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Abstract We propose a set of transformation rules for constraint logic
programs with negation. We assume that every program is locally strati-
�ed and, thus, it has a unique perfect model. We give su�cient conditions
which ensure that the proposed set of transformation rules preserves the
perfect model of the programs. Our rules extend in some respects the
rules for logic programs and constraint logic programs already consid-
ered in the literature and, in particular, they include a rule for unfolding
a clause with respect to a negative literal.

1 Introduction

Program transformation is a very powerful methodology for developing correct
and e�cient programs from formal speci�cations. This methodology is particu-
larly convenient in the case of declarative programming languages, where pro-
grams are formulas and program transformations can be viewed as replacements
of formulas by new, equivalent formulas.

The main advantage of using the program transformation methodology for
program development is that it allows us to address the correctness and the e�-
ciency issues at separate stages. Often little e�ort is required for encoding formal
speci�cations (written by using equational or logical formalisms) as declarative
programs (written as functional or logic programs). These programs are correct
by construction, but they are often computationally ine�cient. Here is where
program transformation comes into play: from a correct (and possibly ine�cient)
initial program version we can derive a correct and e�cient program version by
means of a sequence of program transformations that preserve correctness. We
say that a program transformation preserves correctness, or it is correct, if the
semantics of the initial program is equal to the semantics of the derived program.

A very popular approach followed when applying the program transformation
methodology, is the one based on transformation rules and strategies [9]: the rules
are elementary transformations that preserve the program semantics and the
strategies are (possibly nondeterministic) procedures that guide the application
of transformation rules with the objective of deriving e�cient programs. Thus, a



program transformation is realized by a sequence P0, . . . , Pn of programs, called
a transformation sequence, where, for i = 0, . . . , n−1, Pk+1 is derived from Pk
by applying a transformation rule according to a given transformation strategy.
A transformation sequence is said to be correct if the programs P0, . . . , Pn have
the same semantics.

Various sets of program transformation rules have been proposed in the liter-
ature for several declarative programming languages, such as, functional [9,39],
logic [44], constraint [7,11,27], and functional-logic languages [1]. In this paper
we consider a constraint logic programming language with negation [19,28] and
we study the correctness of a set of transformation rules that extends the sets
which were already considered for constraint logic programming languages. We
will not deal here with transformation strategies, but we will show through some
examples (see Section 5) that the transformation rules can be applied in a rather
systematic (yet not fully automatic) way.

We assume that constraint logic programs are locally strati�ed [4,35]. This
assumption simpli�es our treatment because the semantics of a locally strati�ed
program is determined by its unique perfect model which is equal to its unique
stable model, which is also its unique, total well-founded model [4,35]. (The def-
initions of locally strati�ed programs, perfect models, and other notions used in
this paper are recalled in Section 2.)

The set of transformation rules we consider in this paper includes the unfold-
ing and folding rules (see, for instance, [7,11,16,17,23,27,29,31,37,36,40,42,43,44]).
In order to understand how these rules work, let us �rst consider propositional
programs. The de�nition of an atom a in a program is the set of clauses that
have a as head. The atom a is also called the de�niendum. The disjunction of the
bodies of the clauses that constitute the de�nition of a, is called the de�niens.
Basically, the application of the unfolding rule consists in replacing an atom oc-
curring in the body of a clause by its de�niens and then applying, if necessary,
some suitable boolean laws to obtain clauses. For instance, given the following
programs P1 and P2:

P1: p← q ∧ r P2: p← ¬a ∧ r
q ← ¬a p← b ∧ r
q ← b q ← ¬a

q ← b

we have that by unfolding the �rst clause of program P1 we get program P2.

Folding is the inverse of unfolding and consists in replacing an occurrence
of a de�niens by the corresponding occurrence of the de�niendum (before this
replacement we may apply suitable boolean laws). For instance, by folding the
�rst two clauses of P2 using the de�nition of q, we get program P1. An important
feature of the folding rule is that the de�nition used for folding may occur in a
previous program in the transformation sequence. The formal de�nitions of the
unfolding and folding transformation rules for constraint logic programs will be
given in Section 3. The usefulness of the program transformation approach based
on the unfolding and folding rules, is now very well recognized in the scienti�c
community as indicated by a large number of papers (see [29] for a survey).
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A relevant property we will prove in this paper is that the unfolding of a clause
w.r.t. an atom occurring in a negative literal, also called negative unfolding,
preserves the perfect model of a locally strati�ed program. This property is
interesting, because negative unfolding is useful for program transformation,
but it may not preserve the perfect models (nor the stable models, nor the well-
founded model) if the programs are not locally strati�ed. For instance, let us
consider the following programs P1 and P2:

P1: p← ¬q P2: p← p
q ← ¬p q ← ¬p

Program P2 can be obtained by unfolding the �rst clause of P1 (i.e., by �rst
replacing q by the body ¬p of the clause de�ning q, and then replacing ¬¬p by
p). Program P1 has two perfect models: {p} and {q}, while program P2 has the
unique perfect model {q}.

In this paper we consider the following transformation rules (see Section 3):
de�nition introduction and de�nition elimination (for introducing and elimi-
nating de�nitions of predicates), positive and negative unfolding, positive and
negative folding (that is, unfolding and folding w.r.t. a positive and a negative
occurrence of an atom, respectively), and also rules for applying boolean laws
and rules for manipulating constraints.

Similarly to other sets of transformation rules presented in the literature
(see, for instance, [1,7,9,11,27,39,44]), a transformation sequence constructed by
arbitrary applications of the transformation rules presented in this paper, may
be incorrect. As customary, we will ensure the correctness of transformation
sequences only if they satisfy suitable properties: we will call them admissible
sequences (see Section 4). Although our transformation rules are extensions or
adaptations of transformation rules already considered for strati�ed logic pro-
grams or logic programs, in general, for our correctness proof we cannot rely
on already known results. Indeed, the de�nition of an admissible transforma-
tion sequence depends on the interaction among the rules and, in particular,
correctness may not be preserved if we modify even one rule only.

To see that known results do not extend in a straightforward way when
adding negative unfolding to a set of transformation rules, let us consider the
transformation sequences constructed by �rst (1) unfolding all clauses of a de�-
nition δ and then (2) folding some of the resulting clauses by using the de�nition
δ itself. If at Step (1) we use positive unfolding only, then the perfect model se-
mantics is preserved [37,42], while this semantics may not be preserved if we use
negative unfolding, as indicated by the following example.

Example 1. Let us consider the transformation sequence P0, P1, P2, where:

P0: p(X)← ¬q(X) P1: p(X)← X<0 ∧ ¬q(X) P2: p(X)← X<0 ∧ p(X)
q(X)← X≥ 0 q(X)← X≥ 0 q(X)← X≥ 0
q(X)← q(X) q(X)← q(X) q(X)← q(X)

Program P1 is derived by unfolding the �rst clause of P0 w.r.t. the negative literal
¬q(X) (that is, by replacing the de�niendum q(X) by its de�niens X≥ 0∨q(X),
and then applying De Morgan's law). Program P2 is derived by folding the �rst
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clause of P1 using the de�nition p(X) ← ¬q(X) in P0. We have that, for any
a < 0, the atom p(a) belongs to the perfect model of P0, while p(a) does not
belong to the perfect model of P2.

The main result of this paper (see Theorem 3 in Section 4) shows the correctness
of a transformation sequence constructed by �rst (1) unfolding all clauses of
a (non-recursive) de�nition δ w.r.t. a positive literal, then (2) unfolding zero
or more clauses w.r.t. a negative literal, and �nally (3) folding some of the
resulting clauses by using the de�nition δ. The correctness of such transformation
sequences cannot be established by the correctness results presented in [37,42].

The paper is structured as follows. In Section 2 we present the basic def-
initions of locally strati�ed constraint logic programs and perfect models. In
Section 3 we present our set of transformation rules and in Section 4 we give
su�cient conditions on transformation sequences that ensure the preservation
of perfect models. In Section 5 we present some examples of program derivation
using our transformation rules. In all these examples the negative unfolding rule
plays a crucial role. Finally, in Section 6 we discuss related work and future
research.

2 Preliminaries

In this section we recall the syntax and semantics of constraint logic programs
with negation. In particular, we will give the de�nitions of locally strati�ed
programs and perfect models. For notions not de�ned here the reader may refer
to [2,4,19,20,26].

2.1 Syntax of Constraint Logic Programs

We consider a �rst order language L generated by an in�nite set Vars of variables,
a set Funct of function symbols with arity, and a set Pred of predicate symbols
(or predicates, for short) with arity. We assume that Pred is the union of two
disjoint sets: (i) the set Predc of constraint predicate symbols, including the
equality symbol =, and (ii) the set Predu of user de�ned predicate symbols.

A term of L is either a variable or an expression of the form f(t1, . . . , tn),
where f is an n-ary function symbol and t1, . . . , tn are terms. An atomic formula
is an expression of the form p(t1, . . . , tn) where p is an n-ary predicate symbol
and t1, . . . , tn are terms. A formula of L is either an atomic formula or a formula
constructed from atomic formulas by means of connectives (¬, ∧, ∨, →, ←, ↔)
and quanti�ers (∃, ∀).

Let e be a term, or a formula, or a set of terms or formulas. The set of
variables occurring in e is denoted by vars(e). Given a formula ϕ, the set of the
free variables occurring in ϕ is denoted by FV (ϕ). A term or a formula is ground
i� it does not contain variables. Given a set X = {X1, . . . , Xn} of n variables,
by ∀X ϕ we denote the formula ∀X1 . . . ∀Xn ϕ. By ∀(ϕ) we denote the universal
closure of ϕ, that is, the formula ∀X ϕ, where FV (ϕ) = X. Analogous notations
will be adopted for the existential quanti�er ∃.
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A primitive constraint is an atomic formula p(t1, . . . , tn) where p is a predi-
cate symbol in Predc. The set C of constraints is the smallest set of formulas of L
that contains all primitive constraints and is closed w.r.t. negation, conjunction,
and existential quanti�cation. This closure assumption simpli�es our treatment,
but as we will indicate at the end of this section, we can do without it.

An atom is an atomic formula p(t1, . . . , tn) where p is an element of Predu
and t1, . . . , tn are terms. A literal is either an atom A, also called positive literal,
or a negated atom ¬A, also called negative literal. Given any literal L, by L
we denote: (i) ¬A, if L is the atom A, and (ii) A, if L is the negated atom
¬A. A goal is a (possibly empty) conjunction of literals (here we depart from
the terminology used in [2,26], where a goal is de�ned as the negation of a
conjunction of literals). A constrained literal is the conjunction of a constraint
and a literal. A constrained goal is the conjunction of a constraint and a goal.

A clause γ is a formula of the form H ← c∧G, where: (i) H is an atom, called
the head of γ and denoted hd(γ), and (ii) c∧G is a constrained goal, called the
body of γ and denoted bd(γ). A conjunction of constraints and/or literals may
be empty (in which case it is equivalent to true). A clause of the form H ← c,
where c is a constraint and the goal part of the body is the empty conjunction
of literals, is called a constrained fact. A clause of the form H ←, whose body is
the empty conjunction, is called a fact.

A constraint logic program (or program, for short) is a �nite set of clauses. A
de�nite clause is a clause whose body has no occurrences of negative literals. A
de�nite program is a �nite set of de�nite clauses.

Given two atoms p(t1, . . . , tn) and p(u1, . . . , un), we denote by p(t1, . . . , tn)
= p(u1, . . . , un) the constraint: t1 = u1 ∧ . . . ∧ tn = un. For the notion of
substitution and for the application of a substitution to a term we refer to
[2,26]. Given a formula ϕ and a substitution {X1/t1, . . . , Xn/tn} we denote by
ϕ{X1/t1, . . . , Xn/tn} the result of simultaneously replacing in ϕ all free occur-
rences of X1, . . . , Xn by t1, . . . , tn.

We say that a predicate p immediately depends on a predicate q in a program
P i� there exists in P a clause of the form p(. . .) ← B and q occurs in B. We
say that p depends on q in P i� there exists a sequence p1, . . . , pn, with n> 1,
of predicates such that: (i) p1 = p, (ii) pn = q, and (iii) for i = 1, . . . , n−1, pi
immediately depends on pi+1. Given a user de�ned predicate p and a program
P , the de�nition of p in P , denoted Def (p, P ), is the set of clauses γ in P such
that p is the predicate symbol of hd(γ).

A variable renaming is a bijective mapping from Vars to Vars. The applica-
tion of a variable renaming ρ to a formula ϕ returns the formula ρ(ϕ), which is
said to be a variant of ϕ, obtained by replacing each (bound or free) variable
occurrence X in ϕ by the variable ρ(X). A variant of a set {ϕ1, . . . , ϕn} of formu-
las is the set {ρ(ϕ1), . . . , ρ(ϕn)}, also denoted ρ({ϕ1, . . . , ϕn}). During program
transformation we will feel free to silently apply variable renamings to clauses
and to sets of clauses because, as the reader may verify, they preserve program
semantics (see Section 2.2). Moreover, we will feel free to change the names of the
bound variables occurring in constraints, as usually done in predicate calculus.
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2.2 Semantics of Constraint Logic Programs

In this section we present the de�nition of the semantics of constraint logic
programs with negation. This de�nition extends similar de�nitions given in the
literature for de�nite constraint logic programs [19] and logic programs with
negation [4,35].

We proceed as follows: (i) we de�ne an interpretation for the constraints,
following the approach used in �rst order logic (see, for instance, [2]), (ii) we
introduce the notion of D-model, that is, a model for constraint logic programs
which is parametric w.r.t. the interpretation D for the constraints, (iii) we intro-
duce the notion of locally strati�ed program, and �nally, (iv) we de�ne the perfect
D-model (also called perfect model, for short) of locally strati�ed programs.

An interpretation D for the constraints consists of: (1) a non-empty set D,
called carrier, (2) an assignment of a function fD: Dn → D to each n-ary function
symbol f in Funct, and (3) an assignment of a relation pD over Dn to each n-ary
predicate symbol in Predc. In particular, D assigns the set {〈d, d〉 | d ∈ D} to the
equality symbol =.

We assume that D is a set of ground terms. This is not restrictive because
we may add suitable 0-ary function symbols to L.

Given a formula ϕ whose predicate symbols belong to Predc, we consider the
satisfaction relation D |= ϕ, which is de�ned as usual in �rst order predicate
calculus (see, for instance, [2]). A constraint c is said to be satis�able i� its
existential closure is satis�able, that is, D |= ∃(c). If D 6|= ∃(c), then c is said to
be unsatis�able in D.

Given an interpretation D for the constraints, a D-interpretation I assigns a
relation over Dn to each n-ary user de�ned predicate symbol in Predu, that is, I
can be identi�ed with a subset of the set BD of ground atoms de�ned as follows:

BD = {p(d1, . . . , dn) | p is a predicate symbol in Predu and (d1, . . . , dn) ∈ Dn}.
A valuation is a function v: Vars → D. We extend the domain of a valuation
v to terms, constraints, literals, and clauses as we now indicate. Given a term
t, we inductively de�ne the term v(t) as follows: (i) if t is a variable X then
v(t) = v(X), and (ii) if t is f(t1, . . . , tn) then v(t) = fD(v(t1), . . . , v(tn)). Given
a constraint c, v(c) is the constraint obtained by replacing every free variable
X ∈ FV (c) by the ground term v(X). Notice that v(c) is a closed formula which
may be not ground. Given a literal L, (i) if L is the atom p(t1, . . . , tn), then v(L)
is the ground atom p(v(t1), . . . , v(tn)), and (ii) if L is the negated atom ¬A, then
v(L) is the ground, negated atom ¬v(A). Given a clause γ: H ← c∧L1∧. . .∧Lm,
v(γ) is the clause v(H)← v(c) ∧ v(L1) ∧ . . . ∧ v(Lm).

Let I be a D-interpretation and v a valuation. Given a literal L, we say that
v(L) is true in I i� either (i) L is an atom and v(L) ∈ I, or (ii) L is a negated
atom ¬A and v(A) 6∈ I. We say that the literal v(L) is false in I i� it is not
true in I. Given a clause γ: H ← c ∧ L1 ∧ . . . ∧ Lm, v(γ) is true in I i� either
(i) v(H) is true in I, or (ii) D 6|= v(c), or (iii) there exists i ∈ {1, . . . ,m} such
that v(Li) is false in I.

A D-interpretation I is a D-model of a program P i� for every clause γ in P
and for every valuation v, we have that v(γ) is true in I. It can be shown that
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every de�nite constraint logic program P has a least D-model w.r.t. set inclusion
(see, for instance [20]).

Unfortunately, constraint logic programs which are not de�nite may fail to
have a least D-model. For example, the program consisting of the clause p← ¬q
has the two minimal (not least) models {p} and {q}. This fact has motivated
the introduction of the set of locally strati�ed programs [4,35]. For every locally
strati�ed program one can associate a unique (minimal, but not least, w.r.t. set
inclusion) model, called perfect model, as follows.

A local strati�cation is a function σ: BD →W , whereW is the set of countable
ordinals. If A ∈ BD and σ(A) is the ordinal α, we say that the stratum of A
is α. Given a clause γ in a program P , a valuation v, and a local strati�cation
σ, we say that a clause v(γ) of the form: H ← c ∧ L1 ∧ . . . ∧ Lm is locally
strati�ed w.r.t. σ i� either D |= ¬c or, for i = 1, . . . ,m, if Li is an atom A then
σ(H) ≥ σ(A) else if Li is a negated atom ¬A then σ(H) > σ(A). Given a local
strati�cation σ, we say that program P is locally strati�ed w.r.t. σ, or σ is a
local strati�cation for P , i� for every clause γ in P and for every valuation v,
the clause v(γ) is locally strati�ed w.r.t. σ. A program P is locally strati�ed i�
there exists a local strati�cation σ such that P is locally strati�ed w.r.t. σ. For
instance, let us consider the following program Even:

even(0)←
even(X)← X=Y +1 ∧ ¬even(Y )

where the interpretation for the constraints is as follows: (1) the carrier is the set
of the natural numbers, and (2) the addition function is assigned to the function
symbol +. The program Even is locally strati�ed w.r.t. the strati�cation function
σ such that for every natural number n, σ(even(n)) = n.

The perfect model of a program P which is locally strati�ed w.r.t. a strati�-
cation function σ is the least D-model of P w.r.t. a suitable ordering based on
σ, as speci�ed by the following de�nition. This ordering is, in general, di�erent
from set inclusion.

De�nition 1. (Perfect Model) [35]. Let P be a locally strati�ed program, let σ
be any local strati�cation for P , and let I, J be D-interpretations. We say that
I is preferable to J , and we write I ≺ J i� for every A1 ∈ I−J there exists
A2 ∈ J−I such that σ(A1) > σ(A2). A D-model M of P is called a perfect
D-model (or a perfect model, for short) i� for every D-model N of P di�erent
from M , we have that M≺N .

It can be shown that the perfect model of a locally strati�ed program always
exists and does not depend on the choice of the local strati�cation function σ,
as stated by the following theorem.

Theorem 1. [35] Every locally strati�ed program P has a unique perfect model
M(P ).

By Theorem 1, M(P ) is the least D-model of P w.r.t. the ≺ ordering. For
instance, the perfect model of the program consisting of the clause p ← ¬q is
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{p} because σ(p) > σ(q) and, thus, the D-model {p} is preferable to the D-model
{q} (i.e., {p}≺{q} ). Similarly, it can be veri�ed that the perfect model of the
program Even is M(Even) = {even(n) |n is an even non-negative integer}. In
Section 4 we will provide a method for constructing the perfect model of a locally
strati�ed program based on the notion of proof tree.

Let us conclude this section by showing that the assumption that the set C of
constraints is closed w.r.t. negation, conjunction, and existential quanti�cation
is not really needed. Indeed, given a locally strati�ed clause H ← c ∧G, where
the constraint c is written by using negation, or conjunction, or existential quan-
ti�cation, we can replace H ← c ∧ G by an equivalent set of locally strati�ed
clauses. For instance, if c is ∃X d then we can replace H ← c ∧ G by the two
clauses:

H ← newp(Y1, . . . , Yn) ∧G
newp(Y1, . . . , Yn)← d

where newp is a new, user de�ned predicate and {Y1, . . . , Yn} = FV (∃X d).
Analogous replacements can be applied in the case where a constraint is written
by using negation or conjunction.

3 The Transformation Rules

In this section we present a set of rules for transforming locally strati�ed con-
straint logic programs. We postpone to Section 6 the detailed comparison of our
set of transformation rules with other sets of rules which were proposed in the
literature for transforming logic programs and constraint logic programs. The
application of our transformation rules is illustrated by simple examples. More
complex examples will be given in Section 5.

The transformation rules are used to construct a transformation sequence,
that is, a sequence P0, . . . , Pn of programs. We assume that P0 is locally strat-
i�ed w.r.t. a �xed local strati�cation function σ: BD → W , and we will say
that P0, . . . , Pn is constructed using σ. We also assume that we are given a set
Pred int ⊆ Predu of predicates of interest.

A transformation sequence P0, . . . , Pn is constructed as follows. Suppose that
we have constructed a transformation sequence P0, . . . , Pk, for 0≤k≤n−1, the
next program Pk+1 in the transformation sequence is derived from program Pk
by the application of a transformation rule among R1�R10 de�ned below.

Our �rst rule is the de�nition introduction rule, which is applied for intro-
ducing a new predicate de�nition. Notice that by this rule we can introduce a
new predicate de�ned by m (≥ 1) non-recursive clauses.

R1. De�nition Introduction. Let us consider m (≥1) clauses of the form:

δ1 : newp(X1, . . . , Xh)← c1 ∧G1

. . .
δm : newp(X1, . . . , Xh)← cm ∧Gm

where:
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(i) newp is a predicate symbol not occurring in {P0, . . . , Pk},
(ii) X1, . . . , Xh are distinct variables occurring in FV ({c1 ∧G1, . . . , cm ∧Gm}),
(iii) every predicate symbol occurring in {G1, . . . , Gm} also occurs in P0, and
(iv) for every ground substitution ϑ with domain {X1, . . . , Xh},
σ(newp(X1, . . . , Xh)ϑ) is the least ordinal α such that, for every valuation v and
for every i = 1, . . . ,m,
either (iv.1) D |= ¬v(ciϑ) or (iv.2) for every literal L occurring in v(Giϑ), if L
is an atom A then α≥σ(A) else if L is a negated atom ¬A then α>σ(A).
By de�nition introduction (or de�nition, for short) from program Pk we derive
the program Pk+1 = Pk∪{δ1, . . . , δm}. For k ≥ 0, Defsk denotes the set of clauses
introduced by the de�nition rule during the transformation sequence P0, . . . , Pk.
In particular, Defs0 = ∅.

Condition (iv), which is needed to ensure that σ is a local strati�cation for
each program in the transformation sequence P0, . . . , Pk+1 (see Proposition 1),
is not actually restrictive, because newp is a predicate symbol not occurring
in P0 and, thus, we can always choose the local strati�cation σ for P0 so that
Condition (iv) holds. As a consequence of Condition (iv), σ(newp(X1, . . . , Xh)ϑ)
is the least upper bound of Sp ∪ Sn w.r.t. < where:

Sp = {σ(A) | 1≤ i≤m, v is a valuation, A occurs in v(Giϑ),
D |= v(ciϑ)}, and

Sn = {σ(A)+1 | 1≤ i≤m, v is a valuation, ¬A occurs in v(Giϑ),
D |= v(ciϑ)}.

In particular, if for i = 1, . . . ,m, D |= ¬∃(ciϑ), then Sp ∪ Sn = ∅ and we have
that σ(newp(X1, . . . , Xh)ϑ) = 0.

The de�nition elimination rule is the inverse of the de�nition introduction
rule. It can be used to discard from a given program the de�nitions of predicates
which are not of interest.

R2. De�nition Elimination. Let p be a predicate such that no predicate of
the set Pred int of the predicates of interest depends on p in Pk. By eliminating
the de�nition of p, from program Pk we derive the new program Pk+1 = Pk −
Def (p, Pk).

The unfolding rule consists in: (i) replacing an atom p(t1, . . . , tm) occur-
ring in the body of a clause, by a suitable instance of the disjunction of the
bodies of the clauses which are the de�nition of p, and (ii) applying suitable
boolean laws for deriving clauses. The suitable instance of Step (i) is computed
by adding a constraint of the form p(t1, . . . , tm)=K for each head K of a clause
in Def (p, Pk). There are two unfolding rules: (1) the positive unfolding rule, and
(2) the negative unfolding rule, corresponding to the case where p(t1, . . . , tm)
occurs positively and negatively, respectively, in the body of the clause to be
unfolded. In order to perform Step (ii), in the case of positive unfolding we ap-
ply the distributivity law, and in the case of negative unfolding we apply De
Morgan's, distributivity, and double negation elimination laws.

R3. Positive Unfolding. Let γ : H ← c∧GL∧A∧GR be a clause in program
Pk and let P ′k be a variant of Pk without common variables with γ. Let
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γ1 : K1 ← c1 ∧B1

. . .
γm : Km ← cm ∧Bm

wherem ≥ 0 and B1, . . . , Bm are conjunction of literals, be all clauses of program
P ′k such that, for i = 1, . . . ,m, D |= ∃(c ∧A=Ki ∧ ci).
By unfolding clause γ w.r.t. the atom A we derive the clauses

η1 : H ← c ∧A=K1 ∧ c1 ∧GL ∧B1 ∧GR
. . .

ηm : H ← c ∧A=Km ∧ cm ∧GL ∧Bm ∧GR
and from program Pk we derive the program Pk+1 = (Pk−{γ})∪{η1, . . . , ηm}.

Notice that if m=0 then, by positive unfolding, clause γ is deleted from Pk.

Example 2. Let Pk be the following program:

1. p(X)← X≥1 ∧ q(X)
2. q(Y )← Y =0
3. q(Y )← Y =Z+1 ∧ q(Z)

where we assume that the interpretation for the constraints is given by the
structure R of the real numbers. Let us unfold clause 1 w.r.t. the atom q(X).
The constraint X ≥ 1 ∧ X = Y ∧ Y = 0 constructed from the constraints of
clauses 1 and 2 is unsatis�able, that is, R |= ¬∃X∃Y (X ≥ 1 ∧X =Y ∧ Y = 0),
while the constraint X≥1 ∧X=Y ∧ Y =Z+1 constructed from the constraints
of clauses 1 and 3, is satis�able. Thus, we derive the following program Pk+1:

1u. p(X)← X≥1 ∧X=Y ∧ Y =Z+1 ∧ q(Z)
2. q(Y )← Y =0
3. q(Y )← Y =Z+1 ∧ q(Z)

R4. Negative Unfolding. Let γ : H ← c ∧ GL ∧ ¬A ∧ GR be a clause in
program Pk and let P ′k be a variant of Pk without common variables with γ.
Let

γ1 : K1 ← c1 ∧B1

. . .
γm : Km ← cm ∧Bm

wherem ≥ 0 and B1, . . . , Bm are conjunction of literals, be all clauses of program
P ′k such that, for i = 1, . . . ,m, D |= ∃(c ∧ A = Ki ∧ ci). Suppose that, for
i = 1, . . . ,m, there exist an idempotent substitution ϑi = {Xi1/ti1, . . . , Xin/tin}
and a constraint di such that the following conditions hold:

(i) D |= ∀(c→ ((A=Ki ∧ ci)↔ (Xi1 = ti1 ∧ . . . ∧Xin= tin ∧ di))),
(ii) {Xi1, . . . , Xin} ⊆ Vi, where Vi = FV (γi), and
(iii) FV (di ∧Biϑi) ⊆ FV (c ∧A).

Then, from the formula

ψ0 : c∧GL∧¬(∃V1 (A=K1∧c1∧B1)∨ . . .∨∃Vm (A=Km∧cm∧Bm))∧GR
we get an equivalent disjunction of constrained goals by performing the following
steps. In these steps we silently apply the associativity of ∧ and ∨.
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Step 1. (Eliminate ∃) Since Conditions (i), (ii), and (iii) hold, we derive from ψ0

the following equivalent formula:

ψ1 : c ∧GL ∧ ¬((d1 ∧B1ϑ1) ∨ . . . ∨ (dm ∧Bmϑm)) ∧GR
Step 2. (Push ¬ inside) We apply to ψ1 as long as possible the following rewrit-
ings of formulas, where d is a constraint, At is an atom, G, G1, G2 are goals,
and D is a disjunction of constrained literals:

¬((d ∧G) ∨D) −→ ¬(d ∧G) ∧ ¬D
¬(d ∧G) −→ ¬d ∨ (d ∧ ¬G)
¬(G1 ∧G2) −→ ¬G1 ∨ ¬G2

¬¬At −→ At

Thus, from ψ1 we derive the following equivalent formula:

ψ2 : c ∧GL∧ (¬d1 ∨ (d1 ∧ (L11ϑ1 ∨ . . . ∨ L1pϑ1)))
∧ . . .

∧ (¬dm ∨ (dm ∧ (Lm1ϑm∨ . . . ∨ Lmqϑm)))
∧GR

where L11 ∧ . . . ∧ L1p is B1, . . ., and Lm1 ∧ . . . ∧ Lmq is Bm.
Step 3. (Push ∨ outside) We apply to ψ2 as long as possible the following rewrit-
ing of formulas, where ϕ1, ϕ2, and ϕ3 are formulas:

ϕ1 ∧ (ϕ2 ∨ ϕ3) −→ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)

and then we move constraints to the left of literals by applying the commutativity
of ∧. Thus, from ψ2 we get an equivalent formula of the form:

ψ3 : (c ∧ e1 ∧GL ∧Q1 ∧GR) ∨ . . . ∨ (c ∧ er ∧GL ∧Qr ∧GR)

where e1, . . . , er are constraints and Q1, . . . , Qr are goals.

Step 4. (Remove unsatis�able disjuncts) We remove from ψ3 every disjunct (c∧
ej ∧GL ∧Qj ∧GR), with 1≤ j≤r, such that D |= ¬∃(c ∧ ej), thereby deriving
an equivalent disjunction of constrained goals of the form:

ψ4 : (c ∧ e1 ∧GL ∧Q1 ∧GR) ∨ . . . ∨ (c ∧ es ∧GL ∧Qs ∧GR)

By unfolding clause γ w.r.t. the negative literal ¬A we derive the clauses

η1 : H ← c ∧ e1 ∧GL ∧Q1 ∧GR
. . .

ηs : H ← c ∧ es ∧GL ∧Qs ∧GR
and from program Pk we derive the program Pk+1 = (Pk − {γ})∪ {η1, . . . , ηs}.

Notice that: (i) if m = 0, that is, if we unfold clause γ w.r.t. a negative literal ¬A
such that the constraint c∧A=Ki∧ci is satis�able for no clause Ki ← ci∧Bi in
P ′k, then we get the new program Pk+1 by deleting ¬A from the body of clause
γ, and (ii) if we unfold clause γ w.r.t. a negative literal ¬A such that for some
clause Ki ← ci ∧ Bi in P ′k, D |= ∀(c → ∃Vi (A=Ki ∧ ci)) and Bi is the empty
conjunction, then we derive the new program Pk+1 by deleting clause γ from Pk.

An application of the negative unfolding rule is illustrated by the following
example.
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Example 3. Suppose that the following clause belongs to program Pk:

γ : h(X)← X≥0 ∧ ¬p(X)
and let

p(Y )← Y =Z+1 ∧ Z≥0 ∧ q(Z)
p(Y )← Y =Z−1 ∧ Z≥1 ∧ q(Z) ∧ ¬r(Z)

be the de�nition of p in Pk. Suppose also that the constraints are interpreted in
the structure R of the real numbers. Now let us unfold clause γ w.r.t. ¬p(X).
We start o� from the formula:

ψ0 : X≥0 ∧ ¬( ∃Y ∃Z (X=Y ∧ Y =Z+1 ∧ Z≥0 ∧ q(Z))∨
∃Y ∃Z (X=Y ∧ Y =Z−1 ∧ Z≥1 ∧ q(Z) ∧ ¬r(Z)))

Then we perform the four steps indicated in rule R4 as follows.
Step 1. Since we have that:

R |= ∀X ∀Y ∀Z (X≥0→ ( (X=Y ∧ Y =Z+1 ∧ Z≥0)↔
(Y =X ∧ Z=X−1 ∧X≥1)))

and
R |= ∀X ∀Y ∀Z (X≥0→ ( (X=Y ∧ Y =Z−1 ∧ Z≥1)↔

(Y =X ∧ Z=X+1)))
we derive the formula:

ψ1 : X≥0 ∧ ¬((X≥1 ∧ q(X−1)) ∨ (q(X+1) ∧ ¬r(X+1)))
Steps 2 and 3. By applying the rewritings indicated in rule R4 we derive the
following formula:

ψ3 : (X≥0 ∧ ¬X≥1 ∧ ¬q(X+1))∨
(X≥0 ∧ ¬X≥1 ∧ r(X+1))∨
(X≥0 ∧X≥1 ∧ ¬q(X−1) ∧ ¬q(X+1))∨
(X≥0 ∧X≥1 ∧ ¬q(X−1) ∧ r(X+1))

Step 4. Since all constraints in the formula derived at the end of Steps 2 and 3
are satis�able, no disjunct is removed.

Thus, by unfolding h(X)← X≥0∧¬p(X) w.r.t. ¬p(X) we derive the following
clauses:

h(X)← X≥0 ∧ ¬X≥1 ∧ ¬q(X+1)
h(X)← X≥0 ∧ ¬X≥1 ∧ r(X+1)
h(X)← X≥0 ∧X≥1 ∧ ¬q(X−1) ∧ ¬q(X+1)
h(X)← X≥0 ∧X≥1 ∧ ¬q(X−1) ∧ r(X+1)

The validity of Conditions (i), (ii), and (iii) in the negative unfolding rule allows
us to eliminate the existential quanti�ers as indicated at Step 1. If these condi-
tions do not hold and nonetheless we eliminate the existential quanti�ers, then
negative unfolding may be incorrect, as illustrated by the following example.

Example 4. Let us consider the following programs P0 and P1, where P1 is ob-
tained by negative unfolding from P0, but Conditions (i)�(iii) do not hold:

P0: p← ¬q P1: p← ¬r(X)
q ← r(X) q ← r(X)
r(X)← X=0 r(X)← X=0
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We have that: p 6∈ M(P0) while p ∈ M(P1). (We assume that the carrier of the
interpretation for the constraints contains at least one element di�erent from 0.)

The reason why the negative unfolding step of Example 4 is incorrect is that
the clause q ← r(X) is, as usual, implicitly universally quanti�ed at the front,
and ∀X (q ← r(X)) is logically equivalent to q ← ∃X r(X). Now, a correct
negative unfolding rule should replace the clause p ← ¬q in program P0 by
p ← ¬∃X r(X), while in program P1 we have derived the clause p ← ¬r(X)
which, by making the quanti�cation explicit at the front of the body, can be
written as p← ∃X ¬r(X).

The folding rule consists in replacing instances of the bodies of the clauses
that are the de�nition of a predicate by the corresponding head. As for unfolding,
we have a positive folding and a negative folding rule, depending on whether
folding is applied to positive or negative occurrences of (conjunctions of) literals.
Notice that by the positive folding rule we may replace m (≥ 1) clauses by one
clause only.

R5. Positive Folding. Let γ1, . . . , γm, with m ≥ 1, be clauses in Pk and let
Defs ′k be a variant of Defsk without common variables with γ1, . . . , γm. Let the
de�nition of a predicate in Defs ′k consist of the clauses

δ1 : K ← d1 ∧B1

. . .
δm : K ← dm ∧Bm

where, for i = 1, . . . ,m, Bi is a non-empty conjunction of literals. Suppose
that there exists a substitution ϑ such that, for i = 1, . . . ,m, clause γi is of
the form H ← c ∧ diϑ ∧ GL ∧ Biϑ ∧ GR and, for every variable X in the set
FV (di ∧ Bi) − FV (K), the following conditions hold: (i) Xϑ is a variable not
occurring in {H, c,GL, GR}, and (ii) Xϑ does not occur in the term Y ϑ, for any
variable Y occurring in di ∧Bi and di�erent from X.
By folding clauses γ1, . . . , γm using clauses δ1, . . . , δm we derive the clause η:
H ← c ∧ GL ∧Kϑ ∧ GR and from program Pk we derive the program Pk+1 =
(Pk − {γ1, . . . , γm}) ∪ {η}.

The following example illustrates an application of rule R5.

Example 5. Suppose that the following clauses belong to Pk:

γ1: h(X)← X≥1 ∧ Y =X−1 ∧ p(Y, 1)
γ2: h(X)← X≥1 ∧ Y =X+1 ∧ ¬q(Y )

and suppose that the following clauses constitute the de�nition of a predicate
new in Defsk:

δ1: new(Z,C)← V =Z−C ∧ p(V,C)
δ2: new(Z,C)← V =Z+C ∧ ¬q(V )

For ϑ = {V/Y, Z/X,C/1}, we have that γ1 = h(X) ← X ≥ 1 ∧ (V = Z−C ∧
p(V,C))ϑ and γ2 = h(X)← X≥1∧ (V =Z+C ∧¬q(V ))ϑ, and the substitution
ϑ satis�es Conditions (i) and (ii) of the positive folding rule. By folding clauses
γ1 and γ2 using clauses δ1 and δ2 we derive:
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η: h(X)← X≥1 ∧ new(Z, 1)

R6. Negative Folding. Let γ be a clause in Pk and let Defs ′k be a variant of
Defsk without common variables with γ. Suppose that there exists a predicate
in Defs ′k whose de�nition consists of a single clause δ : K ← d ∧ A, where A is
an atom. Suppose also that there exists a substitution ϑ such that clause γ is of
the form: H ← c ∧ dϑ ∧GL ∧ ¬Aϑ ∧GR and FV (K) = FV (d ∧A).
By folding clause γ using clause δ we derive the clause η: H ← c ∧ dϑ ∧ GL ∧
¬Kϑ∧GR and from program Pk we derive the program Pk+1 = (Pk−{γ})∪{η}.

The following is an example of application of the negative folding rule.

Example 6. Let the following clause belong to Pk:

γ: h(X)← X≥0 ∧ q(X) ∧ ¬r(X, 0)
and let new be a predicate whose de�nition in Defsk consists of the clause:

δ: new(X,C)← X≥C ∧ r(X,C)
By folding γ using δ we derive:

η: h(X)← X≥0 ∧ q(X) ∧ ¬new(X, 0)

The positive and negative folding rule are not fully symmetric for the following
three reasons.
(1) By positive folding we can fold several clauses at a time by using several
clauses whose body may contain several literals, while by negative folding we
can fold a single clause at a time by using a single clause whose body contains
precisely one atom. This is motivated by the fact that a conjunction of more
than one literal cannot occur inside negation in the body of a clause.
(2) By positive folding, for i = 1, . . . ,m, the constraint dϑi occurring in the body
of clause γi is removed, while by negative folding the constraint dϑ occurring in
the body of clause γ is not removed. Indeed, the removal of the constraint dϑ
would be incorrect. For instance, let us consider the program Pk of Example 6
above and let us assume that γ is the only clause de�ning the predicate h. Let
us also assume that the predicates q and r are de�ned by the following two
clauses: q(X) ← X < 0 and r(X, 0) ← X < 0. We have that h(−1) 6∈ M(Pk).
Suppose that we apply the negative folding rule to clause γ and we remove the
constraintX≥0, thereby deriving the clause h(X)← q(X)∧¬new(X, 0), instead
of clause η. Then we obtain a program whose perfect model has the atom h(−1).
(3) The conditions on the variables occurring in the clauses used for folding are
less restrictive in the case of positive folding (see Conditions (i) and (ii) of R5)
than in the case of negative folding (see the condition FV (K) = FV (d ∧ A)).
Notice that a negative folding rule where the condition FV (K) = FV (d ∧A) is
replaced by Conditions (i) and (ii) of R5 would be incorrect, in general. To see
this, let us consider the following example which may be viewed as the inverse
derivation of Example 4.

Example 7. Let us consider the following programs P0, P1, and P2, where P1

is obtained from P0 by de�nition introduction, and P2 is obtained from P1 by
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incorrectly folding p← ¬r(X) using q ← r(Y ). Notice that FV (q) 6=FV (r(X))
but Conditions (i) and (ii) are satis�ed by the substitution {Y/X}.

P0: p← ¬r(X) P1: p← ¬r(X) P2: p← ¬q
r(X)← X=0 r(X)← X=0 r(X)← X=0

q ← r(Y ) q ← r(Y )

We have that: p ∈ M(P0) while p 6∈ M(P2). (We assume that the carrier of the
interpretation for the constraints contains at least one element di�erent from 0.)

If we consider the folding and unfolding rules outside the context of a transfor-
mation sequence, either rule can be viewed as the inverse of the other. However,
given a transformation sequence P0, . . . , Pn, it may be the case that from a pro-
gram Pk in that sequence we derive program Pk+1 by folding, and from program
Pk+1 we cannot derive by unfolding a program Pk+2 which is equal to Pk. This is
due to the fact that in the transformation sequence P0, . . . , Pk, Pk+1, in order to
fold some clauses in program Pk, we may use clauses in Defsk which are neither
in Pk nor in Pk+1, while for unfolding program Pk+1 we can only use clauses
which belong to Pk+1. Thus, according to the terminology introduced in [29], we
say that folding is, in general, not reversible. This fact is shown by the following
example.

Example 8. Let us consider the transformation sequence:

P0: p← q P1: p← q P2: p← q P3: p← r
q ← q ← q ← q ←

r ← q r ← r ←

where P1 is derived from P0 by introducing the de�nition r ← q, P2 is derived
from P1 by unfolding the clause r ← q, and P3 is derived from P2 by folding
the clause p← q using the de�nition r ← q. We have that from program P3 we
cannot derive a program equal to P2 by applying the positive unfolding rule.

Similarly, the unfolding rules are not reversible in general. In fact, if we derive a
program Pk+1 by unfolding a clause in a program Pk and we have that Defsk = ∅,
then we cannot apply the folding rule and derive a program Pk+2 which is equal
to Pk, simply because no clause in Defsk is available for folding.

The following replacement rule can be applied to replace a set of clauses with
a new set of clauses by using laws based on equivalences between formulas. In
particular, we consider: (i) boolean laws, (ii) equivalences that can be proved
in the chosen interpretation D for the constraints, and (iii) properties of the
equality predicate.

R7. Replacement Based on Laws. Let us consider the following rewritings
Γ1 ⇒ Γ2 between sets of clauses (we use Γ1 ⇔ Γ2 as a shorthand for the two
rewritings Γ1 ⇒ Γ2 and Γ2 ⇒ Γ1). Each rewriting is called a law.
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Boolean Laws

(1) {H ← c ∧A ∧ ¬A ∧G} ⇔ ∅
(2) {H ← c ∧H ∧G} ⇔ ∅
(3) {H ← c ∧G1 ∧A1 ∧A2 ∧G2} ⇔ {H ← c ∧G1 ∧A2 ∧A1 ∧G2}
(4) {H ← c ∧A ∧A ∧G} ⇒ {H ← c ∧A ∧G}

(5)
{H ← c ∧G1,
H ← c ∧ d ∧G1 ∧G2}

⇔ {H ← c ∧G1}

(6)
{H ← c ∧A ∧G,
H ← c ∧ ¬A ∧G} ⇒ {H ← c ∧G}

Laws of Constraints
(7) {H ← c ∧G} ⇔ ∅

if the constraint c is unsatis�able, that is, D |= ¬∃(c)
(8) {H ← c1 ∧G} ⇔ {H ← c2 ∧G}

if D |= ∀ (∃Y c1 ↔ ∃Z c2), where:
(i) Y = FV (c1)−FV ({H,G}), and
(ii) Z = FV (c2)−FV ({H,G})

(9) {H ← c ∧G} ⇔ {H ← c1 ∧G, H ← c2 ∧G}
if D |= ∀ (c↔ (c1 ∨ c2))

Laws of Equality
(10) {(H ← c ∧G){X/t}} ⇔ {H ← X= t ∧ c ∧G}

if the variable X does not occur in the term t
and t is free for X in c.

Let Γ1 and Γ2 be sets of clauses such that: (i) Γ1 ⇒ Γ2, and (ii) Γ2 is locally
strati�ed w.r.t. the �xed local strati�cation function σ. By replacement from Γ1

we derive Γ2 and from program Pk we derive the program Pk+1 = (Pk−Γ1)∪Γ2.

Condition (ii) on Γ2 is needed because a replacement based on laws (1), (2),
(5), and (7), used from right to left, may not preserve local strati�cation. For
instance, the �rst law may be used to introduce a clause of the form p← p∧¬p,
which is not locally strati�ed. We will see at the end of Section 4 that if we add
the reverse versions of the boolean laws (4) or (6), then the correctness result
stated in Theorem 3 does not hold.

The following de�nition is needed for stating rule R8 below. The set of useless
predicates in a program P is the maximal set U of predicate symbols occurring
in P such that a predicate p is in U i� every clause γ in Def (p, P ) is of the
form H ← c ∧ G1 ∧ q(. . .) ∧ G2 for some q in U . For example, in the following
program:

p(X)← q(X) ∧ ¬r(X)
q(X)← p(X)
r(X)← X>0

p and q are useless predicates, while r is not useless.
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R8. Deletion of Useless Predicates. If p is a useless predicate in Pk, then
from program Pk we derive the program Pk+1 = Pk −Def (p, Pk).

Neither of the rules R2 and R8 subsumes the other. Indeed, on one hand
the de�nition of a predicate p on which no predicate of interest depends, can be
deleted by rule R2 even if p is not useless. On the other hand, the de�nition of
a useless predicate p can be deleted by rule R8 even if a predicate of interest
depends on p.

The constraint addition rule R9 which we present below, can be applied
to add to the body of a clause a constraint which is implied by that body.
Conversely, the constraint deletion rule R10, also presented below, can be applied
to delete from the body of a clause a constraint which is implied by the rest of
the body. Notice that these implications should hold in the perfect model of
program Pk, while the applicability conditions of rule R7 (see, in particular, the
replacements based on laws 7�9) are independent of Pk. Thus, for checking the
applicability conditions of rules R9 and R10 we may need a program analysis
based, for instance, on abstract interpretation [10].

R9. Constraint Addition. Let γ1 : H ← c∧G be a clause in Pk and let d be a
constraint such that M(Pk) |= ∀((c∧G)→ ∃X d), where X = FV (d)−FV (γ1).
By constraint addition from clause γ1 we derive the clause γ2 : H ← c ∧ d ∧G
and from program Pk we derive the program Pk+1 = (Pk − {γ1}) ∪ {γ2}.

The following example shows an application of the constraint addition rule
that cannot be realized by applying laws of constraints according to rule R7.

Example 9. Let us consider the following program Pk:

1. nat(0)←
2. nat(N)← N=M+1 ∧ nat(M)

Since M(Pk) |= ∀M (nat(M) → M ≥ 0), we can add the constraint M ≥ 0 to
the body of clause 2. This constraint addition improves the termination of the
program when using a top-down strategy.

R10. Constraint Deletion. Let γ1 : H ← c ∧ d ∧ G be a clause in Pk and
let d be a constraint such that M(Pk) |= ∀((c ∧ G) → ∃X d), where X =
FV (d) − FV (H ← c ∧ G). Suppose that the clause γ2 : H ← c ∧ G is locally
strati�ed w.r.t. the �xed σ. By constraint deletion from clause γ1 we derive clause
γ2 and from program Pk we derive the program Pk+1 = (Pk − {γ1}) ∪ {γ2}.

We assume that γ2 is locally strati�ed w.r.t. σ because otherwise, the con-
straint deletion rule may not preserve local strati�cation. For instance, let us
consider the following program P :

p(X)←
p(X)← X 6=X ∧ ¬p(X)

P is locally strati�ed because for all elements d in the carrier of the interpretation
D for the constraints, we have that D |= d = d. We also have that M(P ) |=
∀X (¬p(X) → X 6= X). However, if we delete the constraint X 6= X from the
second clause of P we derive the clause p(X) ← ¬p(X) which is not locally
strati�ed w.r.t. any local strati�cation function.
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4 Preservation of Perfect Models

In this section we present some su�cient conditions which ensure that a trans-
formation sequence constructed by applying the transformation rules listed in
Section 3, preserves the perfect model semantics.

We will prove our correctness theorem for admissible transformation se-
quences, that is, transformation sequences constructed by applying the rules
according to suitable restrictions. The reader who is familiar with the program
transformation methodology, will realize that most transformation strategies
can, indeed, be realized by means of admissible transformation sequences. In
particular, all examples of Section 5 are worked out by using this kind of trans-
formation sequences.

We proceed as follows. (i) First we show that the transformation rules pre-
serve local strati�cation. (ii) Then we introduce the notion of an admissible
transformation sequence. (iii) Next we introduce the notion of a proof tree for a
ground atom A and a program P and we show that A ∈M(P ) i� there exists a
proof tree for A and P . Thus, the notion of proof tree provides the operational
counterpart of the perfect model semantics. (iv) Then, we prove that given any
admissible transformation sequence P0, . . . , Pn, any set Pred int of predicates of
interest, and any ground atom A whose predicate is in Pred int, we have that for
k = 0, . . . , n, there exists a proof tree for A and Pk i� there exists a proof tree
for A and P0∪Defsn. (v) Finally, by using the property of proof trees considered
at Point (iii), we conclude that an admissible transformation sequence preserves
the perfect model semantics (see Theorem 3).

Let us start o� by showing that the transformation rules preserve the lo-
cal strati�cation function σ which was �xed for the initial program P0 at the
beginning of the construction of the transformation sequence.

Proposition 1. [Preservation of Local Strati�cation]. Let P0 be a locally strat-
i�ed program, let σ : BD → W be a local strati�cation function for P0, and let
P0, . . . , Pn be a transformation sequence using σ. Then the programs P0, . . . , Pn,
and P0 ∪Defsn are locally strati�ed w.r.t. σ.

The proof of Proposition 1 is given in Appendix A.
An admissible transformation sequence is a transformation sequence that

satis�es two conditions: (1) every clause used for positive folding is unfolded
w.r.t. a positive literal, and (2) the de�nition elimination rule cannot be applied
before any other transformation rule. An admissible transformation sequence is
formally de�ned as follows.

De�nition 2. [Admissible Transformation Sequence] A transformation sequence
P0, . . . , Pn is said to be admissible i� the following two conditions hold:
(1) for k = 0, . . . , n−1, if Pk+1 is derived from Pk by applying the positive folding
rule to clauses γ1, . . . , γm using clauses δ1, . . . , δm, then for i = 1, . . . ,m there
exists j, with 0<j <n, such that δi ∈ Pj and program Pj+1 is derived from Pj
by positive unfolding of clause δi, and
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(2) if for some m<n, Pm+1 is derived from Pm by the de�nition elimination rule
then for all k = m, . . . , n−1, Pk+1 is derived from Pk by applying the de�nition
elimination rule.

When proving our correctness theorem (see Theorem 3 below), we will �nd it
convenient to consider transformation sequences which are admissible and satisfy
some extra suitable properties. This motivates the following notion of ordered
transformation sequences.

De�nition 3. [Ordered Transformation Sequence] A transformation sequence
P0, . . . , Pn is said to be ordered i� it is of the form:

P0, . . . , Pi, . . . , Pj , . . . , Pm, . . . , Pn

where:
(1) the sequence P0, . . . , Pi, with i ≥ 0, is constructed by applying i times the
de�nition introduction rule, that is, Pi = P0 ∪Defsi;
(2) the sequence Pi, . . . , Pj is constructed by unfolding w.r.t. a positive literal each
clause in Defsi which is used for applications of the folding rule in Pj , . . . , Pm;
(3) the sequence Pj , . . . , Pm, with j ≤ m, is constructed by applying any rule,
except the de�nition introduction and de�nition elimination rules; and
(4) the sequence Pm, . . . , Pn, with m≤n, is constructed by applying the de�nition
elimination rule.

Notice that in an ordered transformation sequence we have that Defsi = Defsn.
Every ordered transformation sequence is admissible, because of Points (2) and
(4) of De�nition 3. Conversely, by the following Proposition 2, in our correctness
proofs we will assume, without loss of generality, that any admissible transfor-
mation sequence is ordered.

Proposition 2. For every admissible transformation sequence P0, . . . , Pn, there
exists an ordered transformation sequence Q0, . . . , Qr (with r possibly di�erent
from n), such that: (i) P0 = Q0, (ii) Pn = Qr, and (iii) the set of de�nitions
introduced during P0, . . . , Pn is equal to the set of de�nitions introduced during
Q0, . . . , Qr.

The easy proof of Proposition 2 is omitted for reasons of space. It is based
on the fact that the applications of some transformation rules can be suitably
rearranged without changing the initial and �nal programs in a transformation
sequence.

Now we present the operational counterpart of the perfect model semantics,
that is, the notion of a proof tree. A proof tree for a ground atom A and a locally
strati�ed program P is constructed by trans�nite induction as indicated in the
following de�nition.

De�nition 4. [Proof Tree] Let A be a ground atom, P be a locally strati�ed
program, and σ be any local strati�cation for P . Let PT<A be the set of proof
trees for ground atoms B and P with σ(B) < σ(A). A proof tree for A and P is
a �nite tree T of goals such that: (i) the root of T is A, (ii) a node N of T has
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children L1, . . . , Lr i� N is a ground atom B and there exists a clause γ ∈ P and
a valuation v such that v(γ) is B ← c∧L1 ∧ . . .∧Lr and D |= c, and (iii) every
leaf of T is either the empty conjunction true or a negated ground atom ¬B such
that there is no proof tree for B and P in PT<A.

The following theorem establishes that the operational semantics based on proof
trees is equivalent to the perfect model semantics.

Theorem 2. [Proof Trees and Perfect Models] Let P be a locally strati�ed
program. For all ground atoms A, there exists a proof tree for A and P i� A ∈
M(P ).

Our proofs of correctness use induction w.r.t. suitable well-founded measures
over proof trees, ground atoms, and ground goals (see, in particular, the proofs of
Propositions 3 and 5 in Appendices B and C). We now introduce these measures.

Let T be a proof tree for a ground atom A and a locally strati�ed program
P . By size(T ) we denote the number of atoms occurring at non-leaf nodes of T .
For any ground atom A, locally strati�ed program P , and local strati�cation σ
for P , we de�ne the following measure:

µ(A,P ) = min lex{〈σ(A), size(T )〉 |T is a proof tree for A and P}
where min lex denotes the minimum w.r.t. the lexicographic ordering <lex over
W × N , where W is the set of countable ordinals and N is the set of natural
numbers. µ(A,P ) is unde�ned if there is no proof tree for A and P . The measure
µ is extended from ground atoms to ground literals as follows. Given a ground
literal L, we de�ne:

µ(L,P ) = if L is an atom A then µ(A,P )
else if L is a negated atom ¬A then 〈σ(A), 0〉

Now we extend µ to ground goals. First, we introduce the binary, associative
operation ⊕ : (W ×N)2 → (W ×N) de�ned as follows:

〈α1,m1〉 ⊕ 〈α2,m2〉 = 〈max(α1, α2), m1+m2〉
Then, given a ground goal L1 ∧ . . . ∧ Ln, we de�ne:

µ(L1 ∧ . . . ∧ Ln, P ) = µ(L1, P )⊕ . . .⊕ µ(Ln, P )
The measure µ is well-founded in the sense that there is no in�nite sequence of
ground goals G1, G2, . . . such that µ(G1, P ) > µ(G2, P ) > . . .

In order to show that an ordered transformation sequence P0, . . . , Pi, . . . ,
Pj , . . . , Pm, . . . , Pn (where the meaning of the subscripts is the one of De�ni-
tion 3) preserves the perfect model semantics, we will use Theorem 2 and we
will show that, for k = 0, . . . , n, given any ground atom A whose predicate be-
longs to the set Pred int of predicates of interest, there exists a proof tree for A
and Pk i� there exists a proof tree for A and P0 ∪Defsn. Since Pi = P0 ∪Defsn,
it is su�cient to show the following properties, for any ground atom A:

(P1) there exists a proof tree for A and Pi i� there exists a proof tree for A and
Pj ,

(P2) there exists a proof tree for A and Pj i� there exists a proof tree for A and
Pm, and
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(P3) if the predicate of A is in Pred int, then there exists a proof tree for A and
Pm i� there exists a proof tree for A and Pn.

Property P1 is proved by the following proposition.

Proposition 3. Let P0 be a locally strati�ed program and let P0, . . . , Pi, . . . ,
Pj , . . . , Pm, . . . , Pn be an ordered transformation sequence. Then there exists a
proof tree for a ground atom A and Pi i� there exists a proof tree for A and Pj.

The proof of Proposition 3 is given in Appendix B. It is a proof by induction on
σ(A) and on the size of the proof tree for A.

In order to prove the only-if part of Property P2, we will show a stronger
invariant property based on the following consistency notion.

De�nition 5. [Pj-consistency] Let P0, . . . , Pi, . . . , Pj , . . . , Pm, . . . , Pn be an or-
dered transformation sequence, Pk be a program in this sequence, and A be a
ground atom. We say that a proof tree T for A and Pk is Pj-consistent i�
for every ground atom B and ground literals L1, . . . , Lr, if B is the father of
L1, . . . , Lr in T , then µ(B,Pj) > µ(L1 ∧ . . . ∧ Lr, Pj).

The invariant property is as follows: for every program Pk in the sequence
Pj , . . . , Pm, if there exists a Pj-consistent proof tree for A and Pj , then there
exists a Pj-consistent proof tree for A and Pk.

It is important that Pj-consistency refers to the program Pj obtained by
applying the positive unfolding rule to each clause that belongs to Defsi and
is used in Pj , . . . , Pm for a folding step. Indeed, if the positive unfolding rule is
not applied to a clause in Defsi, and this clause is then used (possibly, together
with other clauses) in a folding step, then the preservation of Pj-consistent proof
trees may not be ensured and the transformation sequence may not be correct.
This is shown by Example 1 of the Introduction where we assume that the �rst
clause p(X) ← ¬q(X) of P0 has been added by the de�nition introduction rule
in a previous step.

We have the following.

Proposition 4. If there exists a proof tree for a ground atom A and program
Pj then there exists a Pj-consistent proof tree for A and Pj.

Proof. Let T be a proof tree for A and Pj such that 〈σ(A), size(T )〉 is minimal
w.r.t. <lex . Then T is Pj-consistent. 2

Notice that in the proof of Proposition 4 we state the existence of a Pj-consistent
proof tree for a ground atom A and program Pj without providing an e�ective
method for constructing this proof tree. In fact, it should be noticed that no
e�ective method can be given for constructing the minimal proof tree for a given
atom and program, because the existence of such a proof tree is not decidable
and not even semi-decidable.

By Proposition 4, in order to prove Property P2 it is enough to show the
following Proposition 5.
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Proposition 5. Let P0 be a locally strati�ed program and let P0, . . . , Pi, . . . ,
Pj , . . . , Pm, . . . , Pn be an ordered transformation sequence. Then, for every ground
atom A we have that:

(Soundness) if there exists a proof tree for A and Pm, then there exists a proof
tree for A and Pj, and

(Completeness) if there exists a Pj-consistent proof tree for A and Pj, then there
exists a Pj-consistent proof tree for A and Pm.

The proof of Proposition 5 is given in Appendix C.

In order to prove Property P3, it is enough to prove the following Propo-
sition 6, which is a straightforward consequence of the fact that the existence
of a proof tree for a ground atom with predicate p is determined only by the
existence of proof trees for atoms with predicates on which p depends.

Proposition 6. Let P be a locally strati�ed program and let Pred int be a set
of predicates of interest. Suppose that program Q is derived from program P
by eliminating the de�nition of a predicate q such that no predicate in Pred int
depends on q. Then, for every ground atom A whose predicate is in Pred int,
there exists a proof tree for A and P i� there exists a proof tree for A and Q.

Now, as a consequence of Propositions 1�6, and Theorem 2, we get the following
theorem which ensures that an admissible transformation sequence preserves the
perfect model semantics.

Theorem 3. [Correctness of Admissible Transformation Sequences] Let P0 be
a locally strati�ed program and let P0, . . . , Pn be an admissible transformation
sequence. Let Pred int be the set of predicates of interest. Then P0 ∪ Defsn and
Pn are locally strati�ed and for every ground atom A whose predicate belongs to
Pred int, A ∈M(P0 ∪Defsn) i� A ∈M(Pn).

This theorem does not hold if we add to the boolean laws listed in rule R7 of
Section 3 the inverse of law (4), as shown by the following example.

Example 10. Let us consider the following transformation sequence:
P0: p← q ∧ q P1: p← q P2: p← q ∧ q P3: p← p

q ← q ← q ← q ←
We assume that the clause for p in P0 is added to P0 by the de�nition introduc-
tion rule, so that it can be used for folding. Program P1 is derived from P0 by
unfolding, program P2 is derived from P1 by replacement based on the reverse
of law (4), and �nally, program P3 is derived by folding the �rst clause of P2

using the �rst clause of P0. We have that p ∈M(P0), while p 6∈M(P3).

Analogously, the reader may verify that Theorem 3 does not hold if we add to
the boolean laws of rule R7 the inverse of law (6).
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5 Examples of Use of the Transformation Rules

In this section we show some program derivations realized by applying the trans-
formation rules of Section 3. These program derivations are examples of the
following three techniques: (1) the determinization technique, which is used for
deriving a deterministic program from a nondeterministic one [14,33], (2) the
program synthesis technique, which is used for deriving a program from a �rst
order logic speci�cation (see, for instance, [18,41] and [6] in this book for a recent
survey), and (3) the program specialization technique, which is used for deriving
a specialized program from a given program and a given portion of its input
data (see, for instance, [21] and [24] for a recent survey).

Although we will not provide in this paper any automatic transformation
strategy, the reader may realize that in the examples we will present, there
is a systematic way of performing the program derivations. In particular, we
perform all derivations according to the repeated application of the following
sequence of steps: (i) �rst, we consider some predicate de�nitions in the initial
program or we introduce some new predicate de�nitions, (ii) then we unfold these
de�nitions by applying the positive and, possibly, the negative unfolding rules,
(iii) then we manipulate the derived clauses by applying the rules of replacement,
constraint addition, and constraint deletion, and (iv) �nally, we apply the folding
rules. The �nal programs are derived by applying the de�nition elimination rule,
and keeping only those clauses that are needed for computing the predicates of
interest.

5.1 Determinization: Comparing Even and Odd Occurrences of a

List

Let us consider the problem of checking whether or not, for any given list L
of numbers, the following property r(L) holds: every number occurring in L in
an even position is greater or equal than every number occurring in L in an
odd position. The locally strati�ed program EvenOdd shown below, solves the
given problem by introducing a new predicate p(L) which holds i� there is a pair
〈X,Y 〉 of numbers such that X occurs in the the list L in an even position, Y
occurs in L in an odd position, and X <Y . Thus, for any list L, the property
r(L) holds i� p(L) does not hold.

EvenOdd :

1. r(L)← list(L) ∧ ¬p(L)
2. p(L)← I≥1 ∧ J≥1 ∧X<Y ∧

occurs(X, I, L) ∧ even(I) ∧ occurs(Y, J, L) ∧ ¬even(J)
3. even(X)← X=0
4. even(X+1)← X≥0 ∧ ¬even(X)
5. occurs(X, I, [H|T ])← I=1 ∧X=H
6. occurs(X, I+1, [H|T ])← I≥1 ∧ occurs(X, I, T )
7. list([ ])←
8. list([H|T ])← list(T )
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In this program occurs(X, I, L) holds i� X is the I-th element (with I ≥ 1) of
the list L starting from the left. When executed by using SLDNF resolution, this
EvenOdd program may generate, in a nondeterministic way, all possible pairs
〈X,Y 〉, occurring in even and odd positions, respectively. This program has an
O(n2) time complexity in the worst case, where n is the length of the input list.

We want to derive a more e�cient de�nite program that can be executed
in a deterministic way, in the sense that for every constrained goal c ∧ A ∧ G
derived from a given ground query by LD-resolution [3] there exists at most one
clause H ← d ∧K such that c ∧A=H ∧ d is satis�able.

To give a su�cient condition for determinism we need the following notion.
We say that a variable X is a local variable of a clause γ i� X ∈ FV (bd(γ)) −
FV (hd(γ)). The determinism of a program P can be ensured by the following
syntactic conditions: (i) no clause in P has local variables and (ii) any two
clauses H1 ← c1 ∧ G1 and H2 ← c2 ∧ G2 in P are mutually exclusive, that is,
the constraint H1 =H2 ∧ c1 ∧ c2 is unsatis�able.

Our derivation consists of two transformation sequences. The �rst sequence
starts from the program made out of clauses 2�8 and derives a deterministic,
de�nite program Q for predicate p. The second sequence starts from Q∪{1} and
derives a deterministic, de�nite program EvenOdddet for predicate r.

Let us show the construction of the �rst transformation sequence. Since
clause 2 has local variables, we want to transform it into a set of clauses that
have no local variables and are mutually exclusive, and thus, they will constitute
a deterministic, de�nite program. We start o� by applying the positive unfolding
rule to clause 2, followed by applications of the replacement rule based on laws
of constraints and equality. We derive:

9. p([A|L])← J≥1 ∧ Y <A ∧ occurs(Y, J, L) ∧ even(J+1)
10. p([A|L])← I≥1 ∧ J≥1 ∧X<Y ∧ occurs(X, I, L)∧

even(I+1) ∧ occurs(Y, J, L) ∧ ¬even(J+1)
Now, by applications of the positive unfolding rule, negative unfolding, and re-
placement rules, we derive the following clauses for p:

11. p([A,B|L])← B<A
12. p([A,B|L])← B≥A ∧ I≥1 ∧X<A ∧ occurs(X, I, L) ∧ even(I)
13. p([A,B|L])← B≥A ∧ I≥1 ∧B<X ∧ occurs(X, I, L) ∧ ¬even(I)
14. p([A,B|L])← B≥A ∧ I≥1 ∧ J≥1 ∧X<Y ∧occurs(X, I, L)∧even(I)∧

occurs(Y, J, L) ∧ ¬even(J)

Notice that the three clauses 12, 13, and 14, are not mutually exclusive. In
order to derive a deterministic program for p, we introduce the following new
de�nition:

15. new1(A,B,L)← I≥1 ∧X<A ∧ occurs(X, I, L) ∧ even(I)
16. new1(A,B,L)← I≥1 ∧B<X ∧ occurs(X, I, L) ∧ ¬even(I)
17. new1(A,B,L)← I≥1 ∧ J≥1 ∧X<Y ∧ occurs(X, I, L) ∧ even(I)∧

occurs(Y, J, L) ∧ ¬even(J)
and we fold clauses 12, 13, and 14 by using the de�nition of new1, that is, clauses
15, 16, and 17. We derive:
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18. p([A,B|L])← B≥A ∧ new1(A,B,L)
Clauses 11 and 18 have no local variables and are mutually exclusive. We are left
with the problem of deriving a deterministic program for the newly introduced
predicate new1.

By applying the positive unfolding, negative unfolding, and replacement
rules, from clauses 15, 16, and 17, we get:

19. new1(A,B, [C|L])← B<C
20. new1(A,B, [C|L])← I≥1 ∧B<X ∧ occurs(X, I, L) ∧ even(I)
21. new1(A,B, [C|L])← I≥1 ∧X<A ∧ occurs(X, I, L) ∧ ¬even(I)
22. new1(A,B, [C|L])← I≥1 ∧X<C ∧ occurs(X, I, L) ∧ ¬even(I)
23. new1(A,B, [C|L])← I≥1 ∧ J≥1 ∧X<Y ∧ occurs(X, I, L)∧

¬even(I) ∧ occurs(Y, J, L) ∧ even(J)
In order to derive mutually exclusive clauses without local variables we �rst ap-
ply the replacement rule and derive sets of clauses corresponding to mutually
exclusive cases, and then we fold each of these sets of clauses. We use the re-
placement rule based on law (5) and law (9) which is justi�ed by the equivalence:
∀X∀Y (true↔ X≥Y ∨X<Y ). We get:

24. new1(A,B, [C|L])← B<C

25. new1(A,B, [C|L])← B≥C ∧A≥C ∧ I≥1 ∧B<X ∧
occurs(X, I, L) ∧ even(I)

26. new1(A,B, [C|L])← B≥C ∧A≥C ∧ I≥1 ∧X<A∧
occurs(X, I, L) ∧ ¬even(I)

27. new1(A,B, [C|L])← B≥C ∧A≥C ∧ I≥1 ∧ J≥1 ∧X<Y ∧
occurs(X, I, L) ∧ ¬even(I)∧
occurs(Y, J, L) ∧ even(J)

28. new1(A,B, [C|L])← B≥C ∧A<C ∧ I≥1 ∧B<X∧
occurs(X, I, L) ∧ even(I)

29. new1(A,B, [C|L])← B≥C ∧A<C ∧ I≥1 ∧X<C ∧
occurs(X, I, L) ∧ ¬even(I)

30. new1(A,B, [C|L])← B≥C ∧A<C ∧ I≥1 ∧ J≥1 ∧X<Y ∧
occurs(X, I, L) ∧ ¬even(I)∧
occurs(Y, J, L) ∧ even(J)

The three sets of clauses: {24}, {25, 26, 27}, and {28, 29, 30} correspond to
the mutually exclusive cases: (B < C), (B ≥ C ∧ A ≥ C), and (B ≥ C ∧ A <
C), respectively. Now, in order to fold each set {25, 26, 27} and {28, 29, 30}
and derive mutually exclusive clauses without local variables, we introduce the
following new de�nition:

31. new2(A,B,L)← I≥1 ∧B<X ∧ occurs(X, I, L) ∧ even(I)
32. new2(A,B,L)← I≥1 ∧X<A ∧ occurs(X, I, L) ∧ ¬even(I)
33. new2(A,B,L)← I≥1 ∧ J≥1 ∧X<Y ∧ occurs(X, I, L) ∧ ¬even(I)∧

occurs(Y, J, L) ∧ even(J)
By folding clauses 25, 26, 27 and 28, 29, 30 using clauses 31, 32, and 33, for
predicate new1 we get the following mutually exclusive clauses without local
variables:
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34. new1(A,B, [C|L])← B<C
35. new1(A,B, [C|L])← B≥C ∧A≥C ∧ new2(A,B,L)
36. new1(A,B, [C|L])← B≥C ∧A<C ∧ new2(C,B,L)

Unfortunately, the clauses for the new predicate new2 have local variables and
are not mutually exclusive. Thus, we continue our derivation and, by applying
the positive unfolding, negative unfolding, replacement, and folding rules, from
clauses 31, 32, and 33 we derive the following clauses (this derivation is similar
to the derivation that lead from {15, 16, 17} to {34, 35, 36} and we omit it):

37. new2(A,B, [C|L])← C<A
38. new2(A,B, [C|L])← C≥A ∧B≥C ∧ new1(A,C,L)
39. new2(A,B, [C|L])← C≥A ∧B<C ∧ new1(A,B,L)

The set of clauses derived so far starting from the initial clause 2, that is, {11,
18, 34, 35, 36, 37, 38, 39} constitutes a deterministic program for p, call it Q.

Now we construct the second transformation sequence starting from Q∪{1}
for deriving a deterministic, de�nite program for r. We start o� by considering
clause 1 which de�nes r and, by positive unfolding, negative unfolding, and
replacement we derive:

40. r([ ])←
41. r([A])←
42. r([A,B|L])← list(L) ∧B≥A ∧ ¬new1(A,B,L)

By introducing the following de�nition:

43. new3(A,B,L)← list(L) ∧B≥A ∧ ¬new1(A,B,L)
and then folding clause 42 using clause 43, we derive the following de�nite
clauses:

44. r([ ])←
45. r([A])←
46. r([A,B|L])← B≥A ∧ new3(A,B,L)

Now, we want to transform clause 43 into a set of de�nite clauses. By positive
unfolding, negative unfolding, and replacement, from clause 43 we derive:

47. new3(A,B, [ ])← B≥A
48. new3(A,B, [C|L])← B≥C ∧A<C ∧ list(L) ∧B≥C ∧ ¬new2(C,B,L)
49. new3(A,B, [C|L])← B≥C ∧A≥C ∧ list(L) ∧B≥A ∧ ¬new2(A,B,L)

In order to transform clauses 48 and 49 into de�nite clauses, we introduce the
following de�nition:

50. new4(A,B,L)← list(L) ∧B≥A ∧ ¬new2(A,B,L)
and we fold clauses 48 and 49 using clause 50. We get:

51. new3(A,B, [ ])← B≥A
52. new3(A,B, [C|L])← B≥C ∧A<C ∧ new4(C,B,L)
53. new3(A,B, [C|L])← B≥C ∧A≥C ∧ new4(A,B,L)

Now we are left with the task of transforming clause 50 into a set of de�nite
clauses. By applying the positive unfolding, negative unfolding, replacement,
and folding rules, we derive:
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54. new4(A,B, [ ])← B≥A
55. new4(A,B, [C|L])← B<C ∧ C≥A ∧ new3(A,B,L)
56. new4(A,B, [C|L])← B≥C ∧ C≥A ∧ new3(A,C,L)

Finally, by eliminating the de�nitions of the predicates on which r does not
depend, we get, as desired, the following �nal program which is a deterministic,
de�nite program.

EvenOdddet :

44. r([ ])←
45. r([A])←
46. r([A,B|L])← B≥A ∧ new3(A,B,L)
51. new3(A,B, [ ])← B≥A
52. new3(A,B, [C|L])← B≥C ∧A<C ∧ new4(C,B,L)
53. new3(A,B, [C|L])← B≥C ∧A≥C ∧ new4(A,B,L)
54. new4(A,B, [ ])← B≥A
55. new4(A,B, [C|L])← B<C ∧ C≥A ∧ new3(A,B,L)
56. new4(A,B, [C|L])← B≥C ∧ C≥A ∧ new3(A,C,L)

Given a list of numbers L of length n, the EvenOdddet program checks that r(L)
holds by performing at most 2n comparisons between numbers occurring in L.
Program EvenOdddet works by traversing the input list L only once (without
backtracking) and storing, for every initial portion L1 of the input list L, the
maximum number A occurring in an odd position of L1 and the minimum num-
ber B occurring in an even position of L1 (see the �rst two arguments of the
predicates new3 and new4). When looking at the �rst element C of the portion
of the input list still to be visited (i.e., the third argument of new3 or new4),
the following two cases are possible: either (Case 1) the element C occurs in an
odd position of the input list L, i.e., a call of the form new3(A,B, [C|L2]) is
executed, or (Case 2) the element C occurs in an even position of the input list
L, i.e., a call of the form new4(A,B, [C|L2]) is executed. In Case (1) program
EvenOdddet checks that B ≥C holds and then updates the value of the maxi-
mum number occurring in an odd position with the maximum between A and C.
In Case (2) program EvenOdddet checks that C≥A holds and then updates the
value of the minimum number occurring in an even position with the minimum
between B and C.

5.2 Program Synthesis: The N-queens Problem

The N -queens problem has been often considered in the literature for present-
ing various programming techniques, such as recursion and backtracking. We
consider it here as an example of the program synthesis technique, as it has
been done in [41]. Our derivation is di�erent from the one presented in [41], be-
cause the derivation in [41] makes use of the unfold/fold transformation rules for
de�nite programs together with an ad hoc transformation rule (called negation
technique) for transforming general programs (with negation) into de�nite pro-
grams. In contrast, we use unfold/fold transformation rules for general programs,
and in particular, our negative unfolding rule of Section 3.
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The N -queens problem can be informally speci�ed as follows. We are required
to place N(≥0) queens on an N ×N chess board, so that no two queens attack
each other, that is, they do not lie on the same row, column, or diagonal. A
board con�guration with this property is said to be safe. By using the fact that
no two queens should lie on the same row, we represent an N ×N chess board
as a list L of N positive integers: the k-th element on L represents the column
of the queen on row k.

In order to give a formal speci�cation of the N -queens problem we follow the
approach presented in [32], which is based on �rst order logic. We introduce the
following constraint logic program:

P : nat(0)←
nat(N)← N=M+1 ∧M≥0 ∧ nat(M)
nat−list([ ])←
nat−list([H|T ])← nat(H) ∧ nat−list(T )
length([ ], 0)←
length([H|T ], N)← N=M+1 ∧M≥0 ∧ length(T,M)
member(X, [H|T ])← X=H
member(X, [H|T ])← member(X,T )
in−range(X,M,N)← X=N ∧M≤N
in−range(X,M,N)← N=K+1 ∧M≤K ∧ in−range(X,M,K)
occurs(X, I, [H|T ])← I=1 ∧X=H
occurs(X, I+1, [H|T ])← I≥1 ∧ occurs(X, I, T )

and the following �rst order formula:

ϕ(N,L) : nat(N) ∧ nat−list(L)∧ (1)
length(L,N) ∧ ∀X (member(X,L)→ in−range(X, 1, N))∧ (2)
∀A,B,K,M ((1≤K ∧K≤M ∧occurs(A,K,L) ∧occurs(B,M,L)) (3)

→ (A 6=B ∧A−B 6=M−K ∧B−A 6=M−K)) (4)

In the above program and formula in−range(X,M,N) holds i� X ∈ {M,M+1,
. . . , N} and N≥0. The other predicates have been de�ned in previous programs
or do not require explanation. Now we de�ne the relation queens(N,L) where
N is a nonnegative integer and L is a list of positive integers, as follows:

queens(N,L) i� M(P ) |= ϕ(N,L)

Line (2) of the formula ϕ(N,L) above speci�es a chess board as a list of N
integers each of which is in the range [1, . . . , N ]. If N = 0 the list is empty.
Lines (3) and (4) of ϕ(N,L) specify the safety property of board con�gurations.
Now, we would like to derive a constraint logic program R which computes the
relation queens(N,L), that is, R should de�ne a predicate queens(N,L) such
that:

(π) M(R) |= queens(N,L) i� M(P ) |= ϕ(N,L)

Following the approach presented in [32], we start from the formula (called a
statement) queens(N,L) ← ϕ(N,L) and, by applying a variant of the Lloyd-
Topor transformation [26], we derive the following strati�ed logic program:
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F : 1. queens(N,L)← nat(N) ∧ nat−list(L) ∧ length(L,N)∧
¬aux1(L,N) ∧ ¬aux2(L)

2. aux1(L,N)← member(X,L) ∧ ¬in−range(X, 1, N)
3. aux2(L)← 1≤K ∧K≤M∧

¬(A 6=B ∧A−B 6=M−K ∧B−A 6=M−K)∧
occurs(A,K,L) ∧ occurs(B,M,L)

This variant of the Lloyd-Topor transformation is a fully automatic transforma-
tion, but it cannot be performed by using our transformation rules, because it
operates on �rst order formulas. It can be shown that this variant of the Lloyd-
Topor transformation preserves the perfect model semantics and, thus, we have
that: M(P ∪ F ) |= queens(N,L) i� M(P ) |= ϕ(N,L).

The derived program P ∪ F is not very satisfactory from a computational
point of view because, when using SLDNF resolution with the left-to-right se-
lection rule, it may not terminate for calls of the form queens(n,L) where n is a
nonnegative integer and L is a variable. Thus, the process of program synthesis
proceeds by applying the transformation rules listed in Section 3, thereby trans-
forming program P ∪F into a program R such that: (i) Property (π) holds, (ii) R
is a de�nite program, and (iii) R terminates for all calls of the form queens(n,L),
where n is any nonnegative integer and L is a variable. Actually, the derivation of
the �nal program R is performed by constructing two transformation sequences:
(i) a �rst one, which starts from the initial program P , introduces clauses 2 and
3 by de�nition introduction, and ends with a program Q, and (ii) a second one,
which starts from program Q, introduces clause 1 by de�nition introduction, and
ends with program R.

We will illustrate the application of the transformation rules for deriving
program R without discussing in detail how this derivation can be performed in
an automatic way using a particular strategy. As already mentioned, the design
of suitable transformation strategies for the automation of program derivations
for constraint logic programs, is beyond the scope of the present paper.

The program transformation process starts o� from program P ∪ {2, 3} by
transforming clauses 2 and 3 into a set of clauses without local variables, so that
they can be subsequently used for unfolding clause 1 w.r.t. ¬aux1(L,N) and
¬aux2(L) (see the negative unfolding rule R4).

By positive unfolding, replacement, and positive folding, from clause 2 we
derive:

4. aux1([H|T ], N)← ¬in−range(H, 1, N)
5. aux1([H|T ], N)← aux1(T,N)

Similarly, by positive unfolding, replacement, and positive folding, from clause
3 we derive:

6. aux2([A|T ])←M≥1 ∧ ¬(A 6=B ∧A−B 6=M ∧B−A 6=M)∧
occurs(B,M, T )

7. aux2([A|T ])← aux2(T )
In order to eliminate the local variables B and M occurring in clause 6, by the
de�nition introduction rule we introduce the following new clause, whose body
is a generalization of the body of clause 6:
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8. new1(A, T, J)←M≥1 ∧ ¬(A 6=B ∧A−B 6=M+J ∧B−A 6=M+J)∧
occurs(B,M, T )

By replacement and positive folding, from clause 6 we derive:

6f. aux2([A|T ])← new1(A, T, 0)

Now, by positive unfolding, replacement, and positive folding, from clause 8 we
derive:

9. new1(A, [B|T ],K)← ¬(A 6=B ∧A−B 6=K+1 ∧B−A 6=K+1)
10. new1(A, [B|T ],K)← new1(A, T,K+1)

The program, call it Q, derived so far is P ∪ {4, 5, 6f, 7, 9, 10}, and clauses 4, 5,
6f, 7, 9, and 10 have no local variables.

Now we construct a new transformation sequence which takes Q as initial
program. We start o� by applying the de�nition introduction rule and adding
clause 1 to program Q. Our objective is to transform clause 1 into a set of de�nite
clauses. We �rst apply the de�nition rule and we introduce the following clause,
whose body is a generalization of the body of clause 1:

11. new2(N,L,K)← nat(M) ∧ nat−list(L) ∧ length(L,M)∧
¬aux1(L,N) ∧ ¬aux2(L) ∧N=M+K

By replacement and positive folding, from clause 11 we derive:

1f. queens(N,L)← new2(N,L, 0)

By positive and negative unfolding, replacement, constraint addition, and posi-
tive folding, from clause 11 we derive:

12. new2(N, [ ],K)← N=K
13. new2(N, [H|T ],K)← N ≥K +1 ∧ new2(N,T,K+1)∧

nat(H) ∧ nat−list(T ) ∧ in−range(H, 1, N)∧
¬new1(H,T, 0)

In order to derive a de�nite program we introduce a new predicate new3 de�ned
by the following clause:

14. new3(A, T,N,M)← nat(A) ∧ nat−list(T ) ∧ in−range(A, 1, N)∧
¬new1(A, T,M)

We fold clause 13 using clause 14 and we derive the following de�nite clause:

13f. new2(N, [H|T ],K)← N ≥K +1 ∧ new2(N,T,K+1) ∧ new3(H,T,N, 0)

By positive and negative unfolding, replacement, and positive folding, from
clause 14 we derive the following de�nite clauses:

15. new3(A, [ ], N,M)← in−range(A, 1, N) ∧ nat(A)
16. new3(A, [B|T ], N,M)← A 6=B ∧A−B 6=M+1 ∧B−A 6=M+1∧

nat(B) ∧ new3(A, T,N,M+1)

Finally, by assuming that the set of predicates of interest is the singleton {queens},
by de�nition elimination we derive the following program:
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R: 1f. queens(N,L)← new2(N,L, 0)
12. new2(N, [ ],K)← N=K
13f. new2(N, [H|T ],K)← N ≥K +1 ∧ new2(N,T,K+1) ∧ new3(H,T,N, 0)
15. new3(A, [ ], N,M)← in−range(A, 1, N) ∧ nat(A)
16. new3(A, [B|T ], N,M)← A 6=B ∧A−B 6=M+1 ∧B−A 6=M+1∧

nat(B) ∧ new3(A, T,N,M+1)

together with the clauses for the predicates in−range and nat .
Program R is a de�nite program and, by Theorem 3, we have that M(R) |=

queens(N,L) i�M(P ∪F ∪Defs) |= queens(N,L), where F ∪Defs is the set of all
clauses introduced by the de�nition introduction rule during the transformation
sequences from P to R. Since queens does not depend on Defs in P ∪ F ∪Defs,
we have that M(R) |= queens(N,L) i� M(P ∪ F ) |= queens(N,L) and, thus,
Property (π) holds. Moreover, it can be shown that R terminates for all calls of
the form queens(n,L), where n is any nonnegative integer and L is a variable.

Notice that program R computes a solution of the N -queens problem in a
clever way: each time a queen is placed on the board, program R checks that it
does not attack any other queen already placed on the board.

5.3 Program Specialization: Derivation of Counter Machines from

Constrained Regular Expressions

Given a set N of variables ranging over natural numbers, a set C of constraints
over natural numbers, and a set K of identi�ers, we de�ne a constrained regular
expression e over the alphabet {a, b} as follows:

e ::= a | b | e1 · e2 | e1 + e2 | e∧N | not(e) | k
where N ∈ N and k ∈ K. An identi�er k ∈ K is de�ned by a de�nition of
the form k ≡ (c : e), where c ∈ C and e is a constrained regular expression.
For instance, the set {ambn |m= n≥ 0} of strings in {a, b}∗ is denoted by the
identi�er k which is de�ned by the following de�nition:

k ≡ (M=N : (a∧M · b∧N)).
Obviously, constrained regular expressions may denote languages which are not
regular.

Given a string S and a constrained regular expression e, the following locally
strati�ed program P checks whether or not S belongs to the language denoted
by e. We assume that constraints are de�nable as conjunctions of equalities and
disequalities over natural numbers.

P : string([ ])←
string([a|S])← string(S)
string([b|S])← string(S)
symbol(a)←
symbol(b)←
app([ ], L, L)←
app([A|X], Y, [A|Z])← app(X,Y, Z)
in−language([A], A)← symbol(A)
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in−language(S, (E1·E2))← app(S1, S2, S)∧
in−language(S1, E1) ∧ in−language(S2, E2)

in−language(S,E1+E2)← in−language(S,E1)
in−language(S,E1+E2)← in−language(S,E2)
in−language(S,not(E))← ¬ in−language(S,E)
in−language([ ], E∧I)← I=0
in−language(S,E∧I)← I=J+1 ∧ J≥0 ∧ app(S1, S2, S)∧

in−language(S1, E) ∧ in−language(S2, E∧J)
in−language(S,K)← (K ≡ (C :E)) ∧ solve(C) ∧ in−language(S,E)
solve(X=Y )← X=Y
solve(X≥Y )← X≥Y
solve(C1 ∧ C2)← solve(C1) ∧ solve(C2)

For example, in order to check whether a string S does not belong to the language
denoted by k, where k is de�ned by the following de�nition: k ≡ (M = N :
(a∧M · b∧N)), we add to program P the clause:

(k ≡ (M=N : (a∧M · b∧N))) ←
and we evaluate a query of the form:

string(S) ∧ in−language(S,not(k))

Now, if we want to specialize program P w.r.t. this query, we introduce the new
de�nition:

1. new1(S)← string(S) ∧ in−language(S,not(k))

By unfolding clause 1 we get:

2. new1(S)← string(S) ∧ ¬ in−language(S, k)

We cannot perform the negative unfolding of clause 2 w.r.t. ¬ in−language(S, k)
because of the local variables in the clauses for in−language(S, k). In order to
derive a predicate which is equivalent to in−language(S, k) and is de�ned by
clauses without local variables, we introduce the following clause:

3. new2(S)← in−language(S, k)

By unfolding clause 3 we get:

4. new2(S)← M =N ∧ app(S1, S2, S)∧
in−language(S1, a∧M) ∧ in−language(S2, b∧N)

We generalize clause 4 and we introduce the following clause 5:

5. new3(S, I)← M =N+I ∧ app(S1, S2, S)∧
in−language(S1, a∧M) ∧ in−language(S2, b∧N)

By unfolding clause 5, performing replacements based on laws of constraints,
and folding, we get:

6. new3(S,N)← in−language(S, b∧N)
7. new3([a|S], N)← new3(S,N+1)

In order to fold clause 6 we introduce the following de�nition:

8. new4(S,N)← in−language(S, b∧N)
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By unfolding clause 8, performing some replacements based on laws of con-
straints, and folding, we get:

9. new4([ ], 0)←
10. new4([b|S], N)← N ≥1 ∧ new4(S,N−1)

By negative folding of clause 2 and positive folding of clauses 4 and 6 we get the
following program:

2f. new1(S)← string(S) ∧ ¬new2(S)
4f. new2(S)← new3(S, 0)
6f. new3(S,N)← new4(S,N)
7. new3([a|S], N)← new3(S,N+1)
9. new4([ ], 0)←
10. new4([b|S], N)← N ≥1 ∧ new4(S,N−1)

Now from clause 2f, by positive and negative unfoldings, replacements based on
laws of constraints, and folding, we get:

11. new1([a|S])← string(S) ∧ ¬new3(S, 1)
12. new1([b|S])← string(S)

In order to fold clause 11 we introduce the following de�nition:

13. new5(S,N)← string(S) ∧ ¬new3(S,N)
By positive and negative unfolding and folding we get:

14. new5([ ], N)←
15. new5([a|S], N)← new5(S,N+1)
16. new5([a|S], N)← string(S) ∧ ¬N≥1
17. new5([b|S], N)← string(S) ∧ ¬new4(S,N−1)

In order to fold clause 17 we introduce the following de�nition:

18. new6(S,N)← string(S) ∧ ¬new4(S,N)
Now, starting from clause 18, by positive and negative unfolding, replacements
based on laws of constraints, folding, and elimination of the predicates on which
new1 does not depend, we get the following �nal, specialized program:

Pspec : 11f. new1([a|S])← new5(S, 1)
12. new1([b|S])← string(S)
14. new5([ ], N)←
15. new5([a|S], N)← new5(S,N+1)
16. new5([b|S], 0)← string(S)
17f. new5([b|S], N)← new6(S,N−1)
19. new6([ ], N)← N 6= 0
20. new6([a|S], N)← string(S)
21. new6([b|S], 0)← string(S)
22. new6([b|S], N)← new6(S,N−1)

This specialized program corresponds to a one-counter machine (that is, a push-
down automaton where the stack alphabet contains one letter only [5]) and it
takes O(n) time to test that a string of length n does not belong to the language
{am ·bn |m = n ≥ 0}.
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6 Related Work and Conclusions

During the last two decades various sets of unfold/fold transformation rules
have been proposed for di�erent classes of logic programs. The authors who �rst
introduced the unfold/fold rules for logic programs were Tamaki and Sato in
their seminal paper [44]. That paper presents a set of rules for transforming
de�nite logic programs and it also presents the proof that those rules are correct
w.r.t. the least Herbrand model semantics. Most of the subsequent papers in the
�eld have followed Tamaki and Sato's approach in that: (i) the various sets of
rules which have been published can be seen as extensions or variants of Tamaki
and Sato's rules, and (ii) the techniques used for proving the correctness of the
rules are similar to those used by Tamaki and Sato (the reader may look at
the references given later in this section, and also at [29] for a survey). In the
present paper we ourselves have followed Tamaki and Sato's approach, but we
have considered the more complex framework of locally strati�ed constraint logic
programs with the perfect model semantics.

Among the rules we have presented, the following ones were initially intro-
duced in [44] (in the case of de�nite logic programs): (R1) de�nition introduction,
restricted to one clause only (that is, with m=1), (R3) positive unfolding, (R5)
positive folding, restricted to one clause only (that is, with m=1). Our rules of
replacement, deletion of useless predicates, constraint addition, and constraint
deletion (that is, rules R7, R8, R9, and R10, respectively) are extensions to
the case of constraint logic programs with negation of the goal replacement and
clause addition/deletion rules presented in [44]. In comparing the rules in [44]
and the corresponding rules we have proposed, let us highlight also the following
important di�erence. The goal replacement and clause addition/deletion of [44]
are very general, but their applicability conditions are based on properties of
the least Herbrand model and properties of the proof trees (such as goal equiv-
alence or clause implication) which, in general, are very di�cult to prove. On
the contrary, (i) the applicability conditions of our replacement rule require the
veri�cation of (usually decidable) properties of the constraints, (ii) the property
of being a useless predicate is decidable, because it refers to predicate symbols
only (and not to the value of their arguments), and (iii) the applicability con-
ditions for constraint addition and constraint deletion can be veri�ed in most
cases by program analysis techniques based on abstract interpretation [10].

For the correctness theorem (see Theorem 3) relative to admissible transfor-
mation sequences we have followed Tamaki and Sato's approach, and as in [44],
the correctness is ensured by assuming the validity of some suitable conditions
on the construction of the transformation sequences.

Let us now relate our work here to that of other authors who have extended
in several ways the work by Tamaki and Sato and, in particular, those who have
extended it to the cases of: (i) general logic programs, and (ii) constraint logic
programs.

Tamaki and Sato's unfolding and folding rules have been extended to gen-
eral logic programs (without constraints) by Seki. He proved his extended rules
correct w.r.t. various semantics, including the perfect model semantics [42,43].
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Building upon previous work for de�nite logic programs reported in [17,22,36],
paper [37] extended Seki's folding rule by allowing: (i) multiple folding, that is,
one can fold m (≥ 1) clauses at a time using a de�nition consisting of m clauses,
and (ii) recursive folding, that is, the de�nition used for folding can contain
recursive clauses.

Multiple folding can be performed by applying our rule R5, but recursive
folding cannot. Indeed, by rule R5 we can fold using a de�nition introduced by
rule R1, and this rule does not allow the introduction of recursive clauses. Thus,
in this respect the folding rule presented in this paper is less powerful than the
folding rule considered in [37]. On the other hand, the set of rules presented
here is more powerful than the one in [37] because it includes negative unfolding
(R4) and negative folding (R6). These two rules are very useful in practice, and
both are needed for the program derivation examples we have given in Section 5.
They are also needed in the many examples of program veri�cation presented
in [13]. For reasons of simplicity, we have presented our non-recursive version of
the positive folding rule because it has much simpler applicability conditions. In
particular, the notion of admissible transformation sequence is much simpler for
non-recursive folding. We leave for future research the problem of studying the
correctness of a set of transformation rules which includes positive and negative
unfolding, as well as recursive positive folding and recursive negative folding.

Negative unfolding and negative folding were also considered in our previous
work [32]. The present paper extends the transformation rules presented in [32]
by adapting them to a logic language with constraints. Moreover, in [32] we did
not present the proof of correctness of the transformation rules and we only
showed some applications of our transformation rules to theorem proving and
program synthesis.

In [40] Sato proposed a set of transformation rules for �rst order programs,
that is, for a logic language that extends general logic programs by allowing
arbitrary �rst order formulas in the bodies of the clauses. However, the semantics
considered in [40] is based on a three valued logic with the three truth values
true, false, and unde�ned (corresponding to non terminating computations).
Thus, the results presented in [40] cannot be directly compared with ours. In
particular, for instance, the rule for eliminating useless predicates (R8) does
not preserve the three valued semantics proposed in [40], because this rule may
transform a program that does not terminate for a given query, into a program
that terminates for that query. Moreover, the conditions for the applicability
of the folding rule given in [40] are based on the chosen three valued logic and
cannot be compared with those presented in this paper.

Various other sets of transformation rules for general logic programs (in-
cluding several variants of the goal replacement rule) have been proved correct
w.r.t. other semantics, such as, the operational semantics based on SLDNF res-
olution [16,42], Clark's completion [16], and Kunen's and Fitting's three valued
extensions of Clark's completion [8]. We will not enter into a detailed compari-
son with these works here. It will su�ce to say that these works are not directly
comparable with ours because of the di�erent set of rules (in particular, none of
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these works considers the negative unfolding rule) and the di�erent semantics
considered.

The unfold/fold transformation rules have also been extended to constraint
logic programs in [7,11,12,27]. Papers [7,11] deal with de�nite programs, while
[27] considers locally strati�ed programs and proves that, with suitable restric-
tions, the unfolding and folding rules preserve the perfect model semantics. Our
correctness result presented here extends that in [27] because: (i) the rules of [27]
include neither negative unfolding nor negative folding, and (ii) the folding rule
of [27] is reversible, that is, it can only be applied for folding a set of clauses in
a program P by using a set of clauses that occur in P . As already mentioned
in Section 3, our folding rule is not reversible, because we may fold clauses
in program Pk of a transformation sequence by using de�nitions occurring in
Defsk, but possibly not in Pk. Reversibility is a very strong limitation, because
it does not allow the derivation of recursive clauses from non-recursive clauses.
In particular, the derivations presented in our examples of Section 5 could not
be performed by using the reversible folding rule of [27].

Finally, [12] proposes a set of transformation rules for locally strati�ed con-
straint logic programs tailored to a speci�c task, namely, program specialization
and its application to the veri�cation of in�nite state reactive systems. Due to
their speci�c application, the transformation rules of [12] are much more re-
stricted than the ones presented here. In particular, by using the rules of [12]:
(i) we can only introduce constrained atomic de�nitions, that is, de�nitions that
consist of single clauses whose body is a constrained atom, (ii) we can unfold
clauses w.r.t. a negated atom only if that atom succeeds or fails in one step, and
(iii) we can apply the positive and negative folding rules by using constrained
atomic de�nitions only.

We envisage several lines for further development of the work presented in
this paper. As a �rst step forward, one could design strategies for automating
the application of the transformation rules proposed here. In our examples of
Section 5 we have demonstrated that some strategies already considered in the
literature for the case of de�nite programs, can be extended to general constraint
logic programs. This extension can be done, in particular, for the following strate-
gies: (i) the elimination of local variables [34], (ii) the derivation of deterministic
programs [33], and (iii) the rule-based program specialization [24].

It has been pointed out by recent studies that there is a strict relationship be-
tween program transformation and various other methodologies for program de-
velopment and software veri�cation (see, for instance, [13,15,25,30,31,38]). Thus,
strategies for the automatic application of transformation rules can be exploited
in the design of automatic techniques in these related �elds and, in particu-
lar, in program synthesis and theorem proving. We believe that transformation
methodologies for logic and constraint languages can form the basis of a very
powerful framework for machine assisted software development.
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7 Appendices

7.1 Appendix A

In this Appendix A we will use the fact that, given any two atoms A and B, and
any valuation v, if σ(v(A)) ≥ σ(v(B)) then for every substitution ϑ, σ(v(Aϑ)) ≥
σ(v(Bϑ)). The same holds with >, instead of ≥.

Proof of Proposition 1. [Preservation of Local Strati�cation]. We will prove that,
for k = 0, . . . , n, Pk is locally strati�ed w.r.t. σ by induction on k.
Base case (k = 0). By hypothesis P0 is locally strati�ed w.r.t. σ.
Induction step. We assume that Pk is locally strati�ed w.r.t. σ and we show
that Pk+1 is locally strati�ed w.r.t. σ. We proceed by cases depending on the
transformation rule which is applied to derive Pk+1 from Pk.
Case 1. Program Pk+1 is derived by de�nition introduction (rule R1). We have
that Pk+1 = Pk ∪ {δ1, . . . , δm}, where Pk is locally strati�ed w.r.t. σ by the in-
ductive hypothesis and {δ1, . . . , δm} is locally strati�ed w.r.t. σ by Condition (iv)
of R1. Thus, Pk+1 is locally strati�ed w.r.t. σ.

Case 2. Program Pk+1 is derived by de�nition elimination (rule R2). Then Pk+1

is locally strati�ed w.r.t. σ because Pk+1 ⊆ Pk.
Case 3. Program Pk+1 is derived by positive unfolding (rule R3). We have that
Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}, where γ is a clause in Pk of the form H ←
c ∧ GL ∧ A ∧ GR and clauses η1, . . . , ηm are derived by unfolding γ w.r.t. A.
Since, by the induction hypothesis, (Pk − {γ}) is locally strati�ed w.r.t. σ, it
remains to show that, for every valuation v, for i = 1, . . . ,m, clause v(ηi) is
locally strati�ed w.r.t. σ. Take any valuation v. For i = 1, . . . ,m, there exists
a clause γi in a variant of Pk of the form Ki ← ci ∧ Bi such that ηi is of
the form H ← c ∧ A =Ki ∧ ci ∧ GL ∧ Bi ∧ GR. By the inductive hypothesis,
v(H ← c∧GL ∧A∧GR) and v(Ki ← ci ∧Bi) are locally strati�ed w.r.t. σ. We
consider two cases: (a) D |= ¬v(c ∧A=Ki ∧ ci) and (b) D |= v(c ∧A=Ki ∧ ci).
In Case (a), v(ηi) is locally strati�ed w.r.t. σ by de�nition. In Case (b), we have
that: (i) D |= v(c), (ii) D |= v(A)=v(Ki), and (iii) D |= v(ci). Let us consider a
literal v(L) occurring in the body of v(ηi). If v(L) is an atom occurring positively
in v(GL∧GR) then σ(v(H))≥σ(v(L)) because v(H ← c∧GL∧A∧GR) is locally
strati�ed w.r.t. σ and D |= v(c). Similarly, if v(L) is a negated atom occurring
in v(GL ∧GR) then σ(v(H))>σ(v(L)). If v(L) is an atom occurring positively
in v(Bi) then σ(v(H))≥σ(v(L)). Indeed:
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σ(v(H))≥σ(v(A)) (because v(H ← c ∧GL ∧A ∧GR) is locally strati�ed
w.r.t. σ and D |= v(c))

=σ(v(Ki)) (because v(A)=v(Ki))
≥σ(v(L)) (because v(Ki ← ci ∧Bi) is locally strati�ed w.r.t. σ

and D |= v(ci))

Similarly, if v(L) is a negated atom occurring in v(B) then σ(v(H))>σ(v(L)).
Thus, the clause v(ηi) is locally strati�ed w.r.t. σ.

Case 4. Program Pk+1 is derived by negative unfolding (rule R4). As in Case 3,
we have that Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηs}, where γ is a clause in Pk of
the form H ← c ∧GL ∧ ¬A ∧GR and clauses η1, . . . , ηs are derived by negative
unfolding γ w.r.t. ¬A. Since, by the induction hypothesis, (Pk − {γ}) is locally
strati�ed w.r.t. σ, it remains to show that, for every valuation v, for j = 1, . . . , s,
clause v(ηj) is locally strati�ed w.r.t. σ. Take any valuation v. Let K1 ← c1 ∧
B1, . . . , Km ← cm ∧ Bm be the clauses in a variant of Pk such that, for i =
1, . . . ,m, D |= ∃(c∧A=Ki∧ ci). Then, we have that, for j = 1, . . . , s, the clause
v(ηj) is of the form v(H ← c∧ ej ∧GL ∧Qj ∧GR), where v(Qj) is a conjunction
of literals. By the applicability conditions of the negative unfolding rule and by
construction (see Steps 1�4 of R4), we have that there exist m substitutions
ϑ1, . . . , ϑm such that the following two properties hold:

(P.1) for every literal v(L) occurring in v(Qj) there exists a (positive or negative)
literal v(M) occurring in v(Biϑi) for some i ∈ {1, . . . ,m}, such that v(L) is
v(M), and

(P.2) if v(L) occurs in v(Qj) and v(L) is v(M) with v(M) occurring in v(Biϑi)
for some i ∈ {1, . . . ,m}, then D |= v((c ∧ ej)→ (A=Kiϑi ∧ ciϑi)).
We will show that v(ηj) is locally strati�ed w.r.t. σ. By the inductive hypothesis,
we have that v(H ← c ∧GL ∧ ¬A ∧GR) and v(Kiϑi ← ciϑi ∧Biϑi) are locally
strati�ed w.r.t. σ.

We consider two cases: (a) D |= ¬v(c ∧ ej) and (b) D |= v(c ∧ ej). In Case (a),
v(ηj) is locally strati�ed w.r.t. σ by de�nition. In Case (b), take any literal v(L)
occurring in v(Qj). By Properties (P.1) and (P.2), v(L) is v(M) for some v(M)
occurring in v(Bi). We also have that: (i) D |= v(A) = v(Kiϑi) and (ii) D |=
v(ciϑi). Moreover D |= v(c), because we are in Case (b). Now, if v(M) is a
positive literal occurring in v(Bi) we have:

σ(v(H))>σ(v(A)) (because v(H ← c ∧GL ∧ ¬A ∧GR) is locally strati�ed
w.r.t. σ and D |= v(c))

=σ(v(Kiϑi)) (because v(A)=v(Kiϑi))
(†) ≥σ(v(M)) (because v(Kiϑi ← ciϑi ∧Biϑi) is locally strati�ed

w.r.t. σ and D |= v(ciϑi)).

Thus, we get: σ(v(H)) > σ(v(M)), and we conclude that v(ηj) is locally strati�ed
w.r.t. σ. Similarly, if v(M) is a negative literal occurring in v(Biϑi), we also get:
σ(v(H)) > σ(v(M)). (In particular, if v(M) is a negative literal, at Point (†)
above, we have σ(v(Kiϑi)) > σ(v(M)).) Thus, we also conclude that v(ηj) is
locally strati�ed w.r.t. σ.
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Case 5. Program Pk+1 is derived by positive folding (rule R5). For reasons of
simplicity, we assume that we fold one clause only, that is, m = 1 in rule R5. The
general case where m ≥ 1 is analogous. We have that Pk+1 = (Pk − {γ}) ∪ {η},
where η is a clause of the form H ← c∧GL∧Kϑ∧GR derived by positive folding
of clause γ of the form H ← c∧ dϑ∧GL ∧Bϑ∧GR using a clause δ of the form
K ← d ∧ B introduced by rule R1. We have to show that, for every valuation
v, v(H ← c ∧ GL ∧ Kϑ ∧ GR) is locally strati�ed w.r.t. σ. By the inductive
hypothesis, we have that: (i) for every valuation v, v(γ) is locally strati�ed
w.r.t. σ, and (ii) for every valuation v, v(δ) is locally strati�ed w.r.t. σ. Take any
valuation v. There are two cases: (a) D |= ¬v(c) and (b) D |= v(c). In Case (a),
v(η) is locally strati�ed w.r.t. σ by de�nition. In Case (b), take any literal v(L)
occurring in v(Bϑ). Now, either (b1) v(L) is a positive literal, or (b2) v(L) is
a negative literal. In Case (b1) there are two subcases: (b1.1) D |= ¬v(dϑ), and
(b1.2) D |= v(dϑ). In Case (b1.1) by Condition (iv) of rule R1, σ(v(Kϑ)) = 0
and thus, σ(v(H)) ≥ σ(v(Kϑ)). Hence, v(η) is locally strati�ed w.r.t. σ. In
Case (b1.2), we have that D |= v(c ∧ dϑ) and, by the inductive hypothesis,
σ(v(H)) ≥ σ(v(Lϑ)). Thus, σ(v(H)) ≥ σ(v(Kϑ)), because by Condition (iv) of
rule R1, σ(v(Kϑ)) is the smallest ordinal α such that α ≥ σ(v(Lϑ)). Thus, v(η)
is locally strati�ed w.r.t. σ.
Case (b2), when v(L) is a negative literal occurring in v(Bϑ), has a proof similar
to the one of Case (b1), except that σ(v(H)) > σ(v(Lϑ)), instead of σ(v(H)) ≥
σ(v(Lϑ)).
Case 6. Program Pk+1 is derived by negative folding (rule R6). We have that
Pk+1 = (Pk−{γ})∪{η}, where η is a clause of the form H ← c∧dϑ∧GL∧¬Kϑ∧
GR derived by negative folding of clause γ of the formH ← c∧dϑ∧GL∧¬Aϑ∧GR
using a clause δ of the form K ← d∧A introduced by rule R1. We have to show
that, for every valuation v, v(η) is locally strati�ed w.r.t. σ. By the inductive
hypothesis, we have that: (i) for every valuation v, v(H ← c∧dϑ∧GL∧¬Aϑ∧GR)
is locally strati�ed w.r.t. σ, and (ii) for every valuation v, v(K ← d ∧ A) is
locally strati�ed w.r.t. σ. Take any valuation v. There are two cases: (a) D |=
¬v(c∧ dϑ), and (b) D |= v(c∧ dϑ). In Case (a), v(η) is locally strati�ed w.r.t. σ
by de�nition. In Case (b), by the inductive hypothesis, we have only to show
that σ(v(H)) > σ(v(Kϑ)). Since D |= v(c ∧ dϑ), by the inductive hypothesis we
have that σ(v(H)) > σ(v(Aϑ)). By Condition (iv) of the rule R1, we have that
σ(v(H)) > σ(v(Kϑ)). Hence, v(η) is locally strati�ed w.r.t. σ.

Case 7. Program Pk+1 is derived by replacement (rule R7). We have that Pk+1 =
(Pk − Γ1) ∪ Γ2, where (Pk − Γ1) is locally strati�ed w.r.t. σ by the inductive
hypothesis and Γ2 is locally strati�ed w.r.t. σ by the applicability conditions of
rule R7. Thus, Pk+1 is locally strati�ed w.r.t. σ.

Case 8. Program Pk+1 is derived by deletion of useless clauses (rule R8). Pk+1

is locally strati�ed w.r.t. σ by the inductive hypothesis because Pk+1 ⊆ Pk.
Case 9. Program Pk+1 is derived by constraint addition (rule R9). We have that
Pk+1 = (Pk−{γ1})∪{γ2}, where γ2 : H ← c∧d∧G is the clause in Pk+1 derived
by constraint addition from the clause γ1 : H ← c∧G in Pk. For every valuation
v, v(H ← c ∧ d ∧ G) is locally strati�ed w.r.t. σ because: (i) by the induction
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hypothesis v(H ← c∧G) is locally strati�ed w.r.t. σ and (ii) if D |= v(c∧d) then
D |= v(c). Since, by the inductive hypothesis, (Pk − {γ1}) is locally strati�ed
w.r.t. σ, also Pk+1 is locally strati�ed w.r.t. σ.

Case 10. Program Pk+1 is derived by constraint deletion (rule R10). We have
that Pk+1 = (Pk − {γ1}) ∪ {γ2}, where γ2: H ← c ∧ G is the clause in Pk+1

derived by constraint deletion from clause γ1: H ← c ∧ d ∧ G in Pk. By the
applicability conditions of R10, γ is locally strati�ed w.r.t. σ. Since, by the
inductive hypothesis, (Pk−{γ1}) is locally strati�ed w.r.t. σ, also Pk+1 is locally
strati�ed w.r.t. σ.
Finally, P0∪Defsn is locally strati�ed w.r.t. σ by the hypothesis that P0 is locally
strati�ed w.r.t. σ and by Condition (iv) of rule R1. 2

7.2 Appendix B

In the proofs of Appendices B and C we use the following notions. Given a clause
γ: H ← c∧L1 ∧ . . .∧Lm and a valuation v such that D |= v(c), we denote by γv
the clause v(H ← L1 ∧ . . . ∧ Lm). We de�ne ground(γ) = {γv | v is a valuation
andD |= v(c)}. Given a set Γ of clauses, we de�ne ground(Γ ) =

⋃
γ∈Γ ground(γ).

Proof of Proposition 3. Recall that P0, . . . , Pi is constructed by i (≥ 0) applica-
tions of the de�nition rule, that is, Pi = P0∪Defsi, and Pi, . . . , Pj is constructed
by applying once the positive unfolding rule to each clause in Defsi. Let σ be
the �xed strati�cation function considered at the beginning of the construction
of the transformation sequence. By Proposition 1, each program in the sequence
Pi, . . . , Pj is locally strati�ed w.r.t. σ.

Let us consider a ground atom A. By complete induction on the ordinal σ(A)
we prove that, for k = i, . . . , j−1, there exists a proof tree for A and Pk i� there
exists a proof tree for A and Pk+1. The inductive hypothesis is:

(I1) for every ground atom A′, if σ(A′)<σ(A) then there exists a proof tree for
A′ and Pk i� there exists a proof tree for A′ and Pk+1.

(If Part) We consider a proof tree U for A and Pk+1, and we show that we can
construct a proof tree T for A and Pk. We proceed by complete induction on
size(U). The inductive hypothesis is:
(I2) given any proof tree U1 for a ground atom A1 and Pk+1, if size(U1)<size(U)
then there exists a proof tree T1 for A1 and Pk.

Let γ be a clause of Pk+1 and let γv: A ← L1 ∧ . . . ∧ Lr be the clause in
ground(γ) used at the root of U . Thus, L1, . . . , Lr are the children of A in U . For
h = 1, . . . , r, if Lh is an atom then the subtree Uh of U rooted at Lh is a proof
tree for Lh and Pk+1. Since size(Uh)<size(U), by the inductive hypothesis (I2)
there exists a proof tree Th for Lh and Pk. For h = 1, . . . , r, if Lh is a negated
atom ¬Ah then, by the de�nition of proof tree, there exists no proof tree for Ah
and Pk+1. Since σ is a local strati�cation for Pk+1, we have that σ(Ah)<σ(A)
and, by the inductive hypothesis (I1) there exists no proof tree for Ah and Pk.

Now, we proceed by cases.
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Case 1. γ ∈ Pk. We construct T as follows. The root of T is A. We use γv:
A← L1 ∧ . . . ∧ Lr to construct the children of A. If r = 0 then true is the only
child of A in T , and T is a proof tree for A and Pk. Otherwise r ≥ 1 and, for
h = 1, . . . , r, if Lh is an atom Ah then Th is the subtree of T at Ah, and if Lh
is a negated atom then Lh is a leaf of T . By construction we have that T is a
proof tree for A and Pk.
Case 2. γ 6∈ Pk and γ ∈ Pk+1 because γ is derived by positive unfolding. Thus,
there exist: a clause α in Pk of the form H ← c ∧GL ∧ AS ∧GR and a variant
β of a clause in Pk of the form K ← d ∧ B such that clause γ is of the form
H ← c∧AS=K∧d∧GL∧B∧GR. Thus, (i) v(H) = A, (ii) D |= v(c∧AS=K∧d),
and (iii) v(GL ∧ B ∧ GR) = L1, . . . , Lr. By (ii) we have that αv ∈ ground(Pk)
and βv ∈ ground(Pk). (Notice that, since β is a variant of a clause in Pk, then
βv ∈ ground(Pk).)
We construct T as follows. The root of T is A. We use αv to construct the
children of A and then we use βv to construct the children of AS . The leaves of
the tree constructed in this way are L1, . . . , Lr. If r = 0 then true is the only leaf
of T , and T is a proof tree for A and Pk. Otherwise r≥1 and, for h = 1, . . . , r,
if Lh is an atom then Th is the subtree of T rooted at Lh, and if Lh is a negated
atom then Lh is a leaf of T . By construction we have that T is a proof tree for
A and Pk.

(Only-if Part) We consider a proof tree T for a ground atom A and program Pk,
for k = i, . . . j−1, and we show that we can construct a proof tree U for A and
Pk+1. We proceed by complete induction on size(T ). The inductive hypothesis
is:

(I3) given any proof tree T1 for a ground atom A1 and Pk, if size(T1)< size(T )
then there exists a proof tree U1 for A1 and Pk+1.

Let γ be a clause of Pk and let γv: A ← L1 ∧ . . . ∧ Lr be the clause in
ground(γ) used at the root of T . Now we proceed by cases.
Case 1. γ ∈ Pk+1. We construct the proof tree U for A and Pk+1 as follows. We
use γv to construct the children L1, . . . , Lr of the root A. If r = 0 then true is
the only child of A in U , and U is a proof tree for A and Pk+1. Otherwise, r≥1
and, for h = 1, . . . , r, if Lh is an atom, we consider the subtree Th of T rooted
at Lh. We have that Th is a proof tree for Lh and Pk with size(Th)< size(T )
and, therefore, by the inductive hypothesis (I3), there exists a proof tree Uh for
Lh and Pk+1. For h = 1, . . . , r, if Lh is a negated atom ¬Ah, then σ(A)>σ(Ah)
because σ is a strati�cation function for Pk. Thus, by the inductive hypothesis
(I1) we have that there is no proof tree for Ah and Pk+1. The construction of
U continues as follows. For h = 1, . . . , r, if Lh is an atom then we use Uh as a
subtree of U rooted at Lh and, if Lh is a negated atom, then Lh is a leaf of U .
Thus, by construction we have that U is a proof tree for A and Pk+1.
Case 2. γ ∈ Pk and γ 6∈ Pk+1 because γ has been unfolded w.r.t. an atom in its
body. Let us assume that γ is of the form H ← c ∧ GL ∧ AS ∧ GR and γ has
been unfolded w.r.t. AS . We have that: (i) v(H) = A, (ii) D |= v(c), and (iii) the
ground literals L1, . . . , Lr such that L1 ∧ . . . ∧ Lr = v(GL ∧ AS ∧ GR) are the
children of A in T . Let β: K ← d∧B be the clause in Pk which has been used for
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constructing the children of v(AS) in T . Thus, there exists a valuation v′ such
that: (iv) v(AS) = v′(K), (v) D |= v′(d), and (vi) the literals in v′(B) are the
children of v(AS) in T . Without loss of generality we may assume that γ and β
have no variables in common and v = v′. Thus, the ground literals M1, . . . ,Ms

such that M1 ∧ . . . ∧ Ms = v(GL ∧ B ∧ GR) are descendants of A in T . For
h = 1, . . . , s, if Mh is an atom, let us consider the subtree Th of T rooted at
Mh. We have that Th is a proof tree for Mh and Pk with size(Th)<size(T ) and,
therefore, by the inductive hypothesis (I3), there exists a proof tree Uh for Mh

and Pk+1. For h = 1, . . . , s, if Mh is a negated atom ¬Ah then Mh is a leaf of T
and there exists no proof tree for Ah and Pk. Since σ is a strati�cation function
for Pk, we have that σ(A)>σ(Ah) and thus, by the inductive hypothesis (I1),
there exists no proof tree for Ah and Pk+1.

Now let us consider the clause η : H ← c ∧ AS=K ∧ d ∧GL ∧ B ∧GR. η is
one of the clauses derived by unfolding γ because β ∈ Pk and, by (ii), (iv), (v)
and the assumption that v = v′, we have that D |= v(c∧AS=K ∧ d) and hence
D |= ∃(c ∧ AS =K ∧ d). Thus, we construct a proof tree U for A and Pk+1 as
follows. Since A = v(H) and M1 ∧ . . . ∧Ms = v(GL ∧ B ∧GR), we can use ηv:
v(H ← GL ∧B ∧GR) to construct the children M1, . . . ,Ms of A in U . If s = 0
then true is the only child of A in U , and U is a proof tree for A and Pk+1.
Otherwise, s≥1 and, for h = 1, . . . , s, if Mh is an atom then Uh is the proof tree
rooted at Mh in U . If Mh is a negated atom then Mh is a leaf of U . The proof
tree U is the proof tree for A and Pk+1 to be constructed. 2

7.3 Appendix C

Proof of Proposition 5. Recall that the transformation sequence P0, . . . , Pi, . . . , Pj ,
. . . , Pm is constructed as follows (see De�nition 3):
(1) the sequence P0, . . . , Pi, with i≥ 0, is constructed by applying i times the
de�nition introduction rule, that is, Pi = P0 ∪Defsi;
(2) the sequence Pi, . . . , Pj is constructed by applying once the positive unfolding
rule to each clause in Defsi which is used for applications of the folding rule in
Pj , . . . , Pm;
(3) the sequence Pj , . . . , Pm, with j ≤m, is constructed by applying any rule,
except the de�nition introduction and de�nition elimination rules.
Let σ be the �xed strati�cation function considered at the beginning of the
construction of the transformation sequence. By Proposition 1, each program in
the sequence P0 ∪Defsi, . . . , Pj , . . . , Pm is locally strati�ed w.r.t. σ.

We will prove by induction on k that, for k = j, . . . ,m,
(Soundness) if there exists a proof tree for a ground atom A and Pk then there
exists a proof tree for A and Pj , and
(Completeness) if there exists a Pj-consistent proof tree for a ground atom A
and Pj then there exists a Pj-consistent proof tree for A and Pk.
The base case (k = j) is trivial.
For proving the induction step, consider any k in {j, . . . ,m−1}. We assume that
the soundness and completeness properties hold for that k, and we prove that
they hold for k+1. For the soundness property it is enough to prove that:
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- if there exists a proof tree for a ground atom A and Pk+1 then there exists a
proof tree for A and Pk,

and for the completeness property it is enough to prove that:

- if there exists a Pj-consistent proof tree for a ground atom A and Pk then there
exists a Pj-consistent proof tree for A and Pk+1.

We proceed by complete induction on the ordinal σ(A) associated with the
ground atom A. The inductive hypotheses are:

(IS) for every ground atom A′ such that σ(A′)<σ(A), if there exists a proof tree
for A′ and Pk+1 then there exists a proof tree for A′ and Pk, and

(IC) for every ground atom A′ such that σ(A′) < σ(A), if there exists a
Pj-consistent proof tree for A′ and Pk then there exists a Pj-consistent proof
tree for A′ and Pk+1.

By the inductive hypotheses on soundness and completeness for k, (IS), (IC),
and Proposition 4, we have that:

(ISC) for every ground atom A′ such that σ(A′)<σ(A), there exists a proof tree
for A′ and Pk i� there exists a proof tree for A′ and Pk+1.

Now we give the proofs for the soundness and the completeness properties.

Proof of Soundness. Given a proof tree U for A and Pk+1 we have to prove that
there exists a proof tree T for A and Pk. The proof is by complete induction on
size(T ). The inductive hypothesis is:
(Isize) Given any proof tree U ′ for a ground atom A′ and Pk+1, if size(U ′) <
size(U) then there exists a proof tree T ′ for A′ and Pk.

Let γ be a clause in Pk+1 and v be a valuation. Let γv ∈ ground(γ) be the
ground clause of the form A← L1 ∧ . . . ∧ Lr used at the root of U . We proceed
by considering the following cases: either (Case 1) γ belongs to Pk or (Case
2) γ does not belong to Pk and it has been derived from some clauses in Pk
by applying a transformation rule among R3, R4, R5, R6, R7, R9, R10. (Recall
that R1 and R2 are not applied in Pj , . . . , Pm, and by R8 we delete clauses.)

The proof of Case 1 and the proofs of Case 2 for rules R3, R4, R9, and R10
are left to the reader. Now we present the proofs of Case 2 for rules R5, R6, and
R7.

Case 2, rule R5. Clause γ is derived by positive folding. Let γ be derived by
folding clauses γ1, . . . , γm in Pk using clauses δ1, . . . , δm where, for i = 1, . . . ,m,
clause δi is of the form K ← di ∧ Bi and clause γi is of the form H ← c ∧
diϑ∧GL∧Biϑ∧GR, for a substitution ϑ satisfying Conditions (i) and (ii) given
in (R5). Thus, γ is of the form: H ← c ∧ GL ∧ Kϑ ∧ GR and we have that:
(a) v(H) = A, (b) D |= v(c), and (c) v(GL ∧Kϑ ∧ GR) = L1 ∧ . . . ∧ Lr. Since
program Pk+1 is locally strati�ed w.r.t. σ, by the inductive hypotheses (ISC) and
(Isize) we have that: for h = 1, . . . , r, if Lh is an atom then there exists a proof
tree Th for Lh and Pk, and if Lh is a negated atom ¬Ah then there is no proof
tree for Ah and Pk. The atom v(Kϑ) is one of the literals L1, . . . , Lr, say Lf , and
thus, there exists a proof tree for v(Kϑ) and Pk. By the inductive hypothesis
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(Soundness) for Pk and Proposition 3, there exists a proof tree for v(Kϑ) and Pi.
Since Pi = P0 ∪Defsn and δ1, . . . , δm are all clauses in (a variant of) P0 ∪Defsn
which have the same predicate symbol as K, there exists δp ∈ δ1, . . . , δm such
that δp is of the form K ← dp ∧ Bp and δp is used to construct the children of
v(Kϑ) in the proof tree for v(Kϑ) and Pi. By Conditions (i) and (ii) on ϑ given
in (R5), we have that: (d) D |= v(dpϑ) and (e) v(Bpϑ) = M1 ∧ . . . ∧Ms. By
the de�nition of proof tree, for h = 1, . . . , s, if Mh is an atom then there exists
a proof tree for Mh and Pi, else if Mh is a negated atom ¬Eh then there is no
proof tree for Eh and Pi. By Propositions 3 and 4 and the inductive hypotheses
(Soundness and Completeness) we have that, for h = 1, . . . , s, if Mh is an atom

then there exists a proof tree T̂h for Mh and Pk, else if Mh is a negated atom
¬Eh then there is no proof tree for Eh and Pk.

Now we construct the proof tree T for A and Pk as follows. By (a), (b),
and (d), we have that v(H) = A and D |= v(c ∧ dpϑ). Thus, we construct the
children of A in T by using the clause γp: H ← c ∧ dpϑ ∧GL ∧Bpϑ ∧GR. Since
v(GL∧Bpϑ∧GR) = L1∧. . .∧Lf−1∧M1∧. . .∧Ms∧Lf+1∧. . .∧Lr, the children of A
in T are: L1, . . . , Lf−1,M1, . . . ,Ms, Lf+1, . . . , Lr. By the applicability conditions
of the positive folding rule, we have that s > 0 and A has a child di�erent from
the empty conjunction true. The children of A are constructed as follows. For
h = 1, . . . , r, if Lh is an atom then Th is the subtree of T rooted in Lh, else if
Lh is a negated atom then Lh is a leaf of T . For h = 1, . . . , s, if Mh is an atom
then T̂h is the subtree of T rooted in Mh, else if Mh is a negated atom then Mh

is a leaf of T .

Case 2, rule R6. Clause γ is derived by negative folding. Let γ be derived by
folding a clause α in Pk of the form H ← c∧GL ∧¬AFϑ∧GR by using a clause
δ ∈ Defsi of the formK ← d∧AF . Thus, γ is of the formH ← c∧GL∧¬Kϑ∧GR.

Let γv be of the form A ← L1 ∧ . . . ∧ Lf−1 ∧ ¬v(Kϑ) ∧ Lf+1 ∧ . . . ∧ Lr,
that is, v(H) = A and D |= v(c). By the conditions on the applicability of
rule R6, we also have that D |= v(dϑ). Since program Pk+1 is locally strati�ed
w.r.t. σ, we have that σ(v(Kϑ)) < σ(A). By the de�nition of proof tree, there
is no proof tree for v(Kϑ) and Pk+1. Thus, by hypothesis (ISC) there exists no
proof tree for v(Kϑ) and Pk. By the inductive hypothesis (Completeness) and
Propositions 3 and 4, there exists no proof tree for v(Kϑ) and P0 ∪ Defsi and
thus, since K ← d ∧AF is the only clause de�ning the head predicate of K and
D |= v(dϑ), there is no proof tree for v(AFϑ) and P0 ∪ Defsi. By Proposition 3
and the inductive hypothesis (Soundness), there exists no proof tree for v(AFϑ)
and Pk. Since D |= v(c) there exists a clause αv in ground(α) of the form
A← L1 ∧ . . .∧Lf−1 ∧¬v(AFϑ)∧Lf+1 ∧ . . .∧Lr. We begin the construction of
T by using αv at the root. For all h = 1, . . . , f−1, f+1, . . . , r such that Lh is an
atom and Uh is the subtree of U rooted in Lh, we have that size(Uh) < size(U).
By hypothesis (Isize) there exists a proof tree Th for Lh and Pk which we use as
a subtree of T rooted in Lh. For all h = 1, . . . , f−1, f+1, . . . , r such that Lh is a
negated atom ¬Ah we have that σ(Ah) < σ(A), because program Pk+1 is locally
strati�ed w.r.t. σ. Moreover, there is no proof tree for Ah in Pk+1, because U is
a proof tree. By hypothesis (ISC) we have that there is no proof tree for Ah in
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Pk. Thus, for all h = 1, . . . , f − 1, f + 1, . . . , r such that Lh is a negated atom
we take Lh to be a leaf of T .

Case2, rule R7. Clause γ is derived by replacement. We only consider the case
where Pk+1 is derived from program Pk by applying the replacement rule based
on law (8). The other cases are left to the reader. Suppose that a clause η:
H ← c1∧G in Pk is replaced by clause γ:H ← c2∧G andD |= ∀ (∃Y c1 ↔ ∃Z c2),
where: (i) Y = FV (c1)−FV ({H,G}) and (ii) Z = FV (c2)−FV ({H,G}). Thus,
ground(γ) = ground(η) and we can construct a proof tree for the ground atom
A and Pk by using a clause in ground(η), instead of a clause in ground(γ).

Proof of Completeness. Given a Pj-consistent proof tree for A and Pk, we prove
that there exists a Pj-consistent proof tree for A and Pk+1. The proof is by
well-founded induction on µ(A,Pj). The inductive hypothesis is:

(Iµ) for every ground atom A′ such that µ(A′, Pj) < µ(A,Pj), if there exists a
Pj-consistent proof tree T

′ for A′ and Pk then there exists a Pj-consistent proof
tree U ′ for A′ and Pk+1.

Let γ be a clause in Pk and v be a valuation such that γv ∈ ground(γ) is the
ground clause of the form H ← L1 ∧ . . . ∧ Lr used at the root of T .

The proof proceeds by considering the following cases: either γ belongs to
Pk+1 or γ does not belong to Pk+1 because it has been replaced (together with
other clauses in Pk) with new clauses derived by an application of a transforma-
tion rule among R3, R4, R5, R6, R7, R8, R9, R10 (recall that R1 and R2 are
not applied in Pj , . . . , Pm). We present only the case where Pk+1 is derived from
Pk by positive folding (rule R5). The other cases are similar and are left to the
reader.

Suppose that Pk+1 is derived from Pk by folding clauses γ1, . . . , γm in Pk
using clauses δ1, . . . , δm in (a variant of) Defsk, and let γ be γp, with 1 ≤ p ≤ m.
Suppose also that, for i = 1, . . . ,m, clause δi is of the form K ← di ∧ Bi and
clause γi is of the form H ← c ∧ diϑ ∧ GL ∧ Biϑ ∧ GR, for a substitution ϑ
satisfying Conditions (i) and (ii) given in (R5). The clause η derived by folding
γ1, . . . , γm using δ1, . . . , δm is of the form: H ← c ∧ GL ∧ Kϑ ∧ GR. Since we
use γv at the root of T , we have that: (a) v(H) = A, (b) D |= v(c ∧ dpϑ),
and (c) v(GL ∧ Bpϑ ∧ GR) = L1 ∧ . . . ∧ Lr, that is, for some f1, f2, v(GL) =
L1 ∧ . . . ∧ Lf1, v(Bpϑ) = Lf1+1 ∧ . . . ∧ Lf2, and v(GR) = Lf2+1 ∧ . . . ∧ Lr. By
Proposition 4 and the inductive hypotheses (Soundness and Completeness), for
h = f1+1, . . . , f2, if Lh is an atom then there exists a proof tree for Lh and Pj ,
and if Lh is a negated atom ¬Ah then there is no a proof tree for Ah and Pj . By
Proposition 3, by the fact that (by ii) D |= v(dpϑ), and by the fact that δp ∈ Pi
(recall that Defsk ⊆ Pi), we have that there exists a proof tree for v(Kϑ) and
Pj . Moreover, since K ← dp ∧Bp has been unfolded w.r.t. a positive literal, we
have that:

(†) µ(v(Bpϑ), Pj) ≥ µ(v(Kϑ), Pj)

By Proposition 4 and the inductive hypothesis (Completeness), there exists a
proof tree for v(Kϑ) and Pk. Since T is Pj-consistent we have that, for h =
1, . . . , r, µ(A,Pj) > µ(Lh, Pj). Moreover, we have that:
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µ(A,Pj) > µ(v(GL ∧Bpϑ ∧GR), Pj) (because T is Pj-consistent)
= µ(v(GL), Pj)⊕ µ(v(Bpϑ), Pj)⊕ µ(v(GR), Pj) (by de�nition of µ)
≥ µ(v(GL), Pj)⊕ µ(v(Kϑ), Pj)⊕ µ(v(GR), Pj) (by (†))
≥ µ(v(Kϑ), Pj) (by de�nition of µ)

By the inductive hypotheses (Iµ) and (IS), for h = 1, . . . , f1, f2+1, . . . , r, if Lh
is an atom then there exists a Pj-consistent proof tree Uh for Lh and Pk+1, and
if Lh is a negated atom ¬Ah then there is no a proof tree for Ah and Pk+1.
Moreover, by the inductive hypothesis (Iµ), there exists a Pj-consistent proof

tree Û for v(Kϑ) and Pk+1.
Now we construct a Pj-consistent proof tree U for A and Pk+1 as follows.

By (a) and (b) we have that v(H) = A and D |= v(c). Thus, we construct
the children of A in U by using the clause η: H ← c ∧ GL ∧ Kϑ ∧ GR. Since
v(GL ∧Kϑ ∧GR) = L1 ∧ . . . ∧ Lf1 ∧ v(Kϑ) ∧ Lf2+1 ∧ . . . ∧ Lr, the children of
A in U are: L1, . . . , Lf1, v(Kϑ), Lf2+1, . . . , Lr. The construction of U continues
as follows. For h = 1, . . . , f1, f2+1, . . . , r, if Lh is an atom then Uh is the
Pj-consistent subtree of U rooted in Lh, else if Lh is a negated atom then Lh is
a leaf of U . Finally, the subtree of U rooted in v(Kϑ) is the Pj-consistent proof
tree Û .

The proof tree U is indeed Pj-consistent because: (i) for h = 1, . . . , f1,
f2+1, . . . , r, µ(A,Pj) > µ(Lh, Pj), (ii) µ(A,Pj)≥ µ(v(Kϑ), Pj), and (iii) ev-
ery subtree rooted in one of the literals L1, . . . , Lf1, v(Kϑ), Lf2+1, . . . , Lr is Pj-
consistent. 2
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