
Verifying CTL Properties

?

of In�nite State Systems

by Speializing Constraint Logi Programs

Fabio Fioravanti

1

, Alberto Pettorossi

2

, Maurizio Proietti

1

(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy

{fioravanti,adp,proietti}�iasi.rm.nr.it

(Extended Abstrat)

1 Introdution

The goal of automated veri�ation of systems is the de�nition and the imple-

mentation of logial frameworks whih allow one: (i) to formally speify these

systems, and (ii) to prove their properties in an automati way. These logial

frameworks require formalisms both for the desription of the systems and the

desription of their properties.

In this paper we assume that a system makes transitions from states to states

and the evolution of a system an be formalized using a omputation tree, whih

is de�ned as follows. Given a system S and its initial state s

0

, the root of the

omputation tree for S is s

0

, and every node s

i

of the omputation tree for S

has a hild node s

j

i� there exists in S a transition from state s

i

to state s

j

.

The state s

j

is alled a suessor state of s

i

. We assume that in every system

for every state s

i

there exists at least one suessor state. Notie that the set of

all states of a system may be �nite or in�nite.

We also assume that the desription of the properties of any system an be

done in the Computation Tree Logi formalism [4℄ (CTL for short). CTL formulas

desribe properties of omputation trees, and they are built using: (i) atomi

state properties, (ii) logial onnetives: :;^;_, (iii) quanti�ers over paths: A

(`for all paths') and E (`for some path'), and (iv) quanti�ers along paths: G (`for

all states on the path'), F (`for some state on the path'). CTL formulas are very

expressive, and in partiular, one may use them to desribe the so alled safety

and liveness properties. Given a CTL formula ' and state s, the semantis of

CTL de�nes the satisfation relation s j= ' whih holds whenever ' is true in s

[4℄.

In this paper we will present a method for verifying CTL properties of possi-

bly in�nite state systems by using Constraint Logi Programming [7℄ (CLP, for

short) and Program Speialization. Our method is appliable to a large lass of

onurrent systems, like those desribed by [14℄.

?

Revised version of the extended abstrat presented at VCL'01, 2nd ACM-Sigplan

Workshop on Veri�ation and Computational Logi, Florene, Italy, September 4,

2001.

Constraint Logi Programming extends standard logi programming by in-

orporating mehanisms for solving onstraints over some given onstraint do-

mains by using domain spei� e�ient algorithms. The following are onstraint

domains whih are usually onsidered: (i) the domain of inequations over real

or rational numbers, (ii) the domain of boolean formulas, and (iii) every �nite

domain. CLP programs turn out to be very suitable for modelling in�nite state

systems beause an in�nite set of states an be desribed by onstraints over the

state spae.

For our purpose of verifying CTL properties of systems whih may require the

use of negated formulas, we will onsider CLP programs with loally strati�ed

negation [1℄. We assume that the semantis of a program P in this lass is

provided by the unique perfet model, denoted by M(P), whih oinides with

the unique stable model, and the total well-founded model. The reader may

refer to [1,7,11℄ for the de�nition of these models and other notions of logi

programming or onstraint logi programming whih we do not reall here.

Program speialization is a program transformation tehnique whose goal is

the adaptation of a program to the ontext where it is used. In [5℄ we have de-

veloped a general framework for the automati speialization of onstraint logi

programs over a generi onstraint domain D. The speialization also improves

the omputational properties w.r.t. a given lass of goals, while it preserves the

least D-model [8℄. In this paper we use an extension of that framework to deal

with loally strati�ed CLP programs.

Our speialization tehnique is orret w.r.t. the perfet model semantis in

the sense that, given a loally strati�ed CLP program P and an atom A whose

prediate is de�ned in P , and given a program Q whih is a speialization of P

w.r.t. A, for every ground instane A

g

of A,

A

g

2M(P) i� A

g

2 M (Q). (1)

Veri�ation Method. Our method for verifying whether or not a system S

in its initial state s

0

, satis�es a CTL property ', onsists of the following two

steps.

Step 1. We introdue a CLP program P

S

whih de�nes a binary prediate sat

suh that s

0

j= ' i� sat(s

0

; ') 2 M(P

S

). We assume that s

0

and ' are ground

terms.

Step 2. We introdue a new 0-ary prediate f de�ned by the lause f sat(s

0

; ')

and thus, sat(s

0

; ') 2 M(P

S

) i� f 2 M(P

S

[ff sat(s

0

; ')g). We then

apply our program speialization tehnique and transform the program P

S

[

ff sat(s

0

; ')g into a speialized program P

f

. By the orretness of program

speialization, stated by the equivalene (1) above, we have that f 2 M(P

S

[

ff sat(s

0

; ')g) i� f 2M(P

f

).

Putting Step 1 and Step 2 together, we have that s

0

j= ' i� f 2M(P

f

), and

we an hek whether or not s

0

j= ' as follows: (i) if the unit lause f ours

in P

f

then s

0

j= ', and (ii) if no lause with head f ours in P

f

(that is, f has

an empty de�nition in P

f

) then it is not the ase that s

0

j= '.

2

The struture of our paper is as follows. In Setion 2 we show how Step

1 of our veri�ation method an be realized by enoding CTL properties of a

�nite or in�nite state system as a onstraint logi program with loally strati�ed

negation. In Setion 3 we desribe the program speialization tehnique whih

we use to realize Step 2 of our veri�ation method. In Setion 4 we show how

our method works for the veri�ation of a safety and a liveness property of the

bakery protool for mutual exlusion [9℄. Finally, in Setion 5 we ompare our

work with related veri�ation tehniques desribed in the literature.

2 Enoding CTL Properties as Constraint Logi

Programs

Given a system S, its initial state s

0

, and a CTL property ', Step 1 of our ver-

i�ation method is realized by providing the reursive de�nition of the relation

s

0

j= ' as a loally strati�ed program P

S

. Step 1 an be performed in an auto-

mati way for a very large lass of onurrent systems, namely those whih are

state transition systems with enabling onditions and ations [14℄ with ondi-

tions and ations whih an be expressed by onstraints over the values of state

variables.

The following simple example will larify the reader's ideas. This example will

be used throughout this paper to illustrate our approah. Let S0 be the system

whose set of states is a subset of fa; bg � Z, where Z is the set of integers. Let

the initial state of S0 be the pair ha; 0i, and let us assume that the transitions

between states are the following ones:

ha; 1i ! hb; 1i

8y 2 Z: ha; yi ! ha; y+2i

8y 2 Z: hb; yi ! hb; y�1i

The system S0 an be depited as shown in Figure 1.

if y=1
ba

y:=y+2 y:=y-1

Figure 1. The system S0 whose set of states is fa; bg� Z.

We want to verify that the property that starting from the initial state ha; 0i,

the system S0 never reahes a state hx; yi with y<0, for some x 2 fa; bg. This

property is expressed by the satisfation relation ha; 0i j= :EF neg whih asserts

that in the initial state ha; 0i the CTL formula :EF neg is true, where neg is

the atomi state property whih holds in a state hx; yi i� y < 0.

The satisfation relation s j= ' between the state s and the CTL formula ',

is reursively de�ned as follows:

s j= p i� p is an atomi state property and p holds in s

s j= :' i� it is not the ase that s j= '

3

s j= EF ' i� either s j= '

or 9 a state s

1

suh that (i) 9 a transition from s to s

1

and

(ii) s

1

j= EF '

For the system S0 the relation s j= ' an be enoded by the following loally

strati�ed program P

S0

written a Prolog-like syntax, where the state hx; yi is

denoted by s(X,Y):

sat(s(X,Y),neg) :- Y<0.

sat(S,not(F)) :- \+ sat(S,F).

sat(S,ef(F)) :- sat(S,F).

sat(s(a,Y),ef(F)) :- Y1=Y+2, sat(s(a,Y1),ef(F)).

sat(s(a,Y),ef(F)) :- Y=1, sat(s(b,Y),ef(F)).

sat(s(b,Y),ef(F)) :- Y1=Y-1, sat(s(b,Y1),ef(F)).

Thus, we have that:

ha; 0i j= :EF neg i� sat(s(a,0),not(ef(neg))) 2M(P

S0

).

3 Veri�ation of CTL Properties via Program

Speialization

Step 2 of our veri�ation method is realized by using an automati program

speialization tehnique whih is derived from the one desribed in [5℄ and it is

a partiular ase of the program transformation tehnique based on rules and

strategies. The transformation rules ensure the orretness of the speialized

program w.r.t. the given initial program. Thus, given a system S with initial

state s

0

, and a CTL property ', after Step 1 and Step 2, whereby we introdue

the prediate f , and we derive the speialized program P

f

, we have that:

s

0

j= ' i� f 2 M (P

f

).

The speialization strategy guides the appliation of the rules with the aim of

deriving a program P

f

where the de�nition of f is either (i) the unit lause f

or (ii) it is the empty de�nition. As already mentioned, in ase (i) s

0

j= ' holds,

while in ase (ii) s

0

j= ' does not hold.

We will show that our speialization strategy terminates for all initial pro-

grams P

S

[ff sat(s

0

; ')g, but due to the undeidability of CTL for in�nite

state systems, in some ases our speialization strategy may produe a program

P

f

in whih the de�nition of f is neither the unit lause f nor the empty

de�nition.

However, we have that our strategy is omplete for �nite state systems.

3.1 The Rules for Program Speialization

Now we introdue some notions whih we use below for desribing our program

speialization tehnique.

We assume that every atom is pure, that is, it is of the form p(X

1

; : : : ; X

m

),

where X

1

; : : : ; X

m

are distint variables. A onstrained atom is the onjuntion

of a onstraint and an atom. Goals are (possibly empty) onjuntions of atoms.

4

A onstrained goal is the onjuntion of a onstraint and a goal. Conjuntion

is ommutative and, thus, the order of onstraints and atoms in the body of a

lause is immaterial. The empty onjuntion (of onstraints or atoms) is true.

Clauses are of the form H ;G.

The assumption that all atoms are pure is not restritive beause, for in-

stane, any lause with ourrenes of non-pure atoms, an be transformed

into a lause Æ with ourrenes of pure atoms only, suh that Æ is equivalent

to w.r.t. the least D-model semantis. This an be done by adding suitable

equality onstraints. For example, the lause: p(X+1) X�0; r(X�1) an be

transformed into the equivalent lause: p(Y) X�0; r(Z); Y =X+1; Z=X�1,

where all atoms are pure.

We de�ne the set of useless prediates of a program P to be the maximal set

U of prediates ourring in P suh that the prediate p is in U i� the body of

eah lause de�ning p in P ontains a positive literal whose prediate is in U .

We say that the atom A is failed in a program P i� A does not unify with

the head of any lause in P . We say that A is valid in a program P i� P ontains

a unit lause whose head has the prediate symbol of A.

The proess of speializing a given program P whereby deriving program P

s

,

an be formalized as a sequene P

0

; : : : ; P

n

of programs, alled a transformation

sequene, where P

0

= P; P

n

= P

s

and, for k = 0; : : : ; n�1, program P

k+1

is

obtained from program P

k

, alled the urrent program, by applying one of the

transformation rules are listed below. These rules are an extension of the rules

presented in [5℄ to the ase of CLP programs with loally strati�ed negation.

R1. Constrained Atomi De�nition. Introdue a new prediate de�ned by

a de�nition lause: newp(X

1

; : : : ; X

n

) ; A where ; A is a onstrained atom.

R2. Positive Unfolding. Replae lause H ;G

1

; A;G

2

where A is an

atom, by the set of lauses fH ; A=A

j

;

j

; G

1

; G

j

; G

2

j j = 1; : : : ;mg, where

fA

j

j

; G

j

j j = 1; : : : ;mg is the set of all renamed apart lauses in the urrent

program suh that the atoms A and A

j

have the same prediate symbol.

R3. Negative Unfolding. Let be the lause H ;G

1

;:A;G

2

. If A is failed

in the urrent program then replae by the lause H ;G

1

; G

2

. If A is valid

in the urrent program then remove .

R4. Constrained Atomi Folding.Replae lause A ;G

1

; L;G

2

, by lause

A ;G

1

; L

0

; G

2

, where L

0

is newp(X

1

; : : : ; X

n

) if L is B, or :newp(X

1

; : : : ; X

n

)

if L is :B, provided that there exists a renamed apart de�nition lause

newp(X

1

; : : : ; X

n

) d;B suh that D j= ! d.

R5. Removal of Clauses with Unsatis�able Body. Remove lause A ;G

if the onstraint is unsatis�able.

R6. Removal of Useless Clauses. Remove all lauses whose head prediate

is useless in the urrent program.

R7. Removal of Subsumed Clauses. If the urrent program ontains a unit

lause p(X

1

; : : : ; X

n

) , then remove all lauses whose head prediate symbol

is p.

R8. Contextual Constraint Replaement. Given a set C of onstrained

atoms, replae lause p(X

1

; : : : ; X

n

)

1

; G by p(X

1

; : : : ; X

n

)

2

; G, if for

5

some onstraint

2

, we have that for every onstrained atom ; p(Y

1

; : : : ; Y

n

)

in C, D j= (;X

1

= Y

1

; : : : ; X

n

= Y

n

) ! (

1

$

2

), that is, in the onstraint

domain D if ;X

1

= Y

1

; : : : ; X

n

= Y

n

holds then the onstraints

1

and

2

are

equivalent.

3.2 The Speialization Strategy

The speialization proess is performed aording to a strategy whih guides the

appliation of the rules R1-R8 above. Our speialization strategy is parameter-

ized by: (i) a funtion solve for solving onstraints over the onstraint domain

D, (ii) an unfolding funtion for ontrolling the unfolding proess, (iii) a lause

generalization funtion for ontrolling the introdution of new prediate de�ni-

tions. One these parameters have been hosen, our strategy an be applied in

a fully automati way.

The speialization strategy is divided into three phases.

Phase A.We onsider the program P

S

[ff sat(s

0

; ')g and we iterate the pro-

edures Unfold-Replae and De�ne-Fold as we now explain. During the Unfold-

Replae proedure we unfold the program to be speialized by using the given

unfolding funtion, and we solve the onstraints in the derived lauses by us-

ing the given funtion solve. We then apply the De�ne-Fold proedure and we

fold the lauses we have derived. For folding we make use of already available

de�nitions and, possibly, some new de�nitions introdued by using the lause

generalization funtion. Phase A terminates with output program P

A

when no

new de�nitions need to be introdued for performing the folding steps.

Phase B. We onsider program P

A

and, by applying the ontextual onstraint

replaement rule, from eah lause de�ning a prediate, say p, we remove the

onstraints whih hold before the exeution of the lause. These onstraints are

determined by omputing the least upper bound of the set of onstraints whih

our in the lauses ontaining a all of p (see [5℄ for details). Under suitable

onditions, that we disuss below, the output of Phase B is a program P

B

whih,

by onstrution, admits a �nite strati�ation so that P

B

= S

1

[: : : [S

n

.

Phase C. We onsider the program P

B

and by working bottom-up on the strata

S

1

; : : : ; S

n

, we simplify the de�nition of every prediate p with the aim of deriving

either the unit lause p(: : :) or the empty de�nition. During this phase we

apply the following rules: (i) positive and negative unfolding, (ii) removal of

useless and subsumed lauses, and (iii) ontextual onstraint replaement.

The algorithm for Phase C is as follows.

P

f

:= ;

for i := 1; : : : ; n do

repeat

S

0

:= S

i

;

Apply to S

i

, as long as possible, the rule for removing subsumed lauses;

Apply to S

i

, as long as possible, the negative unfolding rule and the positive

unfolding rule w.r.t. valid and failed atoms in the urrent program;

6

Replae all lauses in S

i

of the form H by the lause H provided

that D j= 8(9Y) where Y is the set of variables in

whih do not our in H

until S

0

= S

i

Remove the useless lauses of S

i

;

P

f

:= P

f

[S

i

;

end-for

Finally, (i) if the unit lause f belongs to P

f

, we onlude that ' is true in

S, and otherwise, (ii) if there are no lauses in P

f

de�ning f , we onlude that

' is false in S. If neither ase (i) nor ase (ii) ours, we annot onlude that

' is true in S and we annot onlude that ' is false in S.

Now we illustrate how our speialization strategy works by applying it to

program P

S0

desribed in Setion 2. We start by introduing a new de�nition

lause Æ

property :- X=0, sat(s(a,X), not(ef(neg))).

whih enodes the property to be veri�ed. The speialization of program P

S0

w.r.t. the atom property proeeds as follows. The output of Phase A is the

following program P

A

:

property :- A=0, \+(newsat1(A)).

newsat1(A) :- A=0, newsat2(A).

newsat1(A) :- B=2, A=0, newsat3(B).

newsat3(A) :- A>1, newsat4(A).

newsat3(A) :- B=2+A, A>1, newsat3(B).

During Phase B we apply the ontextual onstraint replaement rule and we

obtain the following program P

B

:

(1) property :- A=0, \+ newsat1(A).

(2) newsat1(A) :- newsat2(A).

(3) newsat1(A) :- B=2, newsat3(B).

(4) newsat3(A) :- newsat4(A).

(5) newsat3(A) :- B=2+A, newsat3(B).

We start Phase C by omputing a minimal strati�ation of the program P

B

.

We get: P

B

= S

1

[S

2

, where S

1

= f2; 3; 4; 5g and S

2

= f1g. Then, we start

proessing the lowest stratum S

1

.

Stratum S

1

. Sine there is no lause de�ning newsat2 and newsat4, we apply the

positive unfolding rule to lauses 2 and 4 and we remove them from S

1

: We get:

S

1

= f3; 5g. Prediates newsat1 and newsat3 are useless in S

1

, so we remove

their de�nitions and we obtain S

1

= ;. The iteration on stratum S

1

ends with

P

f

= ;.

Stratum S

2

. The urrent program ontains no lause de�ning newsat1 and

this allows us to apply the negative unfolding rule to lause 1 obtaining S

2

=

fproperty :- A=0.g. We solve the onstraint in the body of the only lause of

S

2

w.r.t. the variables in its head, and we obtain S

2

= fproperty:g. The output

of Phase C of our speialization strategy is P

f

= fproperty:g whih gives us a

proof that property :EF neg is true in S0.

Let us now brie�y omment on our three-phase strategy.

7

The output program P

A

of Phase A of the speialization strategy admits

a �nite strati�ation, if we hoose a lause generalization funtion whih does

not generalize the seond argument of sat enoding a CTL formula. Indeed, by

onstrution, eah lause of P

A

with a negative literal in the body, will be of the

form:

newp(: : :) : : : ; :newq(: : :); : : :

and the prediates newp and newq are de�ned by lauses of the form:

newp(: : :) sat(: : : ; '

p

)

newq(: : :) sat(: : : ; '

q

)

where: (i) '

p

and '

q

are ground terms enoding CTL formulas, and (ii) '

q

is a

proper subformula of '

p

.

Sine the ontextual onstraint replaement rule preserves strati�ation, also

the output program P

B

of Phase B admits a �nite strati�ation.

Our speialization strategy terminates if the following fats hold: (i) the

Unfold-Replae proedure terminates, and (ii) the set of prediate de�nitions

introdued by the generalization funtion is �nite. Notie that Phases B and C

always terminate. In the example presented in the next setion we will provide

an unfolding funtion and a generalization funtion for whih Phase A of our

speialization strategy terminates.

4 Veri�ation of the Bakery Protool

The bakery protool desribes the behavior of a system onsisting of two pro-

esses, A and B, whih run in parallel and try to aess a shared resoure. The

state s

A

of proess A is represented by a pair h

A

; ai where

A

is an element

of the set fthink ;wait ; useg of ontrol states, and a is a ounter whih takes as

value a non negative rational number. The possible transitions for proess A are

the following (see also Figure 2):

(1) if the urrent state is hthink ; ai, then the next state is hwait ; b+ 1i,

(2) if the urrent state is hwait ; ai and, either a < b or b = 0, then the next state

is huse; ai,

(3) if the urrent state is huse; ai, then the next state is hthink ; 0i.

Analogously for proess B, by interhanging a and b.

a:=b+1 if (a<b or b=0)

a:=0

usewaitthink

Figure 2. Transitions of the proess A.

The generi state s of the system onsisting of the two proesses A and B

together, is represented by the 4-tuple h

A

; a;

B

; bi, whih is initially set to

s

0

= hthink ; 0; think ; 0i.

8

This system has an in�nite number of states, beause ounters may inrease in

an unbounded way, as the following sequene of transitions illustrates:

hthink ; 0; think ; 0i ! hwait ; 1; think ; 0i ! hwait ; 1;wait ; 2i! huse; 1;wait ; 2i !

hthink ; 0;wait ; 2i ! hthink ; 0; use; 2i ! hwait ; 3; use; 2i ! hwait ; 3; think ; 0i !

hwait ; 3;wait ; 4i ! : : :

We have applied our speialization method to the veri�ation of two prop-

erties of the bakery protool: (i) the mutual exlusion property, and (ii) the

starvation freedom property. The mutual exlusion property says that `the sys-

tem will never reah a state where both proesses are using the shared resoure'.

It is a safety property in the sense that during the evolution of the system `some-

thing (bad) may never happen'. The starvation freedom property says that `if

a proess wants to use a resoure then it will eventually get it'. It is a liveness

property in the sense that during the evolution of a system `something (good)

eventually happens'.

The mutual exlusion property an be expressed by the CTL formula s

0

j=

:EF (unsafe), where unsafe is an atomi state property whih holds i� both

proesses are in ontrol state use. The starvation freedom property for a proess

an be expressed by the CTL formula s

0

j= AG(wait ! AF (use)) whih is

equivalent to s

0

j= :EF (wait^:AF (use)), where wait and use are atomi state

properties whih hold i� the proess is in ontrol state wait and use, respetively.

Our two-step veri�ation method works as follows.

Step 1. We introdue a CLP program P

bakery

, whih is shown in Appendix,

suh that for the mutual exlusion property we have: s

0

j= :EF (unsafe) i�

sat(s

0

; not(ef(unsafe))) 2M(P

bakery

) , and

for the starvation freedom property we have: s

0

j= :EF (wait ^ :AF (use)) i�

sat(s

0

; not(ef(and(wait; not(af(use)))))) 2M(P

bakery

).

Step 2. We hoose the parameters of our strategy as follows. (i) The solve fun-

tion is the lp(q,r) solver of [6℄ for simplifying onjuntions of linear equations

and inequations over real numbers. (ii) The unfolding funtion takes a de�nition

of the form newp(X

1

; : : : ; X

n

) ; A and it unfolds it w.r.t. A. Then it unfolds

the derived lauses w.r.t. the atoms of the form sat(S; F), where either F is an

atomi state property or the outermost onnetive of F is one of the following:

and ; or ; not . (iii) The generalization funtion takes a lause H ; A and it

generalizes it to the lause H d;A, where the onstraint d is de�ned as follows

starting from the onstraint . Let L() be the set of onstraints whose generi

element r is de�ned as follows:

r ::= true j t = t j t>t j t� t j r^r

where t 2 vars() [f0g. The onstraint d is the least onstraint of L() (in the

impliation ordering) whih is entailed by . Notie that vars(d) � vars().

For instane, the generalization of the lause:

new1(A,B) :- A=1, B=2, sat(s(wait,A,wait,B), ef(unsafe))

is the lause:

new2(A,B) :- A>0, B>A, sat(s(wait,A,wait,B), ef(unsafe)).

9

The de�nition of the set L() of onstraints used by the lause generalization

funtion is based upon the transitions whih an be made by the system. This

hoie an easily be automated beause this set is onstruted by using the

onstants and the onstraint prediate symbols ourring in the transitions.

We have veri�ed the mutual exlusion and the starvation freedom properties

by speializing P

bakery

w.r.t. the atoms safe and starvfree, respetively, whih

are de�ned as follows:

safe :- A=0, B=0,

sat(s(think,A,think,B), not(ef(unsafe))).

starvfree :- A=0, B=0,

sat(s(think,A,think,B), not(ef(and(wait,not(af(use)))))).

The whole veri�ation proess was performed automatially by using the MAP

transformation system (available at http://www.iasi.rm.nr.it/~fioravan).

5 Related Work and Conlusions

During the last years many logi-based tehniques have been developed for au-

tomatially verifying properties of systems, the most suessful of them being

model heking [2℄. The suess of model heking is also due to the use of Binary

Deision Diagrams whih provide a very ompat symboli representation of a

possibly very large, but �nite, set of states. In order to overome this �niteness

restrition, some e�orts have reently been devoted for the inorporation into

model heking of abstration and dedution tehniques [15℄.

Reent papers also demonstrate the usefulness of logi programming and

onstraint logi programming as a basis for the veri�ation of �nite or in�nite

state systems. In partiular, in [13℄ the authors present XMC, a model heking

system implemented in the tabulation-based logi programming language XSB.

XMC an verify �-alulus properties of �nite state transitions systems expressed

in a CCS-like language, with performanes omparable to that of state-of-the-

art model hekers. In [3℄ model heking using onstraint logi programming

is desribed and some CTL operators of in�nite state onurrent systems are

expressed in terms of least and greatest �xed points of the CLP programs used

to desribe the systems. In [10℄ the authors de�ne a method based on partial

dedution of logi programs, augmented with abstrat interpretation, for solving

overability problems of in�nite state Petri nets. In [12℄ a �nite state loal model

heker is de�ned for CTL, by using CLP with �nite domains, extended with

onstrutive negation and tabled resolution.

This paper presents some preliminary results obtained when applying to the

veri�ation of in�nite state systems an extension of the tehniques developed in

[5℄ for speializing onstraint logi programs. We performed some experiments

on a simpli�ed version of the bakery algorithm [9℄ whih is a protool for mutual

exlusion between two proesses. We proved that this protool ensures both

mutual exlusion and starvation freedom.

10

We believe that the integration of CLP as modeling language, and program

speialization as inferene system, an provide a very �exible tool for the veri�a-

tion of in�nite state systems. Indeed, onstraints provide a natural representation

for in�nite sets of values (e.g., X � 0 desribes the in�nite set of non-negative

real numbers), and the delarativeness of logi programming makes it easy to

model a large variety of systems and properties.

Future work on the appliation of speialization of CLP program for the

veri�ation of in�nite state systems will inlude: experimentation with di�erent

hoies of onstraint domains, unfolding funtions, and generalization operators.

We will also plan to experiment with di�erent lasses of systems and properties.

Referenes

1. K. R. Apt and R. N. Bol. Logi programming and negation: A survey. Journal of

Logi Programming, 19, 20:9�71, 1994.

2. E. Clarke, O. Grumberg, and D. Peled. Model Cheking. MIT Press, 2000.

3. G. Delzanno and A. Podelski. Model heking in CLP. In R. Cleaveland, editor,

5th International Conferene TACAS'99, Leture Notes in Computer Siene 1579,

pages 223�239. Springer-Verlag, 1999.

4. E. A. Emerson. Temporal and modal logi. In J. van Leeuwen, editor, Handbook

of Theoretial Computer Siene, volume B, pages 997�1072. Elsevier, 1990.

5. F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for speializ-

ing onstraint logi programs. In K.-K. Lau, editor, Proeedings of LOPSTR'2000,

Tenth International Workshop on Logi-based Program Synthesis and Transforma-

tion, London, UK, 24-28 July, 2000, Leture Notes in Computer Siene 2042,

pages 125�146. Springer-Verlag, 2001.

6. C. Holzbaur. OFAI lp(q,r) manual, Edition 1.3.2. Tehnial Report TR-95-09,

Austrian Researh Institute for Arti�ial Intelligene, Vienna, 1995.

7. J. Ja�ar and M. Maher. Constraint logi programming: A survey. Journal of Logi

Programming, 19/20:503�581, 1994.

8. J. Ja�ar, M. Maher, K. Marriott, and P. Stukey. The semantis of onstraint logi

programming. Journal of Logi Programming, 37:1�46, 1998.

9. Leslie Lamport. A new solution of Dijkstra's onurrent programming problem.

Communiations of the ACM, 17(8):453�455, 1974.

10. Mihael Leushel and Helko Lehmann. Solving overability problems of petri nets

by partial dedution. In Proeedings of the 2nd Imternational ACM SIGPLAN

Conferene on Priniples and Pratie of Delarative Programming (PPDP-00),

pages 268�279, N.Y., September 20�23 2000. ACM Press.

11. J. W. Lloyd. Foundations of Logi Programming. Springer-Verlag, Berlin, 1987.

Seond Edition.

12. Ulf Nilsson and Johan Lübke. Constraint logi programming for loal and sym-

boli model-heking. In J. Lloyd et al., editor, CL 2000: Computational Logi,

number 1861 in Leture Notes in Arti�ial Intelligene, pages 384�398, 2000.

13. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,

T. Swift, and D. S. Warren. E�ient model heking using tabled resolution.

In CAV '97, Leture Notes in Computer Siene 1254, pages 143�154. Springer-

Verlag, 1997.

14. A. Udaya Shankar. An introdution to assertional reasoning for onurrent systems.

ACM Computing Surveys, 25(3):225�262, September 1993.

11

15. Natarajan Shankar. Combining theorem proving and model heking through sym-

boli analysis. In CONCUR 2000: Conurreny Theory, number 1877 in Leture

Notes in Computer Siene, pages 1�16, State College, PA, August 2000. Springer-

Verlag.

12

Appendix

The CLP program P

bakery

.

sat(s(u,A,u,B),unsafe).

sat(s(w,A,B,C),wait).

sat(s(u,A,B,C),use).

sat(A,or(B,C)) :- sat(A,B).

sat(A,or(B,C)) :- sat(A,C).

sat(A,and(B,C)) :- sat(A,B), sat(A,C).

sat(A,not(B)) :- \+ sat(A,B).

sat(A,ef(B)) :- sat(A,B).

sat(s(t,A,S,B),ef(C)) :- D=B+1, A>=0, B>=0, sat(s(w,D,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- A<B, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- B=0, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(u,A,S,B),ef(C)) :- D=0, A>=0, B>=0, sat(s(t,D,S,B),ef(C)).

sat(s(S,A,t,B),ef(C)) :- D=A+1, A>=0, sat(s(S,A,w,D),ef(C)).

sat(s(S,A,w,B),ef(C)) :- B<A, B>=0, sat(s(S,A,u,B),ef(C)).

sat(s(S,A,w,B),ef(C)) :- A=0, B>=0, sat(s(S,A,u,B),ef(C)).

sat(s(S,A,u,B),ef(C)) :- D=0, B>=0, A>=0, sat(s(S,A,t,D),ef(C)).

sat(A,af(B)) :- sat(A,B).

sat(s(t,T1,t,T2),af(P)) :- T3=T2+1, T4=T1+1,

sat(s(w,T3,t,T2),af(P)), sat(s(t,T1,w,T4),af(P)).

sat(s(t,T1,u,T2),af(P)) :- T3=T2+1, T4=0,

sat(s(w,T3,u,T2),af(P)), sat(s(t,T1,t,T4),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T2<T1,

sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1=0,

sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1>0, T1=<T2,

sat(s(w,T3,w,T2),af(P)).

sat(s(u,T1,u,T2),af(P)) :- T3=0, T4=0,

sat(s(t,T3,u,T2),af(P)), sat(s(u,T1,t,T4),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T2<T1,

sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1=0,

sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1>0, T1=<T2,

sat(s(t,T3,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1=0,

sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1>0,

sat(s(u,T1,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T2=0, T1=0,

sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(u,T2,t,T1),af(P)) :- T3=T2+1, T4=0,

sat(s(u,T2,w,T3),af(P)), sat(s(t,T4,t,T1),af(P)).

13

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T2<T1,

sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1=0,

sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1>0, T1=<T2,

sat(s(w,T2,w,T3),af(P)).

sat(s(u,T2,u,T1),af(P)) :- T3=0, T4=0,

sat(s(u,T2,t,T3),af(P)), sat(s(t,T4,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T2<T1,

sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1=0,

sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1>0, T1=<T2,

sat(s(w,T2,t,T3),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1=0,

sat(s(w,T2,u,T1),af(P)),

sat(s(u,T2,w,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1>0,

sat(s(w,T2,u,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T2=0, T1=0,

sat(s(w,T2,u,T1),af(P)), sat(s(u,T2,w,T1),af(P)).

14

