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(Extended Abstra
t)

1 Introdu
tion

The goal of automated veri�
ation of systems is the de�nition and the imple-

mentation of logi
al frameworks whi
h allow one: (i) to formally spe
ify these

systems, and (ii) to prove their properties in an automati
 way. These logi
al

frameworks require formalisms both for the des
ription of the systems and the

des
ription of their properties.

In this paper we assume that a system makes transitions from states to states

and the evolution of a system 
an be formalized using a 
omputation tree, whi
h

is de�ned as follows. Given a system S and its initial state s

0

, the root of the


omputation tree for S is s

0

, and every node s

i

of the 
omputation tree for S

has a 
hild node s

j

i� there exists in S a transition from state s

i

to state s

j

.

The state s

j

is 
alled a su

essor state of s

i

. We assume that in every system

for every state s

i

there exists at least one su

essor state. Noti
e that the set of

all states of a system may be �nite or in�nite.

We also assume that the des
ription of the properties of any system 
an be

done in the Computation Tree Logi
 formalism [4℄ (CTL for short). CTL formulas

des
ribe properties of 
omputation trees, and they are built using: (i) atomi


state properties, (ii) logi
al 
onne
tives: :;^;_, (iii) quanti�ers over paths: A

(`for all paths') and E (`for some path'), and (iv) quanti�ers along paths: G (`for

all states on the path'), F (`for some state on the path'). CTL formulas are very

expressive, and in parti
ular, one may use them to des
ribe the so 
alled safety

and liveness properties. Given a CTL formula ' and state s, the semanti
s of

CTL de�nes the satisfa
tion relation s j= ' whi
h holds whenever ' is true in s

[4℄.

In this paper we will present a method for verifying CTL properties of possi-

bly in�nite state systems by using Constraint Logi
 Programming [7℄ (CLP, for

short) and Program Spe
ialization. Our method is appli
able to a large 
lass of


on
urrent systems, like those des
ribed by [14℄.
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Constraint Logi
 Programming extends standard logi
 programming by in-


orporating me
hanisms for solving 
onstraints over some given 
onstraint do-

mains by using domain spe
i�
 e�
ient algorithms. The following are 
onstraint

domains whi
h are usually 
onsidered: (i) the domain of inequations over real

or rational numbers, (ii) the domain of boolean formulas, and (iii) every �nite

domain. CLP programs turn out to be very suitable for modelling in�nite state

systems be
ause an in�nite set of states 
an be des
ribed by 
onstraints over the

state spa
e.

For our purpose of verifying CTL properties of systems whi
h may require the

use of negated formulas, we will 
onsider CLP programs with lo
ally strati�ed

negation [1℄. We assume that the semanti
s of a program P in this 
lass is

provided by the unique perfe
t model, denoted by M(P ), whi
h 
oin
ides with

the unique stable model, and the total well-founded model. The reader may

refer to [1,7,11℄ for the de�nition of these models and other notions of logi


programming or 
onstraint logi
 programming whi
h we do not re
all here.

Program spe
ialization is a program transformation te
hnique whose goal is

the adaptation of a program to the 
ontext where it is used. In [5℄ we have de-

veloped a general framework for the automati
 spe
ialization of 
onstraint logi


programs over a generi
 
onstraint domain D. The spe
ialization also improves

the 
omputational properties w.r.t. a given 
lass of goals, while it preserves the

least D-model [8℄. In this paper we use an extension of that framework to deal

with lo
ally strati�ed CLP programs.

Our spe
ialization te
hnique is 
orre
t w.r.t. the perfe
t model semanti
s in

the sense that, given a lo
ally strati�ed CLP program P and an atom A whose

predi
ate is de�ned in P , and given a program Q whi
h is a spe
ialization of P

w.r.t. A, for every ground instan
e A

g

of A,

A

g

2M(P ) i� A

g

2 M (Q). (1)

Veri�
ation Method. Our method for verifying whether or not a system S

in its initial state s

0

, satis�es a CTL property ', 
onsists of the following two

steps.

Step 1. We introdu
e a CLP program P

S

whi
h de�nes a binary predi
ate sat

su
h that s

0

j= ' i� sat(s

0

; ') 2 M(P

S

). We assume that s

0

and ' are ground

terms.

Step 2. We introdu
e a new 0-ary predi
ate f de�ned by the 
lause f  sat(s

0

; ')

and thus, sat(s

0

; ') 2 M(P

S

) i� f 2 M(P

S

[ ff  sat(s

0

; ')g). We then

apply our program spe
ialization te
hnique and transform the program P

S

[

ff  sat(s

0

; ')g into a spe
ialized program P

f

. By the 
orre
tness of program

spe
ialization, stated by the equivalen
e (1) above, we have that f 2 M(P

S

[

ff  sat(s

0

; ')g) i� f 2M(P

f

).

Putting Step 1 and Step 2 together, we have that s

0

j= ' i� f 2M(P

f

), and

we 
an 
he
k whether or not s

0

j= ' as follows: (i) if the unit 
lause f  o

urs

in P

f

then s

0

j= ', and (ii) if no 
lause with head f o

urs in P

f

(that is, f has

an empty de�nition in P

f

) then it is not the 
ase that s

0

j= '.
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The stru
ture of our paper is as follows. In Se
tion 2 we show how Step

1 of our veri�
ation method 
an be realized by en
oding CTL properties of a

�nite or in�nite state system as a 
onstraint logi
 program with lo
ally strati�ed

negation. In Se
tion 3 we des
ribe the program spe
ialization te
hnique whi
h

we use to realize Step 2 of our veri�
ation method. In Se
tion 4 we show how

our method works for the veri�
ation of a safety and a liveness property of the

bakery proto
ol for mutual ex
lusion [9℄. Finally, in Se
tion 5 we 
ompare our

work with related veri�
ation te
hniques des
ribed in the literature.

2 En
oding CTL Properties as Constraint Logi


Programs

Given a system S, its initial state s

0

, and a CTL property ', Step 1 of our ver-

i�
ation method is realized by providing the re
ursive de�nition of the relation

s

0

j= ' as a lo
ally strati�ed program P

S

. Step 1 
an be performed in an auto-

mati
 way for a very large 
lass of 
on
urrent systems, namely those whi
h are

state transition systems with enabling 
onditions and a
tions [14℄ with 
ondi-

tions and a
tions whi
h 
an be expressed by 
onstraints over the values of state

variables.

The following simple example will 
larify the reader's ideas. This example will

be used throughout this paper to illustrate our approa
h. Let S0 be the system

whose set of states is a subset of fa; bg � Z, where Z is the set of integers. Let

the initial state of S0 be the pair ha; 0i, and let us assume that the transitions

between states are the following ones:

ha; 1i ! hb; 1i

8y 2 Z: ha; yi ! ha; y+2i

8y 2 Z: hb; yi ! hb; y�1i

The system S0 
an be depi
ted as shown in Figure 1.

if y=1
ba

y:=y+2 y:=y-1

Figure 1. The system S0 whose set of states is fa; bg� Z.

We want to verify that the property that starting from the initial state ha; 0i,

the system S0 never rea
hes a state hx; yi with y<0, for some x 2 fa; bg. This

property is expressed by the satisfa
tion relation ha; 0i j= :EF neg whi
h asserts

that in the initial state ha; 0i the CTL formula :EF neg is true, where neg is

the atomi
 state property whi
h holds in a state hx; yi i� y < 0.

The satisfa
tion relation s j= ' between the state s and the CTL formula ',

is re
ursively de�ned as follows:

s j= p i� p is an atomi
 state property and p holds in s

s j= :' i� it is not the 
ase that s j= '

3



s j= EF ' i� either s j= '

or 9 a state s

1

su
h that (i) 9 a transition from s to s

1

and

(ii) s

1

j= EF '

For the system S0 the relation s j= ' 
an be en
oded by the following lo
ally

strati�ed program P

S0

written a Prolog-like syntax, where the state hx; yi is

denoted by s(X,Y):

sat(s(X,Y),neg) :- Y<0.

sat(S,not(F)) :- \+ sat(S,F).

sat(S,ef(F)) :- sat(S,F).

sat(s(a,Y),ef(F)) :- Y1=Y+2, sat(s(a,Y1),ef(F)).

sat(s(a,Y),ef(F)) :- Y=1, sat(s(b,Y),ef(F)).

sat(s(b,Y),ef(F)) :- Y1=Y-1, sat(s(b,Y1),ef(F)).

Thus, we have that:

ha; 0i j= :EF neg i� sat(s(a,0),not(ef(neg))) 2M(P

S0

).

3 Veri�
ation of CTL Properties via Program

Spe
ialization

Step 2 of our veri�
ation method is realized by using an automati
 program

spe
ialization te
hnique whi
h is derived from the one des
ribed in [5℄ and it is

a parti
ular 
ase of the program transformation te
hnique based on rules and

strategies. The transformation rules ensure the 
orre
tness of the spe
ialized

program w.r.t. the given initial program. Thus, given a system S with initial

state s

0

, and a CTL property ', after Step 1 and Step 2, whereby we introdu
e

the predi
ate f , and we derive the spe
ialized program P

f

, we have that:

s

0

j= ' i� f 2 M (P

f

).

The spe
ialization strategy guides the appli
ation of the rules with the aim of

deriving a program P

f

where the de�nition of f is either (i) the unit 
lause f  

or (ii) it is the empty de�nition. As already mentioned, in 
ase (i) s

0

j= ' holds,

while in 
ase (ii) s

0

j= ' does not hold.

We will show that our spe
ialization strategy terminates for all initial pro-

grams P

S

[ ff  sat(s

0

; ')g, but due to the unde
idability of CTL for in�nite

state systems, in some 
ases our spe
ialization strategy may produ
e a program

P

f

in whi
h the de�nition of f is neither the unit 
lause f  nor the empty

de�nition.

However, we have that our strategy is 
omplete for �nite state systems.

3.1 The Rules for Program Spe
ialization

Now we introdu
e some notions whi
h we use below for des
ribing our program

spe
ialization te
hnique.

We assume that every atom is pure, that is, it is of the form p(X

1

; : : : ; X

m

),

where X

1

; : : : ; X

m

are distin
t variables. A 
onstrained atom is the 
onjun
tion

of a 
onstraint and an atom. Goals are (possibly empty) 
onjun
tions of atoms.
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A 
onstrained goal is the 
onjun
tion of a 
onstraint and a goal. Conjun
tion

is 
ommutative and, thus, the order of 
onstraints and atoms in the body of a


lause is immaterial. The empty 
onjun
tion (of 
onstraints or atoms) is true.

Clauses are of the form H  
;G.

The assumption that all atoms are pure is not restri
tive be
ause, for in-

stan
e, any 
lause 
 with o

urren
es of non-pure atoms, 
an be transformed

into a 
lause Æ with o

urren
es of pure atoms only, su
h that Æ is equivalent

to 
 w.r.t. the least D-model semanti
s. This 
an be done by adding suitable

equality 
onstraints. For example, the 
lause: p(X+1) X�0; r(X�1) 
an be

transformed into the equivalent 
lause: p(Y ) X�0; r(Z); Y =X+1; Z=X�1,

where all atoms are pure.

We de�ne the set of useless predi
ates of a program P to be the maximal set

U of predi
ates o

urring in P su
h that the predi
ate p is in U i� the body of

ea
h 
lause de�ning p in P 
ontains a positive literal whose predi
ate is in U .

We say that the atom A is failed in a program P i� A does not unify with

the head of any 
lause in P . We say that A is valid in a program P i� P 
ontains

a unit 
lause whose head has the predi
ate symbol of A.

The pro
ess of spe
ializing a given program P whereby deriving program P

s

,


an be formalized as a sequen
e P

0

; : : : ; P

n

of programs, 
alled a transformation

sequen
e, where P

0

= P; P

n

= P

s

and, for k = 0; : : : ; n�1, program P

k+1

is

obtained from program P

k

, 
alled the 
urrent program, by applying one of the

transformation rules are listed below. These rules are an extension of the rules

presented in [5℄ to the 
ase of CLP programs with lo
ally strati�ed negation.

R1. Constrained Atomi
 De�nition. Introdu
e a new predi
ate de�ned by

a de�nition 
lause: newp(X

1

; : : : ; X

n

) 
; A where 
; A is a 
onstrained atom.

R2. Positive Unfolding. Repla
e 
lause H  
;G

1

; A;G

2

where A is an

atom, by the set of 
lauses fH  
; A=A

j

; 


j

; G

1

; G

j

; G

2

j j = 1; : : : ;mg, where

fA

j

 


j

; G

j

j j = 1; : : : ;mg is the set of all renamed apart 
lauses in the 
urrent

program su
h that the atoms A and A

j

have the same predi
ate symbol.

R3. Negative Unfolding. Let 
 be the 
lause H  
;G

1

;:A;G

2

. If A is failed

in the 
urrent program then repla
e 
 by the 
lause H  
;G

1

; G

2

. If A is valid

in the 
urrent program then remove 
.

R4. Constrained Atomi
 Folding.Repla
e 
lause A 
;G

1

; L;G

2

, by 
lause

A 
;G

1

; L

0

; G

2

, where L

0

is newp(X

1

; : : : ; X

n

) if L is B, or :newp(X

1

; : : : ; X

n

)

if L is :B, provided that there exists a renamed apart de�nition 
lause

newp(X

1

; : : : ; X

n

) d;B su
h that D j= 
! d.

R5. Removal of Clauses with Unsatis�able Body. Remove 
lause A 
;G

if the 
onstraint 
 is unsatis�able.

R6. Removal of Useless Clauses. Remove all 
lauses whose head predi
ate

is useless in the 
urrent program.

R7. Removal of Subsumed Clauses. If the 
urrent program 
ontains a unit


lause p(X

1

; : : : ; X

n

)  , then remove all 
lauses whose head predi
ate symbol

is p.

R8. Contextual Constraint Repla
ement. Given a set C of 
onstrained

atoms, repla
e 
lause p(X

1

; : : : ; X

n

)  


1

; G by p(X

1

; : : : ; X

n

)  


2

; G, if for
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some 
onstraint 


2

, we have that for every 
onstrained atom 
; p(Y

1

; : : : ; Y

n

)

in C, D j= (
;X

1

= Y

1

; : : : ; X

n

= Y

n

) ! (


1

$ 


2

), that is, in the 
onstraint

domain D if 
;X

1

= Y

1

; : : : ; X

n

= Y

n

holds then the 
onstraints 


1

and 


2

are

equivalent.

3.2 The Spe
ialization Strategy

The spe
ialization pro
ess is performed a

ording to a strategy whi
h guides the

appli
ation of the rules R1-R8 above. Our spe
ialization strategy is parameter-

ized by: (i) a fun
tion solve for solving 
onstraints over the 
onstraint domain

D, (ii) an unfolding fun
tion for 
ontrolling the unfolding pro
ess, (iii) a 
lause

generalization fun
tion for 
ontrolling the introdu
tion of new predi
ate de�ni-

tions. On
e these parameters have been 
hosen, our strategy 
an be applied in

a fully automati
 way.

The spe
ialization strategy is divided into three phases.

Phase A.We 
onsider the program P

S

[ff  sat(s

0

; ')g and we iterate the pro-


edures Unfold-Repla
e and De�ne-Fold as we now explain. During the Unfold-

Repla
e pro
edure we unfold the program to be spe
ialized by using the given

unfolding fun
tion, and we solve the 
onstraints in the derived 
lauses by us-

ing the given fun
tion solve. We then apply the De�ne-Fold pro
edure and we

fold the 
lauses we have derived. For folding we make use of already available

de�nitions and, possibly, some new de�nitions introdu
ed by using the 
lause

generalization fun
tion. Phase A terminates with output program P

A

when no

new de�nitions need to be introdu
ed for performing the folding steps.

Phase B. We 
onsider program P

A

and, by applying the 
ontextual 
onstraint

repla
ement rule, from ea
h 
lause de�ning a predi
ate, say p, we remove the


onstraints whi
h hold before the exe
ution of the 
lause. These 
onstraints are

determined by 
omputing the least upper bound of the set of 
onstraints whi
h

o

ur in the 
lauses 
ontaining a 
all of p (see [5℄ for details). Under suitable


onditions, that we dis
uss below, the output of Phase B is a program P

B

whi
h,

by 
onstru
tion, admits a �nite strati�
ation so that P

B

= S

1

[ : : : [ S

n

.

Phase C. We 
onsider the program P

B

and by working bottom-up on the strata

S

1

; : : : ; S

n

, we simplify the de�nition of every predi
ate p with the aim of deriving

either the unit 
lause p(: : :)  or the empty de�nition. During this phase we

apply the following rules: (i) positive and negative unfolding, (ii) removal of

useless and subsumed 
lauses, and (iii) 
ontextual 
onstraint repla
ement.

The algorithm for Phase C is as follows.

P

f

:= ;

for i := 1; : : : ; n do

repeat

S

0

:= S

i

;

Apply to S

i

, as long as possible, the rule for removing subsumed 
lauses;

Apply to S

i

, as long as possible, the negative unfolding rule and the positive

unfolding rule w.r.t. valid and failed atoms in the 
urrent program;

6



Repla
e all 
lauses in S

i

of the form H  
 by the 
lause H  provided

that D j= 8(9Y 
) where Y is the set of variables in 


whi
h do not o

ur in H

until S

0

= S

i

Remove the useless 
lauses of S

i

;

P

f

:= P

f

[ S

i

;

end-for

Finally, (i) if the unit 
lause f  belongs to P

f

, we 
on
lude that ' is true in

S, and otherwise, (ii) if there are no 
lauses in P

f

de�ning f , we 
on
lude that

' is false in S. If neither 
ase (i) nor 
ase (ii) o

urs, we 
annot 
on
lude that

' is true in S and we 
annot 
on
lude that ' is false in S.

Now we illustrate how our spe
ialization strategy works by applying it to

program P

S0

des
ribed in Se
tion 2. We start by introdu
ing a new de�nition


lause Æ

property :- X=0, sat(s(a,X), not(ef(neg))).

whi
h en
odes the property to be veri�ed. The spe
ialization of program P

S0

w.r.t. the atom property pro
eeds as follows. The output of Phase A is the

following program P

A

:

property :- A=0, \+(newsat1(A)).

newsat1(A) :- A=0, newsat2(A).

newsat1(A) :- B=2, A=0, newsat3(B).

newsat3(A) :- A>1, newsat4(A).

newsat3(A) :- B=2+A, A>1, newsat3(B).

During Phase B we apply the 
ontextual 
onstraint repla
ement rule and we

obtain the following program P

B

:

(1) property :- A=0, \+ newsat1(A).

(2) newsat1(A) :- newsat2(A).

(3) newsat1(A) :- B=2, newsat3(B).

(4) newsat3(A) :- newsat4(A).

(5) newsat3(A) :- B=2+A, newsat3(B).

We start Phase C by 
omputing a minimal strati�
ation of the program P

B

.

We get: P

B

= S

1

[ S

2

, where S

1

= f2; 3; 4; 5g and S

2

= f1g. Then, we start

pro
essing the lowest stratum S

1

.

Stratum S

1

. Sin
e there is no 
lause de�ning newsat2 and newsat4, we apply the

positive unfolding rule to 
lauses 2 and 4 and we remove them from S

1

: We get:

S

1

= f3; 5g. Predi
ates newsat1 and newsat3 are useless in S

1

, so we remove

their de�nitions and we obtain S

1

= ;. The iteration on stratum S

1

ends with

P

f

= ;.

Stratum S

2

. The 
urrent program 
ontains no 
lause de�ning newsat1 and

this allows us to apply the negative unfolding rule to 
lause 1 obtaining S

2

=

fproperty :- A=0.g. We solve the 
onstraint in the body of the only 
lause of

S

2

w.r.t. the variables in its head, and we obtain S

2

= fproperty:g. The output

of Phase C of our spe
ialization strategy is P

f

= fproperty:g whi
h gives us a

proof that property :EF neg is true in S0.

Let us now brie�y 
omment on our three-phase strategy.

7



The output program P

A

of Phase A of the spe
ialization strategy admits

a �nite strati�
ation, if we 
hoose a 
lause generalization fun
tion whi
h does

not generalize the se
ond argument of sat en
oding a CTL formula. Indeed, by


onstru
tion, ea
h 
lause of P

A

with a negative literal in the body, will be of the

form:

newp(: : :) : : : ; :newq(: : :); : : :

and the predi
ates newp and newq are de�ned by 
lauses of the form:

newp(: : :) sat(: : : ; '

p

)

newq(: : :) sat(: : : ; '

q

)

where: (i) '

p

and '

q

are ground terms en
oding CTL formulas, and (ii) '

q

is a

proper subformula of '

p

.

Sin
e the 
ontextual 
onstraint repla
ement rule preserves strati�
ation, also

the output program P

B

of Phase B admits a �nite strati�
ation.

Our spe
ialization strategy terminates if the following fa
ts hold: (i) the

Unfold-Repla
e pro
edure terminates, and (ii) the set of predi
ate de�nitions

introdu
ed by the generalization fun
tion is �nite. Noti
e that Phases B and C

always terminate. In the example presented in the next se
tion we will provide

an unfolding fun
tion and a generalization fun
tion for whi
h Phase A of our

spe
ialization strategy terminates.

4 Veri�
ation of the Bakery Proto
ol

The bakery proto
ol des
ribes the behavior of a system 
onsisting of two pro-


esses, A and B, whi
h run in parallel and try to a

ess a shared resour
e. The

state s

A

of pro
ess A is represented by a pair h


A

; ai where 


A

is an element

of the set fthink ;wait ; useg of 
ontrol states, and a is a 
ounter whi
h takes as

value a non negative rational number. The possible transitions for pro
ess A are

the following (see also Figure 2):

(1) if the 
urrent state is hthink ; ai, then the next state is hwait ; b+ 1i,

(2) if the 
urrent state is hwait ; ai and, either a < b or b = 0, then the next state

is huse; ai,

(3) if the 
urrent state is huse; ai, then the next state is hthink ; 0i.

Analogously for pro
ess B, by inter
hanging a and b.

a:=b+1 if (a<b or b=0)

a:=0

usewaitthink

Figure 2. Transitions of the pro
ess A.

The generi
 state s of the system 
onsisting of the two pro
esses A and B

together, is represented by the 4-tuple h


A

; a; 


B

; bi, whi
h is initially set to

s

0

= hthink ; 0; think ; 0i.
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This system has an in�nite number of states, be
ause 
ounters may in
rease in

an unbounded way, as the following sequen
e of transitions illustrates:

hthink ; 0; think ; 0i ! hwait ; 1; think ; 0i ! hwait ; 1;wait ; 2i! huse; 1;wait ; 2i !

hthink ; 0;wait ; 2i ! hthink ; 0; use; 2i ! hwait ; 3; use; 2i ! hwait ; 3; think ; 0i !

hwait ; 3;wait ; 4i ! : : :

We have applied our spe
ialization method to the veri�
ation of two prop-

erties of the bakery proto
ol: (i) the mutual ex
lusion property, and (ii) the

starvation freedom property. The mutual ex
lusion property says that `the sys-

tem will never rea
h a state where both pro
esses are using the shared resour
e'.

It is a safety property in the sense that during the evolution of the system `some-

thing (bad) may never happen'. The starvation freedom property says that `if

a pro
ess wants to use a resour
e then it will eventually get it'. It is a liveness

property in the sense that during the evolution of a system `something (good)

eventually happens'.

The mutual ex
lusion property 
an be expressed by the CTL formula s

0

j=

:EF (unsafe), where unsafe is an atomi
 state property whi
h holds i� both

pro
esses are in 
ontrol state use. The starvation freedom property for a pro
ess


an be expressed by the CTL formula s

0

j= AG(wait ! AF (use)) whi
h is

equivalent to s

0

j= :EF (wait^:AF (use)), where wait and use are atomi
 state

properties whi
h hold i� the pro
ess is in 
ontrol state wait and use, respe
tively.

Our two-step veri�
ation method works as follows.

Step 1. We introdu
e a CLP program P

bakery

, whi
h is shown in Appendix,

su
h that for the mutual ex
lusion property we have: s

0

j= :EF (unsafe) i�

sat(s

0

; not(ef(unsafe))) 2M(P

bakery

) , and

for the starvation freedom property we have: s

0

j= :EF (wait ^ :AF (use)) i�

sat(s

0

; not(ef(and(wait; not(af(use)))))) 2M(P

bakery

).

Step 2. We 
hoose the parameters of our strategy as follows. (i) The solve fun
-

tion is the 
lp(q,r) solver of [6℄ for simplifying 
onjun
tions of linear equations

and inequations over real numbers. (ii) The unfolding fun
tion takes a de�nition

of the form newp(X

1

; : : : ; X

n

) 
; A and it unfolds it w.r.t. A. Then it unfolds

the derived 
lauses w.r.t. the atoms of the form sat(S; F ), where either F is an

atomi
 state property or the outermost 
onne
tive of F is one of the following:

and ; or ; not . (iii) The generalization fun
tion takes a 
lause H  
; A and it

generalizes it to the 
lause H  d;A, where the 
onstraint d is de�ned as follows

starting from the 
onstraint 
. Let L(
) be the set of 
onstraints whose generi


element r is de�ned as follows:

r ::= true j t = t j t>t j t� t j r^r

where t 2 vars(
) [ f0g. The 
onstraint d is the least 
onstraint of L(
) (in the

impli
ation ordering) whi
h is entailed by 
. Noti
e that vars(d) � vars(
).

For instan
e, the generalization of the 
lause:

new1(A,B) :- A=1, B=2, sat(s(wait,A,wait,B), ef(unsafe))

is the 
lause:

new2(A,B) :- A>0, B>A, sat(s(wait,A,wait,B), ef(unsafe)).

9



The de�nition of the set L(
) of 
onstraints used by the 
lause generalization

fun
tion is based upon the transitions whi
h 
an be made by the system. This


hoi
e 
an easily be automated be
ause this set is 
onstru
ted by using the


onstants and the 
onstraint predi
ate symbols o

urring in the transitions.

We have veri�ed the mutual ex
lusion and the starvation freedom properties

by spe
ializing P

bakery

w.r.t. the atoms safe and starvfree, respe
tively, whi
h

are de�ned as follows:

safe :- A=0, B=0,

sat(s(think,A,think,B), not(ef(unsafe))).

starvfree :- A=0, B=0,

sat(s(think,A,think,B), not(ef(and(wait,not(af(use)))))).

The whole veri�
ation pro
ess was performed automati
ally by using the MAP

transformation system (available at http://www.iasi.rm.
nr.it/~fioravan).

5 Related Work and Con
lusions

During the last years many logi
-based te
hniques have been developed for au-

tomati
ally verifying properties of systems, the most su

essful of them being

model 
he
king [2℄. The su

ess of model 
he
king is also due to the use of Binary

De
ision Diagrams whi
h provide a very 
ompa
t symboli
 representation of a

possibly very large, but �nite, set of states. In order to over
ome this �niteness

restri
tion, some e�orts have re
ently been devoted for the in
orporation into

model 
he
king of abstra
tion and dedu
tion te
hniques [15℄.

Re
ent papers also demonstrate the usefulness of logi
 programming and


onstraint logi
 programming as a basis for the veri�
ation of �nite or in�nite

state systems. In parti
ular, in [13℄ the authors present XMC, a model 
he
king

system implemented in the tabulation-based logi
 programming language XSB.

XMC 
an verify �-
al
ulus properties of �nite state transitions systems expressed

in a CCS-like language, with performan
es 
omparable to that of state-of-the-

art model 
he
kers. In [3℄ model 
he
king using 
onstraint logi
 programming

is des
ribed and some CTL operators of in�nite state 
on
urrent systems are

expressed in terms of least and greatest �xed points of the CLP programs used

to des
ribe the systems. In [10℄ the authors de�ne a method based on partial

dedu
tion of logi
 programs, augmented with abstra
t interpretation, for solving


overability problems of in�nite state Petri nets. In [12℄ a �nite state lo
al model


he
ker is de�ned for CTL, by using CLP with �nite domains, extended with


onstru
tive negation and tabled resolution.

This paper presents some preliminary results obtained when applying to the

veri�
ation of in�nite state systems an extension of the te
hniques developed in

[5℄ for spe
ializing 
onstraint logi
 programs. We performed some experiments

on a simpli�ed version of the bakery algorithm [9℄ whi
h is a proto
ol for mutual

ex
lusion between two pro
esses. We proved that this proto
ol ensures both

mutual ex
lusion and starvation freedom.
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We believe that the integration of CLP as modeling language, and program

spe
ialization as inferen
e system, 
an provide a very �exible tool for the veri�
a-

tion of in�nite state systems. Indeed, 
onstraints provide a natural representation

for in�nite sets of values (e.g., X � 0 des
ribes the in�nite set of non-negative

real numbers), and the de
larativeness of logi
 programming makes it easy to

model a large variety of systems and properties.

Future work on the appli
ation of spe
ialization of CLP program for the

veri�
ation of in�nite state systems will in
lude: experimentation with di�erent


hoi
es of 
onstraint domains, unfolding fun
tions, and generalization operators.

We will also plan to experiment with di�erent 
lasses of systems and properties.
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Appendix

The CLP program P

bakery

.

sat(s(u,A,u,B),unsafe).

sat(s(w,A,B,C),wait).

sat(s(u,A,B,C),use).

sat(A,or(B,C)) :- sat(A,B).

sat(A,or(B,C)) :- sat(A,C).

sat(A,and(B,C)) :- sat(A,B), sat(A,C).

sat(A,not(B)) :- \+ sat(A,B).

sat(A,ef(B)) :- sat(A,B).

sat(s(t,A,S,B),ef(C)) :- D=B+1, A>=0, B>=0, sat(s(w,D,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- A<B, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- B=0, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(u,A,S,B),ef(C)) :- D=0, A>=0, B>=0, sat(s(t,D,S,B),ef(C)).

sat(s(S,A,t,B),ef(C)) :- D=A+1, A>=0, sat(s(S,A,w,D),ef(C)).

sat(s(S,A,w,B),ef(C)) :- B<A, B>=0, sat(s(S,A,u,B),ef(C)).

sat(s(S,A,w,B),ef(C)) :- A=0, B>=0, sat(s(S,A,u,B),ef(C)).

sat(s(S,A,u,B),ef(C)) :- D=0, B>=0, A>=0, sat(s(S,A,t,D),ef(C)).

sat(A,af(B)) :- sat(A,B).

sat(s(t,T1,t,T2),af(P)) :- T3=T2+1, T4=T1+1,

sat(s(w,T3,t,T2),af(P)), sat(s(t,T1,w,T4),af(P)).

sat(s(t,T1,u,T2),af(P)) :- T3=T2+1, T4=0,

sat(s(w,T3,u,T2),af(P)), sat(s(t,T1,t,T4),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T2<T1,

sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1=0,

sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1>0, T1=<T2,

sat(s(w,T3,w,T2),af(P)).

sat(s(u,T1,u,T2),af(P)) :- T3=0, T4=0,

sat(s(t,T3,u,T2),af(P)), sat(s(u,T1,t,T4),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T2<T1,

sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1=0,

sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1>0, T1=<T2,

sat(s(t,T3,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1=0,

sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1>0,

sat(s(u,T1,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T2=0, T1=0,

sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(u,T2,t,T1),af(P)) :- T3=T2+1, T4=0,

sat(s(u,T2,w,T3),af(P)), sat(s(t,T4,t,T1),af(P)).
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sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T2<T1,

sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1=0,

sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1>0, T1=<T2,

sat(s(w,T2,w,T3),af(P)).

sat(s(u,T2,u,T1),af(P)) :- T3=0, T4=0,

sat(s(u,T2,t,T3),af(P)), sat(s(t,T4,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T2<T1,

sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1=0,

sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1>0, T1=<T2,

sat(s(w,T2,t,T3),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1=0,

sat(s(w,T2,u,T1),af(P)),

sat(s(u,T2,w,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1>0,

sat(s(w,T2,u,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T2=0, T1=0,

sat(s(w,T2,u,T1),af(P)), sat(s(u,T2,w,T1),af(P)).
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