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(Extended Abstract)

1 Introduction

The goal of automated verification of systems is the definition and the imple-
mentation of logical frameworks which allow one: (i) to formally specify these
systems, and (ii) to prove their properties in an automatic way. These logical
frameworks require formalisms both for the description of the systems and the
description of their properties.

In this paper we assume that a system makes transitions from states to states
and the evolution of a system can be formalized using a computation tree, which
is defined as follows. Given a system S and its initial state sg, the root of the
computation tree for S is s, and every node s; of the computation tree for S
has a child node s; iff there exists in S a transition from state s; to state s;.
The state s; is called a successor state of s;. We assume that in every system
for every state s; there exists at least one successor state. Notice that the set of
all states of a system may be finite or infinite.

We also assume that the description of the properties of any system can be
done in the Computation Tree Logic formalism [4] (CTL for short). CTL formulas
describe properties of computation trees, and they are built using: (i) atomic
state properties, (ii) logical connectives: =, A,V, (iii) quantifiers over paths: A
(“for all paths’) and E (‘for some path’), and (iv) quantifiers along paths: G (‘for
all states on the path’), F' (‘for some state on the path’). CTL formulas are very
expressive, and in particular, one may use them to describe the so called safety
and liveness properties. Given a CTL formula ¢ and state s, the semantics of
CTL defines the satisfaction relation s |= ¢ which holds whenever ¢ is true in s
[4].

In this paper we will present a method for verifying CTL properties of possi-
bly infinite state systems by using Constraint Logic Programming [7] (CLP, for
short) and Program Specialization. Our method is applicable to a large class of
concurrent systems, like those described by [14].

* Revised version of the extended abstract presented at VCL’01, 2nd ACM-Sigplan
Workshop on Verification and Computational Logic, Florence, Italy, September 4,
2001.



Constraint Logic Programming extends standard logic programming by in-
corporating mechanisms for solving constraints over some given constraint do-
mains by using domain specific efficient algorithms. The following are constraint
domains which are usually considered: (i) the domain of inequations over real
or rational numbers, (ii) the domain of boolean formulas, and (iii) every finite
domain. CLP programs turn out to be very suitable for modelling infinite state
systems because an infinite set of states can be described by constraints over the
state space.

For our purpose of verifying CTL properties of systems which may require the
use of negated formulas, we will consider CLP programs with locally stratified
negation [1]. We assume that the semantics of a program P in this class is
provided by the unique perfect model, denoted by M (P), which coincides with
the unique stable model, and the total well-founded model. The reader may
refer to [1,7,11] for the definition of these models and other notions of logic
programming or constraint logic programming which we do not recall here.

Program specialization is a program transformation technique whose goal is
the adaptation of a program to the context where it is used. In [5] we have de-
veloped a general framework for the automatic specialization of constraint logic
programs over a generic constraint domain D. The specialization also improves
the computational properties w.r.t. a given class of goals, while it preserves the
least D-model [8]. In this paper we use an extension of that framework to deal
with locally stratified CLP programs.

Our specialization technique is correct w.r.t. the perfect model semantics in
the sense that, given a locally stratified CLP program P and an atom A whose
predicate is defined in P, and given a program () which is a specialization of P
w.r.t. A, for every ground instance A, of A4,

A, € M(P) iff A, € M(Q). (1)

Verification Method. Our method for verifying whether or not a system S
in its initial state sq, satisfies a CTL property ¢, consists of the following two
steps.

Step 1. We introduce a CLP program Pg which defines a binary predicate sat
such that so = ¢ iff sat(so, ) € M(Ps). We assume that so and ¢ are ground
terms.

Step 2. We introduce a new 0-ary predicate f defined by the clause f < sat(so, )
and thus, sat(sg,p) € M(Ps) iff f € M(Ps U {f + sat(so,v)}). We then
apply our program specialization technique and transform the program Pg U
{f « sat(so, )} into a specialized program P;. By the correctness of program
specialization, stated by the equivalence (1) above, we have that f € M(Ps U
{f + sat(s0,0)}) iff £ € M(Py).

Putting Step 1 and Step 2 together, we have that sg |= ¢ iff f € M(P}), and
we can check whether or not s = ¢ as follows: (i) if the unit clause f < occurs
in Py then so = ¢, and (ii) if no clause with head f occurs in Py (that is, f has
an empty definition in Py) then it is not the case that sg = ¢.




The structure of our paper is as follows. In Section 2 we show how Step
1 of our verification method can be realized by encoding CTL properties of a
finite or infinite state system as a constraint logic program with locally stratified
negation. In Section 3 we describe the program specialization technique which
we use to realize Step 2 of our verification method. In Section 4 we show how
our method works for the verification of a safety and a liveness property of the
bakery protocol for mutual exclusion [9]. Finally, in Section 5 we compare our
work with related verification techniques described in the literature.

2 Encoding CTL Properties as Constraint Logic
Programs

Given a system S, its initial state sg, and a CTL property ¢, Step 1 of our ver-
ification method is realized by providing the recursive definition of the relation
So |= ¢ as a locally stratified program Ps. Step 1 can be performed in an auto-
matic way for a very large class of concurrent systems, namely those which are
state transition systems with enabling conditions and actions [14] with condi-
tions and actions which can be expressed by constraints over the values of state
variables.

The following simple example will clarify the reader’s ideas. This example will
be used throughout this paper to illustrate our approach. Let SO be the system
whose set of states is a subset of {a,b} x Z, where Z is the set of integers. Let
the initial state of SO be the pair {a,0), and let us assume that the transitions
between states are the following ones:

(a,1) — (b, 1)

Yy € Z. (a,y) = (a,y+2)

Yy € Z. (b,y) — (by—1)

The system S0 can be depicted as shown in Figure 1.

y:=y+2 y:=y-1

if y=1

Figure 1. The system S0 whose set of states is {a, b} x Z.

We want to verify that the property that starting from the initial state (a,0),
the system SO never reaches a state (z,y) with y <0, for some z € {a,b}. This
property is expressed by the satisfaction relation (a,0) = 7EF neg which asserts
that in the initial state (a,0) the CTL formula —EF neg is true, where neg is
the atomic state property which holds in a state (z,y) iff y < 0.

The satisfaction relation s = ¢ between the state s and the CTL formula ¢,
is recursively defined as follows:

s Ep iff pis an atomic state property and p holds in s
s | - iff it is not the case that s = ¢



s | EF ¢ iff either s = ¢
or J a state s; such that (i) 3 a transition from s to s; and
(i) s | EF

For the system SO the relation s = ¢ can be encoded by the following locally
stratified program Pgo written a Prolog-like syntax, where the state (z,y) is
denoted by s(X,Y):

sat(s(X,Y),neg) :- Y<O.

sat(S,not(F)) :- \+ sat(S,F).

sat(S,ef(F)) :- sat(S,F).

sat(s(a,Y),ef(F)) :- Y1=Y+2, sat(s(a,Yl),ef(F)).

sat(s(a,Y),ef(F)) :- Y=1, sat(s(b,Y),ef(F)).

sat(s(b,Y),ef(F)) :- Y1=Y-1, sat(s(b,Y1),ef(F)).

Thus, we have that:
(a,0) = —EF neg iff sat(s(a,0),not(ef(neg))) € M(Psp).

3 Verification of CTL Properties via Program
Specialization

Step 2 of our verification method is realized by using an automatic program
specialization technique which is derived from the one described in [5] and it is
a particular case of the program transformation technique based on rules and
strategies. The transformation rules ensure the correctness of the specialized
program w.r.t. the given initial program. Thus, given a system S with initial
state sg, and a CTL property ¢, after Step 1 and Step 2, whereby we introduce
the predicate f, and we derive the specialized program Py, we have that:

so =@ i fe M(Py).
The specialization strategy guides the application of the rules with the aim of
deriving a program P; where the definition of f is either (i) the unit clause f <
or (ii) it is the empty definition. As already mentioned, in case (i) so = ¢ holds,
while in case (ii) so = ¢ does not hold.

We will show that our specialization strategy terminates for all initial pro-
grams Ps U {f < sat(so, )}, but due to the undecidability of CTL for infinite
state systems, in some cases our specialization strategy may produce a program
P; in which the definition of f is neither the unit clause f < nor the empty
definition.

However, we have that our strategy is complete for finite state systems.

3.1 The Rules for Program Specialization

Now we introduce some notions which we use below for describing our program
specialization technique.

We assume that every atom is pure, that is, it is of the form p(Xy, ..., X,,),
where X3,...,X,, are distinct variables. A constrained atom is the conjunction
of a constraint and an atom. Goals are (possibly empty) conjunctions of atoms.



A constrained goal is the conjunction of a constraint and a goal. Conjunction
is commutative and, thus, the order of constraints and atoms in the body of a
clause is immaterial. The empty conjunction (of constraints or atoms) is true.
Clauses are of the form H + ¢,G.

The assumption that all atoms are pure is not restrictive because, for in-
stance, any clause v with occurrences of non-pure atoms, can be transformed
into a clause § with occurrences of pure atoms only, such that ¢ is equivalent
to v w.r.t. the least D-model semantics. This can be done by adding suitable
equality constraints. For example, the clause: p(X+1) + X <0, r(X —1) can be
transformed into the equivalent clause: p(Y) «+ X <0, r(Z), Y =X+1, Z=X-1,
where all atoms are pure.

We define the set of useless predicates of a program P to be the maximal set
U of predicates occurring in P such that the predicate p is in U iff the body of
each clause defining p in P contains a positive literal whose predicate is in U.

We say that the atom A is failed in a program P iff A does not unify with
the head of any clause in P. We say that A is valid in a program P iff P contains
a unit clause whose head has the predicate symbol of A.

The process of specializing a given program P whereby deriving program Ps,
can be formalized as a sequence P, ..., P, of programs, called a transformation
sequence, where Py = P, P, =P, and, for kK = 0,...,n—1, program Py is
obtained from program Py, called the current program, by applying one of the
transformation rules are listed below. These rules are an extension of the rules
presented in [5] to the case of CLP programs with locally stratified negation.

R1. Constrained Atomic Definition. Introduce a new predicate defined by
a definition clause: newp(Xy,...,X,) < ¢,A where ¢, A is a constrained atom.
R2. Positive Unfolding. Replace clause H < ¢,G1,A,G2 where A is an
atom, by the set of clauses {H < ¢, A=A4;, ¢;, G1,G;,G2|j =1,...,m}, where
{Aj < ¢;,Gj|j=1,...,m} is the set of all renamed apart clauses in the current
program such that the atoms A and A; have the same predicate symbol.

R3. Negative Unfolding. Let v be the clause H < ¢,G1,—A,Gy. If A is failed
in the current program then replace v by the clause H < ¢, Gy, Gs. If A is valid
in the current program then remove .

RA4. Constrained Atomic Folding. Replace clause A < ¢, Gy, L, G, by clause
A<+ ¢, Gy, L' ,Go, where L' is newp(X1, ..., X,) if Lis B, or ~newp(X1,...,Xy)
if L is =B, provided that there exists a renamed apart definition clause
newp(Xy,...,X,) «+ d, B such that D |E ¢ — d.

R5. Removal of Clauses with Unsatisfiable Body. Remove clause A < ¢, G
if the constraint ¢ is unsatisfiable.

R6. Removal of Useless Clauses. Remove all clauses whose head predicate
is useless in the current program.

R7. Removal of Subsumed Clauses. If the current program contains a unit
clause p(Xi,...,X,) <, then remove all clauses whose head predicate symbol
is p.

R8. Contextual Constraint Replacement. Given a set C of constrained
atoms, replace clause p(Xy,...,X,) < ¢1,G by p(X1,...,X,) ¢« ¢, G, if for



some constraint ¢, we have that for every constrained atom ¢, p(Y1,...,Ys)
inC,DE(e,X1=Y1,....,X,=Y,) = (c1 & ), that is, in the constraint
domain D if ¢, X; =Y7,...,X,, =Y, holds then the constraints ¢; and ¢, are
equivalent.

3.2 The Specialization Strategy

The specialization process is performed according to a strategy which guides the
application of the rules R1-R8 above. Our specialization strategy is parameter-
ized by: (i) a function solve for solving constraints over the constraint domain
D, (ii) an unfolding function for controlling the unfolding process, (iii) a clause
generalization function for controlling the introduction of new predicate defini-
tions. Once these parameters have been chosen, our strategy can be applied in
a fully automatic way.

The specialization strategy is divided into three phases.

Phase A. We consider the program PsU{f + sat(so, )} and we iterate the pro-
cedures Unfold-Replace and Define-Fold as we now explain. During the Unfold-
Replace procedure we unfold the program to be specialized by using the given
unfolding function, and we solve the constraints in the derived clauses by us-
ing the given function solve. We then apply the Define-Fold procedure and we
fold the clauses we have derived. For folding we make use of already available
definitions and, possibly, some new definitions introduced by using the clause
generalization function. Phase A terminates with output program P4 when no
new definitions need to be introduced for performing the folding steps.

Phase B. We consider program P4 and, by applying the contextual constraint
replacement rule, from each clause defining a predicate, say p, we remove the
constraints which hold before the execution of the clause. These constraints are
determined by computing the least upper bound of the set of constraints which
occur in the clauses containing a call of p (see [5] for details). Under suitable
conditions, that we discuss below, the output of Phase B is a program Pg which,
by construction, admits a finite stratification so that Pg = S; U...U S,.

Phase C. We consider the program Pp and by working bottom-up on the strata
S1,--.,Sp, we simplify the definition of every predicate p with the aim of deriving
either the unit clause p(...) « or the empty definition. During this phase we
apply the following rules: (i) positive and negative unfolding, (ii) removal of
useless and subsumed clauses, and (iii) contextual constraint replacement.
The algorithm for Phase C is as follows.

Pf = @

fori:=1,...,ndo

Apply to S;, as long as possible, the rule for removing subsumed clauses;
Apply to S;, as long as possible, the negative unfolding rule and the positive
unfolding rule w.r.t. valid and failed atoms in the current program;



Replace all clauses in S; of the form H < ¢ by the clause H < provided
that D = V(3Y¢) where Y is the set of variables in ¢
which do not occur in H
until §' = 5;
Remove the useless clauses of S;;
P :=PrUS;;
end-for
Finally, (i) if the unit clause f < belongs to Py, we conclude that ¢ is true in
S, and otherwise, (ii) if there are no clauses in Py defining f, we conclude that
@ is false in S. If neither case (i) nor case (ii) occurs, we cannot conclude that
 is true in S and we cannot conclude that ¢ is false in S.

Now we illustrate how our specialization strategy works by applying it to
program Psqo described in Section 2. We start by introducing a new definition
clause 0

property :- X=0, sat(s(a,X), not(ef(neg))).
which encodes the property to be verified. The specialization of program Pgq
w.r.t. the atom property proceeds as follows. The output of Phase A is the
following program Py:

property :- A=0, \+(newsat1(A)).

newsat1(A) :- A=0, newsat2(A).

newsatl1(A) :- B=2, A=0, newsat3(B).

newsat3(A) :- A>1, newsat4(A).

newsat3(A) :- B=2+A, A>1, newsat3(B).

During Phase B we apply the contextual constraint replacement rule and we
obtain the following program Pg:

(1) property :- A=0, \+ newsatl1(4).

(2) newsat1(A) :- newsat2(A).

(3) newsat1(A) :- B=2, newsat3(B).

(4) newsat3(A) :- newsat4(A4).

(5) newsat3(A) :- B=2+A, newsat3(B).

We start Phase C by computing a minimal stratification of the program Ppg.
We get: Pg = S; U Sy, where S; = {2,3,4,5} and S; = {1}. Then, we start
processing the lowest stratum Sj.

Stratum S . Since there is no clause defining newsat2 and newsat4, we apply the
positive unfolding rule to clauses 2 and 4 and we remove them from S;. We get:
S1 = {3,5}. Predicates newsatl and newsat3 are useless in Si, so we remove
their definitions and we obtain S; = (). The iteration on stratum S; ends with
Py =0.

Stratum S,. The current program contains no clause defining newsatl and
this allows us to apply the negative unfolding rule to clause 1 obtaining Sy =
{property :- A=0.}. We solve the constraint in the body of the only clause of
Sy w.r.t. the variables in its head, and we obtain S = {property.}. The output
of Phase C of our specialization strategy is Py = {property.} which gives us a
proof that property =EF neg is true in S0.

Let us now briefly comment on our three-phase strategy.



The output program P4 of Phase A of the specialization strategy admits
a finite stratification, if we choose a clause generalization function which does
not generalize the second argument of sat encoding a CTL formula. Indeed, by
construction, each clause of P4 with a negative literal in the body, will be of the
form:

newp(...) < ..., ~newq(...),

and the predicates newp and newg are defined by clauses of the form:

newp(...) < sat(...,pp)

newq(...) < sat(...,¢q)
where: (i) ¢, and ¢, are ground terms encoding CTL formulas, and (ii) ¢, is a
proper subformula of ¢,,.

Since the contextual constraint replacement rule preserves stratification, also
the output program Ppg of Phase B admits a finite stratification.

Our specialization strategy terminates if the following facts hold: (i) the
Unfold-Replace procedure terminates, and (ii) the set of predicate definitions
introduced by the generalization function is finite. Notice that Phases B and C
always terminate. In the example presented in the next section we will provide
an unfolding function and a generalization function for which Phase A of our
specialization strategy terminates.

4 Verification of the Bakery Protocol

The bakery protocol describes the behavior of a system consisting of two pro-
cesses, A and B, which run in parallel and try to access a shared resource. The
state s4 of process A is represented by a pair (ca,a) where c4 is an element
of the set {think, wait, use} of control states, and a is a counter which takes as
value a non negative rational number. The possible transitions for process A are
the following (see also Figure 2):
(1) if the current state is (think, a), then the next state is (wait, b+ 1),
(2) if the current state is (wait, a) and, either a < b or b = 0, then the next state
is (use,a),
(3) if the current state is (use, a), then the next state is (think,0).

Analogously for process B, by interchanging a and b.

a: =0

-

t hi nk ® -
a: =b+1 U if (a<b or b=0) @

Figure 2. Transitions of the process A.

The generic state s of the system consisting of the two processes A and B
together, is represented by the 4-tuple (ca,a,cp,b), which is initially set to
so = (think, 0, think,0).



This system has an infinite number of states, because counters may increase in
an unbounded way, as the following sequence of transitions illustrates:
(think, 0, think,0) — (wait, 1, think,0) — (wait, 1, wait,2)— (use, 1, wait,2) —
(think,0, wait,2) — (think,0, use,2) — (wait, 3, use,2) — (wait, 3, think,0) —
(wait, 3, wait, 4) — ...

We have applied our specialization method to the verification of two prop-
erties of the bakery protocol: (i) the mutual exclusion property, and (ii) the
starvation freedom property. The mutual exclusion property says that ‘the sys-
tem will never reach a state where both processes are using the shared resource’.
It is a safety property in the sense that during the evolution of the system ‘some-
thing (bad) may never happen’. The starvation freedom property says that ‘if
a process wants to use a resource then it will eventually get it’. It is a liveness
property in the sense that during the evolution of a system ‘something (good)
eventually happens’.

The mutual exclusion property can be expressed by the CTL formula s¢ |=
- EF(unsafe), where unsafe is an atomic state property which holds iff both
processes are in control state use. The starvation freedom property for a process
can be expressed by the CTL formula sy = AG(wait — AF(use)) which is
equivalent to so E ~"EF(wait A\—AF (use)), where wait and use are atomic state
properties which hold iff the process is in control state wait and use, respectively.

Our two-step verification method works as follows.

Step 1. We introduce a CLP program Pjpagery, which is shown in Appendix,
such that for the mutual exclusion property we have: so | —~EF(unsafe) iff
sat(sg,not(ef(unsafe))) € M(Ppgkery) , and

for the starvation freedom property we have: sg | “EF (wait A ~AF (use)) iff
sat(so,not(ef(and(wait,not(af(use)))))) € M (Poakery)-

Step 2. We choose the parameters of our strategy as follows. (i) The solve func-
tion is the clp(q,r) solver of [6] for simplifying conjunctions of linear equations
and inequations over real numbers. (ii) The unfolding function takes a definition
of the form newp(X,...,X,) < ¢, A and it unfolds it w.r.t. A. Then it unfolds
the derived clauses w.r.t. the atoms of the form sat(S, F'), where either F is an
atomic state property or the outermost connective of F' is one of the following:
and, or, not. (iii) The generalization function takes a clause H ¢, A and it
generalizes it to the clause H < d, A, where the constraint d is defined as follows
starting from the constraint c. Let £(c) be the set of constraints whose generic
element r is defined as follows:
ru=true |t =t | t>t | t>t | rAr

where t € vars(c) U {0}. The constraint d is the least constraint of £(¢) (in the
implication ordering) which is entailed by ¢. Notice that vars(d) C vars(c).

For instance, the generalization of the clause:
newl(A,B) :- A=1, B=2, sat(s(wait,A,wait,B), ef(unsafe))
is the clause:

new2(A,B) :- A>0, B>A, sat(s(wait,A,wait,B), ef(unsafe)).



The definition of the set L£(c) of constraints used by the clause generalization
function is based upon the transitions which can be made by the system. This
choice can easily be automated because this set is constructed by using the
constants and the constraint predicate symbols occurring in the transitions.

We have verified the mutual exclusion and the starvation freedom properties
by specializing Pyorery W.I.t. the atoms safe and starvfree, respectively, which
are defined as follows:

safe :- A=0, B=0,
sat(s(think,A,think,B), not(ef (unsafe))).
starvfree :- A=0, B=0,
sat(s(think,A,think,B), not(ef (and(wait,not(af(use)))))).

The whole verification process was performed automatically by using the MAP
transformation system (available at http://www.iasi.rm.cnr.it/~fioravan).

5 Related Work and Conclusions

During the last years many logic-based techniques have been developed for au-
tomatically verifying properties of systems, the most successful of them being
model checking [2]. The success of model checking is also due to the use of Binary
Decision Diagrams which provide a very compact symbolic representation of a
possibly very large, but finite, set of states. In order to overcome this finiteness
restriction, some efforts have recently been devoted for the incorporation into
model checking of abstraction and deduction techniques [15].

Recent papers also demonstrate the usefulness of logic programming and
constraint logic programming as a basis for the verification of finite or infinite
state systems. In particular, in [13] the authors present XMC, a model checking
system implemented in the tabulation-based logic programming language XSB.
XMC can verify p-calculus properties of finite state transitions systems expressed
in a CCS-like language, with performances comparable to that of state-of-the-
art model checkers. In [3] model checking using constraint logic programming
is described and some CTL operators of infinite state concurrent systems are
expressed in terms of least and greatest fixed points of the CLP programs used
to describe the systems. In [10] the authors define a method based on partial
deduction of logic programs, augmented with abstract interpretation, for solving
coverability problems of infinite state Petri nets. In [12] a finite state local model
checker is defined for CTL, by using CLP with finite domains, extended with
constructive negation and tabled resolution.

This paper presents some preliminary results obtained when applying to the
verification of infinite state systems an extension of the techniques developed in
[5] for specializing constraint logic programs. We performed some experiments
on a simplified version of the bakery algorithm [9] which is a protocol for mutual
exclusion between two processes. We proved that this protocol ensures both
mutual exclusion and starvation freedom.
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We believe that the integration of CLP as modeling language, and program
specialization as inference system, can provide a very flexible tool for the verifica-
tion of infinite state systems. Indeed, constraints provide a natural representation
for infinite sets of values (e.g., X > 0 describes the infinite set of non-negative
real numbers), and the declarativeness of logic programming makes it easy to
model a large variety of systems and properties.

Future work on the application of specialization of CLP program for the
verification of infinite state systems will include: experimentation with different
choices of constraint domains, unfolding functions, and generalization operators.
We will also plan to experiment with different classes of systems and properties.
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Appendix

The CLP program Pjpgpery-

sat(s(u,A,u,B) ,unsafe).
sat(s(w,A,B,C),wait).
sat(s(u,A,B,C) ,use).

sat(A,or(B,C)) :- sat(A,B).
sat(A,or(B,C)) :- sat(A,C).

sat(A,and(B,C)) :- sat(A,

B), sat(4,0C).

sat (A,not(B)) :- \+ sat(A,B).

sat(A,ef(B)) :- sat(A,B).
sat(s(t,A,S,B),ef(C)) :-
sat(s(w,A,S,B),ef(C)) :-
sat(s(w,A,S,B),ef(C)) :-
sat(s(u,A,S,B),ef(C)) :-
sat(s(S,A,t,B),ef(C)) :-
sat(s(S,A,w,B),ef(C)) :-
sat(s(S,A,w,B),ef(C)) :-
sat(s(S,A,u,B),ef(C)) :-

sat(A,af(B)) :- sat(A,B).
sat(s(t,T1,t,T2),af(P))
sat(s(w,T3,t,T2),
sat(s(t,T1,u,T2),af(P))
sat(s(w,T3,u,T2),
sat(s(t,T1,w,T2) ,af(P))
sat(s(w,T3,w,T2),
sat(s(t,T1,w,T2),af (P))
sat(s(w,T3,w,T2),
sat(s(t,T1,w,T2),af (P))
sat(s(w,T3,w,T2),
sat(s(u,T1,u,T2),af(P))
sat(s(t,T3,u,T2),
sat(s(u,T1,w,T2) ,af (P))
sat(s(t,T3,w,T2),
sat(s(u,T1,w,T2) ,af(P))
sat(s(t,T3,w,T2),
sat(s(u,T1,w,T2) ,af (P))
sat(s(t,T3,w,T2),
sat(s(w,T1,w,T2) ,af (P))
sat(s(u,T1,w,T2),
sat(s(w,T1,w,T2) ,af (P))
sat(s(u,T1,w,T2),
sat(s(w,T1,w,T2) ,af (P))
sat(s(u,T1,w,T2),
sat(s(u,T2,t,T1) ,af (P))
sat(s(u,T2,w,T3),

D=B+1, A>=0, B>=0, sat(s(w,D,S,B),ef(C)).
A<B, A>=0, sat(s(u,A,S,B),ef(C)).

B=0, A>=0, sat(s(u,A,S,B),ef(C)).

D=0, A>=0, B>=0, sat(s(t,D,S,B),ef(C)).
D=A+1, A>=0, sat(s(S,A,w,D),ef(C)).

B<A, B>=0, sat(s(S,A,u,B),ef(C)).

A=0, B>=0, sat(s(S,A,u,B),ef(C)).

D=0, B>=0, A>=0, sat(s(S,A,t,D),ef(C)).

1- T3=T2+1, T4=T1+1,

af(P)), sat(s(t,T1,w,T4),af(P)).

:- T3=T2+1, T4=0,

af (P)), sat(s(t,T1,t,T4),af(P)).

:- T3=T2+1, T2<T1,

af (P)), sat(s(t,T1,u,T2),af(P)).

:- T3=T2+1, T1=0,

af (P)), sat(s(t,T1,u,T2),af(P)).

:- T3=T2+1, T1>0, T1=<T2,

af (P)).

:- T3=0, T4=0,

af(P)), sat(s(u,T1,t,T4),af(P)).

:- T3=0, T2<T1,

af (P)), sat(s(u,T1,u,T2),af(P)).

:- T3=0, T1=0,

af (P)), sat(s(u,T1,u,T2),af(P)).

:- T3=0, T1>0, T1=<T2,

af (P)).

:- T1<T2, T1=0,

af (P)), sat(s(w,T1,u,T2),af(P)).

:- T1<T2, T1>0,

af (P)).

:- T2=0, T1=0,

af (P)), sat(s(w,T1,u,T2),af(P)).

:- T3=T2+1, T4=0,

af (P)), sat(s(t,T4,t,T1),af(P)).

13



sat(s(w,T2,t,T1),af (P)) :- T3=T2+1, T2<T1,
sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1=0,
sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1>0, T1=<T2,
sat(s(w,T2,w,T3),af(P)).

sat(s(u,T2,u,T1),af(P)) :- T3=0, T4=0,
sat(s(u,T2,t,T3),af(P)), sat(s(t,T4,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T2<T1,
sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1=0,
sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1>0, T1=<T2,
sat(s(w,T2,t,T3),af (P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1=0,
sat(s(w,T2,u,T1),af(P)),
sat(s(u,T2,w,T1) ,af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1>0,
sat(s(w,T2,u,T1) ,af(P)).

sat(s(w,T2,w,T1),af(P)) :- T2=0, T1=0,
sat(s(w,T2,u,T1),af(P)), sat(s(u,T2,w,T1),af(P)).
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