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Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy, and Istituto di Analisi dei Sistemi
ed Informatica del CNR, Viale Manzoni 30, I-00185 Roma, Italy.
Email : pettorossi@info.uniroma2.it. URL : http://www.iasi.cnr.it/̃ adp.

Maurizio Proietti – Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni
30, I-00185 Roma, Italy. Email : maurizio.proietti@iasi.cnr.it.
URL : http://www.iasi.cnr.it/̃ proietti.

ISSN: 1128–3378



Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”,
CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.cnr.it
URL: http://www.iasi.cnr.it



Abstract

The existential variables of a clause in a constraint logic program are the variables which occur
in the body of the clause and not in its head. The elimination of these variables is a transfor-
mation technique which is often used for improving program efficiency and verifying program
properties. We consider a folding transformation rule which ensures the elimination of existential
variables and we propose an algorithm for applying this rule in the case where the constraints
are linear inequations over rational or real numbers. The algorithm combines techniques for
matching terms modulo equational theories and techniques for solving systems of linear inequa-
tions. Through some examples we show that an implementation of our folding algorithm has a
good performance in practice.

Key words: Program transformation, folding rule, variable elimination, constraint logic pro-
gramming
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1. Introduction

Constraint logic programming is a very expressive language for writing programs in a declar-
ative way and for specifying and verifying properties of software systems [9]. When writing
programs in a declarative style or writing specifications, one often uses existential variables,
that is, variables which occur in the body of a clause and not in its head. However, the use of
existential variables may give rise to inefficient or even nonterminating computations (and this
may happen when an existential variable denotes an intermediate data structure or when an
existential variable ranges over an infinite set). For this reason some transformation techniques
have been proposed for eliminating those variables from logic programs and constraint logic pro-
grams [13, 14]. These techniques make use of the unfolding and folding rules which have been
first proposed in the context of functional programming by Burstall and Darlington [5], and
then extended to logic programming [18, 19] and to constraint logic programming [3, 7, 8, 11].

For instance, let us consider the problem of checking whether or not a list L of rational numbers
has a prefix P such that the sum of all elements of P is at least M . A constraint logic program
that solves this problem is the following:

1. prefixsum(L, M) ← N≥M ∧ app(P, S, L) ∧ sum(P, N)
2. app([ ], Y, Y ) ←
3. app([H|X], Y, [H|Z]) ← app(X,Y, Z)
4. sum([ ], 0) ←
5. sum([H|X], N) ← N =H+R ∧ sum(X, R)

When answering queries which are instances of the atom prefixsum(L,M), the program computes
values for the variables P , S, and N , which are the existential variables of clause 1 and are
not needed in the final answer. We can eliminate these existential variables and improve the
efficiency of the program, by applying the unfolding and folding rules as follows. From clause 1,
by applying the unfolding rule several times, we derive:

6. prefixsum(L, M) ← 0≥M
7. prefixsum([H|T ],M) ← N≥M ∧ N =H+R ∧ app(P, S, T ) ∧ sum(P, R)

Now we fold clause 7 by using clause 1 and we derive:

8. prefixsum([H|T ],M) ← prefixsum(T,M−H)

For this folding step we have used the fact that, in our theory of constraints, clause 7 is equivalent
to the clause prefixsum([H|T ],M) ← R ≥ M −H ∧ app(P, S, T ) ∧ sum(P,R), whose body is
an instance of the body of clause 1. The final program, consisting of clauses 6 and 8, has no
existential variables and, thus, does not construct unnecessary intermediate values for computing
the relation prefixsum.

As shown in the above example, the folding rule plays a particularly relevant role in the
techniques for eliminating existential variables. (In particular, it would have been impossible
to eliminate all existential variables from the clauses defining prefixsum by using the unfolding
rule only.) For that reason in this paper we focus our attention on the folding rule, which in the
general case can be defined as follows.

Let (i) H and K be atoms, (ii) c and d be constraints, and (iii) G and B be goals (that is,
conjunctions of literals). Given two clauses γ: H ← c ∧ G and δ: K ← d ∧ B, if there exist
a constraint e, a substitution ϑ, and a goal R such that H ← c ∧ G is equivalent (w.r.t. a
given theory of constraints) to H ← e ∧ (d ∧ B)ϑ ∧ R, then γ is folded into the clause η:
H ← e ∧ Kϑ ∧ R. In order to use the folding rule to eliminate existential variables we also
require that every variable occurring in Kϑ also occurs in H.
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In the literature no algorithm is provided to determine whether or not, given a theory of
constraints, the suitable e, ϑ, and R which are required for folding, do exist [3, 7, 8, 11]. In
this paper we propose an algorithm based on linear algebra and term rewriting techniques for
computing e, ϑ, and R, if they exist, in the case when the constraints are linear inequations over
the rational numbers. The techniques we will present are valid without relevant changes also
when the inequations are over the real numbers. As an example of application of the folding
algorithm, let us consider the following clauses:

γ: p(X1, X2, X3) ← X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
δ: s(Y1, Y2, Y3) ← W1 <0 ∧ Y1−3≥2W1 ∧ W2 >0 ∧ q(W1, Y3,W2)

and suppose that we want to fold γ using δ for eliminating the existential variables Z1 and Z2

occurring in γ. Our folding algorithm FA computes (see Examples 1–4 in Section 4): (i) the
constraint e: X1 <1, (ii) the substitution ϑ: {Y1/2X1+1, Y2/a, Y3/f(X3), W1/Z1,W2/Z2}, where
a is an arbitrary new constant, and (iii) the goal R: r(X2), and the clause derived by folding γ
using δ is:

η: p(X1, X2, X3) ← X1 <1 ∧ s(2X1+1, a, f(X3)) ∧ r(X2)

which has no existential variables. (The correctness of this folding step can easily be checked by
unfolding η w.r.t. s(2X1+1, a, f(X3)).) In general, a triple 〈e, ϑ, R〉 that satisfies the conditions
for the applicability of the folding rule may not exist or may not be unique. For this reason
our folding algorithm is nondeterministic and, in different executions, it may compute different
folded clauses.

The paper is organized as follows. In Section 2 we introduce some basic definitions concerning
constraint logic programs. In Section 3 we present the folding rule which we use for eliminating
existential variables. In Section 4 we describe our algorithm for applying the folding rule and
we prove the soundness and completeness of this algorithm with respect to the declarative
specification of the rule. In Section 5 we analyze the complexity of our folding algorithm. We
also describe an implementation of that algorithm and we evaluate its performance by presenting
some experimental results. Finally, in Section 6 we discuss the related work and we suggest some
directions for future investigations.

2. Preliminary Definitions

In this section we recall some basic definitions concerning constraint logic programs, where
the constraints are conjunctions of linear inequations over the rational numbers. As already
mentioned, the results we will present in this paper are valid without relevant changes also when
the constraints are conjunctions of linear inequations over the real numbers. For notions not
defined here the reader may refer to [9, 10].

Let us consider a first order language L given by a set Var of variables, a set Fun of function
symbols, and a set Pred of predicate symbols. Let + denote addition, · denote multiplication,
and Q denote the set of rational numbers. We assume that {+, ·}∪Q ⊆ Fun (in particular, every
rational number is assumed to be a 0-ary function symbol). We also assume that the predicate
symbols ≥ and > denoting inequality and strict inequality, respectively, belong to Pred .

In order to distinguish terms representing rational numbers from other terms (which may be
viewed as finite trees), we assume that L is a typed language [10] with two basic types: rat,
which is the type of the rational numbers, and tree, which is the type of the finite trees. We
also consider types constructed from basic types by the usual type constructors × and →. A
variable X ∈ Var has either type rat or type tree. We denote by Varrat and Vartree the set
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of variables of type rat and tree, respectively. A predicate symbol of arity n and a function
symbol of arity n in L have types of the form τ1×· · ·×τn and τ1×· · ·×τn→ τn+1, respectively,
for some types τ1, . . . , τn, τn+1 ∈ {rat, tree}. In particular, the predicate symbols ≥ and >
have type rat×rat, the function symbols + and · have type rat×rat→rat, and the rational
numbers have type rat. The function symbols in {+, ·} ∪Q are the only symbols whose type is
τ1× · · · ×τn→rat, for some types τ1, . . . , τn, with n ≥ 0.

A term u is either a term of type rat or a term of type tree. A term p of type rat is a linear
polynomial of the form a1X1 + . . . + anXn + an+1, where a1, . . . , an+1 are rational numbers and
X1, . . . , Xn are variables in Varrat (a monomial of the form aX stands for the term a ·X). A
term t of type tree is either a variable X in Vartree or a term of the form f(u1, . . . , un), where
f is a function symbol of type τ1× · · · ×τn→tree, and u1, . . . , un are terms of type τ1, . . . , τn,
respectively.

An atomic constraint is a linear inequation of the form p1 ≥ p2 or p1 > p2. A constraint
is a conjunction c1 ∧ . . . ∧ cn, where c1, . . . , cn are atomic constraints. When n = 0 we write
c1 ∧ . . . ∧ cn as true. A constraint of the form p1≥p2 ∧ p2≥p1 is abbreviated as the equation
p1 =p2 (which, thus, is not an atomic constraint).

An atom is of the form r(u1, . . . , un), where r is a predicate symbol, not in {≥, >}, of type
τ1×. . .×τn and u1, . . . , un are terms of type τ1, . . . , τn, respectively. A literal is either an atom
(called a positive literal) or a negated atom (called a negative literal). A goal is a conjunction
L1 ∧ . . . ∧ Ln of literals, with n ≥ 0. The conjunction of 0 literals is denoted by true. A
constrained goal is a conjunction c∧G, where c is a constraint and G is a goal. A clause is of the
form H ← c∧G, where H is an atom and c∧G is a constrained goal. A constraint logic program
is a set of clauses. A formula of the language L is constructed as usual in first order logic from
the symbols of L by using the logical connectives ∧, ∨, ¬, →, ←, ↔, and the quantifiers ∃, ∀.

If f is a term or a formula then by Varsrat(f) and Varstree(f) we denote, respectively, the
set of variables of type rat and of type tree occurring in f . By Vars(f) we denote the set
of all variables occurring in f , that is, Varsrat(f) ∪ Varstree(f). A similar notation will also
be used for the variables occurring in sets of terms and sets of formulas. Given a clause γ:
H ← c ∧ G, by EVars(γ) we denote the set of the existential variables of γ, which is defined
to be Vars(c ∧ G) − Vars(H). The constraint-local variables of γ are the variables in the set
Vars(c)−Vars({H, G}). Given a set X = {X1, . . . , Xn} of variables and a formula ϕ, by ∀X ϕ
we denote the formula ∀X1 . . .∀Xn ϕ and by ∃X ϕ we denote the formula ∃X1 . . .∃Xn ϕ. By
∀(ϕ) and ∃(ϕ) we denote the universal closure and the existential closure of ϕ, respectively. In
what follows we will use the notion of substitution as defined in [10] with the following extra
condition on types: given any substitution {X1/t1, . . . , Xn/tn}, for i = 1, . . . , n, the type of Xi

is equal to the type of ti.
Let Lrat denote the sublanguage of L given by the set Varrat of variables, the set {+, ·} ∪Q

of function symbols, and the set {≥, >} of predicate symbols. Throughout the paper we will
denote by Q the interpretation which assigns to every symbol in {+, ·}∪Q∪{≥, >} the expected
function or relation on Q. For a formula ϕ of Lrat (and, in particular, for a constraint), the
satisfaction relation Q |= ϕ is defined as usual in first order logic. A Q-interpretation is an
interpretation I for the typed language L which agrees with Q for each formula ϕ of Lrat,
that is, for each ϕ of Lrat, I |= ϕ iff Q |= ϕ. The definition of a Q-interpretation for typed
languages is a straightforward extension of the one for untyped languages [9]. We say that a
Q-interpretation I is a Q-model of a program P if for every clause γ ∈ P we have that I |= ∀(γ).
Similarly to the case of logic programs, we can define stratified constraint logic programs and
in [8, 9, 11] it is shown that every such program P has a perfect Q-model, denoted by M(P ).
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A solution of a set C of constraints is a ground substitution σ of the form {X1/a1, . . . , Xn/an},
where {X1, . . . , Xn} = Vars(C) and a1, . . . , an ∈ Q, such that Q |= c σ for every c ∈ C. A set of
constraints is said to be satisfiable if it has a solution.

We assume that we are given a function solve that takes as input a set C of constraints and
returns a solution σ of C, if C is satisfiable, and fail otherwise. The function solve can be imple-
mented, for instance, by using the Fourier-Motzkin algorithm or the Khachiyan algorithm [16].
We assume that we are also given a function project such that for every constraint c and for
every finite set of variables X ⊆ Varrat, Q |= ∀X ((∃Y c)↔project(c, X)), where Y =Vars(c)−X
and Vars(project(c,X))⊆X. The project function can be implemented, for instance, by using
the Fourier-Motzkin algorithm or the algorithm presented in [21].

A clause γ : H ← c∧G is said to be in normal form if (i) every term of type rat occurring in G is
a variable, (ii) each variable of type rat occurs at most once in G, (iii) Varsrat(H)∩Varsrat(G) =
∅, and (iv) γ has no constraint-local variables. It is always possible to transform any clause γ1

into a clause γ2 such that γ2 has the same Q-models as γ1 and γ2 is in normal form. Clause
γ2 is called a normal form of γ1. In particular, from a clause γ1, we can compute a clause γ′1
that satisfies conditions (i)–(iii) by introducing a new variable and a corresponding equation for
each outermost occurrence of a term of type rat in G. Clause γ′1 is computed in linear time
w.r.t. the size of γ1. By applying the project function, we can eliminate the constraint-local
variables from γ′1 and obtain a clause γ2 that satisfies also condition (iv). In the worst case,
the application of the project function takes exponential time in the number of variables to be
eliminated [21]. Without loss of generality, when presenting the folding rule and the algorithm
for its application, we will assume that the clauses are in normal form.

Definition 2.1. Given two clauses γ1 and γ2, we write γ1
∼= γ2 if there exist a normal form

H ← c1 ∧B1 of γ1, a normal form H ← c2 ∧B2 of γ2, and a renaming substitution ρ such that:
(1) H = Hρ, (2) B1 =AC B2ρ, and (3) Q |= ∀ (c1 ↔ c2ρ), where =AC denotes equality modulo
the equational theory of associativity and commutativity of conjunction. We will refer to this
theory as the AC∧ theory [1].

Proposition 2.2. (i) The relation ∼= is an equivalence relation. (ii) If γ1
∼= γ2 then, for every

Q-interpretation I, I |= γ1 iff I |= γ2. (iii) If γ2 is a normal form of γ1 then γ1
∼= γ2.

3. The Folding Rule

In this section we introduce our folding transformation rule which is a variant of the folding
rules considered in the literature [3, 7, 8, 11, 18, 19]. In particular, by using our variant of the
folding rule we may replace a constrained goal occurring in the body of a clause where some
existential variables occur, by an atom which has no existential variables in the folded clause.

Definition 3.1 (Folding Rule) Let γ: H ← c ∧ G and δ: K ← d ∧ B be clauses in normal
form without variables in common. Suppose also that there exist a constraint e, a substitution
ϑ, and a goal R such that: (1) γ ∼= H ← e ∧ dϑ ∧ Bϑ ∧ R; (2) for every variable X in
EVars(δ), the following conditions hold: (2.1) Xϑ is a variable not occurring in {H, e,R}, and
(2.2) Xϑ does not occur in the term Y ϑ, for every variable Y occurring in d ∧ B and different
from X; (3) Vars(Kϑ) ⊆ Vars(H). By folding clause γ using clause δ we derive the clause
η : H ← e ∧Kϑ ∧R.
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Condition (3) ensures that no existential variable of η occurs in Kϑ. However, in e or R some
existential variables may still occur. These variables may be eliminated by further folding steps
using again clause δ or other clauses. In Theorem 3.2 below we will establish the correctness of
the folding rule w.r.t. the perfect model semantics. This correctness result follows immediately
from [18].

In order to state Theorem 3.2 we need the following notion. A transformation sequence is a
sequence P0, . . . , Pn of programs such that, for k = 0, . . . , n−1, program Pk+1 is derived from
program Pk by an application of one of the following transformation rules: definition, unfolding
(w.r.t. positive literals), and folding. For a detailed presentation of the definition and unfolding
rules for constraint logic programs we refer to [8]. An application of the folding rule is defined
as follows. For k = 0, . . . , n, by Defsk we denote the set of clauses introduced by the definition
rule during the construction of P0, . . . , Pk. Program Pk+1 is derived from program Pk by an
application of the folding rule if Pk+1 = (Pk−{γ})∪{η}, where γ is a clause in Pk, δ is a clause
in Defsk, and η is the clause derived by folding γ using δ as indicated in Definition 3.1.

Theorem 3.2. Let P0 be a stratified program and let P0, . . . , Pn be a transformation sequence.
Suppose that, for k = 0, . . . , n−1, if Pk+1 is derived from Pk by folding clause γ using clause
δ ∈ Defsk, then there exists j, with 0 < j < n, such that δ ∈ Pj and Pj+1 is derived from Pj

by unfolding δ w.r.t. a positive literal in its body. Then P0 ∪ Defsn and Pn are stratified and
M(P0 ∪Defsn) = M(Pn).

4. An Algorithm for Applying the Folding Rule

Now we will present an algorithm for determining whether or not a clause γ : H ← c∧G can be
folded using a clause δ : K ← d ∧ B, according to Definition 3.1. The objective of our folding
algorithm is to find a constraint e, a substitution ϑ, and a goal R such that Point (1) (that is,
γ ∼= H ← e ∧ dϑ ∧ Bϑ ∧ R), Point (2), and Point (3) of Definition 3.1 hold. Our algorithm
computes e, ϑ, and R, if they exist, by applying two procedures: (i) the goal matching procedure,
called GM, which matches the goal G against B and returns a substitution α and a goal R such
that G =AC Bα∧R, and (ii) the constraint matching procedure, called CM, which matches the
constraint c against dα and returns a substitution β and a constraint e such that c is equivalent
to e ∧ dα β in the theory of constraints. The substitution ϑ to be found is the composition,
denoted α β, of the substitutions α and β. The output of the folding algorithm is either the clause
η : H ← e ∧Kϑ ∧R, if folding is possible, or fail, if folding is not possible. Since Definition 3.1
does not uniquely determine e, ϑ, and R, our folding algorithm is nondeterministic and, as
already mentioned, in different executions it may compute different folded clauses.

4.1. Goal Matching

Let us now present the goal matching procedure GM. This procedure uses the notion of binding
which is defined as follows: a binding is a pair of the form e1/e2, where e1 and e2 are either
both goals or both terms. Thus, the notion of set of bindings is a generalization of the notion
of substitution.

Goal Matching Procedure: GM

Input: two clauses in normal form without variables in common γ : H ← c∧G and δ : K ← d∧B.
Output: a substitution α and a goal R such that: (1) G =AC Bα∧R; (2) for every variable X in



8.

EVars(δ), (2.1) Xα is a variable not occurring in {H, R}, and (2.2) Xα does not occur in the term
Y α, for every variable Y occurring in d∧B and different from X; (3) Varstree(Kα) ⊆ Vars(H).
If such α and R do not exist, then fail.
Consider a set Bnds of bindings initialized to the singleton {(B∧T )/G}, where T is a new symbol
denoting a variable ranging over goals. Consider also the rewrite rules (i)–(x) listed below. In
the left hand sides of these rules, whenever we write S ∪ Bnds, for any set S of bindings, we
assume that S ∩ Bnds = ∅.

(i) {(L1∧B1∧T ) / (G1∧L2∧G2)} ∪ Bnds =⇒ {L1/L2, (B1∧T )/(G1∧G2)} ∪ Bnds

where: (1) L1 and L2 are either both positive or both negative literals and have the
same predicate symbol with the same arity, and (2) B1, G1, and G2 are (possibly empty)
conjunctions of literals;

(ii) {¬A1/¬A2} ∪ Bnds =⇒ {A1/A2} ∪ Bnds;

(iii) {a(s1, . . . , sn)/a(t1, . . . , tn)} ∪ Bnds =⇒ {s1/t1, . . . , sn/tn} ∪ Bnds;

(iv) {a(s1, . . . , sm)/b(t1, . . . , tn)} ∪ Bnds =⇒ fail, if a is different from b or m 6= n;

(v) {a(s1, . . . , sn)/X} ∪ Bnds =⇒ fail, if X ∈ Vars(γ);

(vi) {X/s} ∪ Bnds =⇒ fail, if X ∈ Vars(δ) and X/t ∈ Bnds for some t syntactically different
from s;

(vii) {X/s} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) and one of the following three conditions holds:
(1) s is not a variable, or (2) s ∈ Vars(H), or (3) there exists Y ∈ Vars(d ∧ B) different
from X such that (3.1) Y/t ∈ Bnds, for some term t, and (3.2) s ∈ Vars(t);

(viii) {X/s, T/G1} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) and s ∈ Vars(G1);

(ix) {X/s} ∪ Bnds =⇒ fail, if X ∈ Varstree(K) and Vars(s) 6⊆ Vars(H);

(x) Bnds =⇒ {X/s} ∪ Bnds, where s is an arbitrary term of type tree such that Vars(s) ⊆
Vars(H), if X ∈ Varstree(K)−Vars(B) and there is no term t such that X/t ∈ Bnds.

IF there exist a set of bindings α (which, by construction, is a substitution) and a goal R such
that: (c1) {(B ∧ T )/G} =⇒∗ α ∪ {T/R} (where T/R 6∈ α) and (c2) no Bnds exists such that
α∪{T/R} =⇒ Bnds (that is, informally, α∪{T/R} is a maximally rewritten, non-failing set of
bindings derived from the singleton {(B ∧ T )/G})
THEN return α and R ELSE return fail.

Rule (i) associates each literal in B with a literal in G in a nondeterministic way. Rules (ii)–(vi)
are a specialization to our case of the usual rules for matching [20]. Rules (vii)–(x) ensure that
any pair 〈α, R〉 computed by GM satisfies Conditions (2) and (3) of the folding rule, or if no
such pair exists, then GM returns fail.

Example 1. Let us apply the procedure GM to the clauses γ and δ presented in the Introduction,
where the predicates p, q, r, and s are of type rat×tree×tree, rat×tree×rat, tree, and
rat×tree×tree, respectively, and the function f is of type tree→tree. The clauses γ and δ
are in normal form and have no variables in common. The procedure GM performs the following
rewritings, where the arrow r=⇒ denotes an application of the rewrite rule r:
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{q(W1, Y3, W2) ∧ T/(q(Z1, f(X3), Z2) ∧ r(X2))}
i=⇒ {q(W1, Y3,W2)/q(Z1, f(X3), Z2), T/r(X2)}
iii=⇒ {W1/Z1, Y3/f(X3), W2/Z2, T/r(X2)}
x=⇒ {W1/Z1, Y3/f(X3), W2/Z2, Y2/a, T/r(X2)}

In the final set of bindings, the term a is an arbitrary constant of type tree. The output of GM
is the substitution α : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the goal R : r(X2).

The goal matching procedure GM is sound in the sense that if GM returns a substitution α
and a goal R, then α and R satisfy the output conditions of GM. The goal matching procedure
is also complete in the sense that if there exist a substitution α and a goal R that satisfy the
output conditions of GM, then GM does not return fail. The termination of the goal matching
procedure can be shown via an argument based on the multiset ordering of the size of the
bindings. Indeed, each of the rules (i)–(ix) replaces a binding by a finite number of smaller
bindings, and rule (x) can be applied at most once for each variable occurring in the head of
clause δ. A detailed proof of the soundness, completeness, and termination of GM can be found
in the Appendix (see Theorem A.4).

4.2. Constraint Matching

Let us assume that given two clauses in normal form γ : H ← c ∧ G and δ : K ← d ∧ B, the
goal matching procedure GM returns the substitution α and the goal R. By using α and R,
we construct the two clauses in normal form: H ← c ∧ Bα ∧ R and Kα ← dα ∧ Bα such
that G =AC Bα ∧R. The constraint matching procedure CM takes as input these two clauses
we have constructed. For reasons of simplicity, we rename them as γ′ : H ← c ∧ B′ ∧ R and
δ′ : K ′ ← d′ ∧ B′, respectively. The procedure CM returns as output a constraint e and a
substitution β such that: (1) γ′ ∼= H ← e∧d′β∧B′∧R, (2) B′β=B′, (3) Vars(K ′β)⊆Vars(H),
and (4) Vars(e)⊆Vars({H, R}). If such e and β do not exist, then the procedure CM returns
fail.

Let ẽ denote the constraint project(c,X), where X = Vars(c)−Vars(B′) (the definition of the
project function is given in Section 2). By Lemma 4.1 below, the procedure CM does not lose
any solution if it returns as constraint e the value of ẽ, and then compute a substitution β such
that Q |= ∀(c ↔ (ẽ ∧ d′β)), B′β = B′, and Vars(K ′β) ⊆ Vars(H) hold.

Lemma 4.1. Let γ′ : H ← c∧B′∧R and δ′ : K ′ ← d′∧B′ be the input clauses to the constraint
matching procedure. For every substitution β, there exists a constraint e such that the following
four conditions hold: (1) γ′ ∼= H ← e ∧ d′β ∧B′ ∧R, (2) B′β = B′, (3) Vars(K ′β) ⊆ Vars(H),
and (4) Vars(e) ⊆ Vars({H, R}) iff Q |= ∀(c ↔ (ẽ ∧ d′β)) and Conditions (2) and (3) hold.

The following example illustrates the fact that if the procedure CM returns for the constraint e
the value of ẽ, then CM may compute the substitution β by solving a set of constraints over
the set Q of the rational numbers.

Example 2. Let us consider again the clauses γ and δ of the Introduction. Let α and r(X2)
be the substitution and the goal computed by applying the procedure GM to γ and δ as shown
in the above Example 1. Let us then consider the following clauses γ′ : H ← c ∧ B′ ∧ R and
δ′ : K ′ ← d′ ∧B′ which are equal to γ and δα, respectively:

γ′: p(X1, X2, X3) ← X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
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δ′: s(Y1, a, f(X3)) ← Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2)
Thus, the constraint c is X1 < 1 ∧ X1 ≥ Z1 +1 ∧ Z2 > 0 and the goal B′ is q(Z1, f(X3), Z2).
Those two clauses γ′ and δ′ are the input to the procedure CM. The constraint ẽ returned by the
procedure CM is project((X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0), {X1}), which is equivalent to X1 <1.
Now we will compute a substitution β such that: (i) Q |= ∀(c ↔ (ẽ ∧ d′β)) holds, and (ii) Con-
ditions (2) and (3) as stated in Lemma 4.1, hold. These three conditions are as follows:
Q |= ∀ (X1 <1 ∧X1≥Z1+1 ∧ Z2 >0 ↔ X1 <1 ∧ (Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0)β) (f.0)
q(Z1, f(X3), Z2)β = q(Z1, f(X3), Z2) (that is, Z1β = Z1, X3β = X3, Z2β = Z2) (2)
Vars(s(Y1, a, f(X3))β) ⊆ {X1, X2, X3} (3)

We have that Equivalence (f.0) holds if the following equivalences (f.1), (f.2), and (f.3), and
implication (f.4) hold:
Q |= ∀ (X1 <1 ↔ X1 <1) (f.1)
Q |= ∀ (X1≥Z1+1 ↔ (Y1−3≥2Z1)β) (f.2)
Q |= ∀ (Z2 >0 ↔ (Z2 >0)β) (f.3)
Q |= ∀ (X1 <1 ∧X1≥Z1+1 ∧ Z2 >0 → (Z1 <0)β) (f.4)

Equivalence (f.1) trivially holds. Equivalence (f.2) can be reduced to an equation over the ra-
tional numbers because Equivalence (f.2) holds if there exists a rational number k>0 such that

Q |= ∀ (k(X1−Z1−1) = (Y1−3−2Z1)β)
holds. By Condition (2), the substitution β is the identity on Z1 and, hence, the equation
k(X1−Z1−1) = (Y1−3−2Z1)β holds for any β such that

Y1β = (2−k)Z1+kX1+3−k

Now we determine the value of the parameter k and, hence, the substitution β, as follows.
Since by Condition (3) Vars(s(Y1, a, f(X3))β)⊆{X1, X2, X3} we get that, for every value of Z1,
(2−k)Z1 = 0. Thus, k=2 and, by replacing k by 2 in the equation above, we get the new equation
Y1β = 2X1+1. This equation is satisfied if the binding Y1/(2X1+1) belongs to β. Finally, we
have that Equivalences (f.3) and (f.4) hold for β={Y1/(2X1+1)}. We will see that, indeed, the
substitution β we have obtained is the one returned by the constraint matching procedure CM
we will introduce ibelow.

The crucial steps in Example 2 have been the following two: (i) the reduction of Equiva-
lence (f.0) to a set of equivalences between atomic constraints (see (f.1)–(f.3)) or implications
with atomic conclusions (see (f.4)), and (ii) the reduction of one of these equivalences, namely
(f.2), to an equation over the rational numbers, via the introduction of the auxiliary rational
parameter k.

Now we introduce some notions and we state some properties (see Lemma 4.2 and Theorem 4.3)
which will be exploited by the constraint matching procedure CM for performing in the general
case those two reduction steps. Indeed, the procedure CM consists of a set of rewrite rules
which reduce the equivalence between c and ẽ ∧ d′β to a set of equations and inequations over
the rational numbers, via the introduction of suitable auxiliary parameters. The properties
we now state also provide sufficient conditions which guarantee the construction of the desired
substitution β, if there exists one.

A conjunction a1 ∧ . . . ∧ am of (not necessarily distinct) atomic constraints a1, . . . , am is said
to be redundant if Q |= ∀((a1 ∧ . . . ∧ ai−1 ∧ ai+1 ∧ . . . ∧ am) → ai) for some i ∈ {1, . . . ,m}.
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In this case we say that ai is redundant in a1 ∧ . . . ∧ am. Thus, the empty conjunction true
is non-redundant and an atomic constraint a is redundant iff Q |= ∀(a). Given a redundant
constraint c, we can always derive a non-redundant constraint c′ which is equivalent to c, that
is, Q |= ∀(c ↔ c′), by repeatedly eliminating from the constraint at hand an atomic constraint
which is redundant in that constraint.

Without loss of generality, we may assume that any given constraint c is of the form p1 B1

0 ∧ . . . ∧ pm Bm 0, with m≥ 0 and B1, . . . ,Bm∈ {≥, >}. We define the interior of c, denoted
interior(c), to be the constraint p1 >0 ∧ . . . ∧ pm >0.

A constraint c is said to be admissible if both c and interior(c) are satisfiable and non-
redundant. For instance, the constraint c1 : X−Y ≥0∧ Y ≥0 is admissible, while the constraint
c2 : X−Y ≥ 0 ∧ Y ≥ 0 ∧X > 0 is not admissible (indeed, c2 is non-redundant, but interior(c2) :
X−Y >0∧ Y >0∧X >0 is redundant). The following Lemma 4.2 characterizes the equivalence
between two constraints whenever one of them is admissible.

Lemma 4.2. Let us consider an admissible constraint a of the form a1∧. . .∧am and a constraint
b of the form b1 ∧ . . . ∧ bn, where a1, . . . , am, b1, . . . , bn are atomic constraints (in particular,
they are not equalities). We have that Q |= ∀ (a ↔ b) holds iff there exists an injection µ :
{1, . . . ,m} → {1, . . . , n} such that for i = 1, . . . , m, Q |= ∀ (ai ↔ bµ(i)) and for j = 1, . . . , n, if
j 6∈ {µ(i) | 1≤ i≤m}, then Q |= ∀ (a → bj).

In Lemma 4.2 we have required that the constraint a be admissible. This is a needed hypothesis
as the following example shows. Let us consider the non-admissible constraint c2 : X−Y ≥
0 ∧ Y ≥ 0 ∧ X > 0 and the constraint c3 : X−Y ≥ 0 ∧ Y ≥ 0 ∧ X +Y > 0. We have that
Q |= ∀(c2 ↔ c3) and yet there is no injection µ which has the properties stated in Lemma 4.2.

Given the clauses γ′ : H ← c ∧ B′ ∧ R and δ′ : K ′ ← d′ ∧B′ such that: (i) c is an admissible
constraint of the form a1∧ . . .∧am, and (ii) ẽ∧d′ is a constraint of the form b1∧ . . .∧bn, where ẽ
is project(c,Vars(c)−Vars(B′)), the constraint matching procedure CM may exploit Lemma 4.2
and compute a substitution β which satisfies Q |= ∀(c ↔ (ẽ ∧ d′β)) and Conditions (2) and (3)
of Lemma 4.1, according to the following algorithm: first (1) CM computes an injection µ from
{1, . . . ,m} to {1, . . . , n}, (see rule (i) in the procedure CM below) and then (2) it computes β
such that:
(2.i) for i=1, . . . , m, Q |= ∀(ai ↔ bµ(i)β), and
(2.ii) for j = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m}, then Q |= ∀(c → bjβ)
(see rules (ii)–(v) in the procedure CM below).

By Lemma 4.2, one can show that if the constraint c is admissible, the above algorithm for
computing the substitution β which satisfies Q |= ∀(c ↔ (ẽ ∧ d′β)) and Conditions (2) and (3)
of Lemma 4.1 is complete in the sense that it computes such a substitution β if there exists
one. Note that, if the constraint c is non-admissible then it can be the case that there is no
injection µ which satisfies the conditions provided in Lemma 4.2 and yet clause γ can be folded
using δ, according to Definition 3.1. In this case, the procedure CM fails.

In order to compute β satisfying Point (2.i) above, the procedure CM makes use of the
following Property P1: given the satisfiable, non-redundant atomic constraints p>0 and q >0,
we have that Q |= ∀(p > 0 ↔ q > 0) holds iff there exists a rational number k > 0 such that
Q |= ∀(kp − q = 0) holds. Property P1 holds also if we consider ∀(p ≥ 0 ↔ q ≥ 0), instead
of ∀(p>0 ↔ q>0).

In order to compute β satisfying Point (2.ii) above, the procedure CM makes use of the
following Theorem 4.3 which is a generalization of the above Property P1 and it is an extension
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of Farkas’ Lemma to the case of systems of weak (≥) and strict (>) inequalities [16], rather than
weak inequalities only.

Theorem 4.3. Suppose that p1 B1 0 , . . . , pm Bm 0, pm+1 Bm+1 0 are atomic constraints such
that, for i = 1, . . . , m + 1, Bi ∈ {≥, >} and Q |= ∃(p1 B1 0 ∧ . . . ∧ pm Bm 0). Then Q |=
∀(p1 B1 0 ∧ . . . ∧ pm Bm 0 → pm+1 Bm+1 0) iff there exist k1 ≥ 0, . . . , km+1 ≥ 0 such that: (i)
Q |= ∀ (k1p1 + · · · + kmpm + km+1 = pm+1), and (ii) if Bm+1 is > then (

∑
i∈I ki) > 0, where

I ={i | 1≤ i≤m+1, Bi is >}.

As we will see, the constraint matching procedure CM may construct bilinear polynomials
(see rules (i)–(iii)), which defined as follows. Let p be a polynomial and 〈P1, P2〉 be a partition
of a (proper or not) superset of Vars(p). The polynomial p is said to be bilinear in the parti-
tion 〈P1, P2〉 if there exists a polynomial q such that Q |= ∀ (p = q) and q is a sum of monomials,
each of which is of the form: either (i) k V U , where k is a rational number, V ∈P1, and U ∈P2,
or (ii) k U , where k is a rational number and U ∈ P1 ∪ P2, or (iii) k, where k is a rational
number.

Given a polynomial p which is bilinear in the partition 〈P1, P2〉, where P2 = {U1, . . . , Um},
a normal form of p, denoted nf (p), w.r.t. a given linear order U1, . . . , Um of the variables in P2,
is any polynomial which is derived from p by: (i) computing a polynomial of the form r1U1 +
· · ·+rmUm +rm+1 such that: (i.1) Q |= ∀ (p = r1U1 + · · ·+rmUm +rm+1), and (i.2) r1, . . . , rm+1

are linear polynomials whose variables are in P1, and (ii) erasing from that polynomial every
summand riUi such that Q |= ∀ (ri =0).

In what follows, we will extend our terminology and we will call a constraint any conjunction
c1∧ . . .∧cn of formulas, where for i = 1, . . . , n, ci is of the form p ≥ 0 or p > 0 and p is a bilinear
polynomial.

Constraint Matching Procedure: CM

Input: two clauses in normal form, possibly with variables in common, γ′ : H ← c ∧B′ ∧R and
δ′ : K ′ ← d′ ∧B′.
Output: a constraint e and a substitution β such that: (1) γ′ ∼= H ← e∧d′β∧B′∧R, (2) B′β = B′,
(3) Vars(K ′β) ⊆ Vars(H), and (4) Vars(e) ⊆ Vars({H, R}). If such e and β do not exist, then
fail.

IF c is unsatisfiable THEN return an arbitrary unsatisfiable constraint e such that Vars(e)⊆
Vars({H, R}) and a substitution β of the form {U1/a1, . . . , Us/as}, where {U1, . . . , Us} =
Varsrat(K ′) and a1, . . . , as are arbitrary terms of type rat such that, for i = 1, . . . , s, Vars(ai) ⊆
Vars(H)
ELSE proceed as follows.

Let X be the set Vars(c)−Varsrat(B′), Y be the set Vars(d′)−Varsrat(B′), and Z be the set
Varsrat(B′). Let e be the constraint project(c,X). Without loss of generality, we may assume
that:

− c is a constraint of the form p1 B1 0 ∧ . . . ∧ pm Bm 0, where for i = 1, . . . , m, pi is a linear
polynomial and Bi ∈{≥, >}, and

− e ∧ d′ is a constraint of the form q1 B1 0 ∧ . . . ∧ qn Bn 0, where for j = 1, . . . , n, qi is a linear
polynomial and Bi ∈{≥, >}.
Let us consider the following rewrite rules (i)–(v) which are all of the form:
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〈f1 ↔ g1, S1, σ1〉 =⇒ 〈f2 ↔ g2, S2, σ2〉
where: (1.1) f1 and f2 are constraints, (1.2) g1 and g2 are conjunctions of constraints of the form
q B 0, where q is a bilinear polynomial and B∈ {≥, >}, (2) S1 and S2 are sets of constraints
of the form q B 0, where q is a bilinear polynomial and B∈ {≥, >}, and (3) σ1 and σ2 are
substitutions. Recall that an equation between polynomials of the form p1 = p2 stands for the
two inequations p1 ≥ p2 and p2 ≥ p1. The polynomials occurring in g1, g2, S1, and S2 are all
bilinear in the partition 〈W,X∪Y ∪Z〉, where W is the set of the new variables introduced during
the application of the rewrite rules (i)–(v). The normal forms of those bilinear polynomials are
all defined w.r.t. any fixed variable ordering of the form: Z1, . . . , Zh, Y1, . . . , Yk, X1, . . . , X`,
where {Z1, . . . , Zh}=Z, {Y1, . . . , Yk}=Y , and {X1, . . . , X`}=X. In the rewrite rules (iv) and
(v), where S1 is written as A ∪ S, we assume that A ∩ S = ∅.

(i) 〈p B0 ∧f ↔ g1 ∧ q B 0 ∧ g2, S, σ〉 =⇒ 〈f ↔ g1∧g2, {nf (V p−q) = 0, V >0}∪ S, σ〉
where V is a new variable and either both occurrences of B are ≥ or both occurrences of
B are >;

(ii) 〈true ↔ q≥0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0, V1≥0, . . . , Vm+1≥0} ∪ S, σ〉

where V1, . . . , Vm+1 are new variables and the constraint c in clause γ′ is p1 B1 0 ∧ . . . ∧
pm Bm 0;

(iii) 〈true ↔ q>0 ∧ g, S, σ〉 =⇒
〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0, (
∑

i∈I Vi)>0} ∪ S, σ〉
where V1, . . . , Vm+1 are new variables, I ={i | 1≤ i≤m+1, Bi is >}, and the constraint c
in clause γ′ is p1 B1 0 ∧ . . . ∧ pm Bm 0;

(iv) 〈f ↔ g, {pU+q = 0}∪S, σ〉 =⇒ 〈f ↔ g, {p = 0, q = 0}∪S, σ〉
if U ∈ X ∪ Z;

(v) 〈f ↔ g, {aU+q = 0}∪S, σ〉 =⇒
〈f ↔ (g{U/− q

a}), {nf (p{U/− q
a}) B0 | p B 0 ∈ S}, σ{U/− q

a}〉
if U ∈Y , Vars(q) ∩Vars(R) = ∅, a ∈ (Q− {0}), and B∈ {≥, >};

IF there exist a set C of atomic constraints and a substitution σY such that: (c1) 〈c ↔ e ∧
d′, ∅, ∅〉 =⇒∗ 〈true ↔ true, C, σY 〉, (c2) for every f ∈C, we have that f is of the form p B0,
where p is a linear polynomial and B∈{≥, >}, and Vars(f)⊆W , where W is the set of the new
variables introduced during the rewriting steps from 〈c ↔ e∧d′, ∅, ∅〉 to 〈true ↔ true, C, σY 〉,
and (c3) C is satisfiable and solve(C) = σW ,
THEN construct a ground substitution σG of the form {U1/a1, . . . , Us/as}, where {U1, . . . , Us} =
Varsrat(K ′σY σW ) − Vars(H) and a1, . . . , as are arbitrary terms of type rat such that, for i =
1, . . . , s, Vars(ai) ⊆ Vars(H), and return the constraint e and the substitution β = ϕY σG, where
ϕY is the substitution σY σW restricted to the set Y,
ELSE return fail.
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Note that the procedure CM is nondeterministic (in particular, rule (i) associates an atomic
constraint in c with an atomic constraint in e∧ d′ in a nondeterministic way). Note also that in
order to apply rules (iv) and (v), pU and aU should be the leftmost monomials in the bilinear
polynomials pU+q and aU+ q, respectively.

The procedure CM is sound in the sense that if it returns the constraint e and the substitution
β, then e and β satisfy the output Conditions (1)–(4) of CM. Now we sketch the proof of
this soundness property. A detailed proof is given in the Appendix (see Theorem A.13). By
Lemma 4.1 it is enough to show that, for e = project(c,X), Q |= ∀ (c ↔ e∧ d′β) and the output
Conditions (2) and (3) hold. By the definition of the sets X, Y , Z, and W of variables we
may assume, without loss of generality, that Xβ = X, Zβ = Z, and Z ∩ Vars(Y β) = ∅, and
Wβ = W , that is, the substitution β is a mapping from Y to terms with variables not in Z (for
a proof of these facts, see Theorem A.13 in the Appendix). Hence, it is enough to show that the
substitution β is such that Q |= ∀ (c ↔ (e∧d′)β) (note that β is applied also to the constraint e)
and Conditions (2) and (3) hold.

The procedure CM starts from the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉 and nondeterministically
constructs a sequence of triples by applying the rewrite rules (i)–(v) until Conditions (c1)–(c3)
are satisfied. If no such sequence exists, CM returns fail. We will say that a substitution β
satisfies a triple 〈f ↔ g, S, σ〉 if there exists a value for the variables in the set W such that
Q |= ∀X ∀Z (f ↔ gβ), Q |= ∀X ∀Z (Sβ), and, for every variable U ∈ Y , Q |= ∀(Uσβ = Uβ)
(note that a variable of the set W may occur either in the constraint g, or in the set S, or in
the substitution σ).

Now we show that each rewrite rule which constructs from an old triple 〈f1 ↔ g1, S1, σ1〉 a
new triple 〈f2 ↔ g2, S2, σ2〉, is sound in the sense that, for all substitutions β, if β satisfies
the triple 〈f2 ↔ g2, S2, σ2〉 then β satisfies also the triple 〈f1 ↔ g1, S1, σ1〉. Moreover, if β
satisfies the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉 then β is a correct output substitution.

Let us now consider each of the rewrite rules (i)–(v) and let us show that this rule is sound.
Let us start from rule (i). When applying this rule, for each atomic constraint p B0 in f1 CM

selects an atomic constraint q B0 in f2. Thus, by a sequence of applications of rule (i) starting
from the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉, CM constructs an injective mapping from the atomic
constraints in c to the atomic constraints in e ∧ d′. If such an injective mapping does not exist,
CM returns fail. Rule (i) deletes the selected atomic constraints p B 0 and q B 0 and adds to
the second component of the triple the equation nf (V p− q) = 0 and the constraint V >0. The
soundness of rule (i) follows from Property P1, which ensures that Q |= ∀ (p B 0 ↔ (q B 0)β)
iff there exists a rational number V >0 such that Q |= ∀ (nf (V p− qβ) = 0).

Rules (ii) and (iii) are applied when the first component of the triple at hand is of the form
true ↔ g, that is, none of the atomic constraints in g belongs to the image of the injection
computed by rule (i). Every application of rules (ii) and (iii) deletes an atomic constraint q B 0
from g and adds to the second component of the triple the equation nf (V1p1 + . . . + Vmpm +
Vm+1 − q) = 0 and a set {V1 ≥ 0, . . . , Vm+1 ≥ 0} of constraints (with an additional constraint
of the form (

∑
i∈I Vi)>0 in case of rule (iii)). The soundness of rules (ii) and (iii) follows from

the fact that c is a constraint of the form p1 B1 0 ∧ . . . ∧ pm Bm 0 and, by Theorem 4.3, we
have that Q |= ∀ (c → (q B 0)β) iff there exist rational numbers V1 ≥ 0, . . . , Vm+1 ≥ 0 such
that Q |= ∀ (nf (V1p1+. . .+Vmpm+Vm+1−qβ) = 0) (with the additional constraint (

∑
i∈I Vi)>0

in case of rule (iii)).
The soundness of rules (iv) and (v) is based on the following Property P2 : Q |= ∀((pU + q =

0) ↔ (p = 0 ∧ q = 0) ∨ (p 6= 0 ∧ U = − q
p)).

Rule (iv) replaces an equation pU + q = 0, where U ∈ X ∪ Z, by the two equations p =
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0 and q = 0. The soundness of this rule follows from the fact that, for any value of the
variables V1, . . . , Vr ∈ W , Q |= ∀T ((pU + q)β = 0) iff Q |= ∀T (p = 0) and Q |= ∀T (qβ = 0),
where T = Vars((pU)β, qβ, p) −W . This equivalence follows from Property P2, by observing
that: (1) (pU)β = pU because U ∈ X ∪ Z and pU + q is bilinear in 〈W,X ∪Y ∪Z〉 and,
therefore, Vars(p) ⊆ W , and (2) the case where Q |= ∀T (U = − qβ

p ) is impossible because, for
any β, U 6∈ Vars(qβ) (indeed: (2.1) since pU + q is in normal form, we have that U 6∈ Vars(q),
(2.2) since Z ∩Vars(Y β) = ∅, if U ∈ Z then we have that U 6∈ Vars(qβ), and (2.3) since by the
variable ordering we use for computing normal forms we have that no variable in the set Y occurs
in pU + q to the right of a variable in the set X, if U ∈ X then we have that Y ∩ Vars(q) = ∅
and, thus, qβ = q).

Rule (v) deletes an equation aU+q = 0, where U ∈ Y , Vars(q)∩Vars(R) = ∅, and a ∈ Q−{0},
and applies the substitution {U/ − q

a} to all components of the triple at hand. (Note that U
does not occur in f .) The soundness of this rule follows from the fact that, for any value
of the variables V1, . . . , Vr ∈ W , Q |= ∀T ((aU + q)β = 0) iff Q |= ∀T (Uβ = − qβ

a ), where
T = Vars(Uβ, qβ)−W . This equivalence follows from Property P2, because a ∈ Q−{0}. (Note
that the condition Vars(q) ∩ Vars(R) = ∅ is required to satisfy the output Condition (3) of
CM.)

If the rewriting process terminates and from the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉 we derive,
by a sequence of applications of rules (i)–(v), a new triple 〈true ↔ true, C, σY 〉 such that
Conditions (c1)–(c3) listed at the end of the procedure hold, then no rule can be applied to
the triple 〈true ↔ true, C, σY 〉 and, hence, in the set C there is no occurrence of a variable
in X ∪ Y ∪ Z. Moreover, C is a set of constraints on the variables in the set W . Since by
Condition (c3) the set of constraints in C is satisfiable and since β is defined as ϕY σG, where ϕY is
the restriction of the substitution σY σW to the set Y of variables, we have that the substitution β
satisfies the triple 〈true ↔ true, C, σY 〉. Therefore, by the soundness of the rewrite rules shown
above, we get that the substitution β computed by the procedure CM satisfies also the initial
triple 〈c ↔ e ∧ d′, ∅, ∅〉 and, thus, it is a correct output substitution.

As already mentioned, by using Lemma 4.2, it can be shown that if c is an admissible con-
straint, the procedure CM is also complete, in the sense that if there exist a constraint e and
a substitution β that satisfy the output conditions of CM, then CM does not return fail (see
Theorem A.13 in the Appendix for a detailed proof).

The termination of the constraint matching procedure is a consequence of the following facts:
(1) each application of rules (i), (ii), and (iii) reduces the number of atomic constraints occurring
in g in the triple 〈f ↔ g, S, σ〉 at hand; (2) each application of rule (iv) does not modify the
first component of the triple 〈f ↔ g, S, σ〉 at hand, does not introduce any new variables, and
reduces the number of occurrences in S of the variables in the set X ∪Z; (3) each application of
rule (v) does not modify the number of atomic constraints in the first component of the triple
〈f ↔ g, S, σ〉 at hand and eliminates all occurrences in S of a variable in the set Y . Thus,
the termination of CM can be proved by a suitable lexicographic ordering on the number of
the atomic constraints and variables. The details of the termination proof can be found in the
Appendix (see the proof of Theorem A.13).

The following example illustrates an execution of the procedure CM.

Example 3. Let us consider again the clauses γ and δ of the Introduction and let α be the
substitution computed by applying the procedure GM to γ and δ as shown in Example 1. Let us
also consider the clauses γ′ and δ′, where γ′ is γ and δ′ is δα, that is,

γ′: p(X1, X2, X3) ← X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
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δ′: s(Y1, a, f(X3)) ← Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2)
Now we apply the procedure CM to clauses γ′ and δ′. The constraint X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0
occurring in γ′ is satisfiable. The procedure CM starts off by computing the constraint e. We
get:

e = project(X1 <1 ∧X1≥Z1+1 ∧ Z2 >0, {X1}) = X1 <1
Then CM performs a sequence of rewritings which we list below, where: (i) all polynomials are
bilinear in the partition 〈{V1, . . . , V7}, {X1, Y1, Z1, Z2}〉, (ii) their normal forms are computed
w.r.t. the variable ordering Z1, Z2, Y1, X1, and (iii) r=⇒k denotes k applications of rule r. (In
the following sequence of rewritings we have underlined the constraints that are rewritten by the
application of a rule. Note also that the atomic constraints occurring in the initial triple are the
ones in γ′ and δ′, rewritten into the form p > 0 or p ≥ 0.)
〈(1−X1 >0∧X1−Z1−1≥0∧Z2 >0) ↔ (1−X1 >0∧−Z1 >0∧ Y1−3−2Z1 ≥0∧Z2 >0), ∅, ∅〉

i=⇒ 〈(X1−Z1−1≥0 ∧ Z2 >0) ↔ (−Z1 >0 ∧ Y1−3−2Z1≥0 ∧ Z2 >0),
{(1−V1)X1+V1−1=0, V1 >0}, ∅〉

i=⇒ 〈Z2 >0 ↔ (−Z1 >0 ∧ Z2 >0),
{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0}, ∅〉

i=⇒ 〈true ↔ −Z1 >0,
{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0,
(V3−1)Z2 =0, V3 >0}, ∅〉

iii=⇒ 〈true ↔ true,
{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0,

(V3−1)Z2 =0, V3 >0, (1−V5)Z1+V6Z2+(V5−V4)X1+V4−V5+V7 =0,

V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, ∅〉
iv=⇒6〈true ↔ true,

{1−V1 =0, V1−1=0, V1 >0, 2−V2 =0,−Y1+V2X1−V2+3=0, V2 >0,
V3−1=0, V3 >0, 1−V5 =0, V6 =0, V5−V4 =0, V4−V5+V7 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, ∅〉

v=⇒ 〈true ↔ true,
{1−V1 =0, V1−1=0, V1 >0, 2−V2 =0, V2 >0, (†)

V3−1=0, V3 >0, 1−V5 =0, V6 =0, V5−V4 =0, V4−V5+V7 =0, (†)
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, (†)

{Y1/V2X1−V2+3}〉 (††)
Let C be the set of constraints occurring in the lines marked by (†). We have that C is satisfiable
and has a unique solution given by the following substitution:

σW = solve(C) = {V1/1, V2/2, V3/1, V4/1, V5/1, V6/0, V7/0}
The substitution σY computed in the line marked by (††) is {Y1/V2X1 − V2 + 3}. Hence, the
substitution ϕY , which is defined as σY σW restricted to {Y1}, is {Y1/2X1 + 1}. Since we have
that Varsrat(s(Y1, a, f(X3))σY σW ) − Vars(H) = {X1, X3} − {X1, X2, X3} = ∅, the substitution
σG is the identity. Thus, the output of the procedure CM is the constraint e = X1 < 1 and the
substitution β = ϕY σG = {Y1/2X1 + 1}.

4.3. The Folding Algorithm

Now we are ready to present our folding algorithm.
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Folding Algorithm: FA

Input: two clauses in normal form without variables in common γ : H ← c∧G and δ : K ← d∧B.
Output: the clause η : H ← e∧Kϑ∧R, if it is possible to fold γ using δ according to Definition 3.1,
and fail, otherwise.

IF there exist a substitution α and a goal R which are the output of an execution of the procedure
GM when clauses γ and δ are given as input to GM
AND there exist a constraint e and a substitution β which are the output of an execution of the
procedure CM when clauses γ′ : H ← c ∧Bα ∧R and δ′ : Kα ← dα ∧Bα are given as input to
CM

THEN return the clause η : H ← e ∧Kαβ ∧R ELSE return fail.

The following theorem, whose proof is given in the Appendix, states that (1) the folding algo-
rithm FA terminates, (2) FA is sound, and, (3) if the constraint c is admissible, then FA is
complete.

Theorem 4.4 (Termination, Soundness, and Completeness of FA) Let the input of the
algorithm FA be two clauses γ and δ in normal form without variables in common. Then:
(1) FA terminates; (2) if FA returns a clause η, then η can be derived by folding γ using δ
according to Definition 3.1; (3) if it is possible to fold γ using δ according to Definition 3.1 and
the constraint occurring in γ is either unsatisfiable or admissible, then FA does not return fail.

Example 4. Let us consider the clause

γ: p(X1, X2, X3) ← X1 < 1 ∧X1 ≥ Z1 + 1 ∧ Z2 > 0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)

and the clause

δ: s(Y1, Y2, Y3) ← W1 < 0 ∧ Y1 − 3 ≥ 2W1 ∧W2 > 0 ∧ q(W1, Y3,W2)

of the Introduction. Let the substitution α : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the goal
R : r(X2) be the result of applying the procedure GM to γ and δ as shown in Example 1, and
let the constraint e : X1 < 1 and the substitution β : {Y1/2X1 + 1} be the result of applying the
procedure CM to γ and δα as shown in Example 3. Then, the output of the folding algorithm
FA is the clause η : p(X1, X2, X3) ← e ∧ s(Y1, Y2, Y3)αβ ∧R, that is:

η : p(X1, X2, X3) ← X1 < 1 ∧ s(2X1 + 1, a, f(X3)) ∧ r(X2).

5. Complexity of the Folding Algorithm and Experimental Results

For any clause γ, let size(γ) denote be the number of occurrences of symbols in γ. A similar
notation will also be used for constraints, terms, and sets of constraints or terms. We evaluate
the time complexity of our folding algorithm FA w.r.t. size(γ)+size(δ), where γ and δ are the
clauses given as input to FA. First we consider the complexity of the basic functions nf, solve,
and project : (i) for any bilinear polynomial p, the computation of nf (p) takes polynomial time
w.r.t. size(p), (ii) for any set C of constraints, the computation of solve(C) takes polynomial
time w.r.t. size(C) by using Khachiyan’s method [16], and (iii) for any constraint c and set X
of variables, the computation of project(c, X) takes 2O(|X|), where |X| denotes the cardinality
of X (see [21] for the complexity of variable elimination from linear constraints). We will see
in the following analysis that, due to the time complexity of computing the project function,
any nondeterministic execution of the folding algorithm in the worst case takes 2O(size(γ)+size(δ))
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time. Before making this analysis, let us observe that the function project is applied to a
subset X of the variables occurring in γ (in particular, with reference to the procedure CM,
X = Vars(c)∩Vars(B′)) and it is often the case that |X| is much smaller than size(γ)+size(δ).
Thus, in order to analyze this particular case, we assume that the value of |X| is fixed and the
time complexity of the function project is a constant value. In this hypothesis our algorithm FA
is in NP (w.r.t. size(γ)+size(δ)). To show this result, now we prove that both the goal matching
procedure GM and the constraint matching procedure CM are in NP.

First we consider the procedure GM. Let s be a sequence of applications of the rewrite rules
(i)–(x) of GM starting from the initial set {(B ∧ T )/G} of bindings, where B and G are the
goals occurring in the body of δ and γ, respectively. First, we note that each application of
one of the rules (i)–(ix) reduces at least by one the number of occurrences of symbols. Rule (x)
can be applied at most M times, where M is the number of variables occurring in the head of
clause δ. Thus, the length of the sequence s is linear in size(γ)+size(δ). Finally, by a single
application of a rule, any set of bindings can be rewritten into at most K different new sets of
bindings, where K is the number of occurrences of literals in G (see, in particular, rule (i) which
is nondeterministic). Thus, GM is in NP w.r.t. size(γ)+size(δ).

Now we show that also CM is in NP. Let 〈c ↔ e ∧ d′, ∅, ∅〉 be the initial triple and let N be
size({c, e∧d′}). We have the following property: for every maximal sequence s1 of rewritings of
the form D =⇒ · · · =⇒ E constructed by applications of the rewrite rules (i)–(v) of CM, there
exists a sequence s2 of the form D =⇒ · · · =⇒ E such that: (1) s1 and s2 have equal length,
(2) in s2 every application of rules (i), (ii), and (iii) occurs before all applications of rules (iv)
and (v), and (3) rules (iv) and (v) are applied in the following order, starting from the triple
of the form 〈f1 ↔ g1, S1, σ1〉 which is obtained after the applications of the rules (i), (ii), and
(iii): (3.1) first, rule (iv) is applied as long as possible for eliminating all occurrences of the
variables Z1, . . . , Zh from S1, thereby deriving a new set S2 of constraints, (3.2) then, rule (v)
is applied as long as possible for eliminating all occurrences of the variables Y1, . . . , Yk from S2,
thereby deriving a new set S3 of constraints, and (3.3) finally, rule (iv) is applied as long as
possible for eliminating all occurrences of the variables X1, . . . X` from S3, thereby deriving a
set S4 of constraints. Thus, S4 is a set of constraints whose variables are all in W . Note that
Conditions (3.1), (3.2), and (3.3) on the order of application of rules (iv) and (v) can be imposed
because the normal forms of the bilinear polynomials occurring in the second component of every
triple are computed w.r.t. the fixed variable ordering Z1, . . . , Zh, Y1, . . . , Yk, X1, . . . X`.

Thus, for the time complexity analysis of CM we may restrict ourselves to sequences of
rewritings constructed like the sequence s2 above, that is, sequences which satisfy Conditions (2),
(3.1), (3.2), and (3.3). First, note that each application of rules (i), (ii), and (iii) reduces the
number of constraints occurring in the first component of the triple at hand. Hence, we may
have at most N applications of the rules (i), (ii), and (iii). Moreover, each application of rules (i),
(ii), and (iii) introduces at most m+1 new variables, where m+1 ∈ O(N). Hence, during the
applications of rules (i), (ii), and (iii), the number of new variables introduced is O(N2), that
is, |W | ∈ O(N2). We also have that each application of rules (i), (ii), and (iii) adds at most
m+3 constraints to the second component of the triple. Thus, after the application of rules (i),
(ii), and (iii) we get a set S1 of constraints such that |S1| ∈ O(N2). Then, in the sequence s2

rule (iv) is applied at most M1 times, where M1 is the number of occurrences in S1 of variables
in Z. Now, since all bilinear polynomials are in normal form, we have that M1 ≤ |S1|×|Z| and
M1 ∈ O(N3). We also have that |S2| is equal to |S1|+z, where z is the number of occurrences
in S1 of variables in Z. Since |S1| ∈ O(N2), we get that |S2| ∈ O(N2). Then, every application
of rule (v) eliminates all occurrences of a variable in Y and, therefore, rule (v) is applied M2



19.

Example D0 D1 D2 D3 D4 N1 N2 N3 N4
Number of Foldings 1 1 1 1 1 2 4 4 16
Number of Variables 10 4 8 12 16 4 8 12 16
Time (seconds) 0.01 0.01 0.08 3.03 306 0.02 0.08 0.23 1.09
Total-Time (seconds) 0.02 0.02 0.14 4.89 431 0.03 49 1016 11025

Table 1: Execution times of the folding algorithm FA for the examples D0, D1–D4, and N1–N4.

times with M2 = |Y | ≤ N . Note that after all applications of rule (v), we get the set S3 of
constraints whose cardinality is |S2| − |Y |, and thus, |S3| ∈ O(N2). Finally, rule (iv) is applied
at most M3 times, where M3 is the number of occurrences in S3 of variables in X. We have that
M3 ≤ |S3|×|X| and thus, M3 ∈ O(N3). Therefore, the total number of applications of rules
(i)–(v) in the sequence s2 is O(N3). Since each rule application takes polynomial time w.r.t. N ,
we get a polynomial time cost of the CM procedure w.r.t. N . Now, in order to conclude that
CM is in NP w.r.t. N we have to examine the nondeterminism of the CM procedure. We have
that by a single application of a rule, any triple can be rewritten into at most O(N2) different
new triples. Indeed, (1) by an application of rule (i), any triple can be rewritten into at most
n different new triples, where n is the number of atomic constraints in e ∧ d′, and n ≤ N ,
(2) rules (ii) and (iii) are deterministic, and (3) rules (iv) and (v) can be applied by selecting an
equation in the second component of the triple at hand in at most O(N2) ways. Thus, CM is
in NP w.r.t. N . Since N ≤ size(γ) + size(δ), we get that CM is in NP w.r.t. size(γ) + size(δ).

Note that since matching modulo the equational theory AC∧ is NP-complete [2], there is no
folding algorithm whose asymptotic time complexity is significantly better than our algorithm
FA, in the case when |X| is fixed.

Finally, if we do not assume that |X| is fixed, since |X|< size(γ) + size(δ) and project(c,X)
is computed (at the beginning of the CM procedure) at most once for each execution of the
algorithm FA, we get that, as already mentioned, for any given pair of input clauses, each
execution of FA takes 2O(size(γ)+size(δ)) time.

In Table 1 we report some experimental results concerning our algorithm FA, implemented
in SICStus Prolog 3.12, on a Pentium IV 3GHz. Each column of Table 1 refers to a particular
example: column D0 refers to the example of the Introduction, columns D1–D4 refer to four
examples for which folding can be done in one way only (Number of Foldings= 1), and four
columns N1–N4 refer to four examples for which folding can be done in more than one way
(Number of Foldings = 2, or 4, or 16).

The row named Number of Variables indicates the number of variables occurring in clause γ
(which is the clause to be folded) plus the number of variables occurring in clause δ (which is the
clause used for folding). The row named Time shows the seconds required for finding the folded
clause (or the first folded clause, in examples N1–N4, where more than one folding is possible).
The row named Total-Time shows the seconds required for finding all folded clauses. Note that
even when one folding only is possible, we have that Total-Time is greater than Time because,
after the folded clause has been found, FA checks whether or not one more folded clause can be
found.

In Example D1 clause γ is p(A) ← A< 1 ∧ A≥B+1 ∧ q(B) and clause δ is r(C) ← D < 0∧
C−3≥2D ∧ q(D). In Example N1 clause γ is p ← A>1∧3>A∧B>1∧ 3>B∧q(A)∧q(B) and
clause δ is r ← C >1 ∧ 3>C ∧D>1 ∧ 3>D ∧ q(C) ∧ q(D). In the other examples D2–D4 and
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N2–N4 we have considered clauses with more variables (and also more constraints and literals)
according to the values shown in the row named Number of Variables.

From our experimental results we may conclude that the algorithm FA performs reasonably
well in practice, but when the number of variables (and, in particular, the number of variables
of type rat) increases, its performance rapidly deteriorates.

6. Related Work and Conclusions

The elimination of existential variables from logic programs and constraint logic programs is
a program transformation technique which has been proposed for improving program perfor-
mance [14] and for proving program properties [13]. This technique makes use of the definition,
unfolding, and folding rules [3, 7, 8, 11, 19]. In this paper we have considered constraint logic
programs, where the constraints are linear inequations over the rational (or real) numbers, and
we have studied the problem of the automatic application of the folding rule. Indeed, the appli-
cability conditions of the many folding rules for transforming constraint logic programs which
have been proposed in the literature [3, 7, 8, 11, 13], are specified in a declarative way and no
algorithm has been given to determine whether or not, given a clause γ to be folded by using
a clause δ, one can actually perform that folding step. The problem of checking the applicabil-
ity conditions of the folding rule is not trivial (see, for instance, the example presented in the
Introduction).

In this paper we have considered a folding rule which is a variant of the rules proposed
in the literature, and we have given an algorithm, called FA, for checking its applicability
conditions. To the best of our knowledge, ours is the first algorithmic presentation of the
folding rule. The applicability conditions of our rule consist of the usual conditions (see, for
instance, [8]) together with the extra condition that, after folding, the existential variables should
be eliminated. Thus, our algorithm FA is an important step forward for the full automation
of the program transformation techniques [13, 14] for improving program efficiency or proving
program properties by eliminating existential variables.

We have proved the termination and the soundness of our folding algorithm FA. We have
also proved that if the constraint appearing in the clause γ to be folded is admissible, then
FA is complete, that is, it does not return fail whenever folding is possible. Finally, we have
implemented the folding algorithm and our experimental results show that it performs reasonably
well in practice.

Our algorithm FA consists of two procedures: (i) the goal matching procedure, and (ii) the
constraint matching procedure. The goal matching procedure solves a problem which is similar
to the problem of matching two terms modulo an associative, commutative equational theory,
also called AC theory [2]. However, in our case we have the extra conditions that: (i.1) the
matching substitution should be consistent with the types (either rational numbers or trees),
and (i.2) after folding, the existential variables should be eliminated. Thus, we could not directly
use the AC-matching algorithms available in the literature [6].

The constraint matching procedure solves a generalized form of the matching problem, modulo
the equational theory, called LINQ, of linear inequations over the rational numbers. That
problem can be seen as a restricted unification problem [4]. In [4] it is described how to obtain,
if certain conditions hold, an algorithm for solving a restricted unification problem from an
algorithm that solves the corresponding unrestricted unification problem. To the best of our
knowledge, for the theory LINQ of constraints an algorithm is provided neither for the restricted
unification problem nor for the unrestricted one. Moreover, one cannot apply the so called
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combination methods [15]. These methods consist in constructing a matching algorithm for a
given theory which is the combination of simpler theories, starting from the matching algorithms
for those simpler theories. Unfortunately, as we said, we cannot use these combination methods
for the theory LINQ because some applicability conditions are not satisfied and, in particular,
LINQ is neither collapse-free nor regular [15].

In the future we plan to adapt our folding algorithm FA to other constraint domains such as
the linear inequations over the integers. We will also perform a more extensive experimentation
of our folding algorithm using the MAP program transformation system for constraint logic
programs [12].
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A. Appendix

In this Appendix we provide the proofs of the results presented in the paper. In order to
show the termination, the soundness, and the completeness of the algorithm FA we first prove
Theorems A.4 and A.13 that state the termination, the soundness, and the completeness of the
goal matching procedure GM and of the constraint matching procedure CM, respectively.

A.1. Termination, Soundness and Completeness of the Goal Matching Procedure

In the following, we will refer to the restriction of a substitution ϑ to a set of variables V ,
denoted by ϑ|V , as the substitution {X/s ∈ ϑ | X ∈ V }.

Definition A.1. A GM-redex is either fail or a finite set of bindings of the form {t1/u1, . . . , tn/un,
(G1∧ T )/G2}, where n ≥ 0, for i = 1, . . . , n, ti and ui are either both literals or both terms, T
is a variable ranging over goals, and G1, G2 are goals (possibly, the empty conjunction true).

It follows directly from the definition that if D is a GM-redex and D =⇒ E, where =⇒ is the
rewriting relation defined in the procedure GM, then E is a GM-redex.

Definition A.2. Let D be a GM-redex, α a substitution, and R a goal. Then we say that
D(α,R) holds if (i) D is of the form {t1/u1, . . . , tn/un, (G1∧ T )/G2}, for n ≥ 0, (ii) for i =
1, . . . , n, tiα = ui, and (iii) G1α∧R =AC G2.

Lemma A.3. Let the relation =⇒ be defined as in the procedure GM and let D be a GM-redex.
For every substitution α and goal R, D(α,R) holds iff either D is of the form α′∪{T/R′}, where
T/R′ /∈ α′, α′ ⊆ α, and R′ =AC R, or there exists a GM-redex E such that: (i) D =⇒ E, and
(ii) E(α, R) holds.

Proof. (If part) Assume that D is of the form α′ ∪{T/R′}, for α′ ⊆ α and R′ =AC R, then for
every binding t/u ∈ α′ we have tα = u and, thus, D(α,R) holds. Now, assume that there exists
E such that D =⇒ E and E(α, R) holds. Since E is a GM-redex, by Definition A.1 it is a set
of bindings of the form {t1/u1, . . . , tn/un, (G1 ∧ T )/G2}. We proceed by considering the rules
that can be used to rewrite D into E. Suppose that we have obtained E from D by applying
rule (i). Then, without loss of generality, we can assume that D is of the form {t2/u2, . . . ,
tn/un, (t1∧G1∧T )/(u1∧G2)}, where t1 and u1 are both positive or both negative literals and they
have the same predicate symbol and arity. By hypothesis, we have t1α = u1 and G1α∧R =AC G2,
and, therefore, we have t1α∧G1α∧R =AC u1∧G2. Thus, D(α,R) holds. Suppose that we have
obtained E from D by applying rule (ii). Then, without loss of generality, we can assume that
D is of the form {¬t1/¬u1, . . . , tn/un, (G1 ∧ T )/G2}. Since E(α, R) holds, also D(α, R) holds.
Suppose that we have obtained E from D by applying rule (iii). Then, without loss of generality,
we can assume that D is of the form {a(t1, . . . , tk)/a(u1, . . . , uk), tk+1/uk+1, . . . , tn/un, (G1 ∧
T )/G2}, where k ≤ n. Since E(α, R) holds, also D(α, R) holds. Note that we cannot obtain
E from D by applying rules (iv)–(ix) because E(α, R) holds and, therefore, E is different from
fail. Finally, suppose that we have obtained E from D by applying rule (x). Then, without loss
of generality, we can assume that D is of the form {t2/u2, . . . , tn/un, (G1 ∧T )/G2}. Also in this
case, since E(α,R) holds, then D(α,R) holds.

(Only If part) Assume that D(α,R) holds. D is a GM-redex and, thus, by definition, it is a
set of bindings of the form {t1/u1, . . . , tn/un, (G1 ∧ T )/G2}. D =⇒ E, then D is of the form
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α′ ∪ {T/R′}, where α′ ⊆ α and R′ =AC R. Let us assume that there is no E such that D =⇒ E
and let us consider each of the rules (i)–(x). Since D cannot be rewritten we have the following
properties. We cannot apply rule (i), thus there is no literal L which occurs as a conjunct in
both G1α and G2. Since D(α, R) holds, every literal occurring as a conjunct in G1α also occurs
as a conjunct in G2 and, hence, G1 is the empty conjunction. We cannot apply rule (ii) and,
since D(α, R) holds, for all i = 1, . . . , n we have that ti and ui are both atoms or both terms. We
cannot apply rule (iii) and, thus there is no binding in D of the form a(r1, . . . , rk)/a(s1, . . . , sk),
for some predicate or function symbol a and some terms r1, . . . , rk and s1, . . . , sk. We cannot
apply rule (iv) and thus, there is no binding in D of the form a(r1, . . . , rk)/b(s1, . . . , sm), for a
syntactically different from b and some terms r1, . . . , rk and s1, . . . , sm. Finally, we cannot apply
rule (v) and thus, since D(α, R) holds, there is no binding in D of the form t/X, where t is a
term and X is a variable. As a consequence of the non-applicability of rules (i)–(v) we have that
D is a GM-redex of the form {X1/u1, . . . , Xn/un, T/G2}, where X1, . . . , Xn are variables and
u1, . . . , un are terms. Also, we cannot apply rule (vi), which entails that X1, . . . , Xn are distinct
variables. Therefore, {X1/u1, . . . , Xn/un} is a substitution. Since by hypothesis D(α,R) holds,
for i = 1, . . . , n, we have that Xiα = ui and R =AC G2. That is, D is of the form α′ ∪ {T/R′},
where α′ ⊆ α and R′ =AC R.
Now we prove that if D(α, R) holds and D is not of the form α′ ∪ {T/R′}, where α′ ⊆ α and
R′ =AC R, then there exists a GM-redex E such that D =⇒ E and E(α,R) holds. Let us assume
that D is not of the form α′∪{T/R′}, for some α′ ⊆ α and R′ =AC R. Since D is in general of the
form {t1/u1, . . . , tn/un, (G1∧T )/G2}, we have the following cases: either (a) {t1/u1, . . . , tn/un}
is not a substitution, or (b) it is a substitution and {t1/u1, . . . , tn/un} 6⊆ α, or (c) G1 is not the
empty conjunction true, or (d) G1 is the empty conjunction true and R 6=AC G2. By hypothesis,
D(α, R) holds and, thus, for i = 1, . . . , n, tiα = ui and G1α ∧ R =AC G2. As a consequence,
case (b) is impossible, because t1, . . . , tn are distinct variables and if there exists i ∈ {1, . . . , n}
such that ti/ui /∈ α then tiα 6= ui, which contradicts the hypothesis. Also case (d) is impossible
because, by hypothesis, G1α ∧ R =AC G2. We now want to show that the remaining cases (a)
and (c) entail that there exists a GM-redex E such that D =⇒ E and E(α, R) holds. In case (a)
we have that either t1, . . . , tn are non-distinct variables, which is impossible (because it would
imply that two bindings in D are identical whereas D is a set), or there exists i ∈ {1, . . . , n} such
that ti is not a variable. Without loss of generality, we can assume that i = 1. Then, t1 is either
a literal of the form ¬A1 or a term (or an atom) of the form a(r1, . . . , rk). Hence, u1 cannot be
a variable because t1α = u1. Thus, u1 must be a literal of the form ¬A2 or a term (or atom)
of the form a(s1, . . . , sk), respectively. Let us first consider the case where both ui and ti are
literals. Then, there exists a GM-redex E, which can be obtained by applying rule (ii), such that
D =⇒ E. In particular, E is of the form {A1/A2, t2/u2, . . . , tn/un, G1 ∧ T/G2}. Since D(α, R)
holds, also E(α,R) holds. If we consider the case where both ti and ui are terms (or atoms),
there exists a GM-redex E, which can be obtained by applying rule (iii), such that D =⇒ E.
The GM-redex E is of the form {r1/s1, . . . , rk/sk, t2/u2, . . . , tn/un, G1 ∧ T/G2}. Again, since
D(α, R) holds, also E(α,R) holds. Let us now consider case (c), where G1 is not the empty
conjunction true. Since G1α ∧ R =AC G2, we have that G1α is of the form L1α ∧ G′

1 and G2

is of the form G′
2 ∧ L2 ∧ G′′

2. Thus, L1 and L2 are both positive or both negative literals and
they have the same predicate symbol and arity. As a consequence, there exists a GM-redex E,
that can be obtained by applying rule (i), such that D =⇒ E. In particular, E is of the form
{L1/L2, t1/u1, . . . , tn/un, G′

1 ∧ T/G′
2 ∧G′′

2} and E(α, R) holds.

Theorem A.4 (Termination, Soundness, and Completeness of GM) Let γ : H ← c∧G
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and δ : K ← d ∧B be two clauses in normal form and without variables in common. Let γ and
δ be the input of the goal matching procedure GM. The following properties hold:

(a) GM terminates, that is: (1) given a GM-redex D0 and the rewriting relation =⇒ defined in
the procedure GM, every sequence D0 =⇒ D1 =⇒ . . . is finite and (2) for every GM-redex
D, there are finitely many GM-redexes E1, . . . , En such that, for i = 1, . . . , n, D =⇒ Ei;

(b) For every substitution α and goal R, if α and R are the output of GM, then: (1) G =AC

Bα ∧R, (2) for every variable X in EVars(δ), the following conditions hold: (2.1) Xα is
a variable not occurring in {H, R}, and (2.2) for every variable Y occurring in d ∧B and
different from X, Xα does not occur in the term Y α, (3) Varstree(Kα) ⊆ Vars(H), and
(4) the clauses γ′ : H ← c ∧Bα ∧G and δ′ : Kα ← dα ∧Bα are in normal form;

(c) For every substitution α and goal R, if (1) G =AC Bα ∧ R, (2) for every variable X in
EVars(δ), the following conditions hold: (2.1) Xα is a variable not occurring in {H, R},
and (2.2) for every variable Y occurring in d∧B and different from X, Xα does not occur
in the term Y α, and (3) Varstree(Kα) ⊆ Vars(H), then there exist a substitution α′ and
a goal R′ such that: (4) α′ and R′ are the output of GM, (5) α′|V = α|V , where V is the
set Vars(B) ∪Varstree(K) of variables, and (6) R′ =AC R.

Proof. (a) We first prove that, given a GM-redex D0, every sequence D0 =⇒ D1 =⇒ . . .
is finite. Let us introduce some notions on well-founded orders on multisets, which will be
necessary below. A multiset S is represented as {{x1, . . . , xn}}, where x1, . . . , xn are the elements
(with, possibly, multiple occurrences) of S. In this proof, we will use ∪M to denote multiset
union, ∅ to denote the empty multiset, and S(x) to denote the number of occurrences of an
element x in a multiset S. Let us consider the well-founded set (M(N),À), where N is the
set of natural numbers, M(N) is the set of all finite multisets of elements of N, and, for all
S1, S2 ∈ M(N), S1 À S2 iff S1 6= S2 and, for every x ∈ N, if S2(x) > S1(x) then there exists
y ∈ N such that y > x and S1(y) > S2(y). For every GM-redex D let us define kvars(D) to
be the cardinality of the following set {V ∈ Varstree(K)−Vars(B) | ¬ ∃t V/t ∈ D}. In the
following, given a term or goal a, we will denote by ‖a‖ the number of symbols in a. (In
particular, ‖T‖ = 1, if T is a variable ranging over goals, ‖V ‖ = 1, if V is a variable of type
rat or tree, and ‖true‖ = 1). Let us now introduce the termination function ξ, that maps
GM-redexes to elements of M(N). Let D be a GM-redex, then ξ(D)=∅, if D is fail, and ξ(D)=
{{‖t1‖+ kvars(D) | t1/t2∈D}} otherwise. Note that, by definition of GM-redex, if D is a GM-
redex different from fail then the multiset ξ(D) is not the empty multiset. Now we want to show
that if D =⇒ E then ξ(D) À ξ(E). Let us consider the case where D =⇒ E by using rule (i).
Let D be the GM-redex {(L1∧B1∧T ) / (G1∧L2∧G2)}∪Bnds and E the GM-redex {L1/L2, (B1∧
T )/(G1∧G2)} ∪ Bnds, where B1, G1, and G2 are goals, possibly the empty conjunction true,
and L1, L2 are literals. We have that ξ(D) = {{‖L1∧B1∧T‖ + kvars(Bnds)}} ∪M ξ(Bnds)
and ξ(E) = {{‖L1‖+ kvars(Bnds), ‖B1∧T‖+ kvars(Bnds)}} ∪M ξ(Bnds). Since ‖L1∧B1∧T‖>
‖L1‖ and ‖L1∧B1∧T‖ > ‖B1∧T‖, we get that ξ(D) À ξ(E). Similarly we can show that
ξ(D) À ξ(E) in the case where D =⇒ E by using rule (ii) or rule (iii). Since ξ(fail) = ∅, if
D =⇒ E by using one among rules (iv)–(ix) then ξ(D) À ξ(E), because ξ(D) is not the empty
multiset. Let us now consider the case where D =⇒ E by using rule (x). Then, E is the GM-
redex {X/s} ∪D, for some variable X in Varstree(K)−Vars(B) such that there is no binding
X/t ∈ D. Let ξ(D) be the multiset {{m1 +kvars(D), . . . , mk +kvars(D)}}, where k ≥ 1 because,
by hypothesis, ξ(D) is not the empty multiset, and, by definition, for i = 1, . . . , k, mk ≥ 1. As
a consequence, ξ(E) is the multiset {{m1 + (kvars(D)−1), . . . ,mk + (kvars(D)−1), kvars(D)}},
where ξ({{X/s}})=kvars(D), and, thus, ξ(D) À ξ(E). Since (M(N),À) is a well founded set,
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we have that, given a GM-redex D0, every sequence D0 =⇒ D1 =⇒ . . . is finite.
Now we prove that, for every GM-redex D, there are finitely many GM-redexes E1, . . . , En

such that, for i = 1, . . . , n, D =⇒ Ei. Let D be of the form {t1/u1, . . . , tn/un, (G1 ∧ T )/G2}.
Since G2 is a finite conjunction of literals, there are finitely many GM-redexes E1, . . . , En such
that, for i = 1, . . . , n, D =⇒ Ei, by using rule (i). In the case where D is rewritten by using one
of rules (ii)–(ix), we can use arguments similar to the ones for the case of rule (i) because, by
definition of GM-redex, D is a finite set. Finally, since at rule (x) we can choose an arbitrary
term s of type tree such that Vars(s) ⊆ Vars(H), we can assume that the term s is a constant
of type tree fixed in advance, that is, for any input γ and δ of GM. Therefore, since the set
Varstree(K)−Vars(B) is finite, there are finitely many GM-redexes E1, . . . , En such that, for
i = 1, . . . , n, D =⇒ Ei. Thus, we get the thesis.

(b) Assume that γ and δ are the input of GM. We want to show that if α and R are the
output of GM then Conditions (b.1)–(b.4) hold.
(b.1) Assume that α and R are the output of GM. Thus, by Condition (c1) of GM, there
exists n ≥ 0 such that {B ∧ T/G} =⇒n α ∪ {T/R} and, by Condition (c2) of GM, the set
α ∪ {T/R} of bindings cannot be further rewritten. By definition, α ∪ {T/R}(α,R) holds. By
induction on n and by (the If part of) Lemma A.3, we have that {B ∧ T/G}(α, R) holds and,
thus, G =AC Bα ∧R. Therefore, Condition (b.1) holds.
(b.2) Since the GM-redex α∪{T/R} cannot be rewritten to fail, the conditions for the application
of rules (vii) and (viii) are not satisfied and thus, (recalling that rule (x) does not affect the
variables occurring in B) α satisfies Condition (b.2).
(b.3) Let us consider X ∈ Varstree(K) and assume that X ∈ Vars(B). Then, by construction,
there exists a term t such that X/t ∈ α. Since the conditions for the application of rule (ix) are
not satisfied by α ∪ {T/R}, we have that Vars(t) ⊆ Vars(H). Now, assume that X /∈ Vars(B).
Then, since by Condition (c2) of GM rule (x) cannot be applied to the GM-redex α ∪ {T/R},
we have that Vars(Xα) ⊆ Vars(H). It follows that if X ∈ Varstree(K) then Varstree(Xα) ⊆
Vars(H). Since no term of type rat can have a subterm of type tree, we get Condition (b.3).
(b.4) Let us first show that the clause γ′ : H ← c ∧ Bα ∧ R is in normal form. Indeed, every
term of type rat in Bα ∧ R is a variable, because R is a subgoal of G and γ is in normal
form, every term of type rat in B is a variable, because δ is in normal form, and, by (b.2),
if X ∈ Vars(B) then Xα is a variable. Also, every variable of type rat in Bα ∧ R occurs at
most once in Bα ∧ R, because, by (b.2), if X ∈ Varsrat(B) then Xα does not occur in R and
for all Y ∈ Varsrat(B) different from X we have Vars(Xα) ∩ Vars(Y α) = ∅. By hypothesis,
Vars(R) ∩ Vars(H) = ∅ and, by (b.2), if X ∈ Vars(B) then Xα does not occur in H. Thus,
Varsrat(H) ∩ Varsrat(Bα ∧ R) = ∅. Finally, since by (b.1) G =AC Bα ∧ R, we have that
Vars(Bα ∧ R) = Vars(G) and that c has no constraint-local variables in γ′. Let us now show
that also clause δ′ : Kα ← dα ∧ Bα is in normal form. Indeed, by using arguments similar to
those given above, we can show that every term of type rat in Bα is a variable and occurs at
most once in Bα. Since, by construction and by the hypothesis that δ is in normal form, Xα 6= X
iff X ∈ Vars(B)∪Vars tree(K), we have that if Y ∈ Varsrat(K) then Y α = Y . By construction,
Varsrat(Bα) ⊆ Vars(γ). Therefore, by the hypothesis that γ and δ have no variables in common,
we have that Varsrat(Kα)∩Varsrat(Bα) = ∅. Finally, since Vars(d) ⊆ Varsrat(B)∪Varsrat(K),
we have that δ′ has no constraint-local variables. Therefore, Condition (b.4) holds.

(c) Assume that γ and δ are the input of GM and there exist a substitution α and a goal R
such that Conditions (c.1)–(c.3) hold. We want to show that Conditions (c.4)–(c.6) hold. We
have that {B ∧ T/G} is a GM-redex and, by (c.1), {B ∧ T/G}(α, R) holds.By (the Only If part
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of) Lemma A.3, we can construct a maximal sequence S of GM-redexes D1 =⇒ D2 =⇒ . . .
such that D1 is {B ∧ T/G} and, if Di occurs in the sequence S then either Di is of the form
α′ ∪ {T/R′}, where T/R′ /∈ α′, α′ ⊆ α, and R′ =AC R, or Di =⇒ Di+1 and Di+1(α, R) holds.
Since, by Condition (a) of this theorem we have proved that GM terminates, S is finite, that is,
there exists n ≥ 0 such that S is D1 =⇒ D2 =⇒ . . . =⇒ Dn, where Dn is of the form α′∪{T/R′},
where T/R′ /∈ α′, α′ ⊆ α, and R′ =AC R, and Dn cannot be rewritten. As a consequence, (c.4)
and (c.6) hold. By Condition (b.1) of this theorem, we have also that G =AC Bα′∧R′ and since,
by hypothesis, G =AC Bα∧R, we have that Bα =AC Bα′. Thus, α|Vars(B) = α′|Vars(B). Finally,
if X ∈ Varstree(K) − Vars(B) then, by rule (x), Xα′ is an arbitrary term of type tree such
that Vars(Xα′) ⊆ Vars(H) and, thus, we can assume α′|{X} = α|{X}. Hence, Condition (c.5)
holds.

A.2. Termination, Soundness and Completeness of the Constraint Matching Pro-
cedure

First we prove Lemma 4.1, which has been presented in Section 4.2. The following lemma will
be used in the proof of Lemma 4.1.

Lemma A.5. Let γ1: H ← c∧B and γ2: H ← d∧B be clauses in normal form. Then γ1
∼= γ2

iff Q |= ∀ (c ↔ d).

Proof. Since γ1 and γ2 are in normal form, it follows directly from the definitions that γ1
∼= γ2

iff there exists a variable renaming ρ such that: (1) H = Hρ, (2) B = Bρ, and (3) Q |= ∀ (c ↔
dρ). Since there are no constraint-local variables in γ2, we have that Vars(d) ⊆ Vars({H, B})
and, thus, dρ = d.
Proof of Lemma 4.1.
By hypothesis, γ′ and δ′ are in normal form. Now we show that also γ′′: H ← e∧d′β∧B′∧R is in
normal form. The validity of Conditions (i)–(iii) of the definition of normal form (see Section 2)
for γ′′ directly follows from the validity of these conditions for γ′. For γ′′, Condition (iv) of
the definition of normal form (that is, γ′′ has no constraint-local variables) can be written as:
Vars(e ∧ d′β) ⊆ Vars({H, B′ ∧R}), and it can be proved as follows. Since δ′ is in normal form,
Vars(d′) ⊆ Vars({K ′, B′}). Therefore, by hypotheses (2) and (3) of this lemma we have that
Vars(d′β) ⊆ Vars({H, B′}) and, by hypothesis (4), we get that Condition (iv) holds for γ′′.
Thus, by applying Lemma A.5 we have that Conditions (1)–(4) hold iff Q |= ∀(c ↔ (e ∧ d′β))
and Conditions (2)–(4) hold.

Now, assume that Q |= ∀(c ↔ (ẽ ∧ d′β)) and Conditions (2) and (3) hold. Since Vars(ẽ) ⊆
Vars({H, R}), we get that there exists a constraint e such that Q |= ∀(c ↔ (e ∧ d′β)) and
Conditions (2)–(4) hold.

Finally, assume that Q |= ∀(c ↔ (e ∧ d′β)) and Conditions (2), (3), and (4) hold. Thus,
(i) Q |= ∀(c → e), (ii) Q |= ∀(c → d′β), and (iii) Q |= ∀(e∧d′β → c) hold. In order to show that
Q |= ∀(c ↔ (ẽ∧ d′β)), it suffices to show: (iv) Q |= ∀(c → ẽ) and (v) Q |= ∀(ẽ∧ d′β → c). Since
ẽ = project(c, X), where X = Vars(c)−Varsrat(B′), by the definition of the project function
we have that Q |= ∀(ẽ ↔ ∃Z c), where Z = Vars(c) ∩ Varsrat(B′). Hence, (iv) holds. By
(4), Vars(e) ⊆ Vars({H, R}) and, since γ′ is in normal form, Vars(e) ∩ Z = ∅. Thus, by (i),
Q |= ∀((∃Z c) → e) holds and, by (iii), we get (v). 2

Now we prove Lemma 4.2, which has been presented in Section 4.2.
The closure of a constraint c, denoted closure(c), is defined as follows: let c be a constraint

of the form p1 ρ1 0 ∧ . . . ∧pm ρm 0, where, for i = 1, . . . , n, ρi ∈ {≥, >}, then closure(c) is the
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constraint p1≥0 ∧ . . . ∧ pm≥0. In order to prove Lemma 4.2 we now show the following result
which characterizes the equivalence of two conjunctions of strict inequations.

Lemma A.6. Let a and b be two satisfiable, non-redundant constraints of the form a1∧ . . .∧am

and b1 ∧ . . . ∧ bn, respectively, where each constraint ci ∈ {a1, . . . , am, b1, . . . , bn} is of the form
pi > 0, for some linear polynomial pi. Then Q |= ∀(a ↔ b) holds iff m = n and there exists a
bijection µ : {1, . . . ,m} → {1, . . . , m} such that for i=1, . . . ,m, Q |= ∀(ai ↔ bµ(i)) holds.

Proof. (Sketch) (If part) Trivial. (Only If part) We will identify constraints with polytopes in
Qk, where k is the number of distinct variables occurring in a or b. Equivalence of constraints
will be identified with equality of polytopes. Let us consider the atomic constraint ai, for some
i ∈ {1, . . . ,m}. By hypothesis, ai is of the form pi > 0, for some linear polynomial pi. We have
that a ⊆ ai and, since Q |= ∀(a ↔ b), we also have that b ⊆ ai. Now we have three cases: (i) ai

is external to b, that is, no vertex of closure(b) satisfies the equation pi =0, (ii) ai is tangent to b
and for j =1, . . . , n, ai 6=bj , that is, h vertices of closure(b), with 1≤h<k, satisfy the equation
pi = 0, and (iii) ai is tangent to b and for some j ∈ {1, . . . , n}, ai = bj , that is, h vertices of
closure(b), with h ≥ k, satisfy the equation pi =0.

Case (i) is impossible because we would have Q |= ∀(a ↔ a1 ∧ . . .∧ ai−1 ∧ ai+1 ∧ . . .∧ am) and
a would be redundant. For similar reasons, by recalling that only strict inequalities occur in the
atomic constraints of a and b, we have that also Case (ii) is impossible. Hence, Case (iii) holds
and this implies that Q |= ∀(ai ↔ bj). Thus, we can define a function, call it µ, from {1, . . . , m}
to {1, . . . , n} such that µ(i)=j iff Q |= ∀ (ai ↔ bj). We have that µ is an injection because a is
non-redundant and, therefore, for all i, k ∈ {1, . . . , m}, if i 6=k then Q |= ∀(ai 6↔ ak).

Similarly, it can be shown that, for all j ∈ {1, . . . , n}, there exists i ∈ {1, . . . , m} such that
Q |= ∀ (ai ↔ bj). We have that j = µ(i), because Q |= ∀ (bj ↔ bµ(i)) and b is non-redundant.
Thus, m = n and µ is a bijection from {1, . . . , m} onto itself such that, for i = 1, . . . , m,
Q |= ∀(ai ↔ bµ(i)).

Lemma A.7. If a is an admissible constraint, b is a non-redundant constraint, and Q|=∀(a↔b),
then interior(b) is non-redundant.

Proof. (Sketch) As in Lemma A.6, we will identify constraints with polytopes in Qk, where k is
the number of distinct variables occurring in a or b. Equivalence of constraints will be identified
with equality of polytopes. Assume that b is a constraint of the form b1 ∧ . . . ∧ bn, where, for
i = 1, . . . , n, bi is an atomic constraint and let interior(b) be the constraint b1 ∧ . . .∧ bn, where,
for i = 1, . . . , n, bi is interior(bi). Assume, by contradiction, that interior(b) is redundant,
that is, there exists bi ∈ {b1, . . . , bn} such that Q |= ∀(b′ → bi), where b′ is the constraint
b1 ∧ . . . ∧ bi−1 ∧ bi+1 ∧ . . . ∧ bn. Let bi be of the form pi > 0. Since b′ ⊆ bi, we have three
cases: (i) bi is external to b′, that is, no vertex of closure(b′) satisfies the equation pi =0, (ii) bi is
tangent to b′ and, for j =1, . . . , n and j 6= i, bi 6=bj , that is, h vertices of closure(b′), with 1≤h<k,
satisfy the equation pi = 0, and (iii) bi is tangent to b′ and for some j ∈ {1, . . . , n} with j 6= i,
bi =bj , that is, h vertices of closure(b′), with h ≥ k, satisfy the equation pi =0. Case (i) entails
that Q |= ∀(b1 ∧ . . .∧ bi−1 ∧ bi+1 ∧ . . .∧ bn → bi), which contradicts the hypothesis that b is non-
redundant. Now let us consider Case (ii). We first define T as the set of points that belong to the
intersection between the polytope b1∧ . . .∧bi−1∧bi+1∧ . . .∧bn and the hyperplane pi = 0 (these
points can be seen as the tangency points of the hyperplane pi = 0 with the given polytope).
Now, we distinguish between the following two Cases (ii.A) and (ii.B). In Case (ii.A), we have
that T is the empty set, that is, the polytope b1 ∧ . . .∧ bi−1 ∧ bi+1 ∧ . . .∧ bn and the hyperplane
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pi =0 have an empty intersection. Hence, we have that Q |= ∀(b1∧. . .∧bi−1∧bi+1∧. . .∧bn → bi),
which contradicts the hypothesis that b is non-redundant. In Case (ii.B), we have that T is not
the empty set. If bi is of the form pi ≥ 0 then Q |= ∀(b1 ∧ . . . ∧ bi−1 ∧ bi+1 ∧ . . . ∧ bn → bi),
which contradicts the hypotheses. Otherwise, if bi is of the form pi > 0, since, by hypothesis,
the atomic constraint bi is non-redundant in b and Q |= ∀(a ↔ b), we have T ∩ a = ∅. Hence,
there exists a constraint aj (not necessarily equivalent to bi) in a such that aj of the form qj >0
and T ⊆ (qi =0). Thus, aj is non-redundant in a, while interior(aj) is redundant in interior(a)
and this is contradicts the hypothesis that a is admissible. Finally, we consider Case (iii). There
exists bj such that bi =bj . Assume that bj is of the form pj > 0, for some linear polynomial pj .
As a consequence, Q |= ∀(b1∧ . . .∧ bi−1∧ bi+1∧ . . .∧ bn → bi). Now assume that bj is of the form
pj ≥ 0. Then, we have Q |= ∀(b1 ∧ . . . ∧ bj−1 ∧ bj+1 ∧ . . . ∧ bn → bj). Both cases contradict the
hypothesis that b is non-redundant. Thus, in each of Cases (i), (ii), and (iii), the assumption
that the constraint interior(b) is redundant leads to a contradiction and we conclude that the
constraint interior(b) is non-redundant.
Proof of Lemma 4.2.
(If part) Trivial. (Only If part) Without loss of generality, we assume that there exists a
constraint b1∧ . . .∧bk, with k ≤ n, that is non-redundant and such that Q |= ∀(b ↔ b1∧ . . .∧bk).
Since by transitivity Q |= ∀(a ↔ b1∧ . . .∧ bk), we have that Q |= ∀ (interior(a) ↔ interior(b1)∧
. . . ∧ interior(bk)) (because if two, not necessarily closed, polytopes are equal then also the
corresponding open polytopes obtained by removing the facets, are equal). By Lemma A.7 we
have that the constraint interior(b1)∧. . .∧interior(bk) is non-redundant. Finally, by Lemma A.6,
m = k and there exists a bijection µ : {1, . . . , m} → {1, . . . , k} such that, for i = 1, . . ., m,
Q |= ∀(interior(ai) ↔ interior(bµ(i))). For every ai ∈ {a1, . . . , am} we have the following cases:
(i) ai is of the form t > 0 and bµ(i) is of the form t ≥ 0, (ii) ai is of the form t ≥ 0 and
bµ(i) is of the form t > 0, (iii) ai is of the form t > 0 and bµ(i) is of the form t > 0, (iv) ai

is of the form t ≥ 0 and bµ(i) is of the form t ≥ 0. Case (i) leads to a contradiction because
it entails Q |= (¬(a1 ∧ . . . ∧ am) ∧ b1 ∧ . . . ∧ bk). Similarly, Case (ii) leads to a contradiction.
The remaining Cases (iii) and (iv) imply that Q |= ∀(ai ↔ bµ(i)). By the assumptions of non-
redundancy of a and b1 ∧ . . . ∧ bk the function µ is an injection from {1, . . . ,m} to {1, . . . , n},
and Q |= ∀(b1 ∧ . . . ∧ bk → bj), for all j ∈ {1, . . . , n} such that j 6∈ {µ(i) | 1≤ i≤m}. Thus, we
get the thesis. 2

Next we prove Theorem 4.3. We need the following lemma.

Lemma A.8. Let k1, . . . , km+1 ∈ Q and suppose that
Q |= ∀X1 . . .∀Xm(X1 ρ1 0 ∧ . . . ∧Xm ρm 0 → (k1X1+. . .+kmXm+km+1)ρm+10)

where ρ1, . . . , ρm+1 ∈ {>,≥}. We have that k1 ≥ 0, . . . , km+1 ≥ 0, and if ρm+1 is > then
(
∑

i∈I ki) > 0, where I ={i | 1≤ i≤m+1, ρi is >}. (†)
Proof. We proceed by cases.

(Case 1) Let ρm+1 be ≥. By hypothesis we have that for all X1, . . . , Xm ∈ Q, if X1ρ10, . . . ,
Xmρm0, then km+1 ≥ (−k1X1) + . . . + (−kmXm). Suppose, by contradiction, that there exists
i ∈ {1, . . . ,m}, such that ki < 0. Without loss of generality, we may assume that i=1. For all
r ∈ Q, by taking X1 ≥ ((−k2X2) + . . . + (−kmXm) − r)/k1 we get that km+1 ≥ r. Thus, for
all r ∈ Q, km+1 ≥ r, which is a contradiction. Therefore, k1 ≥ 0, . . . , km ≥ 0. Moreover, from
km+1 ≥ (−k1X1) + . . . + (−kmXm), where the ki’s are all non negative and X1, . . . , Xm can be
taken to be arbitrarily small positive numbers, it follows that for all negative r ∈ Q, km+1 ≥ r
and, thus, km+1 ≥ 0.
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(Case 2) Let ρm+1 be >. By hypothesis we have that for all X1, . . . , Xm ∈ Q, if X1ρ10, . . . ,
Xmρm0, then km+1 > (−k1X1) + . . . + (−kmXm). Similarly to Case (1), we have that k1 ≥
0, . . . , km≥0. Without loss of generality, we may assume that for i=1, . . . , `, with 0≤`≤m, ρi

is > and for i = `+1, . . . , m, ρi is ≥. If `=0 then for X1 =. . .=Xm =0, we have that km+1 >0.
If ` > 0 then, similarly to Case (1), we have that km+1 ≥ 0. It remains to show that if ` > 0
then (†) holds. Suppose, by contradiction, that for i = 1, . . . , `, ki = 0 and km+1 = 0. Then for
X`+1 = . . .=Xm =0, from km+1 > (−k1X1) + . . . + (−kmXm) we get 0>0.
Proof of Theorem 4.3.
(If part) Assume that k1p1 + . . . + kmpm + km+1 = pm+1, for some k1 ≥ 0,. . . ,km+1 ≥ 0. The
proof proceeds by cases.
(Case 1) Let ρm+1 be ≥. Since ρi ∈ {≥, >}, for i = 1, . . . ,m, if t1 ρ1 0 ∧ . . . ∧ tm ρm 0 then
k1t1 + . . . + kmtm + km+1 ≥ 0.
(Case 2) Let ρm+1 be >, ρ1,. . . ,ρl be >, for 0 ≤ l ≤ m, and (

∑
i∈I ki) > 0, where I ={i | 1≤ i≤

m+1, ρi is >}. Then, either there exists i ∈ {1, . . . , l} such that ki > 0 or km+1 > 0. Therefore
k1p1 + . . . + kmpm + km+1 > 0.

(Only If part) Assume that Q |= ∀(p1 ρ1 0 ∧ . . . ∧ pm ρm 0 → pm+1 ρm+1 0). Without loss of
generality, we can also assume that the set {p1 = 0, . . . , pl = 0} ⊆ {p1 = 0, . . . , pm = 0}, with
l ≤ m, is a maximal set of linearly independent equations. Let us define the following affine
transformation {X1 = p1, . . . , Xl = pl}, where the variables X1, . . . , Xl are of type rat and do
not occur in p1, . . . , pm, pm+1. By applying this transformation we obtain Q |= ∀(X1 ρ1 0 ∧
. . . ∧ Xl ρl 0 ∧ f1(X1, . . . , Xl)ρl+10 ∧ . . . ∧ fm−l(X1, . . . , Xl)ρm0 → g(X1, . . . , Xl, V ) ρm+1 0),
where the linear polynomials pl+1,. . . ,pm have been transformed into the linear polynomials
f1(X1, . . . , Xl), . . . ,fm−l(X1, . . . , Xl), and the linear polynomial pm+1 has been transformed
into the linear polynomial g(X1, . . . , Xl, V ), where V = vars(pm+1) − vars({p1, ..., pm}). Since
V ∩ {X1, ..., Xl} = ∅, we have Q |= ∀ ( X1ρ10 ∧ . . . ∧ Xlρl0 ∧ f1(X1, . . . , Xl)ρl+10 ∧ . . . ∧
fm−l(X1, . . . , Xl)ρm0 → ∀ V (g(X1, . . . , Xl, V ) ρm+1 0 )). Let us show that V = ∅. Sup-
pose, by contradiction, that the set V is not empty. Without loss of generality, we can as-
sume that g(X1, . . . , Xl, V ) is of the form aY + h(X1, . . . , Xl, V −{Y }), where a 6= 0, h is
a linear polynomial, and Y ∈ V , otherwise all the variables in V can be eliminated from
g(X1, . . . , Xl, V ). As a consequence, the formula ∀V (g(X1, . . . , Xl, V ) ρm+1 0) is equivalent
to false in Q, and this contradicts the hypothesis that Q |= ∃(p1 ρ1 0 ∧ . . . ∧ pm ρm 0). This
entails that V = ∅ and we will write g(X1, . . . , X`, V ) as g(X1, . . . , X`). Thus, we have Q |=
∀(X1 ρ1 0∧. . .∧Xl ρl 0∧f1(X1, . . . , Xl)ρl+10∧. . .∧fm−l(X1, . . . , Xl)ρn0→ g(X1, . . . , Xl) ρm+1 0).
A straightforward consequence is that g(X1, . . . , Xl) is equivalent to

k1X1 + . . . + klXl + kl+1f1(X1, . . . , Xl) + . . . + kmfm−l(X1, . . . , Xl) + km+1

for some k1, . . . , km+1 (where kl+1 = 0, . . . , km = 0). Hence, by Lemma A.8, we have that k1≥0,
. . . , km+1≥0 and if ρm+1 is > then (

∑
i∈I ki) > 0, where I ={i | 1≤ i≤m+1, ρi is >}. 2

In the following we prove that Property P1 stated in Section 4.2 is a consequence of Theorem 4.3.

Property P1. Let p and q be two linear polynomials, and p > 0 and q > 0 be two satisfiable,
non-redundant constraints. Q |= ∀(p> 0 ↔ q > 0) iff there exists a rational number k > 0 such
that Q |= ∀(kp− q = 0).

Proof. (If part) By hypothesis we have that Q |= ∀(kp = q) for some k >0. Thus, the thesis
follows from the fact that for every k>0, Q |= ∀(p>0 ↔ kp>0).
(Only If part) Assume that Q |= ∀(p > 0 ↔ q > 0). By Theorem 4.3 we have that Q |= ∀(p >
0 → q >0) iff exist k1≥0 and k2≥0 such that Q |= ∀(k1p + k2 = q) and k1+k2 > 0. Moreover,
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we have that k1 6=0 because, otherwise, Q |= ∀(k2 =q) and the constraint q>0 would be either
unsatisfiable (if k2 = 0) or redundant if k2 > 0). Thus, k1 > 0 and k2 ≥ 0. Analogously, from
Q |= ∀(q>0 → p>0) we get Q |= ∀(k3q +k4 =p), for k3 >0 and k4≥0. By substituting k1p+ k2

for q, we have Q |= ∀(k3(k1p + k2) + k4 = p), which entails k3k2 + k4 = 0. Since k3 > 0, k2≥ 0,
and k4≥0, we get k2 =k4 =0. Thus, from Q |= ∀(k1p + k2 =q) we get Q |= ∀(k1p=q), and the
thesis follows.
The proof of Property P1 where the constraints p>0 and q>0 have been replaced by p≥0 and
q≥0, respectively, is similar.

Now we introduce some notions that will be used in the proof of Theorem A.13 below. We
will say that a substitution α is for variables of type rat if for every binding V/t ∈ α we have
that V is a variable of type rat and t is a term of type rat. We will also say that α is for the
set S of variables (for S, for short) if α is of the form {V1/t1, . . . , Vn/tn} for {V1, . . . , Vn} = S.
Given two disjoint sets of variables S1 and S2, in the following we will denote by S1 ≺ S2

any variable ordering of the form S11, . . . , S1h, S21, . . . , S2k such that S1 = {S11, . . . , S1h} and
S2 = {S21, . . . , S2k}.

Definition A.9. Let α and β be two substitutions for variables of type rat, then α ≡ β if for
every variable V we have: (i) V/t ∈ α iff V/u ∈ β and (ii) Q |= ∀(t = u).

In the following Definitions A.10 and A.11, and in Lemma A.12 we will denote by X, Y , and Z
three disjoint sets of variables of type rat, by c a satisfiable constraint such that Vars(c) ⊆ X∪Z,
by R a goal such that Vars(R) ∩ Y = ∅, and by H an atom such that: (i) X ⊆ Vars(H),
(ii) Varsrat(H) ∩Varsrat(R) = ∅, and (iii) Vars(H)rat ∩Varsrat(Bα) = ∅.

Definition A.10. A CM-redex is either fail or a triple 〈a ↔ b, S, σ〉 such that: (i) a is a
constraint and Vars(a) ⊆ X ∪ Z, (ii) b is a conjunction and S is a finite set of formulas of the
form pρ 0, where ρ ∈ {≥, >} and p is a polynomial bilinear in the partition 〈Vars(S)−(X∪Y ∪
Z), X∪Y ∪Z〉, (iii) for every pρ 0 in S, the polynomial p is in normal form w.r.t. the variable
ordering Z≺ Y≺X, (iv) for every monomial u occurring in b or in S, either Vars(u) ∩ Y = ∅
or Vars(u)∩ (Vars(S)−(X∪Y ∪Z)) = ∅, (v) (Vars(S)− (X ∪ Y ∪Z))∩Vars(R)=∅, and (vi) σ
is a substitution for variables of type rat such that cσ = c, bσ = b, and Sσ = S.

Definition A.11. Let D be a CM-redex of the form 〈a ↔ b, {f1, . . . , fn}, σ〉 and β a substitution
for variables of type rat of the form {Y1/s1, . . . , Yh/sh}, where Y ⊆ {Y1, . . . , Yh}, {Y1, . . . , Yh}∩
(X ∪ Z) = ∅, and, for i = 1, . . . , h, Vars(si) ⊆ Vars(H) and Vars(si) ∩Vars(R) = ∅. Then we
say that D(β) holds if there exists a substitution τ for variables of type rat such that:

(a) τ is of the form {W1/t1, . . . ,Wk/tk}, where {W1, . . . , Wk} is the set Vars({f1, . . . , fn})−
(X∪Y ∪Z) and t1, . . . , tk ∈ Q,

(b) Q |= ∀X ∀Z (f1τβ ∧ . . . ∧ fnτβ),

(c) let a be of the form a1 ∧ . . . ∧ al and b of the form b1 ∧ . . . ∧ bm, where l ≥ 0, m ≥ 0,
a1, . . . , al are atomic constraints, and b1, . . . , bm are formulas of the form pρ 0, for some
polynomial p and ρ ∈ {≥, >}, for all j ∈ {1, . . . , m} either there exists i∈ {1, . . . , l} such
that Q |= ∀X ∀Z (ai ↔ bjτβ) or Q |= ∀X ∀Z (c → bjτβ), and for all i ∈ {1, . . . , l} there
exists j∈{1, . . . ,m} such that Q |= ∀X ∀Z (ai ↔ bjτβ), and

(d) (στ)|Y β ≡ β.
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Lemma A.12. Let the relation =⇒ be defined as in the procedure CM and let D be a CM-
redex. For every substitution β for variables of type rat, D(β) holds iff either (a.i) D is of
the form 〈true ↔ true, S, σ〉, (a.ii) β is a substitution of the form {Y1/s1, . . . , Yh/sh}, where
{Y1, . . . , Yh} ⊇ Y and {Y1, . . . , Yh} ∩ (X ∪Z) = ∅, and, for i=1, . . . , h, Vars(si)⊆Vars(H) and
Vars(si)∩Vars(R) = ∅, (a.iii) Vars(S)∩(X∪Y∪Z) = ∅ and solve(S)=τ , and (a.iv) (στ)|Y β ≡ β,
or there exists a CM-redex E such that: (b.i) D =⇒ E and (b.ii) E(β) holds.

Proof. (If part) Assume that D is a CM-redex and β is a substitution for variables of
type rat such that they satisfy Conditions (a.i)–(a.iv). By Condition (a.i), D is of the form
〈true ↔ true, S, σ〉, that is, it is different from fail. We want to show that D(β) holds, that
is, Conditions (a)–(d) of Definition A.11 hold. Now, let S be the set {f1, . . . , fn}. Then,
by Condition (a.iii) and by the definition of the solve function, we have that the substitu-
tion τ = solve({f1, . . . , fn}) is of the form {W1/t1, . . . , Wk/tk}, where {W1, . . . ,Wk} is the set
Vars({f1, . . . , fn})− (X ∪ Y ∪ Z) and t1, . . . , tk ∈ Q and, therefore, Condition (a) holds. More-
over, since Vars(S) ∩ Y = ∅ and the substitution β satisfies Condition (a.ii), we also have that
Q |= ∀X ∀Z (f1τβ ∧ . . . ∧ fnτβ) and Condition (b) holds. By Condition (a.i), the first element
of the triple D is true ↔ true and, thus, we have that Condition (c) holds. Finally, by Condi-
tion (a.iv), we have (στ)|Y β ≡ β, and we get that also Condition (d) holds and, therefore, D(β)
holds.

Let us now assume that there exists a CM-redex E such that Conditions (b.i) and (b.ii) are
satisfied. We want to show that D(β) holds. Since D is a CM-redex and, by using one of the
rules (i)–(v), we obtain E from D, we can assume that D is different from fail, that is, D is of
the form 〈a1∧ . . .∧al ↔ b1∧ . . .∧bm, {f1, . . . , fn}, σ〉, where a1, . . . , al are atomic constraints and
b1, . . . , bm are formulas of the form pρ 0 for ρ ∈ {≥, >}. In order to prove that D(β) holds, we pro-
ceed by cases considering the rule used for rewriting D into E and we show that Conditions (a)–
(d) of Definition A.11 hold for D and β. Suppose that we have obtained E from D by applying
rule (i). Then, E is of the form 〈a2∧. . .∧al ↔ b1∧. . .∧bi−1∧bi+1∧. . .∧bm, {nf (V p−q) = 0, V >
0} ∪ {f1, . . . , fn}, σ〉, where a1 and bi are of the form pρ 0 and qρ 0, respectively, i ∈ {1, . . . , m},
and V is a new variable and, thus, it occurs neither in D, nor in β, nor in R. Since E(β) holds,
there exists a τ ′ such that Conditions (a)–(d) hold for E. Let τ be defined as the substitution
obtained from τ ′ by removing the binding V/t, where V is the new variable introduced by ap-
plying rule (i) to D. Since D is a CM-redex, Vars({p, q}) ⊆ Vars({f1, . . . , fn}) ∪ X ∪ Y ∪ Z
and, as a consequence, τ is of the form {W1/t1, . . . , Wk/tk}, where {W1, . . . , Wk} is the set
Vars({f1, . . . , fn})− (X ∪ Y ∪ Z), and Condition (a) holds for D. By hypothesis, we have that
Q |= ∀X ∀Z ((nf (V p−q)=0)τ ′β∧(V >0)τ ′β∧f1τ

′β∧ . . .∧fnτ ′β). Recalling that the variable V
does not occur in f1 ∧ . . .∧ fn, by the assumptions on E, and by the definition of τ , we get that
Q |= ∀X ∀Z (f1τβ∧ . . .∧fnτβ) and Condition (b) holds for D. By the definition of τ , β, and the
function nf , we also have that Q |= ∃V ∀X ∀Z (nf (V (pτβ)−qτβ)=0∧V >0). By the hypothesis
that D is a CM-redex, we have that Vars(p) ⊆ X ∪ Z and, thus, pτβ = p. Therefore, we get
Q |= ∃V ∀X ∀Z (V p− qτβ=0∧V >0), which entails, by Property P1, Q |= ∀X ∀Z (a1 ↔ biτβ).
Then, by the assumption that Condition (c) holds for E, we get that Condition (c) holds for D.
Again, the variable V does not occur in σ and, thus, by the assumption that (στ ′)|Y β ≡ β and
by the definition of τ , we get (στ)|Y β ≡ β and Condition (d) holds for D. Therefore, if E has
been obtained from D by applying rule (i) and E(β) holds then D(β) holds.

Now suppose that we have obtained E from D by applying rule (ii). Then, E is of the form
〈true ↔ b2∧ . . .∧bm, {nf (V1p1+ . . .+Vrpr +Vr+1−q) = 0, V1≥0, . . . , Vr+1≥0}∪{f1, . . . , fn}, σ〉,
where p1, . . . , pr are polynomials such that c is of the form p1ρ1 0∧ . . .∧ prρr 0, b1 is of the form
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q ≥ 0, and V1, . . . , Vr+1 are new variables and, thus, they occur neither in D, nor in β, nor in R.
By the assumption that E(β) holds, D is different from fail and there exists a τ ′ such that Condi-
tions (a)–(d) of Definition A.11 hold for E. Let τ be defined as the substitution obtained from τ ′

by removing the bindings V1/u1, . . . , Vr+1/ur+1. Since D is a CM-redex, Vars({p1, . . . , pr, q}) ⊆
Vars({f1, . . . , fn}) ∪ X ∪ Y ∪ Z and, as a consequence, τ is of the form {W1/t1, . . . , Wk/tk},
where {W1, . . . , Wk} is the set Vars({f1, . . . , fn})− (X ∪Y ∪Z), and Condition (a) holds for D.
By hypothesis, we have that Q |= ∀X ∀Z (nf (V1p1 + . . . + Vrpr + Vr+1 − q) = 0)τ ′β ∧
(V1≥0)τ ′β ∧ . . . ∧ (Vr+1≥0)τ ′β ∧ f1τ

′β ∧ . . . ∧ fnτ ′β). Recalling that the variables V1, . . . , Vr+1

do not occur in f1 ∧ . . .∧ fn, by the assumptions on E, and by the definition of τ , we have that
Q |= ∀X ∀Z (f1τβ∧ . . .∧fnτβ) and Condition (b) holds for D. By the definition of τ , β, and the
function nf , we have alsoQ |= ∃V1. . .∃Vr ∀X ∀Z (nf (V1(p1τβ)+. . .+Vr(prτβ)+Vr+1−qτβ) = 0∧
V1≥0 ∧ . . . ∧ Vr+1≥0). By the hypothesis that D is a CM-redex, the terms p1, . . . , pr are such
that Vars({p1, . . . , pr}) ⊆ X ∪ Z and, thus, {p1, . . . , pr}τβ = {p1, . . . , pr}. Therefore, we get
Q |= ∃V1. . . ∃Vr ∀X ∀Z (V1p1 + . . . + Vrpr + Vr+1 − qτβ = 0 ∧ V1 ≥ 0 ∧ . . . ∧ Vr+1 ≥ 0). By
Theorem 4.3, this result entails that Q |= ∀X ∀Z (c → b1τβ). Thus, by the assumption that
Condition (c) holds for E, we get that Condition (c) holds for D. Moreover, since the variables
V1, . . . , Vr do not occur in σ, by the assumption that (στ ′)|Y β ≡ β, and by the definition of τ ,
we get (στ)|Y β ≡ β and Condition (d) holds for D. As a consequence, if E has been obtained
from D by applying rule (ii) and E(β) holds then D(β) holds.

By using similar arguments, we can show that if E has been obtained from D by applying
rule (iii) and E(β) holds then D(β) holds.

Suppose that we have obtained E from D by applying rule (iv). Then, E is of the form 〈a ↔ b,
{p = 0, q = 0} ∪ {f1, . . . , fn}, σ〉 and we can assume that D is of the form 〈a ↔ b, {pU + q = 0,
f1, . . . , fn}, σ〉, where U ∈ X∪Z. By the hypothesis that E(β) holds, we have that there exists a
substitution τ ′ such that Conditions (a)–(d) hold for E, which entails Q |= ∀X ∀Z ((p = 0)τ ′β ∧
(q = 0)τ ′β ∧ f1τ

′β ∧ . . .∧ fnτ ′β). Now let τ be the substitution τ ′. Therefore, since U ∈ X ∪Z,
we have Uτβ = U and Q |= ∀X ∀Z ((pU + q = 0)τβ∧ f1τβ ∧ . . . ∧ fnτβ). This observation and
the definition of the substitution τ entail that Conditions (a) and (b) hold for D. Since τ = τ ′

and the first component of D, that is, the formula a ↔ b, is equal to the first component of E,
Condition (c) holds for D. Finally, since the third component of D, that is, the substitution σ,
is equal to the third component of E, Condition (d) holds for D. Hence, if E has been obtained
from D by applying rule (iv) and E(β) holds then also D(β) holds.

Finally, suppose that we have obtained E from D by applying rule (v). Hence, E is a CM-
redex of the form 〈a ↔ (b{U/ − q

p}), {nf (p1{U/ − q
p})ρ1 0, . . . ,nf (pn{U/ − q

p})ρn 0}, σ{U/ −
q
p}〉, where U ∈ Y , p ∈ (Q − {0}), q, p1, . . . , pn are polynomials, and the predicates symbols
ρ1, . . . , ρn are in {≥, >,=}. As a consequence, D is a CM-redex of the form 〈a ↔ b, {pU + q =
0, p1ρ1 0, . . . , pnρn 0}, σ〉. Since E(β) holds, there exists a substitution τ ′ such that Condi-
tions (a)–(d) hold for D. Let τ be the substitution τ ′. Since U ∈ Y , Condition (a) holds
for D. By hypothesis, D is a CM-redex, we have bσ = b, {pU + q = 0, p1ρ1 0, . . . , pnρn 0}σ =
{pU + q = 0, p1ρ1 0, . . . , pnρn 0}, and, thus, Uσ{U/ − q

p} = − q
p . Moreover, by hypothesis we

have also (σ{U/ − q
p}τ ′)|Y β ≡ β and, thus, Q |= ∀ (Uβ = − q

pβ). By the hypothesis that
Q |= ∀X ∀Z ((nf (p1{U/− q

p})ρ1 0)τ ′β ∧ . . . ∧ (nf (pn{U/− q
p})ρn 0)τ ′β), by our previous obser-

vations on Uβ, and by the fact that τ = τ ′, we get Q |= ∀X ∀Z ((nf (p1{U/− q
p})ρ1 0)τ ′β ∧ . . .∧

(nf (pn{U/ − q
p})ρn 0)τ ′β), which entails Q |= ∀X ∀Z ((p1ρ1 0)τβ ∧ . . . ∧ (pnρn 0)τβ). Finally,

we also have that Q |= ∀X ∀Z ((pU + q = 0)τβ). As a consequence, Condition (b) holds for
D. Since we have proved that Q |= ∀ (− q

pβ = Uβ) and since Condition (c) holds for E, then
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Condition (c) holds for D. Now, we only need to show that (σ{U/ − q
p}τ ′)|Y β ≡ β entails

(στ)|Y β ≡ β. Let us consider a variable V ∈ Y . If V is not the variable U considered in the
application of rule (v), then, by the definition of τ and the hypothesis that D is a CM-redex, we
have V (σ{U/− q

p}τ ′)|Y β = V (στ)|Y β. Now let the variable V be the variable U considered in the
application of rule (v). We have that Uσ{U/− q

p}τ = − q
p and, moreover, Q |= ∀ (− q

pβ = Uβ).
Thus, we get that Condition (d) holds for D and, hence, if E has been obtained from D by
applying rule (v) and E(β) holds then also D(β) holds.

(Only If part) We prove that if D(β) holds and it does not satisfy at least one among Condi-
tions (a.i)–(a.iv) then there exists a CM-redex E such that D =⇒ E and E(β) holds. Assume
that D(β) holds and, thus, it is of the form 〈a ↔ b, {f1, . . . , fn}, σ〉. In what follows we will
denote by W1 the set Vars({f1, . . . , fn})− (X ∪ Y ∪ Z).
(Case a.i) Let us assume that D does not satisfy Condition (a.i) of Lemma A.12. Then D is not
of the form 〈true ↔ true, {f1, . . . , fn}, σ〉. Since, by hypothesis, Condition (c) of Definition A.11
holds for D, we have that the number of literals in a is not greater than the number of literals
in b and, thus, either (Case a.i.1) both a and b are different from true or (Case a.i.2) a is true
and b is different from true.

In Case (a.i.1), D is of the form 〈a1 ∧ . . . ∧ al ↔ b1 ∧ . . . ∧ bm, {f1, . . . , fn}, σ〉, where
a1, . . . , al are atomic constraints and b1, . . . , bm are formulas of the form tρ 0, for ρ ∈ {≥, >}.
Since Condition (c) holds for D, there exist i ∈ {1, . . . , l} and j ∈ {1, . . . , m} such that
Q |= ∀ (ai ↔ bj) and, thus, it is possible to apply rule (i) to D. We get that E is of the
form 〈a2 ∧ . . .∧al ↔ b1 ∧ . . .∧ bi−1 ∧ bi+1 ∧ bm, {nf (V p+ q) = 0, V > 0}∪{f1, . . . , fn}, σ〉, where
a1 is pρ 0, bi is qρ 0, and V is a new variable which occurs neither in D, nor in β, nor in R. Now we
show that E is a CM-redex, that is, Conditions (i)–(vi) of Definition A.10 hold. By hypothesis,
a1∧. . .∧al is a constraint whose variables are in X∪Z and thus, Condition (i) holds for E. In the
following we will denote by W2 the set Vars({nf (V p− q) = 0, V > 0, f1, . . . , fn})− (X ∪Y ∪Z).
The polynomial nf (V p−q) is bilinear in the partition 〈W2, X∪Y ∪Z〉 because Vars(p) ⊆ X∪Z,
V is a new variable, and q is bilinear in the partition 〈W1, X ∪ Y ∪ Z〉 (note that the function
nf preserves bilinearity). Thus, by the assumption that D is a CM-redex, we have that Condi-
tion (ii) holds for E. By definition of the function nf , the polynomial nf (V p − q) is in normal
form w.r.t. the variable ordering Z ≺ Y ≺ X and thus, Condition (iii) holds for E. Since
Vars(p) ⊆ X ∪ Z, there is no monomial u in nf (V p − q) = 0 such that Vars(u) ∩ Y 6= ∅ and
Vars(u) ∩W2 6= ∅ and Condition (iv) holds for E. Since V is a new variable, we get that also
Conditions (v) and (vi) hold for E. As a consequence, E is a CM-redex. Now we want to show
that E(β) holds, that is, Conditions (a)–(d) of Definition A.11 hold for E. Since D(β) holds,
there exists a substitution τ such that Conditions (a)–(d) hold for D, β, and τ . In particular,
there exists j ∈ {b1, . . . , bm} such that Q |= ∀X ∀Z (a1 ↔ bjτβ). Without loss of generality
we can assume that i = j and thus, Q |= ∀X ∀Z (pρ 0 ↔ (qρ 0)τβ). By Property P1 we get
that there exists a rational number k >0 such that Q |= ∀X ∀Z (kp − qτβ = 0). Now let τ ′ be
τ ∪ {V/k}. Then Condition (a) holds for E and τ ′. Moreover, since Vars(p) ⊆ X ∪ Z, by the
definition of τ ′ and β, we get that Q |= ∀X ∀Z (nf (V p− q)τ ′β = 0∧V > 0∧ f1τ

′β ∧ . . .∧ fnτ ′β)
and Condition (b) holds for E. Condition (c) follows easily from the hypotheses. Finally, Con-
dition (d) holds for E since V is a new variable which does not occur in D and β. Therefore,
we get that E(β) holds.

In Case (a.i.2), where a is true and b is not true, since D is a CM-redex and, thus, for
i = 1, . . . , m, bi is of the form qρ 0, where ρ ∈ {≥, >}, it is possible to apply either rule (ii)
or rule (iii), depending on the relation symbol of the leftmost atomic constraint in b. Let us
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assume that b1 is of the form q ≥ 0 and we apply rule (ii). We obtain, from D, the triple E
of the form 〈true ↔ b2 ∧ . . . ∧ bm, {nf (V1p1 + . . . + Vrpr + Vr+1 − q)=0, V1≥ 0, . . . , Vr+1≥ 0}∪
{f1, . . . , fn}, σ〉, where the constraint c is p1ρ1 0∧ . . .∧prρr 0 and V1, . . . , Vr+1 are new variables.
Now we want to show that E is a CM-redex, that is, Conditions (i)–(vi) of Definition A.10
hold. In the following we will denote by W2 the set Vars({nf (V1p1 + . . . + Vrpr + Vr+1 − q) =
0, V1 ≥ 0, . . . , Vr+1 ≥ 0, f1, . . . , fn}) − (X ∪ Y ∪ Z). Condition (i) trivially holds for E. Since,
by hypothesis, p1, . . . , pr are linear polynomials in the variables X ∪ Z, V1, . . . , Vr+1 are new
variables, and the polynomial q is bilinear in the partition 〈W1, X ∪ Y ∪ Z〉, we have that the
polynomial nf (V1p1+. . .+Vrpr +Vr+1−q) is bilinear in the partition 〈W2, X∪Y ∪Z〉. Moreover,
nf (V1p1 + . . . + Vrpr + Vr+1 − q) is in normal form w.r.t. the variable ordering Z≺ Y≺X and,
thus, Conditions (ii) and (iii) hold for E. Note that since Vars({p1, . . . , pr}) ⊆ X ∪ Z, we get
that there is no monomial u in nf (V1p1 + . . . + Vrpr + Vr+1 − q) such that Vars(u)∩ Y 6= ∅ and
Vars(u)∩W 6= ∅ and, thus, Condition (iv) holds for E. Since V1, . . . , Vr+1 are new variables, we
have that also Condition (v) holds for E. Finally, we have (b2 ∧ . . .∧ bm)σ = b2 ∧ . . .∧ bm. Since
V1, . . . , Vr+1 are variables not occurring in D and β, and q occurs in b1∧. . .∧bm, we have that also
Condition (vi) holds for E and, thus, E is a CM-redex. Now let us show that E(β) holds, that
is, Conditions (a)–(d) of Definition A.11 are satisfied. By the assumption that D(β) holds, there
exists a substitution τ such that Q |= ∀X ∀Z (f1τβ ∧ . . . ∧ fnτβ) and Q |= ∀X ∀Z (c → b1τβ).
As a consequence, by the hypothesis that c is a satisfiable constraint, Theorem 4.3 entails that
Q |= ∃V1 . . .∃Vr+1∀X ∀Z (nf (V1p1 + . . . + Vrpr + Vr+1 − qτβ) = 0∧ V1 ≥ 0 ∧ . . . ∧ Vr+1 ≥ 0).
Recalling that V1, . . . , Vr+1 are new variables which occur neither in D, nor in β, we can extend
the scope of the existential quantifier for these variables over the conjunction f1τβ ∧ . . .∧ fnτβ,
and we get that there exists a substitution τ ′ such that τ ′ = τ ∪{V1/t1, . . . , Vr+1/tr+1}, for some
t1, . . . , tr+1 ∈ Q, and Conditions (a) and (b) hold for E. By the hypotheses and by definition
of τ ′ we have that Condition (c) holds for E. Finally, by hypothesis we have that (στ)|Y β ≡ β
and, thus, by the definition of τ ′, since V1, . . . , Vk+1 do not occur in σ, Condition (d) holds for
E. As a consequence, E(β) holds. The case where we obtain E from D by applying rule (iii)
can be addressed by similar arguments.
(Case a.ii) By hypothesis, Condition (ii) of Definition A.11 holds for β and, thus, also Condi-
tion (a.ii) of Lemma A.12 holds for β.
(Case a.iii) Let D be such that Condition (a.iii) of Lemma A.12 is not satisfied. In this case we
have that either Vars({f1, . . . fn}) ∩ (X ∪ Y ∪ Z) 6= ∅ or Vars({f1, . . . fn}) ∩ (X ∪ Y ∪ Z) = ∅
and {f1, . . . fn} is not satisfiable. The second case is impossible because by hypothesis we have
Q |= ∀X ∀Z (f1τβ ∧ . . . ∧ fnτβ). Thus, we are left with the first case. Since D(β) holds, for
i = 1, . . . , n, fi is a formula of the form pρ 0, where the polynomial p is bilinear in the par-
tition 〈W1, X ∪ Y ∪ Z〉 and it is in normal form w.r.t. the variable ordering Z ≺ Y ≺X, and
ρ ∈ {≥, >, =}. Since Vars({f1, . . . , fn}) ∩ (X ∪ Y ∪ Z) = ∅, we can assume without loss of
generality that f1 is of the form pρ 0 and the polynomial p is of the form q1U + q2, where
Vars(q1) ⊆ W1, U ∈ (X ∪ Y ∪ Z), and q2 is bilinear in the partition 〈W1, X ∪ Y ∪ Z〉. Let us
assume that U is a variable in X ∪ Z. Then we can rewrite D into E by using rule (iv). Then,
E is of the form 〈a ↔ b, {q1 = 0, q2 = 0, f2, . . . , fn}, σ〉. In the following we will denote by W2

the set Vars({q1 = 0, q2 = 0, f2, . . . , fn}) − (X ∪ Y ∪ Z). We first show that E is a CM-redex,
that is, Conditions (i)–(vi) of Definition A.10 hold. The formulas a and b are not modified by
rule (iv). Thus, by the hypotheses, Condition (i) holds for E. By construction, in the formulas
q1 = 0 and q2 = 0 the polynomials p1 and p2 are bilinear in the partition 〈W2, X ∪Y ∪Z〉 and in
normal form w.r.t. the variable ordering Z≺ Y≺X. Therefore, Conditions (ii) and (iii) hold for
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E. By construction and by the hypotheses, also Conditions (iv)–(vi) hold E. As a consequence,
E is a CM-redex. Now, we show that E(β) holds, that is, Conditions (a)–(d) of Definition A.11
hold. By hypothesis, there exists a substitution τ such that Conditions (a)–(d) hold for D. Let
τ ′ be τ . Since, by applying rule (iv), we eliminate from {f1, . . . , fn} one occurrence of a variable
U ∈ X ∪ Z, Condition (a) holds for τ ′. Moreover, Q |= ∀X ∀Z ((q1U + q2 = 0)τ ′β), Uτβ = U ,
and τ ′ = τ entail Q |= ∀X ∀Z ((q1 = 0)τβ ∧ (q2 = 0)τβ) and, thus, Condition (b) holds for E.
Conditions (c) and (d) hold for E by hypothesis. Thus, E(β) holds.
Now let us assume that U ∈ Y . In order to apply rule (v) to D we must have Vars(q2) ∩
Vars(R) = ∅ and q1 ∈ Q − {0}. By the hypotheses, there is no monomial u in q1U + q2 such
that Vars(u) ∩ Y 6= ∅ and Vars(u) ∩W1 6= ∅. Thus, since U ∈ Y and q1U + q2 is bilinear in the
partition 〈W1, X ∪ Y ∪ Z〉 and in normal form w.r.t. the variable ordering Z≺ Y≺X, we have
that q1 ∈ Q− {0} and Vars(q2) ∩Z = ∅. By definition of R we have that vars(R) ∩ Y = ∅ and,
since by the hypothesis that D(β) holds, we have W1∩Vars(R) = ∅, we have to prove that there
is no variable V ∈ (X ∩ Vars(q2)) such that V ∈ Vars(R). By the hypothesis that D(β) holds,
there exists a substitution τ such that Q |= ∀X ∀Z ((q1U +q2)τβ = 0) and, thus, by our previous
observations, Q |= ∀X ∀Z (Uβ = − q2τβ

q1
). Recalling that Vars(q2) ⊆ X∪Y ∪W1, q1 is a constant

of type rat, and q2 is in normal form (in particular, there is at most one monomial for each
variable), and by the definition of the substitution β, we have that Vars(q2) ⊆ Vars(Y β) ∪W1.
By hypothesis, we have that Vars(Y β) ∩ Vars(R) = ∅. Thus, Vars(q2) ∩ Vars(R) = ∅ and
we can apply rule (v) to D. Therefore, E is of the form 〈a ↔ (b{U/ − q2

q1
}), {nf (p2{U/ −

q2

q1
})ρ2 0, . . . ,nf (pn{U/ − q2

q1
})ρn 0}, σ{U/ − q2

q1
}〉, where U ∈ Y , q1 ∈ (Q − {0}), q2, p1, . . . , pn

are polynomials, and the predicates symbols ρ2, . . . , ρn are in {≥, >, =}. We first show that E
is a CM-redex, that is it satisfies Conditions (i)–(vi) of Definition A.10. In the following we
will denote by W2 the set {nf (p2{U/ − q2

q1
})ρ2 0, . . . ,nf (pn{U/ − q2

q1
})ρn 0} − (X ∪ Y ∪ Z). By

hypothesis, Condition (i) holds for E and the formula b is a conjunction of formulas of the form
pρ 0, where the polynomial p is bilinear in the partition 〈W1, X ∪ Y ∪ Z〉 and it is in normal
form w.r.t. the variable ordering Z ≺ Y ≺X. By the hypothesis that there is no monomial u
in b such that Vars(u) ∩ Y 6= ∅ and Vars(u) ∩ W1 6= ∅, we get that the variable U occurs in
b in monomials of the form aU where a is a constant in Q − {0}. Note that, since U ∈ Y , we
have W1 = W2. Therefore, since q1 is a constant in Q − {0} and q2 is bilinear in the partition
〈W1, X∪Y ∪Z〉, we get that the polynomials in b{U/− q2

q1
} are bilinear in this partition. By these

observations we get also that there is no monomial u in b{U/− q2

q1
} such that Vars(u) ∩ Y 6= ∅

and Vars(u) ∩W1 6= ∅. By similar observations we can prove that the polynomials nf (p2{U/−
q2

q1
}), . . . ,nf (pn{U/− q2

q1
}) are bilinear in the same partition, they are in normal form w.r.t. the

variable ordering Z≺ Y≺X, and there is no monomial u in nf (p2{U/− q2

q1
}), . . . ,nf (pn{U/− q2

q1
})

such that Vars(u) ∩ Y 6= ∅ and Vars(u) ∩ W1 6= ∅. As a consequence, Conditions (ii)–(iv)
hold for E. Let us denote the set {nf (p2{U/ − q2

q1
})ρ2 0, . . . ,nf (pn{U/ − q2

q1
})ρn 0} by S′.

Since U occurs neither in S′ nor in σ, we get S′σ{U/ − q2

q1
} = S′, Condition (vi) holds for

E, and E is a CM-redex. Now let us prove that E(β) holds, that is, Conditions (a)–(d)
of Definition A.11 hold. By the hypotheses, there exists a substitution τ such that Condi-
tions (a)–(d) hold for D. Now let us define the substitution τ ′ to be τ . We have that Con-
dition (a) holds for E. We have also that Q |= ∀X ∀Z ((q1U + q2 = 0)τ ′β ∧ (p2ρ2 0)τ ′β ∧
. . . ∧ (pnρn 0)τ ′β). Since, by hypothesis, D is a CM-redex, we have bσ = b, {q1U + q2 = 0,
p2ρ2 0, . . . , pnρn 0}σ = {q1U + q2 = 0, p2ρ2 0, . . . , pnρn 0}, and, thus, Uσ{U/− q2

q1
} = − q2

q1
. More-

over, since by hypothesis (σ{U/− q2

q1
}τ ′)|Y β ≡ β, we have that Q |= ∀ (Uβ = − q2

q1
β). Therefore,

we have Q |= ∀X ∀Z ((nf (p2{U/− q2

q1
})ρ2 0)τ ′β∧. . .∧(nf (pn{U/− q2

q1
})ρn 0)τ ′β). Finally, we have
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also that Q |= ∀X ∀Z ((q1U +q2 = 0)τβ). As a consequence, Condition (b) holds for E. Since we
have proved that Q |= ∀ (− q2

q1
β = Uβ), and since Condition (c) holds for D, then Condition (c)

holds also for E. Now, we only need to show that (στ)|Y β ≡ β entails (σ{U/ − q
p}τ ′)|Y β ≡ β.

Let us consider a variable V ∈ Y . If V is not the variable U considered in the application of
rule (v), then, by the definition of τ and by the hypothesis that D is a CM-redex, we have
V (σ{U/ − q

p}τ ′)|Y β = V (στ)|Y β. Now let the variable V be the variable U considered in the
application of rule (v). We have that Uσ{U/− q

p}τ = − q
p and, moreover, Q |= ∀ (− q

pβ = Uβ).
Thus, we get that Condition (d) holds for E. Hence, E(β) holds.
(Case a.iv) Finally, Condition (a.iv) of Lemma A.12 holds for D because of the hypothesis that
Condition (d) of Definition A.11 holds for D.
Thus, we have proved that if D does not satisfy one of the Conditions (a.i)–(a.iv) then it can
be rewritten into a CM-redex E such that E(β) holds.

Theorem A.13 (Termination, Soundness, and Completeness of CM) Let γ: H ← c ∧
G and δ : K ← d ∧ B be clauses in normal form and without variables in common. Suppose
that γ and δ are the input to the procedure GM and let the substitution α and the goal R be an
output of GM. Let clauses γ′ : H ← c ∧Bα ∧R and δ′ : Kα ← dα ∧Bα in normal form be the
input to the constraint matching procedure CM. Then the following properties hold:

(a) CM terminates, that is: (1) given a CM-redex D0 and the rewriting relation =⇒ defined in
the procedure CM, every sequence D0 =⇒ D1 =⇒ . . . is finite and (2) for every CM-redex
D, there are finitely many CM-redexes E1, . . . , En such that, for i = 1, . . . , n, D =⇒ Ei;

(b) For all constraints e and substitutions β for variables of type rat, if e and β are an output
of CM, then:

1. γ′ ∼= H ← e ∧ dαβ ∧Bα ∧R,

2. Bαβ = Bα,

3. Vars(Kαβ) ⊆ Vars(H), and

4. Vars(e) ⊆ Vars({H, R});
(c) For all constraints e and substitutions β for variables of type rat, if c is either unsatisfiable

or admissible, and the following conditions hold:

1. γ′ ∼= H ← e ∧ dαβ ∧Bα ∧R,

2. Bαβ = Bα,

3. Vars(Kαβ) ⊆ Vars(H), and

4. Vars(e) ⊆ Vars({H, R}),
then an output of CM is a constraint e′ and a substitution β′ such that Q |= ∀(e′∧dαβ′ ↔
e ∧ dαβ) and β′ ≡ β|Varsrat(Kα).

Proof. (a) We first prove that, given a CM-redex D0 and the rewriting relation =⇒ defined
in the procedure CM, every sequence D0 =⇒ D1 =⇒ . . . is finite. We will use a well-founded
lexicographical ordering on N×N×N defined as follows. Given (l1,m1, n1) and (l2,m2, n2) in
N×N×N, (l1, m1, n1)>lex (l2,m2, n2) iff either l1 >l2, or l1 = l2 and m1 >m2, or l1 = l2, m1 =m2,
and n1 > n2. The relation >lex is a well-founded partial order on the set N×N×N. Let us
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now introduce the termination function ξ that maps CM-redexes to elements of N×N×N and
is defined as follows: ξ(D) = (0, 0, 0) if D is the CM-redex fail and ξ(D) = (l, m, n) if D is of
the form 〈a ↔ b, S, σ〉, l is the number of occurrences of formulas of the form pρ 0 in b, for some
polynomial p and relation symbol ρ, m is the cardinality of the set Vars(S) ∩ Y , and n is the
number of occurrences in S of the variables in X∪Z. We will show that, for any two CM-redexes
D and E, if D =⇒ E then ξ(D) >lex ξ(E). We proceed by cases: let us first consider the case
where D =⇒ E by using rule (i). Let D be the CM-redex 〈p ρ 0 ∧f ↔ g1 ∧ q ρ 0 ∧ g2, S, σ〉.
Then E is the CM-redex 〈f ↔ g1∧g2, {nf (V p−q) = 0, V >0}∪S, σ〉, where V is a new variable
and ρ ∈ {≥, >}. If ξ(D) is (l, m, n), then ξ(E) is (l−1,m′, n′), for some m′ and n′, and, thus
ξ(D) >lex ξ(E). Similarly, if D =⇒ E by using rule (ii) or rule (iii) and ξ(D) = (l,m, n), then
ξ(E) = (l−1,m′, n′) and, thus, ξ(D) >lex ξ(E). Now let us consider the case where D =⇒ E by
using rule (iv). Let D be the CM-redex 〈f ↔ g, {pU + q = 0}∪S, σ〉, then E is the CM-redex
〈f ↔ g, {p = 0, q = 0}∪S, σ〉, where U is a variable in X ∪ Z. If ξ(D) is (l, m, n), then
ξ(E) is (l, m, n−1) and, thus, ξ(D) >lex ξ(E). Finally, we consider the case where D =⇒ E by
using rule (v). Let D be the CM-redex 〈f ↔ g, {aU + q = 0}∪S, σ〉, then E is the CM-redex
〈f ↔ (g{U/−q

a}), {nf (p{U/−q
a})ρ 0 | p ρ 0 ∈ S}, σ{U/−q

a}〉, where U is a variable in Y . Let ξ(D)
be (l,m, n) and let ξ(E) be (l′,m′, n′). The number of occurrences of formulas of the form pρ 0
in g is equal to that in g{U/− q

a} and, therefore, l = l′. Since D is a CM-redex, the polynomial
aU + q is in normal form w.r.t. the variable ordering Z ≺ Y ≺X and, thus, U /∈ Vars(q). As
a consequence, m′ = m−1 and, hence, ξ(D) >lex ξ(E). Since >lex is a well-founded order, we
have that, given a GM-redex D0, every sequence D0 =⇒ D1 =⇒ . . . is finite.

Now we prove that, for every CM-redex D, there are finitely many CM-redexes E1, . . . , En

such that, for i = 1, . . . , n, D =⇒ Ei. Let D be of the form 〈a ↔ b, S, σ〉. Since b is a finite
conjunction of literals, there are finitely many GM-redexes E1, . . . , En such that, for i = 1, . . . , n,
D =⇒ Ei, by using rule (i), or rule (ii), or rule (iii). In the case where D is rewritten by using
rule (iv) or rule (v), we can use arguments similar to the ones for the case of rules (i)–(iii)
because, by definition of CM-redex, S is a finite set. Thus, we get the thesis.

(b) We assume that, given the input clauses γ′ and δ′, the output of the procedure CM is the
constraint e and the substitution β. In the following by γ′′ we will denote the clause H ← e ∧
dαβ∧Bα∧R. Assume that the constraint c is unsatisfiable. Then e is an unsatisfiable constraint
such that Vars(e) ⊆ Vars({H, R}) and β is a substitution of the form {U1/a1, . . . , Us/as},
where {U1, . . . , Us} = Varsrat(Kα) and a1, . . . , as are arbitrary terms of type rat such that,
for i = 1, . . . , s, Vars(ai) ⊆ Vars(H). Now we will show that Conditions (b.1)–(b.4) hold. By
Theorem A.4 we have that γ′ and δ′ are in normal form. We have also that clause γ′′ is in normal
form. Indeed, the following properties hold: (i) the terms of type rat occurring in Bα ∧ R are
distinct variables that do not occur in H and (ii) γ′′ has no constraint-local variables because:
(ii.1) δ′ is in normal form and, thus, Vars(dα) ⊆ Vars({Kα, Bα}), (ii.2) β is a substitution such
that Varsrat(Kαβ) ⊆ Vars(H), and (ii.3) e is a constraint such that Vars(e) ⊆ Vars({H,R}).
By assumption, the constraint c is unsatisfiable and, by construction, also the constraint e is
unsatisfiable, which entails Q |= ∀(c ↔ e ∧ dαβ). Therefore, by Lemma A.5, γ′ ∼= γ′′. Thus
Condition (b.1) is satisfied. Since δ′ is in normal form, the variables of type rat in Bα do not
occur in Kα. Therefore, by definition of β, we get Bαβ = Bα and Condition (b.2) is satisfied.
By Theorem A.4 we have that Varstree(Kα) ⊆ Vars(H). Moreover, by the definition of β, we
have that Varsrat(Kαβ) ⊆ Vars(H). Since Varstree(Kα)β = Varstree(Kα), Condition (b.3) is
satisfied. Finally, the definition of e entails that also Condition (b.4) is satisfied.

Now let us assume that c is satisfiable. In the procedure CM, the set X is defined to be
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Vars(c)−Vars(Bα), the set Y is defined to be Vars(dα)−Vars(Bα), and the set Z is defined to
be Varsrat(Bα). First, we show that the constraint c, the sets X, Y , and Z, the goal R, and the
atom H, satisfy the assumptions made in Definitions A.10 and A.11, and in Lemma A.12. By
definition, X, Y , and Z are sets of variables of type rat. By construction, the substitution α is of
the form {T1/s1, . . . , Th/sh}, where {T1, . . . , Th} ⊆Vars(B). Since δ is in normal form, we have
that Varsrat(K)α = Varsrat(K) and, thus, by the hypothesis that γ and δ have no variables in
common and by the definition of X and Y , we have that X and Y are disjoint sets. By definition,
Z is disjoint from X and from Y . Moreover, by definition of X and Z, we have Vars(c) ⊆ X ∪Z
and by assumption c is satisfiable. Since γ and δ have no variables in common, by construction
of R and by definition of Y , we have Vars(R) ∩ Y = ∅. Finally, since by Theorem A.4 the
clause γ′ is in normal form, X ⊆ Varsrat(H), Varsrat(H) ∩ Varsrat(R) = ∅, and Varsrat(H) ∩
Varsrat(Bα) = ∅. Since in the procedure CM the constraint e is defined to be project(c,X),
by Lemma 4.1 we have that Conditions (b.1)–(b.4) hold only if Q |= ∀ (c ↔ (e ∧ dαβ)), and
Conditions (b.2) and (b.3) hold. The rewriting process of the procedure CM starts from the
initial triple 〈c ↔ e ∧ dα, ∅, ∅〉. Since the output of CM is not fail, at the end of the rewriting
process we obtain a triple 〈true ↔ true, C, σY 〉 such that: (1) for all f ∈C, f is a formula of
the form pρ 0, where ρ ∈ {≥, >, =}, and Vars(p) ⊆ W , where W is the set of new variables
introduced during the rewriting process, and (2) C is a satisfiable set of atomic constraints
and solve(C) = σW . Thus, the output of CM is the substitution β = (σY σW )|Y σG, where
σG = {V1/u1, . . . , Vl/ul}, {V1, . . . , Vl} = Vars rat(KασY σW ) − Vars(H), and, for i = 1, . . . , l,
Vars(ui) ⊆ Vars(H). Now we show that the triple 〈true ↔ true, C, σY 〉 is a CM-redex, that is,
Conditions (i)–(vi) of Definition A.10 hold. Condition (i) trivially holds. Since, by hypothesis,
C is a set of atomic constraints and Vars(C) ∩ (X ∪ Y ∪ Z) = ∅, Conditions (ii)–(iv) hold.
By hypothesis, Vars(C) is a set of new variables, which, therefore, do not occur in R and,
thus, Condition (v) holds. By construction, σY is a substitution of the form {U1/t1, . . . , Uk/tk}
where {U1, . . . , Uk} ⊆ Y . Therefore, we have that σY is a substitution for variables of type rat
and, by the hypotheses on c, cσY = c. Moreover, since Vars(C) is a set of new variables, we
also have that SσY = S, Condition (vi) holds, and, thus, 〈true ↔ true, C, σY 〉 is a CM-redex.
Now we show that 〈true ↔ true, C, σY 〉(β) holds (in the sense of Definition A.11) by proving
that Conditions (a.i)–(a.iv) of Lemma A.12 hold. Condition (a.i) holds by hypothesis. By
hypothesis, β is the substitution (σY σW )|Y σG. Since the substitution σY is constructed only by
rule (v) of the procedure CM, we have that for every binding V/t ∈ σY the variable V does not
occur in the term t and in the rest of the CM-redex, and by the definition of σG, we have that
{U1, . . . , Uk}∩{V1, . . . , Vl} = ∅. As a consequence, by the definitions of β and σW , we have that
β is of the form {Y1/s1, . . . , Yh/sh} and {Y1, . . . , Yh} = {U1, . . . , Uk} ∪ {V1, . . . , Vl}. We want to
show that Y ⊆ {U1, . . . , Uk}∪{V1, . . . , Vl}. By construction, we have that {U1, . . . , Uk} ⊆ Y and,
by the hypothesis that δ′ is in normal form, Y ⊆ Varsrat(Kα). Since, by the definition of σG,
Varsrat(Kα) ⊆ {U1, . . . , Uk} ∪ {V1, . . . , Vl}, we get Y ⊆ {Y1, . . . , Yh}. By the definition of the
set Z, by the fact that the clauses γ and δ have no variables in common, and by the definition of
β, we have that {Y1, . . . , Yh}∩ (X ∪Z) = ∅. Finally, since σY is constructed by rule (v) and due
to the ordering Z≺ Y≺X on the variables, we have that Vars(Y σY )∩Z = ∅. Therefore, by the
definition of σW and σG, we get that, for i = 1, . . . , s, Vars(si) ⊆ X, Vars(si) ∩ Vars(R) = ∅,
and, thus, Condition (a.ii) holds. Since, by hypothesis, C is a set of atomic constraints and
Vars(C) ⊆ W and by the definition of the function solve, we get that Condition (a.iii) holds.
Finally, since β is (σY σW )|Y σG and since the terms u1, . . . , ul in the definition of σG are arbitrary
terms, we get that also Condition (iv) holds. Therefore, 〈true ↔ true, C, σY 〉(β) holds and,
since 〈c ↔ e ∧ dα, ∅, ∅〉 =⇒∗ 〈true ↔ true, C, σY 〉, by Lemma A.12, we get that 〈c ↔ e ∧
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dα, ∅, ∅〉(β) holds. As a consequence, there exists a substitution τ such that Conditions (a)–(d)
of Definition A.11 hold for 〈c ↔ e∧ dα, ∅, ∅〉 and β. Since, in this case, the set {W1, . . . , Wk}, as
defined in Condition (a) of Definition A.11, is empty, we get that τ is the identity substitution.
Let the constraint c be of the form a1∧. . .∧al and the constraint e∧dα be of the form b1∧. . .∧bm,
where a1, . . . , al and b1, . . . , bm are atomic constraints. Since, by hypothesis, Vars(c) ⊆ X ∪ Z
and Vars(e∧dα) ⊆ X∪Y ∪Z, we get that for all j ∈ {1, . . . , m} either there exists i ∈ {1, . . . , l}
such that Q |= ∀X ∀Y (ai ↔ bjβ) or Q |= ∀X ∀Z (c → bjβ), and for all i ∈ {1, . . . , l} there exists
j ∈ {1, . . . , m} such that Q |= ∀X ∀Y (ai ↔ bjβ), which entails that Q |= ∀ (c ↔ (e∧ dαβ)). By
definition, Z = Vars(Bα) and, by the fact that 〈c ↔ e ∧ dα, ∅, ∅〉(β) holds, Zβ = Z. Therefore,
Condition (b.2) holds. Finally, we have that Vars(Kαβ)rat ∩ Vars(R) = ∅. By Theorem A.4,
we have that Varstree(Kα) ⊆ Vars(H) and, by the definition of β, Varstree(Kαβ) ⊆ Vars(H).
Since δ′ is in normal form, Varsrat(Kα) ∩ Varsrat(Bα) = ∅. Since Condition (b.2) holds, we
have that Varsrat(Kαβ) ∩ Varsrat(Bαβ) = ∅. Finally, since γ′ is in normal form, Vars(c) ⊆
Vars({H, Bα∧R}), Varsrat(Kαβ) ⊆ Vars(H), and, thus, Condition (b.3) holds. Therefore, we
get the thesis.

(c) Let us consider a constraint e and a substitution β such that Conditions (c.1)–(c.4) hold.
In the following by γ′′ we will denote the clause H ← e ∧ dαβ ∧Bα ∧R.

Let us assume that c is an unsatisfiable constraint. Since the clause δ′ is in normal form, by
Condition (c.3) we have that Vars(dα) ⊆ Vars(Kα)∪Vars(Bα) and by Condition (c.4) we have
that clause γ′′ has no constraint-local variables. Since the clause γ′ is in normal form, we have
also that clause γ′′ is in normal form. Thus, by Lemma A.5, we have that Condition (c.1) entails
Q |= ∀ (c ↔ e∧dαβ). Since c is unsatisfiable, the output of CM is an unsatisfiable constraint e′

such that Vars(e′) ⊆ Vars({H, R}) and a substitution β′ of the form {U1/a1, . . . , Us/as}, where
{U1, . . . , Us} = Varsrat(Kα) and a1, . . . , as are arbitrary terms of type rat such that, for
i = 1, . . . , s, Vars(ai) ⊆ Vars(H). As a consequence, we have that Q |= ∀ (c ↔ e′ ∧ dαβ′) and,
by transitivity, Q |= ∀ (e ∧ dαβ ↔ e′ ∧ dαβ′). In order to show that β′ ≡ β|Varsrat(Kα), we will
show that Conditions (i)–(iii) of Definition A.9 hold. Condition (i) holds because of the definition
of β′. Finally, Conditions (ii) and (iii) hold because, by Condition (c.4), Vars(Kαβ) ⊆ Vars(H)
and β′ is any substitution such that Vars(Kαβ′) ⊆ Vars(H). Thus, we get the thesis.

Now let us assume that c is a satisfiable, admissible constraint. We want to show that there
exists a substitution β′ and a constraint e′ that are the output of CM such that Q |= ∀(e′ ∧
dαβ′ ↔ e ∧ dαβ) and β′ ≡ β|Varsrat(Kα). Since c is satisfiable, the procedure CM begins by
defining the set X as Vars(c) − Vars(Bα), the set Y as Vars(dα) − Vars(Bα), the set Z as
Varsrat(Bα), and e′ as the constraint project(c, X). By following the same considerations given
in Part (b) of this proof, we have that the constraint c, the sets X, Y , and Z, the goal R, and the
atom H satisfy the assumptions made in Definitions A.10 and A.11, and in Lemma A.12. After
defining the sets X, Y , and Z, and the constraint e′ the triple 〈c ↔ e′ ∧ dα, ∅, ∅〉 is rewritten
by using the rewriting relation =⇒ defined in the procedure CM. By Part (a) of this proof,
we know that the procedure CM terminates. First, we prove that 〈c ↔ e′ ∧ dα, ∅, ∅〉 is a CM-
redex, that is, it satisfies Conditions (i)–(vi) of Definition A.10. By the hypothesis that c is a
constraint and by definition of X and Z, we have that Condition (i) holds. By construction, e′

is a constraint such that Vars(e′) ⊆ X. By hypothesis, dα is a constraint and, by definition of Y
and Z, Vars(dα) ⊆ Y ∪ Z. Therefore, Condition (ii) holds. Conditions (iii)–(vi) hold trivially.
Let the substitution β|Varsrat(Kα) be of the form {Y1/s1, . . . , Yh/sh}. By assumption, the clauses
γ and δ have no common variables. Therefore, Vars(γ′) ∩ Vars(δ′) = Vars(Bα) and, since δ′ is
in normal form, Varsrat(Bα)∩Varsrat(Kα) = ∅, which entails Varsrat(Kα)∩Varsrat(H) = ∅.
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By Condition (c.3), Vars(Kαβ) ⊆ Vars(H) and, thus, Varsrat(Kα) = {Y1, . . . , Yh}. Since δ′

is in normal form, Y ⊆ Varsrat(Kα) and, therefore, Y ⊆ {Y1, . . . , Yh}. By Condition (c.2),
Bαβ = Bα, which entails {Y1, . . . , Yh} ∩ Z = ∅. By our previous observations and by the
definition of the set X, Varsrat(Kα)∩X = ∅ and, thus, {Y1, . . . , Yh} ∩X = ∅. Moreover, since,
by Condition (c.3), Vars(Kαβ) ⊆ Vars(H) and we have proved {Y1, . . . , Yh} = Varsrat(Kα),
we get that, for i = 1, . . . , h, Vars(si) ⊆ Vars(H). Finally, since γ′ is in normal form, we
have that Varsrat(H) ∩ Varsrat(R) = ∅ and, thus, for i = 1, . . . , h, Vars(si) ∩ Vars(R) = ∅.
Now we prove that 〈c ↔ e′ ∧ dα, ∅, ∅〉(β|Varsrat(Kα)) holds, that is, there exists a substitution
τ such that Conditions (a)–(d) of Definition A.11 hold. Let τ be the identity substitution.
Since the second element of the CM-redex 〈c ↔ e′ ∧ dα, ∅, ∅〉 is the empty set, Conditions (a)
and (b) hold. By using arguments similar to the ones for the case where c is unsatisfiable,
at Point (c) of this proof, we have that γ′′ is in normal form. Therefore, by Condition (c.1),
Q |= ∀ (c ↔ e′∧dαβ). Let the constraint c be the conjunction a1∧ . . .∧am and let the constraint
e′ ∧ dαβ be the conjunction b1 ∧ . . .∧ bn, where a1, . . . , am and b1, . . . , bn are atomic constraints.
Since c is admissible, by Lemma 4.2, there exists an injection µ : {1, . . . ,m} → {1, . . . , n} such
that for i = 1, . . . ,m, Q |= ∀ (ai ↔ bµ(i)) and for j = 1, . . . , n, if j 6∈ {µ(i) | 1 ≤ i ≤m}, then
Q |= ∀ (a → bj). Since µ is an injective function, we get that Condition (c) holds. Finally, since
the third component of the CM-redex 〈c ↔ e′ ∧ dα, ∅, ∅〉 is the empty set, and τ is the identity
substitution, we get also that Condition (d) holds. Therefore, 〈c ↔ e′ ∧ dα, ∅, ∅〉(β|Varsrat(Kα))
holds. By Lemma A.12 and by the termination of CM, we have that 〈c ↔ e′ ∧ dα, ∅, ∅〉 =⇒∗

〈true ↔ true, C, σY 〉 and Conditions (a.i)–(a.iv) of Lemma A.12 hold for the CM-redex 〈true ↔
true, C, σY 〉 and the substitution β|Varsrat(Kα). Now we show that the procedure CM does
not return fail, that is, Conditions (c2) and (c3) of the procedure CM hold for the CM-redex
〈true ↔ true, C, σY 〉. In particular, Conditions (c2) holds because, by Condition (a.iii) of
Lemma A.12, Vars(C) ∩ (X ∪ Y ∪ Z) = ∅ and, since 〈true ↔ true, C, σY 〉 is a CM-redex,
the elements of the set C are linear constraints. Moreover, Condition (c3) holds because, by
Condition (a.iii) of Lemma A.12, the set C of atomic constraints is satisfiable. Let solve(S) be
σW . Then the output of the procedure CM is a substitution β′ = (σY σW )|Y σG, where σG is a
substitution of the form {U1/a1, . . . , Us/as}, {U1, . . . , Us}= Varsrat(K ′σY σW )−Vars(H), and
a1,. . . , as are arbitrary terms of type rat such that, for i = 1, . . . , s, Vars(si) ⊆ Vars(H). By
Point (b.1) of Theorem A.13, which we proved above, since e′ and β′ are an output of CM, we
have that γ′ ∼= H ← e′ ∧ dαβ′ ∧Bα∧R. Clause H ← e′ ∧ dαβ′ ∧Bα∧R has no constraint-local
variables because Vars(e′ ∧ dαβ′)−Vars({H,Bα ∧R}) = ∅ and, thus, it is in normal form. As
a consequence, by Lemma A.5, Q |= ∀ (c ↔ e′ ∧ dαβ′). By Conditions (c.1)–(c.4) and recalling
that also γ′′ is in normal form, we also have that Q |= ∀ (c ↔ e∧dαβ). Therefore, by transitivity,
Q |= ∀ (e′∧dαβ′ ↔ e∧dαβ). By Lemma A.12, we have that (σY σW )|Y β ≡ β. As a consequence,
since by definition of σG, for every variable V in {U1, . . . , Us}=Varsrat(K ′σY σW )−Vars(H) the
corresponding term V σG is any term of type rat such that Vars(V σG) ⊆ Vars(H), and since
Vars(Kαβ) ⊆ Vars(H), we have also β′ ≡ β|Varsrat(Kα) and we get the thesis.

A.3. Termination, Soundness and Completeness of the Folding Algorithm

At this point we are ready to show the termination, the soundness, and the completeness of the
algorithm FA.

Proof of Theorem 4.4 (Termination, Soundness, and Completeness of FA).
Let us assume that γ : H ← c ∧ G and δ : K ← d ∧ B are clauses in normal form, without
variables in common, and that they are the input of the algorithm FA.
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(1) By Point (a) of Theorem A.4, given a GM-redex D0 and the rewriting relation =⇒ defined
in the procedure GM, every sequence D0 =⇒ D1 =⇒ . . . is finite and, for every GM-redex D,
there are finitely many GM-redexes E1, . . . , En such that, for i = 1, . . . , n, D =⇒ Ei. Therefore,
the number of possible outputs of GM that are different from fail is finite. Now let α and R
be an output of GM. By Point (b) of Theorem A.4, the clauses γ′ : H ← c ∧ Bα ∧ R and
δ′ : Kα ← dα ∧ Bα are in normal form. Therefore, by Point (a) of Theorem A.13, given
a CM-redex D0 and the rewriting relation =⇒ defined in the procedure CM, every sequence
D0 =⇒ D1 =⇒ . . . is finite and, for every CM-redex D, there are finitely many CM-redexes
E1, . . . , En such that, for i = 1, . . . , n, D =⇒ Ei. Now, assume that CM returns fail. In this
case the algorithm FA takes a different output α and R of GM and executes the procedure CM
with the corresponding new input γ′ and δ′. Since the number of possible outputs of GM that
are different from fail is finite, we get that the algorithm FA terminates.

(2) Let the clause η : H ← e ∧ Kαβ ∧ R be the output of the algorithm FA, where the
substitution α and the goal R are computed by GM, and the constraint e and substitution β are
computed by CM. We want to show that clause η can be derived by folding γ using δ according
to Definition 3.1. In order to do so, we need to show that Conditions (1)–(3) of Definition 3.1
hold for the constraint e, the substitution ϑ = αβ, and the goal R. By Theorem A.4, we have
G =AC Bα ∧ R which, by the definition of ∼=, implies that H ← c ∧ G ∼= H ← c ∧ Bα ∧ R.
By Theorem A.4, we have also that H ← c ∧ Bα ∧ R and δα are clauses in normal form.
Moreover, by Theorem A.13, we have H ← c ∧ Bα ∧ R ∼= H ← e ∧ dαβ ∧ Bα ∧ R. Since
by Theorem A.13 we also have that Bαβ = Bα, by transitivity of the equivalence relation
∼= we conclude that γ ∼= H ← e ∧ dαβ ∧ Bαβ ∧ R. As a consequence, Condition (1) holds,
with ϑ = αβ. Let us now consider a variable X ∈ EVars(δ). The substitution α satisfies
Point (b.2) of Theorem A.4. Since Bαβ = Bα, we have that Xαβ = Xα, that is, Xαβ is a
variable. Moreover, since Xα /∈ Vars({H, R}) and, by Theorem A.13, Vars(e) ⊆ Vars({H,R}),
we have that Xαβ /∈ Vars({H, e,R}). Therefore Condition (2.1) of Definition 3.1 holds. Recall
that if X ∈ EVars(δ) then Condition (b.2.2) of Theorem A.4 holds for the variable Xα. Let
Y be a variable in Vars(d ∧ B) different from X. If Y ∈ EVars(δ) then Y αβ = Y α and,
by Theorem A.4, Xαβ does not occur in Y αβ. If Y /∈ EVars(δ) then Y ∈ Vars(K) and,
by Theorem A.13, Vars(Kαβ) ⊆ Vars(H). Since Xαβ is a variable that does not occur in
Vars({H, e, R}), we have that it does not occur in Y αβ. As a consequence, Condition (2.2) of
Definition 3.1 holds. Finally, since Vars(Kαβ) ⊆ Vars(H), also Condition (3) of Definition 3.1
holds.

(3) Let us assume that it is possible to fold the clause γ using the clause δ according to
Definition 3.1. That is, there exist a constraint e, a substitution ϑ, and a goal R such that
Conditions (1)–(3) of Definition 3.1 are satisfied. Without loss of generality, we may assume
that Vars(e) ⊆ Vars({H, dϑ ∧ Bϑ ∧ R}), because, in the case where e has some variables not
in Vars({H, dϑ ∧ Bϑ ∧ R}), we can obtain a clause equivalent to γ by eliminating the extra
variables using the function project . Now we want to show that, since Conditions (1)–(3) of
Definition 3.1 are satisfied, the clause γ′′ : H ← e ∧ dϑ ∧ Bϑ ∧ R is in normal form. First,
we show that Vars(e) ∩Vars(Bϑ) = ∅. This is entailed by the following facts: Varsrat(B) ⊆
EVars(δ), by the hypothesis that δ is in normal form, and, by Condition (2) of Definition 3.1,
if X ∈Varsrat(B) then Xϑ is a variable and it does not occur in e. Next, since δ is in normal
form, we have Vars(dϑ) ⊆ Vars(Kϑ) ∪ Vars(Bϑ) and, thus, Vars(dϑ) ⊆ Vars(H) ∪ Vars(Bϑ).
By these observations, H ← e∧dϑ∧Bϑ∧R has no constraint-local variables. By Condition (2)
of Definition 3.1 we also have that Varsrat(H) ∩ Varsrat(Bϑ ∧ R) = ∅, every term of type
rat in Bϑ ∧ R is a variable, and each variable of type rat occurs at most once in Bϑ ∧ R.
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Therefore, γ′′ is in normal form. In the following we will denote the set Vars(B) ∪Varstree(K)
of variables by V . Let us define the substitution α as ϑ|V , then we have G =AC Bα ∧R. That
is, Condition (c.1) of Theorem A.4 holds. Let us consider a variable X∈EVars(δ). By definition
of α, Condition (c.2.1) of Theorem A.4 holds. Consider, now, a variable Y ∈Vars(d ∧ B) such
that Y is different from X. If Y ∈V then by Condition (1) of Definition 3.1 we have that Xα
does not occur in Y α. If Y /∈ V then Y α = Y and, since Xα ∈ Vars(G) and γ and δ have no
variables in common, Xα does not occur in Y α. Therefore, Condition (c.2.2) of Theorem A.4
holds. Finally, by Condition (3) of Definition 3.1, we have Vars(Kϑ) ⊆ Vars(H) and thus,
Varstree(Kα) ⊆ Vars(H). Therefore, Condition (c.3) of Theorem A.4 holds. As a consequence,
by Theorem A.4, the output of GM is a substitution α′ such that α′= α|V , and the goal R. By
Theorem A.4, we have also that the clauses γ′ : H ← c ∧Bα′ ∧R and δ′ : Kα′ ← dα′ ∧Bα′ are
in normal form.

Now let γ′ and δ′ be the input clauses of CM. Since G =AC Bα′∧R, we have that H ← c∧G ∼=
H ← c∧Bα′∧R. Therefore, by Condition (1) of Definition 3.1 and by transitivity of ∼=, we have
H ← c ∧Bα′ ∧R ∼= H ← e ∧ dϑ ∧Bϑ ∧R. Let us define β to be the substitution {X/s | X/s∈
ϑ, X/s /∈α}, where α is the substitution introduced above in this proof. Clearly, ϑ = α∪β and,
by definition of α and by Condition (2) of Definition 3.1, we have also ϑ = αβ. Since α and α′

differ only for the variables in Varstree(K), we have H ← c∧Bα′∧R ∼= H ← e∧dα′β∧Bα′β∧R.
As a consequence, Condition (c.1) of Theorem A.13 holds. By definition of ∼= and β, we have
Bα′β = Bα′, and Condition (c.2) of Theorem A.13 holds. Condition (3) of Definition 3.1, the
properties of α′, and the definition of β entail that Condition (c.3) of Theorem A.13 holds. By
hypothesis, we have that Vars(e) ⊆ Vars({H, dϑ ∧ Bϑ ∧ R}). Recalling that δ is in normal
form, we have that Vars(d) ⊆ Vars({K,B}) and, thus, Vars(dϑ) ⊆ Vars({Kϑ, Bϑ}). Hence,
we also get Vars(e) ⊆ Vars({H, Kϑ,R}). Since, by Condition (3) of Definition 3.1, we have
Vars(Kϑ) ⊆ Vars(H), we get that Condition (c.4) of Theorem A.13 holds. Therefore, by
Theorem A.13, CM does not return fail and we get the thesis. 2
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