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Abstract We propose a method for the speci�cation and the automated veri�ca-
tion of temporal properties of protocols which regulate the activities of multiagent
systems. The set of states of those systems may be in�nite so that, in general, the
veri�cation of a property of a multiagent system cannot be performed by an exhaus-
tive inspection. We specify a given multiagent system by means of a constraint logic
program P with locally strati�ed negation, and we specify a given temporal property
to be veri�ed by means of an atomic formula A. In order to verify that the given
temporal property holds, we transform the program P into an equivalent program
T such that the fact A ← belongs to T . Our transformation method consists of a
set of rules and an automatic strategy that guides the application of the rules. Our
method is sound for verifying properties of protocols that are expressible in the CTL
logic [5]. Although our method is incomplete for proving properties of in�nite state
systems, it is able to verify important properties of several protocols which are used
in practice.

1.1 Introduction

Many models of computation have been considered in the literature. Among
these are: (i) the centralized, sequential model based on the von Neumann
architecture, (ii) the centralized, parallel model based on the parallel random
machine with the `concurrent-read and exclusive-write' restriction on its reg-
isters, and (iii) the distributed, multiagent system model. Other models of
computation proposed in the literature include those based on rewriting sys-
tems, logical deductions, quantum computations, and DNA computations. In
this paper we want to consider, in particular, the multiagent system model
and we want to analyze a few issues that we think are of major relevance for
that model.

The multiagent system model can be understood as a set of agents, each
of which can be viewed as a von Neumann computer. These agents inter-



act with each other and cooperate by exchanging messages with the aim of
achieving a common goal, maybe in the presence of antagonistic agents. The
cooperation among agents is realized via protocols that ensure suitable global
properties of the multiagent system. While computation progresses, a global
knowledge of the system of agents is built up, starting from a local, maybe
imprecise, knowledge of each individual agent. In the multiagent model the
following concepts are important: (i) the local computations (also called lo-

cal rules), which regulate the activity of each agent, (ii) the protocols (also
called metarules), which establish the way agents interact with each other,
(iii) the communications, which specify the messages that can be exchanged
among agents, and (iv) the distributivity property, which indicates the degree
of interaction among agents.

Before illustrating these concepts, let us present a simple example of multi-
agent system that will help the reader to �x his/her own ideas. In this example
we consider the problem of computing a directed spanning tree of a given undi-
rected, connected, �nite graph G = 〈N,E〉, where N is a set of nodes and E
is a set of edges (that is, ordered pairs of nodes). Since G is undirected we
assume that for every edge 〈n,m〉 there exists the symmetric edge 〈m,n〉. For
reasons of simplicity, we also assume that in G there is no edge of the form
〈n, n〉. This spanning tree is computed by several cooperating agents, each
of which acting at a node of the given graph G. For every node n ∈ N we
de�ne the two sets P (n) = {p | 〈p, n〉 ∈ E} and S(n) = {s | 〈n, s〉 ∈ E}, which
are the sets of the so called predecessor nodes of n and successor nodes of n,
respectively.

The agent at node n can communicate only with the agents which are at
the nodes of P (n) ∪ S(n), and the messages it sends are based only on the
local knowledge it has. At the end of the computation, when the spanning
tree has been computed, each agent knows the edges which insist on its node
and belong to the computed spanning tree.

The multiagent system has to construct a directed spanning tree of the
given graph G with a given node n0 as its root. During the execution of
the algorithm a node may be either unmarked or marked. Initially all nodes
are unmarked. The computation performed by the agents at the nodes is done
according to the following local rules R1�R3, which transform the given graph
G into a directed spanning tree of G with root n0.
(i) Rule R1 is applied by the agent at the root node n0. This agent deletes all
edges arriving at the root, marks the root, and sends a mark-token to every
node in S(n0).
(ii) Rule R2 is applied by an agent at an unmarked, non-root node n i� there
is at least one incoming mark-token from a node, say i, of P (n). The agent at
node n deletes all edges arriving at n from a node di�erent from i, marks the
node n, and sends a mark-token to every node of S(n).
(iii) Rule R3 is applied by the agent at a marked node n i� all agents at the
nodes in S(n) have sent an end-token to node n. In particular, rule R3 is
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applied at every node n such that S(n)=∅. The agent at node n applies rule
R3 by sending an end-token to each node in P (n). (Notice that each time
this rule is applied, P (n) has exactly one element.) This rule R3 is needed for
detecting the termination of the algorithm.

The algorithm terminates i� every node in S(n0) has sent an end-token
to the root n0. One can show that when this happens, the given graph G has
been transformed into a directed subgraph T of the original graph G and T
is a tree with root n0.

In this spanning tree example the protocol consists of the metarules with
which every agent should comply. The protocol establishes that: (i) all nodes
are initially unmarked and the �xed node n0 is the root of the spanning tree
to be computed, (ii) the local rules are applied in an atomic way, in the sense
that when one of them is applied to a node n, no rule can be applied to a
node of P (n) ∪ S(n), and (iii) the termination of the algorithm occurs when
the root n0 has received an end-token from each of its children.

Communications among agents take place by sending messages. In the
case of our spanning tree algorithm, these messages are either mark-tokens or
end-tokens. In general, the messages may be any �rst-order or higher-order
value. They may also be agents themselves [3]. In this case the agents sent
as messages, once they reach destination, will operate in a concurrent way
together with the agents residing at the destination nodes. In a multiagent
system messages may also modify the topology of the communication channels
while the computation proceeds. This phenomenon can be modeled within,
for instance, the π-calculus [16].

The notion of distributivity in a multiagent system is related to the amount
of global knowledge which is shared by the individual agents during the com-
putation. We say that distributivity is high if every agent in the multiagent
system knows a small amount of global knowledge, and it is low if this amount
is big. We will not give a formal de�nition of distributivity: for our purposes
here it will be enough to say that the spanning tree algorithm that we have
described above, has high distributivity, while the usual, centralized algorithm
which performs a depth-�rst visit of the given graph and keeps a global rep-
resentation of it, has low distributivity.

The main objective of this paper is to present a technique for proving
correctness of protocols. Before entering into this matter, we would like to
stress the relevance of the correctness of protocols for multiagent systems
by considering the familiar example of the n-queens problem for n = 4. We
assume that each queen is a distinct agent. A position of a queen in the 4× 4
board is denoted by a pair of numbers in {1, 2, 3, 4}×{1, 2, 3, 4}. For instance,
a queen in position 〈1, 2〉 is placed in the �rst row and in the second column.

Let us consider the initial con�guration whose positions are: 〈1, 1〉, 〈2, 2〉,
〈3, 3〉, and 〈4, 4〉 (that is, the queens are in the diagonal of the board from
bottom-left to top-right). Let us also assume the metarules (or protocol) by
which: (i) one queen at a time may make a move, while all other queens do not
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move, and (ii) a queen may go only to a position which is safe. Under these
metarules there is no solution to the 4-queens problem because no queen can
move.

However, there is a solution to the 4-queens problem if we consider the
following metarules: (i) each queen can move only along her column, and
(ii) any two mutually attacking queens make their next moves, while the other
queens do not move, so that after the move, at least one of the two queens
is free from attacks by any other queen. (We assume that each queen knows
whether or not she is free from attacks by any other queen, and in this sense
she has a global knowledge of the board.)

This protocol is correct, in the sense that there exists a sequence of board
con�gurations which leads to a �nal con�guration where no queen is under
attack. One such a sequence is the following:

〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉 → {moves of queens 1 and 2} →
→ 〈1, 2〉, 〈2, 4〉, 〈3, 3〉, 〈4, 4〉 → {moves of queens 3 and 4} →
→ 〈1, 2〉, 〈2, 4〉, 〈3, 1〉, 〈4, 3〉.

Notice that the protocol we have presented, leaves unspeci�ed the order in
which the pairs of mutually attacking queens should be considered.

1.2 Specifying Protocols Using Logic Programs

In this section we present a method for specifying protocols and their prop-
erties by means of logic programs.

The behaviour of a multiagent system that evolves over time according
to a given protocol, can be modeled by means of a state transition system.
This modeling approach has been used in model checking techniques for the
formal veri�cation of concurrent systems [5]. A state is a con�guration of a
system which is identi�ed by an assignment of values to the system variables.
A transition between states models an action performed by an agent.

Formally, a state transition system is given by: (i) a set S of states, (ii) an
initial state s0 ∈ S, and (iii) a transition relation t ⊆ S × S. We assume
that t is a total relation, that is, for every state s1 ∈ S there exists a state
s2 ∈ S, called successor state of s1, such that t(s1, s2) holds. A computation

path starting from a state s1 is an in�nite sequence of states s0 s1 . . . such
that, for every i≥0, t(si, si+1) holds. In this section and in the next one, we
deal with �nite state systems, that is, we assume that the system variables
range over �nite sets of values and, thus, the set of states is �nite.

The transition relation t can be de�ned by clauses of a logic program. For
instance, the �nite state system depicted in Figure 1.1 can be speci�ed by the
relation t de�ned by the following four unit clauses:

t(s0, s1)← t(s1, s0)← t(s1, s2)← t(s2, s2)←
The properties of the evolution over time of a state transition system are
speci�ed by using a temporal logic called Computation Tree Logic (or CTL,
for short [5]). We suppose that, for each state s ∈ S, we are given a set of
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Figure 1.1. A �nite state transition system. The formula ϕ placed near state si

indicates that ϕ holds in si. s0 is the initial state.

elementary properties that hold in s. These elementary properties are spec-
i�ed by a binary relation elem such that elem(s, p) holds i� the elementary
property p holds in s. The relation elem can be de�ned by a logic program.
For instance, if we assume that no elementary property holds in s0 and s1,
and the elementary property a holds in s2 (see Figure 1.1), then the relation
elem is de�ned by the following unit clause:

elem(s2, a)←
The formulas of CTL are built from the given set of elementary properties by
using: (i) the connectives: ¬ (`not') and ∧ (`and'), (ii) the following quanti�ers
along a computation path: g (`for all states on the path' or `globally'), f (`there
exists a state in the path' or `in the future'), x (`next time'), and u (`until'),
and (iii) the quanti�ers over computation paths: a (`for all paths') and e
(`there exists a path'). In this paper we will consider only the subset of the
formulas of CTL that can be constructed by using the connectives and the
two combinations ef and af of quanti�ers. Thus, we assume that the syntax
of a temporal formula ϕ is as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ef ϕ | af ϕ
where p is an elementary property. We also use the following abbreviations:
(i) eg ϕ ≡ ¬af ¬ϕ and (ii) ag ϕ ≡ ¬ef ¬ϕ.

The semantics of temporal formulas is given by: (i) a Kripke struc-

ture K [5], which is a state transition system together with a relation elem

specifying a set of elementary properties for each state s of K, and (ii) a sat-
isfaction relation K, s |= ϕ denoting that a formula ϕ holds in a state s of K.
The relation K, s |= ϕ is inductively de�ned as follows:

K, s |= p i� p is an elementary property such that elem(s, p) holds
K, s |= ¬ϕ i� it is not the case that K, s |= ϕ
K, s |= ϕ1 ∧ ϕ2 i� K, s |= ϕ1 and K, s |= ϕ2

K, s |= ef ϕ i� there exists a computation path s0 s1 . . . such that
(i) s = s0 and (ii) for some n ≥ 0 we have that K, sn |= ϕ

K, s |= af ϕ i� for all computation paths s0 s1 . . . if s=s0 then
there exists n≥0 such that K, sn |= ϕ.

For instance, let K0 be the Kripke structure consisting of the transition system
of Figure 1.1, where the elementary property a holds in state s2 only. Then
the following properties hold:
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K0, s0 |= ef a K0, s0 |= af ef a
K0, s0 |= ¬af a K0, s0 |= ag ef a

In order to verify that a temporal formula ϕ holds in the initial state s0 of
a given Kripke structure K, we encode the satisfaction relation K, s0 |= ϕ as
a predicate sat(s0, ϕ) de�ned by a logic program PK. This program can be
constructed by induction on the structure of the formula ϕ as follows [9]:

S1. sat(X,F )← elem(X,F )
S2. sat(X,¬F )← ¬sat(X,F )
S3. sat(X,F1 ∧ F2)← sat(X,F1) ∧ sat(X,F2)
S4. sat(X, ef F )← sat(X,F )
S5. sat(X, ef F )← t(X,Y ) ∧ sat(Y, ef F )
S6. sat(X, af F )← sat(X,F )

together with, for each state s ∈ S, a clause of the form:

S7. sat(s, af F )← sat(s1, af F ) ∧ . . . ∧ sat(sk, af F )
where s1, . . . , sk are the successor states of s. Program PK also includes the
clauses that de�ne the relations elem and t for the given Kripke structure K.

In program PK clauses S4 and S5 express that the formula ef ϕ holds in
a state s i� either ϕ holds in s or ef ϕ holds in a successor state of s. Clauses
S6 and S7 express that the formula af ϕ holds in a state s i� either ϕ holds
in s or af ϕ holds in all successor states of s.

Program PK is a logic program with locally strati�ed negation and, thus, it
has a unique perfect model, denoted byM(PK) [1]. For every Kripke structure
K, state s0, and temporal formula ϕ, we have that [9]:

K, s0 |= ϕ i� sat(s0, ϕ) ∈M(PK)
Unfortunately, it is often the case that we cannot use SLDNF resolution [1, 13]
to check whether or not sat(s0, ϕ) belongs toM(PK), because SLDNF resolu-
tion may not terminate for the goal sat(s0, ϕ) for many temporal formulas ϕ.
This is due to the presence of clauses S5 and S7 and to the fact that SLDNF
resolution is not able to detect the presence of in�nite loops.

Tabled resolution [4] overcomes this limitation of SLDNF resolution in
the case of �nite state systems by maintaining a table of predicate calls and
avoiding their repeated evaluation. However, tabled resolution is no longer
e�ective when we consider logic programs encoding in�nite state systems,
that is, when the transition relation t is in�nite (see Section 1.4). Indeed, in
that case, when we evaluate the goal sat(s0, ϕ) by using tabled resolution,
in�nitely many di�erent predicate calls may be generated.

In the next section we will show a technique based on program transfor-

mation [2] for checking whether or not sat(s0, ϕ) belongs to M(PK). This
technique is complete for programs PK encoding �nite state systems. More-
over, in Section 1.4 we will show that our technique is also able to verify that
sat(s0, ϕ) belongs to M(PK) also for a large class of programs PK encoding
in�nite state systems.
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1.3 Transformation Rules and Strategies for the

Veri�cation of Protocols

In this section we describe our method for verifying temporal properties of
protocols. This method is based on suitable transformation rules (see rules
R1�R4 below) and on a transformation strategy, called UFV (short for Un-
fold/Fold Veri�cation), for guiding the application of these rules. Our veri�-
cation method consists of two steps as indicated below.

The Veri�cation Method.
Step 1. Given a Kripke structure K, an initial state s0, and a temporal formula
ϕ, we construct a program PK such that K, s0 |= ϕ i� sat(s0, ϕ) ∈M(PK) as
indicated in Section 1.2.

Step 2. We introduce the clause δ0: new0← sat(s0, ϕ), where new0 is a new
predicate symbol. Then we apply the transformation rules R1�R4 according
to the transformation strategy UFV and from program PK ∪ {δ0} we derive
a transformed program T such that: new0 ∈M(PK ∪ {δ0}) i� new0 ∈M(T ).
Finally, we inspect program T and
(i) if the unit clause new0← occurs in T then K, s0 |= ϕ, and
(ii) if no clause with head new0 occurs in T then K, s0 6|= ϕ.

The correctness of our veri�cation method is a consequence of the following
facts: (i) by construction we have that K, s0 |= ϕ i� sat(s0, ϕ) ∈ M(PK),
(ii) since δ0: new0 ← sat(s0, ϕ) is the only clause that de�nes new0 in PK ∪
{δ0}, we have that sat(s0, ϕ) ∈M(PK) i� new0 ∈M(PK∪{δ0}), (iii) since the
transformation rules, when applied according to the transformation strategy
UFV, preserve the perfect model, new0 ∈ M(PK ∪ {δ0}) i� new0 ∈ M(T ),
and �nally, (iv) by the de�nition of perfect model, (iv.1) if new0← occurs in
T then new0 ∈M(T ) and (iv.2) if no clause with head new0 occurs in T then
new0 6∈M(T ).

Let us return to our example of Figure 1.1 and let us suppose that we want
to verify that K0, s0 |= ¬ef ¬ef a holds, that is, for every state reachable from
the initial state s0 it is possible to get to a state where a holds. Let P0 be
the program constructed at Step 1 as indicated in Section 1.3. Step 2 of our
veri�cation method consists in transforming the program P0 ∪ {δ0} where δ0
is the clause new0← sat(s0,¬ef ¬ef a) into a program where new0← occurs.
We will present this transformation in Section 1.3.3.

1.3.1 The Transformation Rules

The process of transforming a given program PK thereby deriving program
T , can be formalized as a sequence P0, . . . , Pn of programs, called a transfor-

mation sequence, where: (i) P0 =PK, (ii) Pn =T , and (iii) for i = 0, . . . , n−1,
program Pi+1 is obtained from program Pi by applying one of the transfor-
mation rules listed below. These rules are variants of the rules considered in
the literature for transforming logic programs (see, in particular, [20, 21]).
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The atomic de�nition rule allows us to introduce a new predicate de�nition
by adding to program Pi a new clause whose body consists of one atom only.
We can use this rule to add clause δ0 to program PK at the beginning of Step 2
of our veri�cation method.

R1. Atomic De�nition. We introduce a new clause, called a de�nition, of
the form:

δ : newp(X1, . . . , Xm)← A

where: (i) newp is a predicate symbol not occurring in P0, . . . , Pi, (ii) X1, . . . ,
Xm are the variables occurring in A, and (iii) the predicate of A occurs in
P0. By atomic de�nition (or de�nition, for short), we derive the new program
Pi+1 = Pi ∪ {δ}. For i ≥ 0, Defsi denotes the set of de�nitions introduced
during the transformation sequence P0, . . . , Pi. In particular, Defs0 = ∅.
The unfolding rule corresponds to a symbolic computation step. It replaces
a clause γ in Pi by the set of all clauses that can be derived by applying a
resolution step w.r.t. a literal L occurring in the body of γ. We have a positive
and a negative unfolding rule, according to the case where L is a positive
or negative literal. Notice that in the negative unfolding rule (see case R2n
below) the literal L should be either valid or failed. We say that an atom A
is valid in a program P i� there exists a unit clause H ← in P such that A
is an instance of H. We say that an atom A is failed in P i� there exists no
clause H ← G in P such that A is uni�able with B. The negated atom ¬A is
valid i� A is failed and ¬A is failed i� A is valid.

R2. Unfolding. Let γ : H ← G1 ∧ L ∧ G2 be a clause in Pi and let P ′
i be

a variant of Pi without common variables with γ. We consider the following
two cases.

(R2p: Positive Unfolding) Let L be a positive literal. By unfolding γ w.r.t. L
we derive the set of clauses

Γ : {(H ← G1 ∧G ∧G2)ϑ | (i) K ← G is a clause in P ′
i and

(ii) L and K are uni�able with mgu ϑ}

We derive the new program Pi+1 = (Pi − {γ}) ∪ Γ .
(R2n: Negative Unfolding) Let L be a negative literal.
(i) If L is valid in P ′

i , then by unfolding γ w.r.t. L we derive the clause
η : H ← G1 ∧G2

and we derive the new program Pi+1 = (Pi − {γ}) ∪ {η}.
(ii) If L is failed in P ′

i , then by unfolding γ w.r.t. L we derive the new program
Pi+1 = Pi − {γ}.
The atomic folding rule allows us to replace an atom A which is an instance
of the body of a de�nition by the corresponding instance of the head of the
de�nition.

R3. Atomic Folding. Let γ : H ← G1 ∧ L ∧ G2 be a clause in Pi and
let δ : N ← A be a clause in Defsi without common variables with γ. We
consider the following two cases.
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(R3p: Positive Folding) Let L be the atom Aϑ for some substitution ϑ. By
folding γ w.r.t. A using δ we derive the clause

η : H ← G1 ∧Nϑ ∧G2

and we derive the new program Pi+1 = (Pi − {γ}) ∪ {η}.
(R3n: Negative Folding) Let L be the negated atom ¬Aϑ. By folding γ
w.r.t. ¬A using δ, we derive the clause

η : H ← G1 ∧ ¬Nϑ ∧G2

and we derive the new program Pi+1 = (Pi − {γ}) ∪ {η}.
The following clause removal rule may be used for removing from Pi a re-
dundant clause γ, that is, a clause γ such that M(Pi) = M(Pi − {γ}). Let
us �rst introduce the following de�nitions. The set of useless predicates in a
program P is the maximal set U of predicate symbols occurring in P such
that a predicate p is in U i� for every clause p(. . .)← G in P , the body G is
of the form G1 ∧ q(. . .) ∧G2 for some predicate q in U . A clause is useless i�
the predicate in its head is useless.

R4. Clause Removal. Let γ be a clause in Pi. By clause removal we derive
the new program Pi+1 = Pi − {γ} if one of the following cases occurs:

(R4s: Removal of Subsumed Clause) γ is a clause H ← G and H is valid in
Pi − {γ};
(R4u: Removal of Useless Clause) γ is useless in Pi.

1.3.2 The Transformation Strategy

During Step 2 of our veri�cation method the transformation rules are applied
according to the following transformation strategy UFV.

The Transformation Strategy UFV.

Input : A program PK and a clause δ0 : new0 ← sat(s0, ϕ). They encode the
Kripke structure K and the property ϕ to be veri�ed in the initial state s0.
Output : A transformed program T such that new0 ∈M(PK∪{δ0}) i� new0 ∈
M(T ).
Phase A. PA := ∅; Defs := {δ0}; ∆ := {δ0};
while there exists a clause δ ∈ ∆
do Unfold(δ, Γ );

Define&Fold(Γ,Defs,NewDefs, Φ);
PA := PA ∪ Φ; Defs := Defs ∪NewDefs; ∆ := (∆− {δ}) ∪NewDefs

end-while

Phase B. Remove&Unfold(PA, T )

The UFV strategy is divided into two phases: Phase A and Phase B.
Phase A takes program PK and clause δ0 as input and returns program PA as
output. Initially program PA is the empty set of clauses. During Phase A we
use the following two sets of clauses: (1) Defs, which is the set of de�nitions
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introduced during the transformation process, and (2) ∆, which is the set of
de�nitions that have been introduced but not yet unfolded. At the beginning of
Phase A we apply the de�nition rule and we add clause δ0 to Defs and∆. Then
the strategy performs a while-do loop whose body consists of applications of
the unfolding rule according to the Unfold procedure (see below), followed by
applications of the de�nition and folding rules according to the Define&Fold
procedure (see below).

The Unfold procedure takes a de�nition clause δ ∈ ∆ and derives a set Γ
of clauses by applying one or more times the positive unfolding rule starting
from clause δ. Every clause in Γ is of the form H ← L1∧ . . .∧Ln, where n≥0
and each literal Li is either an atom of the form sat(s, ψ) or a negated atom of
the form ¬sat(s, ψ). The Define&Fold procedure takes as input: (i) the set Γ
of clauses and (ii) the set Defs of de�nitions, and returns as output: (i) a set
NewDefs of new de�nitions and (ii) a set Φ of transformed clauses. NewDefs
is the set of de�nitions of the form newp ← sat(s, ψ) such that (i.1) a literal of
the form either sat(s, ψ) or ¬sat(s, ψ) occurs in the body of a clause in Γ , and
(i.2) there is no de�nition of the form newq ← sat(s, ψ) in Defs. The set Φ
consists of: (ii.1) all unit clauses belonging to Γ , together with (ii.2) all clauses
derived by (positive or negative) folding of each clause in Γ w.r.t. each sat

literal in its body using a de�nition in Defs ∪NewDefs. After the execution of
the Define&Fold procedure the clauses of Φ are added to PA, the de�nitions
of NewDefs are added to Defs and, in the set ∆, clause δ is replaced by the
clauses of NewDefs.

Phase B is realized by the Remove&Unfold procedure, which transforms
PA by repeatedly removing useless clauses, subsumed clauses, and applying
the positive and the negative unfolding rule w.r.t. valid or failed literals. Upon
termination this procedure returns a program T where new0 is either valid or
failed, that is, either (i) the unit clause new0← occurs in T or (ii) no clause
with head new0 occurs in T . In case (i) we have that K, s0 |= ϕ and in case
(ii) we have that K, s0 6|= ϕ.

For a Kripke structure K with a �nite set of states the UFV strategy
terminates. In particular, only a �nite number of de�nitions will be introduced
during the execution of the while-do loop because only a �nite number of
distinct atoms of the form sat(s, ψ) can be generated. Indeed s is an element of
a �nite set of states and ψ is a (proper or not) subformula of the given formula
ϕ. Thus, the UFV strategy is a decision procedure for checking whether or
not K, s0 |= ϕ holds for any given �nite state Kripke structure K, initial state
s0, and temporal formula ϕ.

1.3.3 An Example of Application of the Veri�cation Method

In this section we will see our transformation strategy in action for the veri�-
cation of a property of the �nite state system of Figure 1.1. We want to show
that in that system, for every state which is reachable from the initial state s0,
it is possible to get to a state where a holds, that is, K0, s0 |= ag ef a. The
initial program P0 which encodes the Kripke structure K0, is the following:
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1. sat(s2, a)← 4. sat(s0, ef F )← sat(s1, ef F )
2. sat(S,¬F )← ¬sat(S, F ) 5. sat(s1, ef F )← sat(s0, ef F )
3. sat(S, ef F )← sat(S, F ) 6. sat(s1, ef F )← sat(s2, ef F )

7. sat(s2, ef F )← sat(s2, ef F )
Program P0 has been obtained by unfolding the program PK which encodes
a generic Kripke structure K, by using the clauses which de�ne the relations
elem and t relative to K0 (see Section 1.2). We have not considered the clauses
for temporal formulas of the form F1 ∧ F2 and af F because they are not
needed during the application of the transformation strategy.

The clause δ0 is new0 ← sat(s0,¬ef ¬ef a). (Recall that ag ef ϕ is equiv-
alent to ¬ef ¬ef ϕ.) By applying the Unfold procedure, we unfold clause δ0
using clause 2 and we get:

8. new0← ¬sat(s0, ef ¬ ef a).
Then we apply the Define&Fold procedure. We introduce the de�nition:

9. new1← sat(s0, ef ¬ ef a)
and we fold clause 8 using clause 9. We get the following clause:

10. new0← ¬new1
At the end of the Define&Fold procedure, we have that the set Φ of clauses
and the program PA are both equal to {clause 10}. We also have that Defs =
{δ0, clause 9} and NewDefs = ∆ = {clause 9}. Thus, we perform again the
body of the while-do loop of Phase A of the UFV strategy. We apply the
Unfold procedure and we unfold clause 9. We derive the following clauses:

11. new1← ¬sat(s0, ef a) 13. new1← ¬sat(s2, ef a)
12. new1← ¬sat(s1, ef a)

Thus, Γ = {clause 11, clause 12, clause 13}. We apply again the Define&Fold
procedure. The new value of NewDefs is the set of the following three clauses:

14. new2← sat(s0, ef a) 16. new4← sat(s2, ef a)
15. new3← sat(s1, ef a)

which are then used to fold clauses 11, 12, and 13. These folding steps generate
the following three clauses which are added to PA:

17. new1← ¬new2 19. new1← ¬new4
18. new1← ¬new3

Now we apply for each clause in NewDefs the Unfold and Define&Fold pro-
cedures. For instance, starting from clause 14, by positive unfolding we get:

20. new2← sat(s1, ef a)
and then by folding this clause using clause 15 we get:

21. new2← new3
Analogously, from clauses 15 and 16 by applying the Unfold and Define&Fold
procedures we get:

22. new3← new2 24. new4←
23. new3← new4 25. new4← new4

11



This concludes Phase A and the derived program PA consists of the clauses
10, 17, 18, 19, 21, 22, 23, 24, and 25. During Phase B we apply (positive and
negative) unfolding and subsumption to the clauses in PA and we get the �nal
program T which consists of the following four unit clauses:

26. new0← 28. new3←
27. new2← 24. new4←

Thus, since in this program there is the clause new0 ←, we conclude that
K0, s0 |= ag ef a holds.

1.4 Veri�cation of In�nite State Systems

Our transformational approach for the veri�cation of properties of protocols
can be extended from �nite state systems to in�nite state systems. In order to
specify in�nite state systems we extend the method described in Section 1.2
by using constraint logic programs [15]. These programs generalize logic pro-
grams by allowing the bodies of the clauses to contain constraints. Constraints
are formulas that de�ne relations over some given domains, such as real num-
bers, integers, and trees. For our purposes here, constraints are simply �rst
order formulas whose predicate symbols are taken from a distinct set. These
constraints can be evaluated by using constraint solvers that are realized by
ad hoc algorithms.

The semantics of a constraint c is de�ned by the usual �rst order satisfac-
tion relation D |= c, where D is a �xed interpretation. The notion of perfect
model can be extended from logic programs to constraint logic programs in a
straightforward way [9].

A transition relation t on an in�nite set of states can be speci�ed by using
constraints in the body of the clauses that de�ne t. For instance, the clause
t(X,Y ) ← X > 0 ∧ Y =X+1 speci�es a transition relation on the set of the
integer numbers. We will see a more elaborate example in Section 1.4.1.

In order to encode the satisfaction relation K, s |= ϕ for a Kripke structure
K with an in�nite set of states, we can construct a constraint logic program
PK similarly to what we have described in Section 1.2. However, in order to
encode the satis�ability of a temporal formula of the form af ϕ, the method
of Section 1.2 introduces a clause for each state of K and this is impossible for
in�nite state systems. Fortunately, this problem can be overcome for a large
class of in�nite state systems by using constraints as indicated in [9] (see also
Section 1.4.1 for an example).

In order to extend our veri�cation method to the case of in�nite state
systems, we need to extend the transformation rules and the transformation
strategy presented in Section 1.3 to the case of constraint logic programs. The
extensions of the de�nition, unfolding, folding, and clause replacement rules
can be found in [8, 9]. Moreover, we will use the following two transformation
rules which speci�cally refer to constraints: (i) Rule R4f, for deleting a clause
whose body contains an unsatis�able constraint, and (ii) Rule R5, for replacing
a constraint by an equivalent one.
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R4f. Removal of Clauses with Unsatis�able Body. Let γ be a clause of
the form H ← c∧G in Pi. Suppose that c is unsatis�able, that is, D |= ¬∃(c),
where ∃(c) is the existential closure of c. Then, we derive the new program
Pi+1 = Pi − {γ}.

R5. Constraint Replacement. Let γ1 : H ← c1 ∧ G be a clause in Pi.
Suppose that for some constraint c2, we have that:

D |= ∀ (∃Y1 . . .∃Yk c1 ↔ ∃Z1 . . .∃Zm c2)
where: (i) Y1, . . . , Yk are the variables occurring free in c1 and not in {H,G},
(ii) Z1, . . . , Zm are the variables occurring free in c2 and not in {H,G}, and
∀(ϕ) denotes the universal closure of formula ϕ. Then by constraint replace-

ment we derive the clause

γ2 : H ← c2 ∧G
and we derive the new program Pi+1 = (Pi − {γ1}) ∪ {γ2}.

The transformation strategy UFV presented in Section 1.3.2 can be ex-
tended to constraint logic programs that encode in�nite state systems. Dur-
ing the execution of this strategy, we apply the modi�ed transformation
rules for constraint logic programs. In particular, during the execution of the
Define&Fold procedure, when applying the de�nition rule, we introduce new
de�nitions of the form:

NewH ← c(X) ∧ sat(X,ψ)
where: (i) X is a variable ranging over states, (ii) c(X) is a constraint repre-
senting a possibly in�nite set of states, and (iii) ψ is a temporal formula.

The main issue that arises when dealing with in�nite state systems is that
the termination of the UFV strategy is no longer guaranteed. Indeed, for any
given temporal formula ψ, an in�nite number of constrained atoms of the form
c(X)∧ sat(X,ψ) with non-equivalent constraints may be generated and, thus,
an in�nite number of non-equivalent de�nitions may be introduced.

For instance, during the veri�cation of the mutual exclusion property of the
Bakery protocol (see Section 1.4.1 below), starting from the initial de�nition
δ0 : new0← sat(〈think , 0, think , 0〉,¬ef unsafe), the UFV strategy introduces
an in�nite sequence of de�nitions of the form:

δ1: new1← A2=0 ∧B2=0 ∧ sat(〈think , A2, think , B2〉, ef unsafe)
δ2: new2← A2=1 ∧B2=0 ∧ sat(〈wait , A2, think , B2〉, ef unsafe)
δ3: new3← A2=3 ∧B2=0 ∧ sat(〈wait , A2, think , B2〉, ef unsafe)

· · ·
δk: newk ← A2=2k−3 ∧B2=0 ∧ sat(〈wait , A2, think , B2〉, ef unsafe)

· · · (for k>1)
and the UFV strategy does not terminate. We can often overcome this non-
termination problem by introducing a generalization operator between clauses,
and modifying the Define&Fold procedure used of the UFV strategy as we
now indicate. Suppose that a constrained literal L of the form either d(X) ∧
sat(X,ψ) or d(X) ∧ ¬sat(X,ψ) occurs in the body of a clause γ belonging
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to the set Γ of the clauses derived by the Unfold procedure. In order to fold
γ w.r.t. L we proceed as follows: (i) if γ can be folded using a de�nition δ
belonging to the set Defs of all de�nitions introduced so far, then we fold γ
using δ, otherwise (ii) we consider a clause in Defs of the form:

NewH 1← c(X) ∧ sat(X,ψ)
and a clause of the form:

NewH 2← d(X) ∧ sat(X,ψ)
and we introduce the generalized clause:

δgen : GenH ← genc(X) ∧ sat(X,ψ)
where D |= ∀X (c(X)→ genc(X)) and D |= ∀X (d(X)→ genc(X)). Then we
fold γ using δgen . For example, during the veri�cation of the Bakery protocol,
from clauses δ2 and δ3, by using a generalization operator we introduce the
new clause:

gen(A2)← A2≥1 ∧B2=0 ∧ sat(〈wait , A2, think , B2〉, ef unsafe)
Suitable generalization operators which ensure the termination of the UFV

strategy for a large class of in�nite state systems can be found in [9].

1.4.1 Examples of Veri�cation of In�nite State Systems

In this section we use our veri�cation method for proving various properties of
in�nite state systems. In particular, we consider the Bakery protocol [11] and
we verify that it satis�es the mutual exclusion and starvation freedom prop-
erties. Then, at the end of the section, we report on some more experimental
results concerning the proofs of properties of several other protocols.

Let us consider two agents A and B which want to access a shared re-
source in a mutual exclusive way by using the Bakery protocol. The state of
agent A is represented by a pair 〈A1, A2〉, where A1 is an element of the set
{think ,wait , use} of control states, and A2 is a counter that takes values from
the set of natural numbers. Analogously, the state of agent B is represented
by a pair 〈B1, B2〉. The state of the system consisting of the two agents A and
B, whose states are 〈A1, A2〉 and 〈B1, B2〉, respectively, is represented by the
4-tuple 〈A1, A2, B1, B2〉. The transition relation t of the two agent system
from an old state OldState to a new state NewState, is de�ned as follows:

TA. t(OldState, NewState)← tA(OldState, NewState)
TB. t(OldState, NewState)← tB(OldState, NewState)

where the transition relation tA for the agent A is given by the following
clauses whose bodies are conjunctions of constraints (see also Figure 1.2):

A1. tA(〈think , A2, B1, B2〉, 〈wait , A21, B1, B2〉)← A21=B2+1
A2. tA(〈wait , A2, B1, B2〉, 〈use, A2, B1, B2〉)← A2<B2
A3. tA(〈wait , A2, B1, B2〉, 〈use, A2, B1, B2〉)← B2=0
A4. tA(〈use, A2, B1, B2〉, 〈think , A21, B1, B2〉)← A21=0

The following analogous clauses de�ne the transition relation tB for the
agent B:
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B1. tB(〈A1, A2, think , B2〉, 〈A1, A2,wait , B21〉)← B21=A2+1
B2. tB(〈A1, A2,wait , B2〉, 〈A1, A2, use, B2〉)← B2<A2
B3. tB(〈A1, A2,wait , B2〉, 〈A1, A2, use, B2〉)← A2=0
B4. tB(〈A1, A2, use, B2〉, 〈A1, A2, think , B21〉)← B21=0
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〈think , A2, B1, B2〉

A2:=B2+1

〈wait , A2, B1, B2〉

A2<B2 ∨B2=0

〈use, A2, B1, B2〉

A2:=0

Figure 1.2. The Bakery protocol: a graphical representation of the transition rela-
tion tA for the agent A. The assignment X := e on the arc from state s1 to state
s2 tells us that the value of the variable X in s2 is obtained from the value of the
expression e in s1. The boolean expression b on the arc from state s1 to state s2 tells
us that the transition from s1 to s2 takes place i� b holds.

Notice that the two agent system has an in�nite number of states, because
counters may increase in an unbounded way, as indicated by the under-
lined states of the following computation path starting from the initial state
〈think , 0, think , 0〉:
〈think , 0, think , 0〉, 〈wait , 1, think , 0〉, 〈wait , 1,wait , 2〉, 〈use, 1,wait , 2〉,
〈think , 0,wait , 2〉, 〈think , 0, use, 2〉, 〈wait , 3, use, 2〉, 〈wait , 3, think , 0〉, . . .

We may apply our veri�cation method for checking the mutual exclusion prop-
erty of the Bakery protocol. This property is expressed by the CTL formula:
¬ef unsafe, where for all states s,

elem(s, unsafe) holds i� s is of the form 〈use, A2, use, B2〉,
that is, unsafe holds i� both agents A and B are in the control state use.

The initial program PK which encodes the Kripke structure of the Bakery
protocol with two agents A and B, is the following one:

1. sat(〈use, A2, use, B2〉, unsafe)←
2. sat(S,¬F )← ¬sat(S, F )
3. sat(S, ef F )← sat(S, F )
4. sat(S, ef F )← t(S, T ) ∧ sat(T, ef F )

together with the clauses TA, TB, A1�A4, and B1�B4, which de�ne the tran-
sition relation t . The initial clause δ0 for the mutual exclusion property is:

new0me ← sat(〈think , 0, think , 0〉,¬ef unsafe)
For the Bakery protocol we may also want to prove the starvation freedom
property which ensures that an agent, say A, which requests the shared re-
source, will eventually get it. This property is expressed by the CTL formula:
ag (waitA→ af useA), which is equivalent to: ¬ef (waitA∧¬af useA). For the
elementary properties waitA and useA, the satisfaction relation is de�ned by
the clauses:
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sat(〈wait , A2, B1, B2〉,waitA)←
sat(〈use, A2, B1, B2〉, useA)←

For the starvation freedom property the initial clause δ0 is:

new0sf ← sat(〈think , 0, think , 0〉,¬ef (waitA ∧ ¬af useA))
The clauses for sat(X,¬F ), sat(X,F1∧F2), and sat(X, ef F ) are clauses
S2�S5 (see Section 1.2). We do not have the space here to list all clauses for
sat(X, af F ). These clauses include clause S6 (see Section 1.2) together with
one or more clauses of the form S7 (see Section 1.2) for each state s of the form
〈A1, A2, B1, B2〉, where A1 and B1 belong to {think ,wait , use}. For instance,
the clause for the state 〈think , A2, think , B2〉 is:

sat(〈think , A2, think , B2〉, af F )← A21=B2+1 ∧B21=A2+1
∧ sat(〈wait , A21, think , B2〉, af F ) ∧ sat(〈think , A2,wait , B21〉, af F )

The remaining clauses for sat(X, af F ) can be found in [9].
By using our experimental constraint logic program transformation system

MAP [14] we have been able to automatically verify the mutual exclusion and
the starvation freedom properties of the Bakery protocol.

We have veri�ed some more properties of various other protocols by using
our system MAP running on a Linux machine with a 900 MHz clock, and
the results of these experiments are reported in the following Table 1.1. The
veri�cation times we have obtained demonstrate that our system performs
well w.r.t. the DMC system [6] and the other systems cited in [6, 7].

Protocol Property Veri�cation Time

Bakery ¬ef unsafe 0.2
(mutual exclusion) ag (waitA→ af useA) 2.3
Ticket ¬ef unsafe 0.6
(mutual exclusion) ag (waitA→ af useA) 3.0
Berkeley RISC ¬ef (dirty≥2) 2.0
(cache coherence) ¬ef (dirty≥1 ∧ shared≥1) 1.3
Xerox Dragon ¬ef (dirty≥2) 1.3
(cache coherence) ¬ef (dirty≥1 ∧ shared_clean≥1) 0.9

¬ef (dirty≥1 ∧ shared_dirty≥1) 1.0
DEC Fire�y ¬ef (dirty≥2) 0.4
(cache coherence) ¬ef (dirty≥1 ∧ shared≥1) 0.4
Illinois University ¬ef (dirty≥2) 0.3
(cache coherence) ¬ef (dirty≥1 ∧ shared≥1) 0.3
MESI ¬ef (dirty≥2) 0.3
(cache coherence) ¬ef (dirty≥1 ∧ shared≥1) 0.2

Table 1.1. Experimental results of the veri�cation of some properties of various
protocols. The protocols and the properties are taken from [6]. The veri�cation time
is expressed in seconds.
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1.5 Conclusions and Related Work

We have presented a method for verifying CTL properties of protocols for
multiagent systems speci�ed as constraint logic programs. For systems which
have a �nite number of states, the method is complete and can be used as a
decision procedure. For systems which have an in�nite number of states, the
method may not terminate. However, for a large class of in�nite state systems,
the method terminates if we use suitable generalization operators. We have
applied our method for proving safety and liveness properties of several in�nite
state protocols.

Our veri�cation method is related to others presented in the literature for
the proofs of properties of concurrent systems which use the logic program-
ming paradigm. Among them we mention the following ones.

In [18] the authors present XMC, a model checking system implemented in
the tabulation-based logic programming language XSB. XMC can verify tem-
poral properties expressed in the alternation-free fragment of the µ-calculus
of �nite state systems speci�ed in a CCS-like language.

In [17] a model checker is presented for verifying CTL properties of �nite
state systems, by using logic programs with �nite constraint domains that
are closed under conjunction, disjunction, variable projection and negation.
The veri�cation process is performed by executing a constraint logic program
encoding the semantics of CTL in an extended execution model that uses
constructive negation and tabled resolution.

In [10] an automatic method for verifying safety properties of in�nite state
Petri nets with parametric initial markings is presented. The method con-
structs the reachability set of the Petri net being veri�ed by computing the
least �xpoint of a logic program with Presburger arithmetic constraints.

A method for the veri�cation of some CTL properties of in�nite state
systems using constraint logic programming is described in [7]. Suitable con-
straint logic programs which encode the system and the property to be veri�ed,
are introduced, and then, the CTL properties are veri�ed by computing exact
and approximated least and greatest �xed points of those programs.

Finally, the use of program transformation for verifying properties of in�-
nite state systems has been investigated in [12, 19]. In particular, (i) special-
ization of logic programs and abstract interpretation are used in [12] for the
veri�cation of safety properties of in�nite state systems, and (ii) unfold/fold
transformation rules are applied in [19] for proving safety and liveness prop-
erties of parameterized �nite state systems with various network topologies.
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