
Verifying CTL Properties

?

of In�nite State Systems

by Spe
ializing Constraint Logi
 Programs

Fabio Fioravanti

1

, Alberto Pettorossi

2

, Maurizio Proietti

1

(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy

{fioravanti,adp,proietti}�iasi.rm.
nr.it

(Extended Abstra
t)

1 Introdu
tion

The goal of automated veri�
ation of systems is the de�nition and the imple-

mentation of logi
al frameworks whi
h allow one: (i) to formally spe
ify these

systems, and (ii) to prove their properties in an automati
 way. These logi
al

frameworks require formalisms both for the des
ription of the systems and the

des
ription of their properties.

In this paper we assume that a system makes transitions from states to states

and the evolution of a system
an be formalized using a
omputation tree, whi
h

is de�ned as follows. Given a system S and its initial state s

0

, the root of the

omputation tree for S is s

0

, and every node s

i

of the
omputation tree for S

has a
hild node s

j

i� there exists in S a transition from state s

i

to state s

j

.

The state s

j

is
alled a su

essor state of s

i

. We assume that in every system

for every state s

i

there exists at least one su

essor state. Noti
e that the set of

all states of a system may be �nite or in�nite.

We also assume that the des
ription of the properties of any system
an be

done in the Computation Tree Logi
 formalism [4℄ (CTL for short). CTL formulas

des
ribe properties of
omputation trees, and they are built using: (i) atomi

state properties, (ii) logi
al
onne
tives: :;^;_, (iii) quanti�ers over paths: A

(`for all paths') and E (`for some path'), and (iv) quanti�ers along paths: G (`for

all states on the path'), F (`for some state on the path'). CTL formulas are very

expressive, and in parti
ular, one may use them to des
ribe the so
alled safety

and liveness properties. Given a CTL formula ' and state s, the semanti
s of

CTL de�nes the satisfa
tion relation s j= ' whi
h holds whenever ' is true in s

[4℄.

In this paper we will present a method for verifying CTL properties of possi-

bly in�nite state systems by using Constraint Logi
 Programming [7℄ (CLP, for

short) and Program Spe
ialization. Our method is appli
able to a large
lass of

on
urrent systems, like those des
ribed by [14℄.

?

Revised version of the extended abstra
t presented at VCL'01, 2nd ACM-Sigplan

Workshop on Veri�
ation and Computational Logi
, Floren
e, Italy, September 4,

2001.

Constraint Logi
 Programming extends standard logi
 programming by in-

orporating me
hanisms for solving
onstraints over some given
onstraint do-

mains by using domain spe
i�
 e�
ient algorithms. The following are
onstraint

domains whi
h are usually
onsidered: (i) the domain of inequations over real

or rational numbers, (ii) the domain of boolean formulas, and (iii) every �nite

domain. CLP programs turn out to be very suitable for modelling in�nite state

systems be
ause an in�nite set of states
an be des
ribed by
onstraints over the

state spa
e.

For our purpose of verifying CTL properties of systems whi
h may require the

use of negated formulas, we will
onsider CLP programs with lo
ally strati�ed

negation [1℄. We assume that the semanti
s of a program P in this
lass is

provided by the unique perfe
t model, denoted by M(P), whi
h
oin
ides with

the unique stable model, and the total well-founded model. The reader may

refer to [1,7,11℄ for the de�nition of these models and other notions of logi

programming or
onstraint logi
 programming whi
h we do not re
all here.

Program spe
ialization is a program transformation te
hnique whose goal is

the adaptation of a program to the
ontext where it is used. In [5℄ we have de-

veloped a general framework for the automati
 spe
ialization of
onstraint logi

programs over a generi

onstraint domain D. The spe
ialization also improves

the
omputational properties w.r.t. a given
lass of goals, while it preserves the

least D-model [8℄. In this paper we use an extension of that framework to deal

with lo
ally strati�ed CLP programs.

Our spe
ialization te
hnique is
orre
t w.r.t. the perfe
t model semanti
s in

the sense that, given a lo
ally strati�ed CLP program P and an atom A whose

predi
ate is de�ned in P , and given a program Q whi
h is a spe
ialization of P

w.r.t. A, for every ground instan
e A

g

of A,

A

g

2M(P) i� A

g

2 M (Q). (1)

Veri�
ation Method. Our method for verifying whether or not a system S

in its initial state s

0

, satis�es a CTL property ',
onsists of the following two

steps.

Step 1. We introdu
e a CLP program P

S

whi
h de�nes a binary predi
ate sat

su
h that s

0

j= ' i� sat(s

0

; ') 2 M(P

S

). We assume that s

0

and ' are ground

terms.

Step 2. We introdu
e a new 0-ary predi
ate f de�ned by the
lause f sat(s

0

; ')

and thus, sat(s

0

; ') 2 M(P

S

) i� f 2 M(P

S

[ff sat(s

0

; ')g). We then

apply our program spe
ialization te
hnique and transform the program P

S

[

ff sat(s

0

; ')g into a spe
ialized program P

f

. By the
orre
tness of program

spe
ialization, stated by the equivalen
e (1) above, we have that f 2 M(P

S

[

ff sat(s

0

; ')g) i� f 2M(P

f

).

Putting Step 1 and Step 2 together, we have that s

0

j= ' i� f 2M(P

f

), and

we
an
he
k whether or not s

0

j= ' as follows: (i) if the unit
lause f o

urs

in P

f

then s

0

j= ', and (ii) if no
lause with head f o

urs in P

f

(that is, f has

an empty de�nition in P

f

) then it is not the
ase that s

0

j= '.

2

The stru
ture of our paper is as follows. In Se
tion 2 we show how Step

1 of our veri�
ation method
an be realized by en
oding CTL properties of a

�nite or in�nite state system as a
onstraint logi
 program with lo
ally strati�ed

negation. In Se
tion 3 we des
ribe the program spe
ialization te
hnique whi
h

we use to realize Step 2 of our veri�
ation method. In Se
tion 4 we show how

our method works for the veri�
ation of a safety and a liveness property of the

bakery proto
ol for mutual ex
lusion [9℄. Finally, in Se
tion 5 we
ompare our

work with related veri�
ation te
hniques des
ribed in the literature.

2 En
oding CTL Properties as Constraint Logi

Programs

Given a system S, its initial state s

0

, and a CTL property ', Step 1 of our ver-

i�
ation method is realized by providing the re
ursive de�nition of the relation

s

0

j= ' as a lo
ally strati�ed program P

S

. Step 1
an be performed in an auto-

mati
 way for a very large
lass of
on
urrent systems, namely those whi
h are

state transition systems with enabling
onditions and a
tions [14℄ with
ondi-

tions and a
tions whi
h
an be expressed by
onstraints over the values of state

variables.

The following simple example will
larify the reader's ideas. This example will

be used throughout this paper to illustrate our approa
h. Let S0 be the system

whose set of states is a subset of fa; bg � Z, where Z is the set of integers. Let

the initial state of S0 be the pair ha; 0i, and let us assume that the transitions

between states are the following ones:

ha; 1i ! hb; 1i

8y 2 Z: ha; yi ! ha; y+2i

8y 2 Z: hb; yi ! hb; y�1i

The system S0
an be depi
ted as shown in Figure 1.

if y=1
ba

y:=y+2 y:=y-1

Figure 1. The system S0 whose set of states is fa; bg� Z.

We want to verify that the property that starting from the initial state ha; 0i,

the system S0 never rea
hes a state hx; yi with y<0, for some x 2 fa; bg. This

property is expressed by the satisfa
tion relation ha; 0i j= :EF neg whi
h asserts

that in the initial state ha; 0i the CTL formula :EF neg is true, where neg is

the atomi
 state property whi
h holds in a state hx; yi i� y < 0.

The satisfa
tion relation s j= ' between the state s and the CTL formula ',

is re
ursively de�ned as follows:

s j= p i� p is an atomi
 state property and p holds in s

s j= :' i� it is not the
ase that s j= '

3

s j= EF ' i� either s j= '

or 9 a state s

1

su
h that (i) 9 a transition from s to s

1

and

(ii) s

1

j= EF '

For the system S0 the relation s j= '
an be en
oded by the following lo
ally

strati�ed program P

S0

written a Prolog-like syntax, where the state hx; yi is

denoted by s(X,Y):

sat(s(X,Y),neg) :- Y<0.

sat(S,not(F)) :- \+ sat(S,F).

sat(S,ef(F)) :- sat(S,F).

sat(s(a,Y),ef(F)) :- Y1=Y+2, sat(s(a,Y1),ef(F)).

sat(s(a,Y),ef(F)) :- Y=1, sat(s(b,Y),ef(F)).

sat(s(b,Y),ef(F)) :- Y1=Y-1, sat(s(b,Y1),ef(F)).

Thus, we have that:

ha; 0i j= :EF neg i� sat(s(a,0),not(ef(neg))) 2M(P

S0

).

3 Veri�
ation of CTL Properties via Program

Spe
ialization

Step 2 of our veri�
ation method is realized by using an automati
 program

spe
ialization te
hnique whi
h is derived from the one des
ribed in [5℄ and it is

a parti
ular
ase of the program transformation te
hnique based on rules and

strategies. The transformation rules ensure the
orre
tness of the spe
ialized

program w.r.t. the given initial program. Thus, given a system S with initial

state s

0

, and a CTL property ', after Step 1 and Step 2, whereby we introdu
e

the predi
ate f , and we derive the spe
ialized program P

f

, we have that:

s

0

j= ' i� f 2 M (P

f

).

The spe
ialization strategy guides the appli
ation of the rules with the aim of

deriving a program P

f

where the de�nition of f is either (i) the unit
lause f

or (ii) it is the empty de�nition. As already mentioned, in
ase (i) s

0

j= ' holds,

while in
ase (ii) s

0

j= ' does not hold.

We will show that our spe
ialization strategy terminates for all initial pro-

grams P

S

[ff sat(s

0

; ')g, but due to the unde
idability of CTL for in�nite

state systems, in some
ases our spe
ialization strategy may produ
e a program

P

f

in whi
h the de�nition of f is neither the unit
lause f nor the empty

de�nition.

However, we have that our strategy is
omplete for �nite state systems.

3.1 The Rules for Program Spe
ialization

Now we introdu
e some notions whi
h we use below for des
ribing our program

spe
ialization te
hnique.

We assume that every atom is pure, that is, it is of the form p(X

1

; : : : ; X

m

),

where X

1

; : : : ; X

m

are distin
t variables. A
onstrained atom is the
onjun
tion

of a
onstraint and an atom. Goals are (possibly empty)
onjun
tions of atoms.

4

A
onstrained goal is the
onjun
tion of a
onstraint and a goal. Conjun
tion

is
ommutative and, thus, the order of
onstraints and atoms in the body of a

lause is immaterial. The empty
onjun
tion (of
onstraints or atoms) is true.

Clauses are of the form H
;G.

The assumption that all atoms are pure is not restri
tive be
ause, for in-

stan
e, any
lause
 with o

urren
es of non-pure atoms,
an be transformed

into a
lause Æ with o

urren
es of pure atoms only, su
h that Æ is equivalent

to
 w.r.t. the least D-model semanti
s. This
an be done by adding suitable

equality
onstraints. For example, the
lause: p(X+1) X�0; r(X�1)
an be

transformed into the equivalent
lause: p(Y) X�0; r(Z); Y =X+1; Z=X�1,

where all atoms are pure.

We de�ne the set of useless predi
ates of a program P to be the maximal set

U of predi
ates o

urring in P su
h that the predi
ate p is in U i� the body of

ea
h
lause de�ning p in P
ontains a positive literal whose predi
ate is in U .

We say that the atom A is failed in a program P i� A does not unify with

the head of any
lause in P . We say that A is valid in a program P i� P
ontains

a unit
lause whose head has the predi
ate symbol of A.

The pro
ess of spe
ializing a given program P whereby deriving program P

s

,

an be formalized as a sequen
e P

0

; : : : ; P

n

of programs,
alled a transformation

sequen
e, where P

0

= P; P

n

= P

s

and, for k = 0; : : : ; n�1, program P

k+1

is

obtained from program P

k

,
alled the
urrent program, by applying one of the

transformation rules are listed below. These rules are an extension of the rules

presented in [5℄ to the
ase of CLP programs with lo
ally strati�ed negation.

R1. Constrained Atomi
 De�nition. Introdu
e a new predi
ate de�ned by

a de�nition
lause: newp(X

1

; : : : ; X

n

)
; A where
; A is a
onstrained atom.

R2. Positive Unfolding. Repla
e
lause H
;G

1

; A;G

2

where A is an

atom, by the set of
lauses fH
; A=A

j

;

j

; G

1

; G

j

; G

2

j j = 1; : : : ;mg, where

fA

j

j

; G

j

j j = 1; : : : ;mg is the set of all renamed apart
lauses in the
urrent

program su
h that the atoms A and A

j

have the same predi
ate symbol.

R3. Negative Unfolding. Let
 be the
lause H
;G

1

;:A;G

2

. If A is failed

in the
urrent program then repla
e
 by the
lause H
;G

1

; G

2

. If A is valid

in the
urrent program then remove
.

R4. Constrained Atomi
 Folding.Repla
e
lause A
;G

1

; L;G

2

, by
lause

A
;G

1

; L

0

; G

2

, where L

0

is newp(X

1

; : : : ; X

n

) if L is B, or :newp(X

1

; : : : ; X

n

)

if L is :B, provided that there exists a renamed apart de�nition
lause

newp(X

1

; : : : ; X

n

) d;B su
h that D j=
! d.

R5. Removal of Clauses with Unsatis�able Body. Remove
lause A
;G

if the
onstraint
 is unsatis�able.

R6. Removal of Useless Clauses. Remove all
lauses whose head predi
ate

is useless in the
urrent program.

R7. Removal of Subsumed Clauses. If the
urrent program
ontains a unit

lause p(X

1

; : : : ; X

n

) , then remove all
lauses whose head predi
ate symbol

is p.

R8. Contextual Constraint Repla
ement. Given a set C of
onstrained

atoms, repla
e
lause p(X

1

; : : : ; X

n

)

1

; G by p(X

1

; : : : ; X

n

)

2

; G, if for

5

some
onstraint

2

, we have that for every
onstrained atom
; p(Y

1

; : : : ; Y

n

)

in C, D j= (
;X

1

= Y

1

; : : : ; X

n

= Y

n

) ! (

1

$

2

), that is, in the
onstraint

domain D if
;X

1

= Y

1

; : : : ; X

n

= Y

n

holds then the
onstraints

1

and

2

are

equivalent.

3.2 The Spe
ialization Strategy

The spe
ialization pro
ess is performed a

ording to a strategy whi
h guides the

appli
ation of the rules R1-R8 above. Our spe
ialization strategy is parameter-

ized by: (i) a fun
tion solve for solving
onstraints over the
onstraint domain

D, (ii) an unfolding fun
tion for
ontrolling the unfolding pro
ess, (iii) a
lause

generalization fun
tion for
ontrolling the introdu
tion of new predi
ate de�ni-

tions. On
e these parameters have been
hosen, our strategy
an be applied in

a fully automati
 way.

The spe
ialization strategy is divided into three phases.

Phase A.We
onsider the program P

S

[ff sat(s

0

; ')g and we iterate the pro-

edures Unfold-Repla
e and De�ne-Fold as we now explain. During the Unfold-

Repla
e pro
edure we unfold the program to be spe
ialized by using the given

unfolding fun
tion, and we solve the
onstraints in the derived
lauses by us-

ing the given fun
tion solve. We then apply the De�ne-Fold pro
edure and we

fold the
lauses we have derived. For folding we make use of already available

de�nitions and, possibly, some new de�nitions introdu
ed by using the
lause

generalization fun
tion. Phase A terminates with output program P

A

when no

new de�nitions need to be introdu
ed for performing the folding steps.

Phase B. We
onsider program P

A

and, by applying the
ontextual
onstraint

repla
ement rule, from ea
h
lause de�ning a predi
ate, say p, we remove the

onstraints whi
h hold before the exe
ution of the
lause. These
onstraints are

determined by
omputing the least upper bound of the set of
onstraints whi
h

o

ur in the
lauses
ontaining a
all of p (see [5℄ for details). Under suitable

onditions, that we dis
uss below, the output of Phase B is a program P

B

whi
h,

by
onstru
tion, admits a �nite strati�
ation so that P

B

= S

1

[: : : [S

n

.

Phase C. We
onsider the program P

B

and by working bottom-up on the strata

S

1

; : : : ; S

n

, we simplify the de�nition of every predi
ate p with the aim of deriving

either the unit
lause p(: : :) or the empty de�nition. During this phase we

apply the following rules: (i) positive and negative unfolding, (ii) removal of

useless and subsumed
lauses, and (iii)
ontextual
onstraint repla
ement.

The algorithm for Phase C is as follows.

P

f

:= ;

for i := 1; : : : ; n do

repeat

S

0

:= S

i

;

Apply to S

i

, as long as possible, the rule for removing subsumed
lauses;

Apply to S

i

, as long as possible, the negative unfolding rule and the positive

unfolding rule w.r.t. valid and failed atoms in the
urrent program;

6

Repla
e all
lauses in S

i

of the form H
 by the
lause H provided

that D j= 8(9Y
) where Y is the set of variables in

whi
h do not o

ur in H

until S

0

= S

i

Remove the useless
lauses of S

i

;

P

f

:= P

f

[S

i

;

end-for

Finally, (i) if the unit
lause f belongs to P

f

, we
on
lude that ' is true in

S, and otherwise, (ii) if there are no
lauses in P

f

de�ning f , we
on
lude that

' is false in S. If neither
ase (i) nor
ase (ii) o

urs, we
annot
on
lude that

' is true in S and we
annot
on
lude that ' is false in S.

Now we illustrate how our spe
ialization strategy works by applying it to

program P

S0

des
ribed in Se
tion 2. We start by introdu
ing a new de�nition

lause Æ

property :- X=0, sat(s(a,X), not(ef(neg))).

whi
h en
odes the property to be veri�ed. The spe
ialization of program P

S0

w.r.t. the atom property pro
eeds as follows. The output of Phase A is the

following program P

A

:

property :- A=0, \+(newsat1(A)).

newsat1(A) :- A=0, newsat2(A).

newsat1(A) :- B=2, A=0, newsat3(B).

newsat3(A) :- A>1, newsat4(A).

newsat3(A) :- B=2+A, A>1, newsat3(B).

During Phase B we apply the
ontextual
onstraint repla
ement rule and we

obtain the following program P

B

:

(1) property :- A=0, \+ newsat1(A).

(2) newsat1(A) :- newsat2(A).

(3) newsat1(A) :- B=2, newsat3(B).

(4) newsat3(A) :- newsat4(A).

(5) newsat3(A) :- B=2+A, newsat3(B).

We start Phase C by
omputing a minimal strati�
ation of the program P

B

.

We get: P

B

= S

1

[S

2

, where S

1

= f2; 3; 4; 5g and S

2

= f1g. Then, we start

pro
essing the lowest stratum S

1

.

Stratum S

1

. Sin
e there is no
lause de�ning newsat2 and newsat4, we apply the

positive unfolding rule to
lauses 2 and 4 and we remove them from S

1

: We get:

S

1

= f3; 5g. Predi
ates newsat1 and newsat3 are useless in S

1

, so we remove

their de�nitions and we obtain S

1

= ;. The iteration on stratum S

1

ends with

P

f

= ;.

Stratum S

2

. The
urrent program
ontains no
lause de�ning newsat1 and

this allows us to apply the negative unfolding rule to
lause 1 obtaining S

2

=

fproperty :- A=0.g. We solve the
onstraint in the body of the only
lause of

S

2

w.r.t. the variables in its head, and we obtain S

2

= fproperty:g. The output

of Phase C of our spe
ialization strategy is P

f

= fproperty:g whi
h gives us a

proof that property :EF neg is true in S0.

Let us now brie�y
omment on our three-phase strategy.

7

The output program P

A

of Phase A of the spe
ialization strategy admits

a �nite strati�
ation, if we
hoose a
lause generalization fun
tion whi
h does

not generalize the se
ond argument of sat en
oding a CTL formula. Indeed, by

onstru
tion, ea
h
lause of P

A

with a negative literal in the body, will be of the

form:

newp(: : :) : : : ; :newq(: : :); : : :

and the predi
ates newp and newq are de�ned by
lauses of the form:

newp(: : :) sat(: : : ; '

p

)

newq(: : :) sat(: : : ; '

q

)

where: (i) '

p

and '

q

are ground terms en
oding CTL formulas, and (ii) '

q

is a

proper subformula of '

p

.

Sin
e the
ontextual
onstraint repla
ement rule preserves strati�
ation, also

the output program P

B

of Phase B admits a �nite strati�
ation.

Our spe
ialization strategy terminates if the following fa
ts hold: (i) the

Unfold-Repla
e pro
edure terminates, and (ii) the set of predi
ate de�nitions

introdu
ed by the generalization fun
tion is �nite. Noti
e that Phases B and C

always terminate. In the example presented in the next se
tion we will provide

an unfolding fun
tion and a generalization fun
tion for whi
h Phase A of our

spe
ialization strategy terminates.

4 Veri�
ation of the Bakery Proto
ol

The bakery proto
ol des
ribes the behavior of a system
onsisting of two pro-

esses, A and B, whi
h run in parallel and try to a

ess a shared resour
e. The

state s

A

of pro
ess A is represented by a pair h

A

; ai where

A

is an element

of the set fthink ;wait ; useg of
ontrol states, and a is a
ounter whi
h takes as

value a non negative rational number. The possible transitions for pro
ess A are

the following (see also Figure 2):

(1) if the
urrent state is hthink ; ai, then the next state is hwait ; b+ 1i,

(2) if the
urrent state is hwait ; ai and, either a < b or b = 0, then the next state

is huse; ai,

(3) if the
urrent state is huse; ai, then the next state is hthink ; 0i.

Analogously for pro
ess B, by inter
hanging a and b.

a:=b+1 if (a<b or b=0)

a:=0

usewaitthink

Figure 2. Transitions of the pro
ess A.

The generi
 state s of the system
onsisting of the two pro
esses A and B

together, is represented by the 4-tuple h

A

; a;

B

; bi, whi
h is initially set to

s

0

= hthink ; 0; think ; 0i.

8

This system has an in�nite number of states, be
ause
ounters may in
rease in

an unbounded way, as the following sequen
e of transitions illustrates:

hthink ; 0; think ; 0i ! hwait ; 1; think ; 0i ! hwait ; 1;wait ; 2i! huse; 1;wait ; 2i !

hthink ; 0;wait ; 2i ! hthink ; 0; use; 2i ! hwait ; 3; use; 2i ! hwait ; 3; think ; 0i !

hwait ; 3;wait ; 4i ! : : :

We have applied our spe
ialization method to the veri�
ation of two prop-

erties of the bakery proto
ol: (i) the mutual ex
lusion property, and (ii) the

starvation freedom property. The mutual ex
lusion property says that `the sys-

tem will never rea
h a state where both pro
esses are using the shared resour
e'.

It is a safety property in the sense that during the evolution of the system `some-

thing (bad) may never happen'. The starvation freedom property says that `if

a pro
ess wants to use a resour
e then it will eventually get it'. It is a liveness

property in the sense that during the evolution of a system `something (good)

eventually happens'.

The mutual ex
lusion property
an be expressed by the CTL formula s

0

j=

:EF (unsafe), where unsafe is an atomi
 state property whi
h holds i� both

pro
esses are in
ontrol state use. The starvation freedom property for a pro
ess

an be expressed by the CTL formula s

0

j= AG(wait ! AF (use)) whi
h is

equivalent to s

0

j= :EF (wait^:AF (use)), where wait and use are atomi
 state

properties whi
h hold i� the pro
ess is in
ontrol state wait and use, respe
tively.

Our two-step veri�
ation method works as follows.

Step 1. We introdu
e a CLP program P

bakery

, whi
h is shown in Appendix,

su
h that for the mutual ex
lusion property we have: s

0

j= :EF (unsafe) i�

sat(s

0

; not(ef(unsafe))) 2M(P

bakery

) , and

for the starvation freedom property we have: s

0

j= :EF (wait ^ :AF (use)) i�

sat(s

0

; not(ef(and(wait; not(af(use)))))) 2M(P

bakery

).

Step 2. We
hoose the parameters of our strategy as follows. (i) The solve fun
-

tion is the
lp(q,r) solver of [6℄ for simplifying
onjun
tions of linear equations

and inequations over real numbers. (ii) The unfolding fun
tion takes a de�nition

of the form newp(X

1

; : : : ; X

n

)
; A and it unfolds it w.r.t. A. Then it unfolds

the derived
lauses w.r.t. the atoms of the form sat(S; F), where either F is an

atomi
 state property or the outermost
onne
tive of F is one of the following:

and ; or ; not . (iii) The generalization fun
tion takes a
lause H
; A and it

generalizes it to the
lause H d;A, where the
onstraint d is de�ned as follows

starting from the
onstraint
. Let L(
) be the set of
onstraints whose generi

element r is de�ned as follows:

r ::= true j t = t j t>t j t� t j r^r

where t 2 vars(
) [f0g. The
onstraint d is the least
onstraint of L(
) (in the

impli
ation ordering) whi
h is entailed by
. Noti
e that vars(d) � vars(
).

For instan
e, the generalization of the
lause:

new1(A,B) :- A=1, B=2, sat(s(wait,A,wait,B), ef(unsafe))

is the
lause:

new2(A,B) :- A>0, B>A, sat(s(wait,A,wait,B), ef(unsafe)).

9

The de�nition of the set L(
) of
onstraints used by the
lause generalization

fun
tion is based upon the transitions whi
h
an be made by the system. This

hoi
e
an easily be automated be
ause this set is
onstru
ted by using the

onstants and the
onstraint predi
ate symbols o

urring in the transitions.

We have veri�ed the mutual ex
lusion and the starvation freedom properties

by spe
ializing P

bakery

w.r.t. the atoms safe and starvfree, respe
tively, whi
h

are de�ned as follows:

safe :- A=0, B=0,

sat(s(think,A,think,B), not(ef(unsafe))).

starvfree :- A=0, B=0,

sat(s(think,A,think,B), not(ef(and(wait,not(af(use)))))).

The whole veri�
ation pro
ess was performed automati
ally by using the MAP

transformation system (available at http://www.iasi.rm.
nr.it/~fioravan).

5 Related Work and Con
lusions

During the last years many logi
-based te
hniques have been developed for au-

tomati
ally verifying properties of systems, the most su

essful of them being

model
he
king [2℄. The su

ess of model
he
king is also due to the use of Binary

De
ision Diagrams whi
h provide a very
ompa
t symboli
 representation of a

possibly very large, but �nite, set of states. In order to over
ome this �niteness

restri
tion, some e�orts have re
ently been devoted for the in
orporation into

model
he
king of abstra
tion and dedu
tion te
hniques [15℄.

Re
ent papers also demonstrate the usefulness of logi
 programming and

onstraint logi
 programming as a basis for the veri�
ation of �nite or in�nite

state systems. In parti
ular, in [13℄ the authors present XMC, a model
he
king

system implemented in the tabulation-based logi
 programming language XSB.

XMC
an verify �-
al
ulus properties of �nite state transitions systems expressed

in a CCS-like language, with performan
es
omparable to that of state-of-the-

art model
he
kers. In [3℄ model
he
king using
onstraint logi
 programming

is des
ribed and some CTL operators of in�nite state
on
urrent systems are

expressed in terms of least and greatest �xed points of the CLP programs used

to des
ribe the systems. In [10℄ the authors de�ne a method based on partial

dedu
tion of logi
 programs, augmented with abstra
t interpretation, for solving

overability problems of in�nite state Petri nets. In [12℄ a �nite state lo
al model

he
ker is de�ned for CTL, by using CLP with �nite domains, extended with

onstru
tive negation and tabled resolution.

This paper presents some preliminary results obtained when applying to the

veri�
ation of in�nite state systems an extension of the te
hniques developed in

[5℄ for spe
ializing
onstraint logi
 programs. We performed some experiments

on a simpli�ed version of the bakery algorithm [9℄ whi
h is a proto
ol for mutual

ex
lusion between two pro
esses. We proved that this proto
ol ensures both

mutual ex
lusion and starvation freedom.

10

We believe that the integration of CLP as modeling language, and program

spe
ialization as inferen
e system,
an provide a very �exible tool for the veri�
a-

tion of in�nite state systems. Indeed,
onstraints provide a natural representation

for in�nite sets of values (e.g., X � 0 des
ribes the in�nite set of non-negative

real numbers), and the de
larativeness of logi
 programming makes it easy to

model a large variety of systems and properties.

Future work on the appli
ation of spe
ialization of CLP program for the

veri�
ation of in�nite state systems will in
lude: experimentation with di�erent

hoi
es of
onstraint domains, unfolding fun
tions, and generalization operators.

We will also plan to experiment with di�erent
lasses of systems and properties.

Referen
es

1. K. R. Apt and R. N. Bol. Logi
 programming and negation: A survey. Journal of

Logi
 Programming, 19, 20:9�71, 1994.

2. E. Clarke, O. Grumberg, and D. Peled. Model Che
king. MIT Press, 2000.

3. G. Delzanno and A. Podelski. Model
he
king in CLP. In R. Cleaveland, editor,

5th International Conferen
e TACAS'99, Le
ture Notes in Computer S
ien
e 1579,

pages 223�239. Springer-Verlag, 1999.

4. E. A. Emerson. Temporal and modal logi
. In J. van Leeuwen, editor, Handbook

of Theoreti
al Computer S
ien
e, volume B, pages 997�1072. Elsevier, 1990.

5. F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for spe
ializ-

ing
onstraint logi
 programs. In K.-K. Lau, editor, Pro
eedings of LOPSTR'2000,

Tenth International Workshop on Logi
-based Program Synthesis and Transforma-

tion, London, UK, 24-28 July, 2000, Le
ture Notes in Computer S
ien
e 2042,

pages 125�146. Springer-Verlag, 2001.

6. C. Holzbaur. OFAI
lp(q,r) manual, Edition 1.3.2. Te
hni
al Report TR-95-09,

Austrian Resear
h Institute for Arti�
ial Intelligen
e, Vienna, 1995.

7. J. Ja�ar and M. Maher. Constraint logi
 programming: A survey. Journal of Logi

Programming, 19/20:503�581, 1994.

8. J. Ja�ar, M. Maher, K. Marriott, and P. Stu
key. The semanti
s of
onstraint logi

programming. Journal of Logi
 Programming, 37:1�46, 1998.

9. Leslie Lamport. A new solution of Dijkstra's
on
urrent programming problem.

Communi
ations of the ACM, 17(8):453�455, 1974.

10. Mi
hael Leus
hel and Helko Lehmann. Solving
overability problems of petri nets

by partial dedu
tion. In Pro
eedings of the 2nd Imternational ACM SIGPLAN

Conferen
e on Prin
iples and Pra
ti
e of De
larative Programming (PPDP-00),

pages 268�279, N.Y., September 20�23 2000. ACM Press.

11. J. W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, Berlin, 1987.

Se
ond Edition.

12. Ulf Nilsson and Johan Lüb
ke. Constraint logi
 programming for lo
al and sym-

boli
 model-
he
king. In J. Lloyd et al., editor, CL 2000: Computational Logi
,

number 1861 in Le
ture Notes in Arti�
ial Intelligen
e, pages 384�398, 2000.

13. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,

T. Swift, and D. S. Warren. E�
ient model
he
king using tabled resolution.

In CAV '97, Le
ture Notes in Computer S
ien
e 1254, pages 143�154. Springer-

Verlag, 1997.

14. A. Udaya Shankar. An introdu
tion to assertional reasoning for
on
urrent systems.

ACM Computing Surveys, 25(3):225�262, September 1993.

11

15. Natarajan Shankar. Combining theorem proving and model
he
king through sym-

boli
 analysis. In CONCUR 2000: Con
urren
y Theory, number 1877 in Le
ture

Notes in Computer S
ien
e, pages 1�16, State College, PA, August 2000. Springer-

Verlag.

12

Appendix

The CLP program P

bakery

.

sat(s(u,A,u,B),unsafe).

sat(s(w,A,B,C),wait).

sat(s(u,A,B,C),use).

sat(A,or(B,C)) :- sat(A,B).

sat(A,or(B,C)) :- sat(A,C).

sat(A,and(B,C)) :- sat(A,B), sat(A,C).

sat(A,not(B)) :- \+ sat(A,B).

sat(A,ef(B)) :- sat(A,B).

sat(s(t,A,S,B),ef(C)) :- D=B+1, A>=0, B>=0, sat(s(w,D,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- A<B, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- B=0, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(u,A,S,B),ef(C)) :- D=0, A>=0, B>=0, sat(s(t,D,S,B),ef(C)).

sat(s(S,A,t,B),ef(C)) :- D=A+1, A>=0, sat(s(S,A,w,D),ef(C)).

sat(s(S,A,w,B),ef(C)) :- B<A, B>=0, sat(s(S,A,u,B),ef(C)).

sat(s(S,A,w,B),ef(C)) :- A=0, B>=0, sat(s(S,A,u,B),ef(C)).

sat(s(S,A,u,B),ef(C)) :- D=0, B>=0, A>=0, sat(s(S,A,t,D),ef(C)).

sat(A,af(B)) :- sat(A,B).

sat(s(t,T1,t,T2),af(P)) :- T3=T2+1, T4=T1+1,

sat(s(w,T3,t,T2),af(P)), sat(s(t,T1,w,T4),af(P)).

sat(s(t,T1,u,T2),af(P)) :- T3=T2+1, T4=0,

sat(s(w,T3,u,T2),af(P)), sat(s(t,T1,t,T4),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T2<T1,

sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1=0,

sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1>0, T1=<T2,

sat(s(w,T3,w,T2),af(P)).

sat(s(u,T1,u,T2),af(P)) :- T3=0, T4=0,

sat(s(t,T3,u,T2),af(P)), sat(s(u,T1,t,T4),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T2<T1,

sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1=0,

sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1>0, T1=<T2,

sat(s(t,T3,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1=0,

sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1>0,

sat(s(u,T1,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T2=0, T1=0,

sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(u,T2,t,T1),af(P)) :- T3=T2+1, T4=0,

sat(s(u,T2,w,T3),af(P)), sat(s(t,T4,t,T1),af(P)).

13

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T2<T1,

sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1=0,

sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1>0, T1=<T2,

sat(s(w,T2,w,T3),af(P)).

sat(s(u,T2,u,T1),af(P)) :- T3=0, T4=0,

sat(s(u,T2,t,T3),af(P)), sat(s(t,T4,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T2<T1,

sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1=0,

sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1>0, T1=<T2,

sat(s(w,T2,t,T3),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1=0,

sat(s(w,T2,u,T1),af(P)),

sat(s(u,T2,w,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1>0,

sat(s(w,T2,u,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T2=0, T1=0,

sat(s(w,T2,u,T1),af(P)), sat(s(u,T2,w,T1),af(P)).

14

