In this section we illustrate our method for specifying systems and properties
in the case of the N-process Bakery Protocol. This protocol ensures mutual
exclusion in a system made out of N processes which use a shared resource.
Mutual exclusion holds iff the shared resource is used by at most one process at
a time.

Let us first give a brief description of the protocol [16]. In this protocol each
process state is a {counter, control state) pair (n,s), where the control state s
is either t or w or u. The constants t, w, and u stand for think, wait, and use,
respectively. Let us denote the set {t,w,u} by CS. As in the general case, in this
protocol a system state is a multiset of process states.

A system state is initial iff each of its process states is (0, t).

The transition relation from a system state X to a new system state Y, is
specified as follows (recall that the — and U operations refer to multisets):

(T1: from think to wait) if there exists a process state (n,t) in X, then ¥ =
(X = {{n,t)}) U {{m+1,w)}, where m is the maximum value of the counters of
the processes states in X,

(T2: from wait to use) if there exists a process state (n, w) in X such that,
for any process state {m,s) in X — {(n,w)}, either m = 0 or n < m, then
V=(X-{(n,w)})U{(n,0)}, and

(T3: from use to think) Y = (X — {{n,u)}) U{(0,t)}.

The mutual exclusion property is expressed by the CTL formula —=E F (unsafe),
where unsafe is an elementary property which holds in a system state X iff there
are at least two distinct process states in X with control state u.

In order to give a formal specification of our N-process Bakery Protocol we
use the 5 successor symbols: 1, 2, t, w, and u. Thus, we consider the WS5S
theory.

(A) The System States. A system state is a set of terms, each of which is of
the form 1"s2™, where s is an element of {t,w,u}.

(B) The Initial System States. A system state X is initial iff W = init(X),
where:
— init(X) = Ve (z€X — (en(z,e) A cs(z,t)))
(all process states in X have counter 0 and control state t)

(C) The Transition Relation. For specifying the transition relation for the
N-process Bakery Protocol we need the following two predicates maz and min:

— maz(X,m) = Jz (z€X A en(z,m)) AVyVn (y€X A en(y,n)) = n<m)
(m is the maximum counter in the system state X)
— min(X,m) = Iz (z€X A en(z,m)) A
Yy Vn (yeX Ay#z A en(y,n)) = (n=¢e V m<n))
(In the system state X there exists a process state z with counter m such
that the counter of any process state in X — {z} is either 0 or greater than
m. Recall that the term e represents the counter 0.)

The transition relation between system states is defined as follows: (X,Y) € R
W E tw(X,Y)Vwu(X,Y) V ut(X,Y), where the predicates tw, wu, and ut
correspond to the transition of a process from think to wait, from wait to use,
and from use to think, respectively. We have that:

— tw(X,Y) = Ing Is1 Ing Isy replace({n1, s1), X, (n2,52),Y) A
s1 =t Adm(maz(X,m)Ana=ml)Asy=wu
Y = (X —{=2}) U {y}, where z is a process state in X with control state
t, and y is a process with control state w and counter m+1 such that m is
the maximum counter in X. Notice that the term m 1 represents the counter
m+1)
— wu(X,Y) = Ing Is1 Ine Iss replace({n1, 1), X, (n2, $2),Y) A
s1=w A min(X,nm)Any=n1 Asa=u
(Y = (X —{=}) U{y}, where z is a process state in X with counter n; and

control state w such that the counter of any process state in X —{xz} is either
0 or greater than ny, and y is a process state with counter n; and control
state u)
— wt(X,Y) =3ny Is1 Ing Isy replace((n1, s1), X, (na, 52),Y) A
St=ulNng=eANss=t
(Y = (X —{z}) U{y}, where z is a process state in X with control state u,
and y is a process state with counter 0 and control state t)

(D) The Elementary Properties. The unsafety property holds in each system
state X such that W | unsafe(X), where:
—unsafe(X) = JzIy(x e X Aye X ANz #y A cs(z,u) Acs(y,u))
(there exist two distinct process states in X with control state u)

The following locally stratified CLP(WSkS) program Ppgeery defines the predi-
cate sat of Step 1 of our verification method.
sat(X, unsafe) + unsafe(X)
sat(X,—F) + - sat(X, F)
sat(X EF()) + sat(X,)
sat(X, EF(p)) + tw(X,Y), sat(Y, EF (p))
sat(X, EF(p)) + wu(X,Y), sat(Y, EF(y))
sat(X, EF(p)) + ut(X,Y), sat(Y, EF(p))
Thus, in order to verify the safety of the Bakery Protocol we have to prove that,
for all system states X,

if init(X) holds then sat(X,~EF(unsafe)) € M (Ppakery)-

4 Rules and Strategy for Verification

In this section we show how Step 2 of our verification method is performed by
using unfold/fold rules for transforming CLP(WSkS) programs. These rules are
presented below. They are similar to those introduced in [9,12]. We also present
a semiautomatic strategy for guiding the application of these transformation
rules.

For presenting the transformation rules we need the following notation and
terminology. By FV(¢) we denote the set of free variables occurring in ¢. By
v, w, ... (possibly with subscripts), we denote variables in Ivars U Svars. We say
that the atom A is failed in program P iff in P there is no clause whose head
is unifiable with A. The set of useless predicates of a program P is the maximal
set U of predicates occurring in P such that the predicate p is in U iff the body
of each clause defining p in P contains a positive literal whose predicate is in U.
The set of useless clauses of a program P is the set of clauses defining useless
predicates in P.

The process of transforming a given CLP(WSkS) program Py whereby deriv-
ing program P,, can be formalized as a sequence P, ..., P, of programs, called
a transformation sequence, where for r = 0,...,n—1, program P, is obtained
from program P, by applying one of the following transformation rules.

R1. Constrained Atomic Definition. Let § be the clause:
newp(vy,...,v,) ¢ ¢, A

where: (i) newp is a new predicate symbol not occurring in Py,...,P,, and
(ii) {v1,...,vn} = FV(c, A). Then P.41 = P. U {6}.

Clause ¢ is called a definition clause and for i > 0, Defs; is the set of definition
clauses introduced during the transformation sequence Py, ..., FP;. In particular,
Defsy = 0.

R2. Unfolding. Let v € P, be the clause H + ¢,G1, L, Ga.

(R2p) If Lis an atom A and {A; < ¢;,B;|j =1,...,m} is the set of all renamed
apart clauses in P, such that the atoms A and A; are unifiable via a most general
unifier 9, then P,y; = (P, —{y})U{(H ¢, ¢j, G1,B;,G2)9;|j =1,...,m}.

(R2n) If L is a negated atom —A and A is failed in P,, then P,; = (P, — {y}HU
{H «—cC, Gl,GQ}.

R3. Constrained Atomic Folding. Let v be the clause H + ¢,G,L,G2 in
P,, where L is either the atom A or the negated atom —A. Let é be a definition
clause newp(vy,...,v,) < d, A in Defs,, such that W = Vwy,...,wn(c = d),
where {w1,...,wy} = FV(c— d).

(R3p) If L is A then Py = (P, — {7v}) U{H + ¢,Gy1, newp(v1,...,v,),Ga}.
(R3n) If L is = A then P41 = (Pr—{v})U{H + ¢,G1,~newp(vy,...,v,),G2}.

RA4. Clause Removal. P, = P.—{~} if one of the following two cases occurs.
(RAf) ~ is the clause H + ¢, G and cis unsatisfiable, that is, W = Vs, ..., v, ¢,
where {vi,...,v,} = FV(c).

(R4u) -y is useless in P,.

R5. Constraint Replacement. Let v be the clause H + ¢1,G. If for some
WSKS formula ¢y we have that W |= Vws, . .. ,wy, (c1 4> ¢2), where {wn, ..., w,} =
FV(c1 +¢2), then Poyq = (Pr — {v}) U{H « ¢2,G}.

These rules are different from those introduced in the case of general programs
by Seki [24]. In particular, Seki’s folding rule can be used for replacing a clause
v: H «+ ¢,G1,—A,Go by a new clause y1: H + ¢, Gy, newp(...),Ga, but not
by a new clause v2: H «+ ¢, G, newp(...),Ga. The replacement of clause v by
clause 72 is possible by using our folding rule R3n.

It can be shown that, under suitable restrictions, the transformation rules
presented above preserve the perfect model semantics [11].

Step 2 of our verification method consists in applying the transformation
rules R1-R5 according to a transformation strategy which we describe below.
We will see this strategy in action for the verification of a safety property of the
N-process Bakery Protocol (see Section 5).

Suppose that we are given a system specified by a Kripke structure K and a
safety formula ¢, and we want to verify that X, X = ¢ holds for all initial system
states X. Suppose also that K and ¢ are given by a CLP(WSkS) program Py
as described in Section 2.2. We proceed as follows. First we consider the clause:

F. f(X) « init(X), sat(X, p)

10

where: (i) f is a new predicate symbol, and (ii) W [init(X) iff X is an initial
system state.

Then we apply the following transformation strategy which uses a gen-
eralization function gen. Given a WSkS formula ¢ and a literal L which is
the atom A or the negated atom —A, the function gen returns a definition
clause newp(vi,...,v,) < d, A such that: (i) newp is a new predicate sym-
bol, (ii) {v1,...,vn} = FV(d,A), and (iii) W | VYwy,...,w, (¢ — d), where
{wy,...,w,} = FV(c— d).

Transformation Strategy

Input: (i) Program P, (ii) clause F: f(X) + init(X), sat(X,), and (iii) gen-
eralization function gen.

Output: A program Py such that for every system state X, f(X) € M(PcU{F'})
iff f(X) e M(Py).

Phase A. Defs := {F'}; NewDefs := {F}; P := Px;

while NewDefs # 0 do

1. from PUNewDefs derive PUC s by unfolding once each clause in NewDefs;
2. from PUC)y,s derive PUC, by removing all clauses with unsatisfiable body;
3. NewDefs := (;
for each clause v € (). of the form H « ¢,G and for each literal L in the
goal G such that v cannot be folded w.r.t. L using a clause in Defs do
NewDefs := NewDefs U {gen(c, L)};
4. Defs := Defs U NewDefs;
5. fold each clause in C). w.r.t. all literals in its body whereby deriving PUCgq;
6. P:=PUCpq

end-while
Phase B.

1. from P derive P, by removing all useless clauses in P;
2. from P, derive Py by unfolding the clauses in P, w.r.t. every failed negative
literal occurring in them.

Step 2 of the verification method ends by checking whether or not clause f(X) +
init(X) occurs in program Py. If it occurs, then for all initial system states X,
we have that K, X = ¢.

The correctness of our verification method is a consequence of the following
two facts: (i) the transformation rules preserve perfect models, and (ii) perfect
models are models of the completion of a program [2].

Theorem 1. [Correctness of the Verification Method] Given a Kripke structure

K and a safety property ¢, if f(X) init(X) occurs in Py then for all initial
system states X, we have that K, X | .

11

Proof. Let us assume that f(X) < init(X) occurs in Py and let us consider an
initial system state I. Thus, W |= init(I) and f(I) € M (Py). By the correctness
of the transformation rules [11], we have that f(I) € M(Px U {F}). Since:
(i) M (P U{F}) is a model of the completion comp(Px U{F}), (ii) the formula
VX (f(X) © (init(X) A sat(X,p)) belongs to comp(Pc U {F}), and (iii) W
init(I) we have that sat(I,p) € M(Px U {F}). Now, since no sat atom in
M (P U{F}) can be inferred by using clause F', we have that sat(I,) € M (Px),
that is, IC, I |= . m|

The automation of our transformation strategy depends on the availability of
a suitable generalization function gen. In particular, our strategy terminates
whenever the codomain of gen is a finite set of definition clauses. Suitable gen-
eralization functions with finite codomain can be constructed by following an
approach similar to the one described in [12]. More on this issue will be men-
tioned in Section 6.

Finally, let us notice that our verification method is incomplete, in the sense
that there exist a Kripke structure I, an initial system state X, and a safety
property ¢, such that K, X = ¢ holds, and yet there is no sequence of applica-
tions of the transformation rules which leads from the program Px U {f(X) «
init(X), sat(X,)} to a program Py containing the clause f(X) « init(X).
This incompleteness limitation cannot be overcome, because the problem of ver-
ifying properties of finite sets of infinite state processes is undecidable and not
semidecidable. This is a consequence of the fact that the uniform verification of
parameterized systems consisting of finite state processes is undecidable [3].

5 Verifying the N-process Bakery Protocol via Program
Transformation

In this section we show how Step 2 of our verification method described in Sec-
tion 4 is performed for verifying the safety of the N-process Bakery Protocol.
We apply the unfold/fold transformation rules to the constraint logic program
Pgakery (see end of Section 3) according to the transformation strategy of Sec-
tion 4.

As already remarked at the end of Section 4, the application of our strat-
egy can be fully automatic, provided that we are given a generalization function
which introduces new definition clauses needed for the folding steps (see Point 3
of the transformation strategy). In particular, during the application of the trans-
formation strategy for the verification of the N-process Bakery Protocol which
we now present, we have that: (i) all formulas to be checked for applying the
transformations rules are formulas of WS5S, and thus, they are decidable, and
(ii) the generalization function is needed for introducing clauses d3, d9, and d16
(see below).

We start off by introducing the following new definition clause:
dl. f(X) « mit(X), sat(X,~EF (unsafe))

12

Our goal is to transform the program PgggeryU{d1} into a program P; which
contains a clause of the form f(X) « init(X).
We start Phase A by unfolding clause 1 w.r.t. the sat atom, thereby obtaining:

2. f(X) « nit(X), - sat(X, EF (unsafe))
The constraint init(X) is satisfiable and clause 2 cannot be folded using the
definition clause d1. Thus, we introduce the new definition clause:

d3. newpl(X) « init(X), sat(X, EF (unsafe))
By using clause d3 we fold clause 2, and we obtain:

4. f(X) « init(X), - newpl(X)
We proceed by applying the unfolding rule to the newly introduced clause d3,
thereby obtaining:

5. newpl(X) + nit(X) A unsafe(X)

6. newpl(X) « init(X) A tw(X,Y), sat(Y, EF (unsafe))

7. newpl(X) + nit(X) A wu(X,Y), sat(Y, EF (unsafe))

8. newpl(X) + init(X) A ut(X,Y), sat(Y, EF (unsafe))
Clauses 5, 7 and 8 are removed, because their bodies contain unsatisfiable con-
straints. Indeed, the following formulas hold: (i) VX —(init(X) A unsafe(X)),
(il)) VX VY =(init(X) A wu(X,Y)), and (iii) VX VY —(init(X) A wt(X,Y)).

Clause 6 cannot be folded using either d1 or d3, because VX VY (init(X) A
tw(X,Y) — init(Y")) does not hold. Thus, in order to fold clause 6, we introduce
the new definition clause:

d9. newp2(X) « ¢(X), sat(X, EF (unsafe))
where ¢(X) is a new constraint defined by the following WS5S formula:

Vz (z € X — ((en(z,e) A es(z,t)) V (Fe (en(z,¢) A e<ce) A es(z,w))))
This formula tells us that every process state in the system state X is either
the pair (0,t) or the pair (c,w) for some ¢>0. We have that VX VY (init(X) A
tw(X,Y) — ¢(Y)) holds and thus, we can fold 6 using d9. We obtain:

10. newpl(X) + nit(X) A tw(X,Y), newp2(Y)

By unfolding the definition clause d9 we obtain:

11. newp2(X) + ¢(X) A unsafe(X)

12. newp2(X) « ¢(X) A tw(X,Y), sat(Y, EF (unsafe))

13. newp2(X) « ¢(X) A wu(X,Y), sat(Y, EF (unsafe))

14. newp2(X) + ¢(X) A wt(X,Y), sat(Y, EF (unsafe))

Clauses 11 and 14 have unsatisfiable constraints in their bodies and we remove
them. Indeed, the following formulas hold: (i) VX —(¢(X) A unsafe(X)), and
(i) VX VY =(c(X) A ut(X,Y)).

We fold clause 12 by using the already introduced definition clause d9, be-
cause VX VY (¢(X) A tw(X,Y) = ¢(Y)) holds. We obtain:

15. newp2(X) « ¢(X) A tw(X,Y), newp2(Y)

However, clause 13 cannot be folded by using a definition clause introduced so

far. Thus, in order to fold clause 13, we introduce the following new definition
clause:

13

d16. newp3d(X) + d(X), sat(X, EF (unsafe))

where the constraint d(X) is the WS5S formula:
Vo (x € X = ((en(z,e) A cs(x,t)) V
(Fe (en(z,c) ANe<e) A cs(z,w)) V
(3n (en(z,n) A min(X,n) A e<n) A cs(z,un)))
This formula tells us that every process state in the system state X is either (0, t),
or (c,w) for some ¢>0, or (n,u) for some n>0 such that no process state in X

has a positive counter smaller than n. We have that VX VY (¢(X) Awu(X,Y) —
d(Y")) holds, and thus, we can fold clause 13 using clause d16. We obtain:

17. newp2(X) + ¢(X) A wu(X,Y), newp3(Y)

We now proceed by applying the unfolding rule to the definition clause d16 and
we get:

18. newp3(X) < d(X) A unsafe(X)

19. newp3(X) « d(X) A tw(X,Y), sat(Y, EF (unsafe))

20. newp3(X) « d(X) A wu(X,Y), sat(Y, EF (unsafe))

21. newp3(X) + d(X) A ut(X,Y), sat(Y, EF (unsafe))
We remove clause 18 because its body contains an unsatisfiable constraint be-
cause VX —(d(X) A unsafe(X)) holds. Then, we fold clauses 19, 20, and 21 by

using the definition clauses d16, d16, and d9, respectively. Indeed, the following
three formulas hold:

VXVY (d(X)Atw(X,Y) = dY))

VX VY (d(X)Awu(X,Y) — d(Y))

VX VY (d(X)Aut(X,Y) — ¢Y))
We get:

22. newp3(X) « d(X) A tw(X,Y), newp3(Y)
23. newp3(X) + d(X) A wu(X,Y), newp3(Y)
24. newp3(X) + d(X) A ut(X,Y), newp2(Y)

Since these last folding steps were performed without introducing new defini-
tion clauses, we terminate Phase A of our transformation process. The program
derived so far is Ppgkery U {4,10,15,17,22,23,24}.

Now we proceed by performing Phase B of our transformation strategy. We
remove the useless clauses 10, 15, 17, 22, 23, and 24, which define the predicates
newpl, newp2, and newp3. Therefore, we derive the program Pgagery U {4}.
Then we apply the unfolding rule to clause 4 w.r.t. the literal =newp1(X), where
newpl(X) is a failed atom (see Point R2n of the unfolding rule). We obtain:

25. f(X) + init(X)

Thus, we derive the final program Py which is Ppagery U{25}. According to Step 2
of our verification method, the presence of clause 25 in Py proves, as desired,
the mutual exclusion property for the N-process Bakery Protocol.

14

6 Related Work and Conclusions

Several methods have been recently proposed for the verification of parameter-
ized systems, that is, systems consisting of an arbitrary number of finite state
processes. Among them the method described in [23] is closely related to ours, in
that it uses unfold/fold program transformations for generating induction proofs
of safety properties of parameterized systems. However, our paper differs from
[23] because we use constraint logic programs with locally stratified negation
to specify concurrent systems and their properties, while [23] uses definite logic
programs. Correspondingly, we use a different set of transformation rules. More-
over, we consider systems with an arbitrary number of infinite state processes
and these systems are more general than parameterized systems.

Now we recall the main features of some verification methods based on (con-
straint) logic programming, which have been recently proposed in the literature.
(i) The method described in [17] uses partial deduction and abstract interpre-
tation of logic programs for verifying safety properties of infinite state systems.
(ii) The method presented in [13] uses logic programs with linear arithmetic
constraints and Presburger arithmetic to verify safety properties of Petri nets.
(iii) The method presented in [7] uses constraint logic programs to represent
infinite state systems. This method can be applied to verify CTL properties of
those systems by computing approximations of least and greatest fixed points
via abstract interpretation. (iv) The method proposed in [22] uses tabulation-
based logic programming to efficiently verify u-calculus properties of finite state
transitions systems expressed in a CCS-like language. (v) The method described
in [19] uses CLP with finite domains, extended with constructive negation and
tabled resolution, for finite state local model checking.

With respect to these methods (i)—(v), the distinctive features of our method
are that: (1) we deal with systems consisting of an arbitrary number of infinite
state processes, (2) we use CLP(WSkS) for their description, and (3) we apply
unfold /fold program transformations for the verification of their properties.

Verification techniques for systems with an arbitrary number of infinite state
processes have been presented also in the following papers.

In [18] the authors introduce a proof technique which is based on induction
and model checking. Proofs are carried out by solving a finite number of model
checking problems on a finite abstraction of the given system and they are me-
chanically checked. The technique is illustrated by proving that the N-process
Bakery Protocol is starvation free.

In [21] the author presents a proof of the mutual exclusion for the N-process
version of the Ticket Protocol [1] which is uniform w.r.t. N and it is based on
the Owicki-Gries assertional method. The proof has been mechanically checked
by using the Isabelle theorem prover.

In [25] the author presents a proof of the mutual exclusion for the N-process
Bakery Protocol. This proof is based on theorem proving, model checking, and
abstraction, so to reduce the protocol itself to the case of two processes only.

Similarly to the techniques presented in the above three papers [18,21,25],
each step of our verification method can be mechanized, but the construction of

15

the whole proof requires some human guidance. However, in contrast to [18,21,25]
in our approach the parameter N representing the number of processes is invisi-
ble. Moreover, we do not use induction on N is performed and we do not perform
any abstraction on the set of processes.

More recently, in [4] the authors have presented an automated method for
the verification of safety properties of parameterized systems with unbounded
local data. The method, which is based on multiset rewriting and constraints, is
complete for a restricted class of parameterized systems.

The verification method presented in this paper is an enhancement of the
rules + strategies transformation method proposed in [12] for verifying CTL
properties of systems consisting of a fixed number of infinite state processes.
In particular, Step 2 of our verification method can be viewed as a strategy
for the specialization of program Py encoding the system and the property of
interest w.r.t. the goal init(X), sat(X,). In [12] we proved the mutual exclu-
sion property for the 2-process Bakery Protocol by using CLP programs with
constraints expressed by linear inequations over real numbers. That proof can
easily be extended to the case of any fixed number of processes by using CLP
programs over the same constraint theory. Here, however, we proved the mutual
exclusion property for the N-process Bakery Protocol, uniformly for any N, by
using CLP programs with constraints over WSkS.

The proof of the mutual exclusion property for the N-process Bakery Pro-
tocol presented in Section 5, was done by applying under some human guidance
the transformation strategy of Section 4. Notice, however, that our verification
method can be made fully automatic by adding to our CLP program transforma-
tion system MAP [10]: (i) a solver for checking WSkS formulas, and (ii) suitable
generalization functions for introducing new definition clauses. For Point (i) we
may use existing solvers, such as MONA [15]. Point (ii) requires further investi-
gation but we believe that one can apply some of the ideas presented in [12] in
the case of systems consisting of a fixed number of infinite state processes.

As discussed in the Introduction, the verification method we proposed in
this paper, is tailored to the verification of safety properties for asynchronous
concurrent systems, where each transition is made by one process at a time.
This limitation to asynchronous systems is a consequence of our assumption
that each transition from a system state X to a new system state Y is of the
form Y = (X —{z}) U {y} for some process states and y. In order to model
synchronous systems, where transitions may involve more than one process at
a time, we may relax this assumption and allow transitions of the form ¥ =
(X —A) U B for some multisets of process states A and B. Since these more
general transitions whereby the number of processes may change over time, can
be defined by WSkS formulas, one might use our method for verifying properties
of synchronous systems.

References

1. G.R. Andrews. Concurrent programming: principles and practice. Addison-Wesley,
1991.

16

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19, 20:9-71, 1994.

K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state con-
current systems. Information Processing Letters, 22(6):307-309, 1986.

. M. Bozzano and G. Delzanno. Beyond parameterized verification. In Proceedings of

the Eighth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’02)", Lecture Notes in Computer Science 2280,
pages 221-235. Springer, 2002.

R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, January 1977.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, editor,
5th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), Lecture Notes in Computer Science 1579, pages
223-239. Springer-Verlag, 1999.

H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101-146, 1996.

F. Fioravanti. MAP: A system for transforming constraint logic programs. available
at http://www.iasi.rm.cnr.it/"fioravan, 2001.

F. Fioravanti. Transformation of Constraint Logic Programs for Software Special-
ization and Verification. PhD thesis, Universitd di Roma “La Sapienza", Italy,
2002.

F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infi-
nite state systems by specializing constraint logic programs. In Proceedings of
the ACM Sigplan Workshop on Verification and Computational Logic VCL’01,
Florence (Italy), Technical Report DSSE-TR-2001-3, pages 85-96. University of
Southampton, UK, 2001.

L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-
points of Datalog programs with z-counters. Constraints, 2(3/4):305-335, 1997.
J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503-581, 1994.

N. Klarlund and A. Mgller. MONA Version 1.4 User Manual. BRICS Notes Series
NS-01-1, Department of Computer Science, University of Aarhus, January 2001.
L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453-455, 1974.

M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialization. In A. Bossi, editor, Proceedings of LOPSTR
’99, Venice, Italy, Lecture Notes in Computer Science 1817, pages 63-82. Springer,
1999.

K. L. McMillan, S. Qadeer, and J. B. Saxe. Induction in compositional model
checking. In CAV 2000, Lecture Notes in Computer Science 1855, pages 312-327.
Springer, 2000.

U. Nilsson and J. Liibcke. Constraint logic programming for local and symbolic
model-checking. In J. W. Lloyd, editor, CL 2000: Computational Logic, Lecture
Notes in Artificial Intelligence 1861, pages 384-398, 2000.

A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. Journal of Logic Programming, 19,20:261-320, 1994.

L. Prensa-Nieto. Completeness of the Owicki-Gries system for parameterized par-
allel programs. In Formal Methods for Parallel Programming: Theory and Appli-
cations, FMPPTA 2001. IEEE Computer Society Press, 2001.

17

22

23.

24.

25.

26.

27.

28.

Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
In CAV 97, Lecture Notes in Computer Science 1254, pages 143—-154. Springer-
Verlag, 1997.

A. Roychoudhury and IV. Ramakrishnan. Automated inductive verification of
parameterized protocols. In CAV 2001, pages 25-37, 2001.

H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer
Science, 86:107-139, 1991.

N. Shankar. Combining theorem proving and model checking through symbolic
analysis. In CONCUR 2000: Concurrency Theory, number 1877 in Lecture Notes
in Computer Science, pages 1-16, State College, PA, August 2000. Springer-Verlag.
H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-
A. Térnlund, editor, Proceedings of the Second International Conference on Logic
Programming, Uppsala, Sweden, pages 127-138. Uppsala University, 1984.

J. W. Thatcher and J. B. Wright. Generalized finite automata with an application
to a decision problem of second-order logic. Mathematical System Theory, 2:57-82,
1968.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 389—455. Springer, 1997.

18

