
ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA

CONSIGLIO NAZIONALE DELLE RICERCHE

A. Pettorossi, M. Proietti

TOTALLY CORRECT

LOGIC PROGRAM TRANSFORMATIONS

VIA WELL-FOUNDED ANNOTATIONS

R. 639 Febbraio 2006

Alberto Pettorossi – Dipartimento di Informatica, Sistemi e Produzione, Università di Roma
Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy, and Istituto di Analisi dei Sistemi
ed Informatica del CNR, Viale Manzoni 30, I-00185 Roma, Italy.
Email : pettorossi@info.uniroma2.it. URL : http://www.iasi.cnr.it/̃ adp.

Maurizio Proietti – Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni
30, I-00185 Roma, Italy. Email : proietti@iasi.rm.cnr.it.
URL : http://www.iasi.rm.cnr.it/̃ proietti.

This paper is a revised, extended version of: A. Pettorossi and M. Proietti. A Theory of Totally Correct
Logic Program Transformations. In: Proceedings of the ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, August 24–25, 2004, Verona, Italy, ACM Press, 2004,
pp. 159–168.

ISSN: 1128–3378

Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica, CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.rm.cnr.it
URL: http://www.iasi.rm.cnr.it

Abstract

We address the problem of proving the total correctness of transformations of definite logic
programs. We consider a general transformation rule, called clause replacement, which consists
in transforming a program P into a new program Q by replacing a set Γ1 of clauses occurring
in P by a new set Γ2 of clauses, provided that Γ1 and Γ2 are equivalent in the least Herbrand
model M(P) of the program P .

We propose a general method for proving that transformations based on clause replacement are
totally correct, that is, M(P) = M(Q). Our method consists in showing that the transformation
of P into Q can be performed by: (i) adding extra arguments to predicates, thereby deriving from
the given program P an annotated program P , (ii) applying a variant of the clause replacement
rule and transforming the annotated program P into a terminating annotated program Q, and
(iii) erasing the annotations from Q, thereby getting Q.

Our method does not require that either P or Q are terminating and it is parametric with
respect to the annotations. By providing different annotations we can easily prove the total
correctness of program transformations based on various versions of the popular unfolding,
folding, and goal replacement rules, which can all be viewed as particular cases of our clause
replacement rule.

Key words: Program transformation rules, logic programming, partial and total correctness,
well-founded orderings.

3.

1. Introduction

Program transformation rules can be viewed as conditional rewritings of programs. Indeed, the
transformation of a given program P into a new program Q can be performed by using various
rules, each of which rewrites a fragment of the program P into a new fragment, provided that
these two fragments are equivalent with respect to a given semantics (see, for instance, [19]). In
this paper we consider definite logic programs and, in order to transform them, we introduce a
general transformation rule, called clause replacement, which is a conditional rewriting of the
following form: a set Γ1 of clauses of a program P is rewritten into a new set Γ2 of clauses,
provided that a suitable equivalence between Γ1 and Γ2 holds in the least Herbrand model of
the program P . This model is denoted by M(P). Most transformation rules proposed in the
literature, including the popular unfolding, folding, and goal replacement rules [7, 28], can be
viewed as particular cases of this clause replacement rule.

Much work has been devoted to the study of the correctness of program transformations of
definite programs (see, for instance, [4, 8, 11, 13, 16, 24, 28, 29]). Two correctness properties
have been considered: partial correctness and total correctness. A transformation of a program
P into a program Q is said to be partially correct iff M(P) ⊇ M(Q), and it is said to be totally
correct iff M(P) = M(Q).

In Section 2 we will show that any transformation from an initial program P to a final
program Q performed by applying the clause replacement rule is partially correct. However,
this transformation may not be totally correct, that is, M(P) ⊆ M(Q) may not hold. We will
illustrate this fact in Example 1 below, where we consider the goal replacement rule which, as
already mentioned, is a particular instance of the clause replacement rule. (Other, more realistic
applications of the goal replacement rule will be presented in Example 9 and Section 6.) The
goal replacement rule can be defined as follows. A clause H ← GL ∧G1 ∧GR of a program P is
replaced by a new clause H ← GL ∧G2 ∧GR, provided that the following equivalence holds in
the least Herbrand model of P : M(P) |= ∀X (∃Y1 G1 ↔ ∃Y2 G2), where X is the set of variables
occurring in {H, GL, GR} and, for i = 1, 2, Yi is the set of variables occurring in the goal Gi and
not in X. A totally correct variant of the goal replacement rule will be introduced in Section 4.

Example 1. (i) Let us consider the transformation of P into Q, where P and Q are programs
defined as follows:
P : p(f(X)) ← q(X) Q: p(f(X)) ← q(X)

q(a) ← q(a) ←
q(X) ← p(f(X)) q(X) ← q(X)

This transformation is a legal application of the goal replacement rule defined above, because
M(P) |= ∀X (p(f(X)) ↔ q(X)). The transformation of P into Q is totally correct, because
M(P) = {p(f(a)), q(a)} = M(Q).

(ii) Since equivalence is symmetric, also the replacement of q(X) by p(f(X)) in the body of
the first clause of P is a legal application of the goal replacement rule. However, this goal
replacement determines a transformation which is not totally correct. Indeed, if we replace
q(X) by p(f(X)) in the first clause of P , we get the following program:

R: p(f(X)) ← p(f(X))
q(a) ←
q(X) ← p(f(X))

and we have that M(P) = {p(f(a)), q(a)} ⊃ {q(a)} = M(R). 2

4.

Since the pioneering work by Tamaki and Sato [28], various authors have proposed suitable
extra conditions which guarantee the total correctness of transformations determined by appli-
cations of the unfolding, folding, and goal replacement rules [4, 8, 11, 13, 16, 24, 28, 29]. The es-
sential idea presented by Tamaki and Sato in [28] is that the replacement of G1 by G2 determines
a totally correct transformation if, in addition to the condition M(P) |= ∀X (∃Y1 G1 ↔ ∃Y2 G2),
we have that, for every ground substitution σ for the variables in X, if there exist a ground
substitution ϑ1 for the variables in Y1 and a proof π1 of G1σϑ1 in P , then there exist a ground
substitution ϑ2 for the variables in Y2 and a proof π2 of G2σϑ2 in P , such that the measure of
π2 is not larger than the measure of π1. Here, by measure of a proof we mean the number of
nodes of the proof when it is represented as an and-tree of atoms (the measure defined in [28] is
slightly more general, but that generality is not required here).

For instance, let us consider the program P of Example 1 and the equivalence M(P) |=
∀X (p(f(X)) ↔ q(X)). The only provable ground instances of p(f(X)) and q(X) are p(f(a))
and q(a), respectively. We have that every proof of p(f(a)) in P has measure greater than or
equal to 2, whereas there exists a proof of q(a) in P which has measure 1. Thus, the replacement
of p(f(X)) by q(X) satisfies the condition by Tamaki and Sato (and, indeed, this transformation
is totally correct), while the replacement of q(X) by p(f(X)) does not satisfy that condition
(and, indeed, this transformation is not totally correct). More sophisticated proof measures are
defined in [24, 29]. However, in [24, 29] and also in [28] one cannot find any general methodology
for comparing proof measures and checking the conditions which ensure the total correctness of
the transformations based on goal replacements.

The main contribution of this paper is a method for proving the total correctness of the
transformations based on the clause replacement rule and, as a consequence, the total correctness
of the transformations based on the unfolding, folding, and goal replacement rules. By our
method we can express the conditions which ensure total correctness by first order formulas
that can be checked by using standard theorem proving techniques.

Let us briefly describe our method in the particular case of the goal replacement rule presented
above. Suppose that program P is transformed into program Q by replacing goal G1 in the
clause H ← GL ∧ G1 ∧ GR of P by the new goal G2. In order to show the partial correctness
of this transformation, that is, in order to show that M(P) ⊇ M(Q), it suffices to prove that
M(P) |= ∀X (∃Y1 G1 ← ∃Y2 G2) (and, thus, M(P) |= ∀X ∀Y1 (H ← GL ∧ G1 ∧ GR) →
∀X ∀Y2 (H ← GL ∧G2 ∧GR)).

In order to show also the reverse inclusion M(P) ⊆ M(Q), and thus, the total correctness
of the replacement of G1 by G2, we will use the unique fixpoint principle (see [9] for a short
presentation in the case of recursive equation programs) and our new proof method based on
program annotations. In our context, the unique fixpoint principle can be formulated as follows:
if M(P) |= ∀X (∃Y1 G1 → ∃Y2 G2) and the immediate consequence operator TQ [1, 15] associated
with the derived program Q has a unique fixpoint, then M(P) ⊆ M(Q). Now, a sufficient (but
not necessary) condition ensuring that TQ has a unique fixpoint is that Q is terminating, that
is, every SLD-derivation starting from a ground goal is finite [3].

However, the condition that the operator TQ has a unique fixpoint, is too restrictive in practice,
because it is often the case that for a logic program Q, TQ does not have a unique fixpoint. For
instance, the operator TQ associated with the non-terminating program Q of Example 1(i) has
infinitely many fixpoints, each of which is of the form:

{p(f(a)), . . . , p(fn+1(a)), q(a), . . . , q(fn(a))} for some n≥0.

Thus, the unique fixpoint principle alone is not sufficient to prove the total correctness of the

5.

transformation presented in Example 1(i). A more realistic example of non-terminating program
whose immediate consequence operator has more than one fixpoint, is the reachability program
of Example 9 below.

We will overcome these limitations by introducing program annotations as we now explain by
looking at the transformation of program P into program Q presented in Example 1(i). Program
Q can be derived from program P by performing the following three steps.

(Step 1) From program P we derive the following annotated program:

P : 1. p(f(X))〈M〉 ← M >N ∧ q(X)〈N〉
2. q(a)〈M〉 ←
3. q(X)〈M〉 ← M >N ∧ p(f(X))〈N〉

where: (i) M and N are distinct annotation variables ranging over the set N of natural numbers,
(ii) > denotes the usual greater-than well-founded ordering on N, and (iii) M >N is an annotation
formula. The annotation variables should be considered as extra arguments of the annotated
atoms. For instance, the annotated atom q(X)〈N〉 should be considered identical to the atom
q(X, N). Thus, by considering the annotation formulas as constraints, the annotated program
P is a constraint logic program for which we can define a least N-model, denoted by M(P)
(see [12]).

The following property holds for M(P) and M(P):

(Property 1) For every ground atom A ∈ M(P) there exists n ∈ N such that A〈n〉 ∈ M(P).

Since the least D-model of a constraint logic program, for any constraint domain D, is also a
model of the completion of the program, which is obtained by replacing sets of clauses by if-and-
only-if definitions [1, 12, 15], we have the following property which is derived from clause 1:

(Property 2) M(P) |= ∀N (p(f(X))〈N〉 ↔ ∃K (N >K ∧ q(X)〈K〉))
(Step 2) By replacing p(f(X))〈N〉 by N >K ∧ q(X)〈K〉 in the body of clause 3 in program P ,
we derive the following clause:

4. q(X)〈M〉 ← M >N ∧N >K ∧ q(X)〈K〉
Let Q be the annotated program consisting of clauses 1, 2, and 4. We have the following
property:

(Property 3) Every annotated clause of the form H〈M〉 ← c(M, N) ∧ A〈N〉 in Q is decreasing
(with respect to >), that is, the implication ∀M ∀N (c(M, N) → M >N) holds. (In particular,
clause 4 is decreasing because ∀M ∀N ∀K (M >N ∧N >K → M >K) holds.)

(Step 3) Finally, we get program Q by erasing all annotation variables and annotation formulas
from program Q. We have the following property:

(Property 4) For every ground atom A, if there exists n ∈ N such that A〈n〉 ∈ M(Q), then
A ∈ M(Q).

Let us present a few remarks on Properties 1–4. Property 1 says that the annotations added
to program P do not restrict its least Herbrand model. In Section 3 we will provide condi-
tions on annotations which guarantee that this property holds in general (see Definition 8 and
Proposition 3.3). Property 2 is of the form: M(P) |= ∀X (∃Y1 G1 ↔ ∃Y2 G2), where G1 and G2

are goals containing annotation variables and annotation formulas. However, only the only-if
part M(P) |= ∀X (∃Y1 G1 → ∃Y2 G2) is used to prove the reverse inclusion M(P) ⊆ M(Q).
Property 3 ensures that program Q terminates according to the following notion of termination,

6.

which is weaker than the notion considered in [3]: every SLD-derivation starting from a ground
goal and constructed using the left-to-right atom selection rule is finite. (Indeed, the left-to-right
atom selection rule ensures that annotation formulas are selected first.) This weaker termina-
tion notion, which is also called left-termination, is sufficient to guarantee that TQ has a unique
fixpoint [2]. In the sequel we need not distinguish between termination in the sense of [3], and
left-termination, because these notions will not be used in the technical results we will derive.
In particular, in Section 3 we will make a direct proof that the fixpoint of TQ is unique by using
the hypothesis that Q is decreasing. Finally, Property 4 is the converse of Property 1, where P
is replaced by Q, and holds in general for every program Q and annotated program Q, as shown
in Proposition 3.2 of Section 3.

Now, let us explain why the above Properties 1–4 ensure that M(P) ⊆ M(Q). Let us take
A ∈ M(P). By Property 1 there exists n ∈ N such that A〈n〉 ∈ M(P). By Properties 2 and 3,
and by the unique fixpoint principle, we have that M(P) ⊆ M(Q) and, therefore, A〈n〉 ∈ M(Q).
Finally, by Property 4, we conclude that A ∈ M(Q).

We would like to stress that we have applied our method for proving the total correctness of
the transformation of program P into program Q, where neither P nor Q is terminating.

Our method based on program annotations can be used not only to prove that a given transfor-
mation is totally correct, but also to prevent incorrect transformations. Indeed, we can rule out
incorrect transformations by requiring that the annotated clauses which are derived by program
transformation, are decreasing with respect to a suitable well-founded ordering. Let us consider,
for instance, the replacement of M >N ∧q(X)〈N〉 by p(f(X))〈M〉 in the body of the first clause
of P . By Property 2 above, this is a legal goal replacement, but the corresponding program
transformation is not totally correct. Now, by applying this goal replacement, we would get the
following annotated clause:

p(f(X))〈M〉 ← p(f(X))〈M〉
which is not decreasing and, thus, Property 3 does not hold. Thus, if we restrict ourselves to
transformations that produce decreasing annotated clauses, then the incorrect replacement of
M >N ∧ q(X)〈N〉 by p(f(X))〈M〉 is ruled out.

The paper is structured as follows. In Section 2 we introduce the clause replacement trans-
formation rule, which generalizes the unfolding, folding, and goal replacement rules. We prove
the partial correctness of the transformations based on the clause replacement rule and we also
give a sufficient condition for their total correctness based on the unique fixpoint principle. In
Section 3 we introduce program annotations and, in particular, well-founded annotations, that
is, annotations which produce decreasing programs. Then we prove a sufficient condition based
on well-founded annotations that ensures the total correctness of the transformations based on
the clause replacement rule. This condition is the basis of the method we propose in this paper
for proving the total correctness of program transformations. In Section 4 we present variants
of the unfolding, folding, and goal replacement rules for annotated programs and we use the
results of Section 3 for showing that the transformations based on these rules are totally correct.
In Section 5 we present a technique for proving program properties, such as implications and
equivalences between goals, by means of the unfolding, folding, and goal replacement rules for
annotated programs. In Section 6 we present an extended example of application of our method
for proving the total correctness of program transformations when they are based on the un-
folding, folding, and goal replacement rules. Finally, in Section 7 we compare our method with
other related techniques published in the literature.

7.

2. Clause Replacement

In this section we will introduce the clause replacement transformation rule for definite logic pro-
grams. All usual program transformation rules, such as unfolding, folding, and goal replacement,
are instances of this clause replacement rule. Indeed, we will prove that clause replacement is
the most general program transformation rule, in the sense that every totally correct program
transformation can be obtained by applying this rule (see Theorem 2.3). Then we will extend
to the transformations based on clause replacements some correctness results which have been
established for the transformations based on the unfolding, folding, and goal replacements (see,
for instance, [4, 8, 11, 13, 16, 24, 28, 29]. In particular, (i) we will prove the partial correctness
of the program transformations based on clause replacements (see Theorem 2.4), and (ii) we will
give a sufficient condition for the total correctness of these transformations. This condition is
based on the uniqueness of the fixpoint of the immediate consequence operator of the program
derived by the transformation (see Corollary 2.7 below).

In what follows, unless otherwise stated, we will adopt the standard notions and terminology
which are used in logic programming [1, 15]. However, unlike [1, 15], a clause is denoted by
A ← A1 ∧ . . . ∧ An, with n ≥ 0 (instead of A ← A1, . . . , An) and a goal is defined to be a
conjunction of atoms (instead of the negation of a conjunction of atoms). The empty conjunction
is identified with true and a clause of the form A← true is also written as A←. The empty
disjunction is identified with false. The set of variables occurring in a term t is denoted by
vars(t). A similar notation is also used for the set of variables occurring in a formula or in a set
of formulas. Given a clause C of the form A ← G, the head A of C is denoted by hd(C) and
the body G of C is denoted by bd(C). Given a predicate p and a clause C with predicate p in
its head, C is said to be a clause for p.

Let us briefly summarize the fixpoint semantics of definite logic programs. Recall that an
Herbrand interpretation I is a set of ground atoms. For a ground atom A, we write I |= A iff
A ∈ I. For a first order formula ϕ the satisfaction relation I |= ϕ is defined as usual in first
order logic by induction on the structure of ϕ. The immediate consequence operator associated
with a program P is a function TP from Herbrand interpretations to Herbrand interpretations,
defined as follows:

TP (I) = {A | there exists a ground instance A ← G of a clause in P such that I |= G}
TP is a continuous function on the complete lattice of Herbrand interpretations ordered by set
inclusion. Thus, TP has a least fixpoint, denoted by lfp(TP), and a greatest fixpoint, denoted
by gfp(TP). We have that lfp(TP) is also the least prefixpoint of TP , that is, the least Herbrand
interpretation I such that TP (I) ⊆ I. Similarly, gfp(TP) is also the greatest postfixpoint of TP ,
that is, the greatest Herbrand interpretation I such that TP (I) ⊇ I. Since TP is continuous,
lfp(TP) is the least upper bound of the chain {Tn

P (∅) | n ∈ N}. Moreover, lfp(TP) is the least
Herbrand model of P , that is, the least Herbrand interpretation I such that I |= P . lfp(TP) is
also denoted by M(P).

We assume that in every Herbrand interpretation I, the equality predicate, denoted =, is
interpreted as the identity relation over ground terms, that is, for any two ground terms t1 and
t2, we have that I |= t1 = t2 (or, equivalently, t1 = t2 ∈ I) iff t1 is syntactically identical to t2.

Before giving the formal definition of the clause replacement rule, let us introduce that rule
by means of a simple example. Let us consider the following EvenOdd program:

8.

EvenOdd :
1. p(X) ← even(X) 5. odd(s(0)) ←
2. p(X) ← odd(X) 6. odd(s(s(X))) ← odd(X)
3. even(0) ← 7. nat(0) ←
4. even(s(s(X))) ← even(X) 8. nat(s(X)) ← nat(X)
We have that the conjunction of clauses 1 and 2 is logically equivalent to p(X) ← even(X) ∨
odd(X), and the following equivalence holds in the least Herbrand model of EvenOdd:

M(EvenOdd) |= ∀X ((even(X) ∨ odd(X)) ↔ nat(X))
The clause replacement rule allows us to derive a new program by replacing clauses 1 and 2 by
the following clause:

9. p(X) ← nat(X)
In order to define the clause replacement rule in a formal way (see Definition 4 below) we need
some auxiliary notions. First, in Definition 1 below we define the if-form of a set Γ of clauses
for a predicate p, as a formula of the form p(. . .) ← ϕ, where ϕ is a disjunction of existentially
quantified conjunctions of atoms. For instance, in the EvenOdd example, the if-form of the set
consisting of clauses 1 and 2 is p(X) ← even(X) ∨ odd(X). Then, in Definition 2 we define
the notions of implication (⇒), reverse implication (⇐), and equivalence (⇔) between sets
of clauses, based on implication, reverse implication, and equivalence between the premises of
their if-forms. For instance, in the EvenOdd example, we have that M(EvenOdd) |= {clause 1,
clause 2} ⇔ {clause 9}.

Definition 1 (if-form) Let p be a predicate symbol of arity j (≥ 0) and let Γ be a set of
n (≥0) clauses for p. The if-form of Γ, denoted by if (Γ), is a formula constructed as specified
by the following three steps, where X1, . . . , Xj are distinct variables not occurring in Γ.
(Step 1 : Introduce equalities) Transform each clause p(t1, . . . , tj) ← A1 ∧ . . . ∧Ak of Γ into

p(X1, . . . , Xj) ← X1 = t1 ∧ . . . ∧Xj = tj ∧A1 ∧ . . . ∧Ak

(Step 2 : Introduce existential quantifiers) Transform each formula p(X1, . . . , Xj) ← F derived
at the end of Step 1 into

p(X1, . . . , Xj) ← ∃Y1 . . .∃Ym F

where {Y1, . . . , Ym} = vars(F)− {X1, . . . , Xj}.
(Step 3 : Introduce disjunctions) Let

p(X1, . . . , Xj) ← R1

. . .
p(X1, . . . , Xj) ← Rn

be the formulas obtained at the end of Step 2. Then if (Γ) is the formula:
p(X1, . . . , Xj) ← R1 ∨ . . . ∨Rn

Note that Steps 1–3 of Definition 1 are the first three steps in the construction of the completion
of a logic program [1, page 536]. The following is an example of if-form of a set of clauses.

Example 2. Let Γ be the set consisting of the following two clauses:
p(a) ←
p(f(Y1)) ← q(Y1, Y2) ∧ r(Y2)

Then if (Γ) is the formula: p(X) ← X =a ∨ ∃Y1∃Y2 (X =f(Y1) ∧ q(Y1, Y2) ∧ r(Y2)). 2

9.

Note that if Γ is the empty set of clauses, that is, in Definition 1 we have n = 0, then if (Γ)
is the formula p(X1, . . . , Xj) ← false (recall that false is the empty disjunction). Note also
that any set Γ of clauses for a predicate p is logically equivalent to if (Γ), in the sense that if
Γ = {C1, . . . , Cn}, then |= ∀ (C1 ∧ . . . ∧ Cn) ↔ ∀ (if (Γ)).

Given a set Γ of clauses and a predicate symbol p, by Γ ¹p we denote the set of clauses for p
in Γ.

Definition 2. (Implication, Reverse-Implication, and Equivalence between Sets of
Clauses) Let I be an Herbrand interpretation. Let Γ1 and Γ2 be two sets of clauses for the
same predicate p of arity j (≥ 0). Let if (Γ1) be p(X1, . . . , Xj) ← ϕ1 and let if (Γ2) be (a
variant of) p(X1, . . . , Xj) ← ϕ2. We say that Γ1 implies Γ2 in the interpretation I, and we write
I |= Γ1 ⇒ Γ2, iff

I |= ∀X1 . . .∀Xj (ϕ2 → ϕ1)
Let Γ1 and Γ2 be any two sets of clauses.
(Implication) We say that Γ1 implies Γ2 in the interpretation I, and we write I |= Γ1 ⇒ Γ2, iff
for every predicate p occurring in Γ1 ∪ Γ2, we have

I |= (Γ1 ¹p) ⇒ (Γ2 ¹p)
(Reverse-Implication) We say that Γ1 is implied by Γ2 in the interpretation I, and we write
I |= Γ1 ⇐ Γ2, iff I |= Γ2 ⇒ Γ1.
(Equivalence) We say that Γ1 is equivalent to Γ2 in the interpretation I, and we write I |= Γ1 ⇔
Γ2, iff I |= Γ1 ⇒ Γ2 and I |= Γ1 ⇐ Γ2.

Note that the implication ⇒ between sets of clauses Γ1 and Γ2 implies the logical implication
→ between Γ1 and Γ2. Indeed, for any Herbrand interpretation I, if I |= ∀X1 . . . ∀Xj (ϕ2 → ϕ1)
holds, then I |= ∀X1 . . .∀Xj ((p(X1, . . . , Xj) ← ϕ1) → (p(X1, . . . , Xj) ← ϕ2)) holds.

Let us now give an example of equivalence between sets of clauses.

Example 3. Let us consider the sets of clauses Γ1 and Γ2, consisting of the following clauses:
Γ1 : p(a) ← Γ2 : p(a) ←

p(b) ← p(b) ←
q(f(a)) ← q(f(Y)) ← p(Y)
q(f(b)) ←

Let M(Γ1) be the least Herbrand model of Γ1. The following equivalence holds:
M(Γ1) |= Γ1 ⇔ Γ2

Indeed, we have that:
if (Γ1 ¹p) = if (Γ2 ¹p) = (p(X) ← X =a ∨X =b)
if (Γ1 ¹q) = (q(X) ← X =f(a) ∨X =f(b))
if (Γ2 ¹q) = (q(X) ← ∃Y (X =f(Y) ∧ p(Y))

and we have that:
M(Γ1) |= ∀X ((X =f(a) ∨X =f(b)) ↔ ∃Y (X =f(Y) ∧ p(Y))) 2

The following lemma, whose proof is given in the Appendix, will be useful to prove our partial
and total correctness results.

Lemma 2.1. Let I be an Herbrand interpretation. Let Γ1 and Γ2 be two sets of clauses. We
have that I |= Γ1 ⇒ Γ2 iff for every ground instance C2 of a clause in Γ2 such that I |= bd(C2)
there exists a ground instance C1 of a clause in Γ1 such that hd(C1) = hd(C2) and I |= bd(C1).

10.

For every Herbrand interpretation I and sets of clauses Γ1,Γ2, and Γ3 the following properties
hold:

Reflexivity : I |= Γ1 ⇒ Γ1

Transitivity : if I |= Γ1 ⇒ Γ2 and I |= Γ2 ⇒ Γ3 then I |= Γ1 ⇒ Γ3

Monotonicity : if I |= Γ1 ⇒ Γ2 then I |= Γ1 ∪ Γ3 ⇒ Γ2 ∪ Γ3.
Now we introduce our basic program transformation rule, called clause replacement rule, which
allows us to construct a sequence of programs starting from a given initial program P0. This
sequence of programs will be called a transformation sequence and it is formally defined as
follows.

Definition 3 (Transformation Sequence) A transformation sequence from an initial pro-
gram P0 to a final program Pn, with n ≥ 0, is a sequence of programs, denoted P0 7→ . . . 7→Pn,
such that, for k = 0, . . . , n−1, program Pk+1 is derived from program Pk by applying the
following clause replacement rule.

Definition 4 (Clause Replacement Rule) Let us consider a transformation sequence
P0 7→ . . . 7→Pk, for any k≥0. Let Γk be a set of clauses for a predicate p such that Γk ⊆ Pk, and
let ∆k be a set of clauses for p such that M(P0) |= Γk ⇔ ∆k.
By applying the clause replacement rule we derive the new program Pk+1 = (Pk − Γk)∪∆k and
we derive the transformation sequence P0 7→ . . . 7→Pk 7→Pk+1.

Note that the familiar unfolding, folding, and goal replacement rules [28] are instances of the
clause replacement rule.

By abuse of notation, by P0 7→ . . . 7→Pn, for n≥ 0, we will also denote any sequence of n+1
programs from P0 to Pn. The context will tell the reader whether or not P0 7→ . . . 7→ Pn is a
transformation sequence, that is, it is derived by n applications of the clause replacement rule.

In order to prove the partial and total correctness properties of transformation sequences, we
will find it useful to introduce the following two notions of program sequences, called implication-
based and reverse-implication-based program sequences. These notions arise by separating the
equivalence Γk ⇔ ∆k which has to be satisfied when applying the clause replacement rule (see
Definition 4), into the two conjuncts Γk ⇒ ∆k and Γk ⇐ ∆k.

Definition 5. (Implication-based and Reverse-implication-based Program Se-
quence) A sequence of programs P0 7→ . . . 7→ Pn, for n ≥ 0, is said to be implication-based
(or reverse-implication-based) iff for k = 0, . . . , n−1, there exist two sets Γk and ∆k of clauses
for the same predicate such that:
(i) Γk ⊆ Pk,
(ii) M(P0) |= Γk ⇒ ∆k (or M(P0) |= Γk ⇐ ∆k, respectively), and
(iii) Pk+1 = (Pk − Γk) ∪∆k.

A transformation sequence is both an implication-based and a reverse-implication-based pro-
gram sequence, and it will also be called an equivalence-based program sequence.

Definition 6 (Correctness of Program Sequences) A sequence of programs P0 7→ . . . 7→Pn,
for n≥0, is said to be:
(i) partially correct iff M(P0) ⊇ M(Pn),
(ii) conservative iff M(P0) ⊆ M(Pn), and
(iii) totally correct iff M(P0) = M(Pn).

11.

Note that in a transformation sequence P0 7→ . . . 7→Pn, we require that for k = 0, . . . , n−1, if
Pk+1 is (Pk − Γk) ∪∆k then the equivalence Γk ⇔ ∆k should hold in the least Herbrand model
M(P0) of the initial program P0. Recall also that, by Definition 2, any two sets Γk and ∆k of
clauses are equivalent if and only if Γk ¹ p and ∆k ¹ p are equivalent for every predicate p in
Γk ∪∆k. As a consequence, by an application of the clause replacement rule we can introduce a
clause of the form newp(X) ← B for a new predicate newp only when M(P0) |= ∀ (B ↔ false)
holds. Thus, the definition introduction rule [28] cannot be viewed as an instance of the clause
replacement rule.

For reasons of simplicity, we have chosen not to include the definition introduction rule among
our transformation rules. However, the total correctness results presented in this paper can
easily be extended to the case where program sequences are constructed by using the definition
introduction rule in addition to the clause replacement rule, because the total correctness of
a program sequence constructed by using the clause replacement rule and the definition intro-
duction rule, can be reduced, as we now explain, to the total correctness of a transformation
sequence, that is, a sequence of programs constructed by using the clause replacement rule only.

Indeed, similarly to [28], we may stipulate that a program sequence P0 7→ . . . 7→Pn constructed
by using the clause replacement rule and the definition introduction rule is totally correct iff
M(P0 ∪ Defs) = M(Pn), where Defs is the set of clauses for the new predicates, that is, the
predicates not occurring in P0 which are added during the sequence by applying the definition
introduction rule. Then, given a program sequence P0 7→ . . . 7→Pn constructed by using the clause
replacement rule and the definition introduction rule, we can construct a program sequence of
the form P0∪Defs 7→ . . . 7→Pn by using the clause replacement rule only. In other words, we may
think as if all new predicate definitions were added to the initial program P0, while, in practice,
we allow ourselves to add these new predicate definitions to any program of the sequence, when
they are actually needed.

The following lemma is a straightforward consequence of the reflexivity, transitivity, and
monotonicity properties of ⇒.

Lemma 2.2. Let P0 7→ . . . 7→Pn, for n≥0, be a sequence of programs.
(i) If P0 7→ . . . 7→Pn is implication-based, then M(P0) |= P0⇒Pn.
(ii) If P0 7→ . . . 7→Pn is reverse-implication-based, then M(P0) |= P0⇐Pn.

The following theorem shows that the clause replacement rule is a complete transformation
rule in the sense that, given any two programs having the same least Herbrand model, it is
possible to derive one of them from the other by a transformation sequence, that is, a sequence
of clause replacements. Note, however, that in general, the applicability condition for the clause
replacement rule, that is, M(P0) |= Γk ⇔ ∆k, is undecidable.

Theorem 2.3 (Completeness of the Clause Replacement Rule) Given two programs P
and Q, if M(P) = M(Q) then there exists a transformation sequence P0 7→ . . . 7→Pn with P = P0

and Q = Pn.

Proof : Let p1, . . . , pn be the predicates occurring in P ∪Q. For k = 1, . . . n, let Γk = P ¹pk and
∆k = Q ¹pk. Let us consider the sequence P0 7→ . . . 7→Pn of programs, where P0 = P , Pn = Q,
and, for k = 1, . . . n, Pk = (Pk−1−Γk)∪∆k. We will show that P0 7→ . . . 7→Pn is a transformation
sequence, that is, for k = 1, . . . n, M(P) |= Γk ⇔ ∆k.

By Lemma 2.1 it is enough to show that, for k = 1, . . . n, there exists a ground instance
H ← G1 of a clause in Γk such that M(P) |= G1 iff there exists a ground instance H ← G2 of a
clause in ∆k such that M(P) |= G2.

12.

Let H ← G1 be a ground instance of a clause in Γk (thus, the predicate of H is pk) such
that M(P) |= G1. By definition of an Herbrand model, we have that H ∈ M(P). Since
M(Q) is a postfixpoint of TQ and M(P) = M(Q), also M(P) is a postfixpoint of TQ, that is,
M(P) ⊆ TQ(M(P)). Thus, H ∈ TQ(M(P)) and, by definition of TQ, there exists a ground
instance H ← G2 of a clause in Q such that M(P) |= G2. Since the predicate of H is pk, we
have that H ← G2 is a ground instance of a clause in ∆k.

Similarly, we can prove that if there exists a ground instance H ← G2 of a clause in ∆k such
that M(P) |= G2, then there exists a ground instance H ← G1 of a clause in Γk such that
M(P) |= G1. 2

Now we present some sufficient conditions ensuring that a sequence of programs is partially
correct and conservative, and thus, totally correct. First we show that every implication-based
sequence of programs is partially correct.

Theorem 2.4 (Partial Correctness) If P0 7→ . . . 7→ Pn, for n ≥ 0, is an implication-based
sequence of programs, then M(P0) ⊇ M(Pn).

Proof : First we show that M(P0) is a prefixpoint of TPn , that is, TPn(M(P0)) ⊆ M(P0). Let A
be a ground atom in TPn(M(P0)). By definition of TPn there exists a ground instance A ← G2 of
a clause in Pn such that M(P0) |= G2. Since P0 7→ . . . 7→Pn is an implication-based sequence of
programs, by Lemma 2.2(i) we have that M(P0) |= P0 ⇒ Pn. Thus, by Lemma 2.1, there exists
a ground instance A ← G1 of a clause in P0 such that M(P0) |= G1. Hence, by definition of
TP0 , A ∈ TP0(M(P0)). Since M(P0) is a prefixpoint of TP0 , we have that TP0(M(P0)) ⊆ M(P0)
and, therefore, A ∈ M(P0). Thus, we have proved that M(P0) is a prefixpoint of TPn . Since
M(Pn) = lfp(TPn) and lfp(TPn) is the least prefixpoint of TPn , we have that M(P0) ⊇ M(Pn). 2

Since every transformation sequence is an implication-based sequence of programs, Theo-
rem 2.4 also tells us that every transformation sequence is partially correct.

Corollary 2.5 (Partial Correctness of Transformation Sequences) If P0 7→ . . . 7→ Pn,
for n≥0, is a transformation sequence, then M(P0) ⊇ M(Pn).

Now we describe a method based on the unique fixpoint principle [9, 22], which can be ap-
plied to prove that a sequence of programs is conservative. Let us first introduce the following
definition.

Definition 7 (Univocal Program) A program P is said to be univocal iff TP has a unique
fixpoint, that is, lfp(TP) = gfp(TP).

A sufficient condition for a program to be univocal is that it is terminating in the sense of [3].
Note, however, that this condition is not necessary. For instance, consider the program

P : p ←
p ← p

This program is not terminating and, nevertheless, the immediate consequence operator TP has
a unique fixpoint which is {p}.

Theorem 2.6 (Conservativity) If P0 7→ . . . 7→ Pn, for n ≥ 0, is a reverse-implication-based
sequence of programs and Pn is univocal, then M(P0) ⊆ M(Pn).

13.

Proof : We first show that M(P0) is a postfixpoint of TPn , that is, TPn(M(P0)) ⊇ M(P0). Let A
be a ground atom in M(P0). Since M(P0) is a postfixpoint of TP0 , that is, TP0(M(P0)) ⊇ M(P0),
we have that there exists a ground instance A ← G1 of a clause in P0 such that M(P0) |= G1.
Since P0 7→ . . . 7→Pn is a reverse-implication-based sequence of programs, by Lemma 2.2(ii) we
have that M(P0) |= P0 ⇐ Pn. Therefore, by Lemma 2.1, there exists a ground instance A ← G2

of a clause in Pn such that M(P0) |= G2. By definition of TPn , we have that A ∈ TPn(M(P0)).
Thus, we have proved that M(P0) is a postfixpoint of TPn . Since gfp(TPn) is the greatest
postfixpoint of TPn , we have that M(P0) ⊆ gfp(TPn). Finally, by the hypothesis that Pn is
univocal, that is, gfp(TPn) = lfp(TPn) = M(Pn), we get that M(P0) ⊆ M(Pn). 2

Since every transformation sequence is an equivalence-based sequence of programs, by Theo-
rems 2.4 and 2.6 we have the following total correctness result.

Corollary 2.7 (Total Correctness via the Unique Fixpoint Principle) If P0 7→ . . . 7→Pn,
for n≥0, is a transformation sequence and Pn is univocal, then M(P0) = M(Pn).

Note that, in order to apply the unique fixpoint principle, it is important that the no-
tion of equivalence between sets of clauses and the notion of transformation sequence are de-
fined as stated in Definitions 2 and 3, respectively. To illustrate this point, let us first con-
sider the following alternative definition of equivalence between sets of clauses: two sets of
clauses {C1, . . . , Ck} and {D1, . . . , Dm} are equivalent with respect to an interpretation I iff
I |= ∀ (C1 ∧ . . . ∧ Ck) ↔ ∀ (D1 ∧ . . . ∧Dm). If we use this alternative definition of equivalence,
then Corollary 2.7 does not hold, as shown by the following example.

Example 4. Let us consider the sequence P0 7→P1 of programs, where:
P0: p ← true P1: p ← false

We have that M(P0) |= (p ← true) ↔ (p ← false), because p (and, therefore, p ← true) is true
in M(P0) and p ← false is true in every interpretation. We also have that P1 is univocal (the
only fixpoint of TP1 is the empty set). However, the sequence P0 7→P1 of programs is not totally
correct, because {p} = M(P0) 6= M(P1) = ∅.

Note that, on the contrary, if the equivalence relation ⇔ is defined as in Definition 2, then we
have that M(P0) 6|= {p ← true} ⇔ {p ← false}, because M(P0) 6|= true ↔ false. 2

Let us now consider an alternative definition of a transformation sequence P0 7→ . . . 7→ Pn

in which we assume that for k = 0, . . . , n− 1, when deriving Pk+1 from Pk we have that:
M(Pk) |= Γk ⇔ ∆k, instead of M(P0) |= Γk ⇔ ∆k (see Definition 4). If we use this alternative
definition of a transformation sequence, Corollary 2.7 does not hold, as shown by the following
example.

Example 5. Let us consider the sequence P0 7→P1 7→P2 of programs, where:
P0: p ← true P1: p ← p P2: p ← false

We have that M(P0) |= {p ← true} ⇔ {p ← p}, because M(P0) |= true ↔ p. We also have
that M(P1) |= {p ← p} ⇔ {p ← false}, because M(P1) |= p ↔ false. Finally, P2 is univocal,
but the sequence of programs P0 7→ P1 7→ P2 is not totally correct, because it is the case that
{p} = M(P0) 6= M(P2) = ∅.

Note that P0 7→P1 7→P2 is not a transformation sequence according to our Definition 3 above.
Indeed, P2 cannot be derived from P1 by applying the clause replacement rule of Definition 4,
because M(P0) 6|= p ↔ false. 2

14.

The result of Corollary 2.7 gives us a useful method for proving the total correctness of a
transformation sequence. However, this method cannot be applied when the program derived
by clause replacement is not univocal. For instance, Corollary 2.7 cannot be applied to prove the
total correctness of the transformation sequences presented in Example 1(i) of the Introduction
and in the more realistic Example 9 of the following Section 3. Note that, in particular, for
program Q of Example 1(i), TQ has more than one fixpoint. In Section 3 we will present a
method that overcomes this limitation and can be applied even if the programs derived by
clause replacement are not univocal.

3. Well-Founded Annotations

In this section we present our method based on the notion of program annotation for prov-
ing that a transformation sequence is totally correct. In particular, we introduce well-founded
annotations, that is, annotations which generate decreasing (thus, terminating and univocal)
annotated programs. First, we present the syntax and the semantics of annotated clauses and
annotated programs. Then, we present an extension of the clause replacement rule that can be
used for transforming annotated programs. Finally, we present a sufficient condition based on
well-founded annotations, which guarantees the total correctness of the transformation sequences
constructed by using the clause replacement rule.

Let Lp be a first order language, called the language of programs, and let us consider the sets
of definite clauses, definite logic programs, and well-formed formulas of the language Lp which
we call Clauses, Programs, and Formulas, respectively.

Let us also consider a different first order language, called the language of annotations, denoted
La, such that La ∩Lp = ∅. We introduce the annotation formulas of the language La as follows.
We assume that in the set of predicate symbols of La there is a symbol Â, which will be
interpreted as a well-founded ordering relation on a given set W (thus, by definition, no infinite
descending sequence w1 Â . . . Â wn Â . . . exists in W). A variable of the language La is called
an annotation variable. Similarly, a term, an atom, and a well-formed formula of La is called
an annotation term, an annotation atom, and an annotation formula, respectively. We will
add the qualification ordinary to variables, terms, atoms, and formulas of Lp when we want to
distinguish them from those of La.

Now, we introduce the annotated formulas of Lp and La as follows. An annotated atom is of
the form A〈w〉, where A is an atom of Lp and w is an annotation term of La. A formula ϕ is an
annotated formula iff one of the following holds:

(i) ϕ is an annotation formula;
(ii) ϕ is an annotated atom;
(iii) ϕ = ¬ϕ1, where ϕ1 is an annotated formula;
(iv) ϕ = ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are annotated formulas;
(v) ϕ = ∀X ϕ1, where X is a variable of La ∪ Lp and ϕ1 is an annotated formula.

When constructing annotated formulas we will also use the connectives ∨, ←, →, ↔, and the
quantifier ∃, which are defined as usual in terms of ¬, ∧, and ∀. The set of annotated formulas
is denoted by AFormulas. As usual in the first order predicate calculus, we say that an ordinary
or annotated term (or formula) is ground iff it contains no occurrences of variables, and we say
that an ordinary or annotated formula is closed iff it contains no occurrences of free variables.

An annotated goal is a conjunction of annotated atoms. An annotated clause is an annotated
formula of the form:

15.

H〈w〉 ← c ∧A1〈w1〉 ∧ . . . ∧An〈wn〉 with n≥0,
where: (i) H〈w〉, A1〈w1〉, . . . , An〈wn〉 are annotated atoms, and (ii) c is an annotation formula.
For reasons of simplicity, we assume that in an annotated clause no quantifiers occur in the
annotation formula c. The set of annotated clauses is denoted by AClauses. An annotated
program is a set of annotated clauses. The set of annotated programs is denoted by APrograms.
Annotated atoms, annotated goals, annotated clauses, and annotated programs are denoted by
overlined symbols, such as A, G, C, and P , respectively. An example of an annotated program
is program P given in the Introduction. More examples will be given in the sequel.

The semantics of annotated formulas (and, in particular, annotated programs) can be defined
similarly to the semantics of constraint logic programs [12] as we now describe. We fix an
interpretation W for La. Let W be the carrier of W which, without loss of generality, is
assumed to be a set of ground annotation terms. We assume that the predicate symbol Â is
interpreted as a well-founded ordering relation on W which, by abuse of language, will also be
denoted by Â. The interpretation W will also be called the well-founded ordering (W,Â). A
W-interpretation is a subset of the following set BW :

BW = {A〈w〉 |A is a ground atom and w ∈ W }
Let us consider a W-interpretation I. A closed annotation formula c is true in I iff W |= c,
where the satisfaction relation |= is defined as usual in the first order predicate calculus. A closed
annotated atom (that is, a ground annotated atom) A〈w〉 is true in I iff A〈wW〉 ∈ I, where wW
is the interpretation of the term w in W. A closed annotated formula of the form ¬ϕ is true
in I iff ϕ is not true in I. A closed annotated formula of the form ϕ1 ∧ ϕ2 is true in I iff both
ϕ1 and ϕ2 are true in I. A closed annotated formula of the form ∀X ϕ is true in I iff for every
ground substitution {X/t}, ϕ{X/t} is true in I. An annotated formula ϕ such that the variables
X1, . . . , Xn occur free in ϕ, is true in I iff for every ground substitution {X1/t1, . . . , Xn/tn},
ϕ{X1/t1, . . . , Xn/tn} is true in I. A set Γ of annotated formulas is true in I iff every annotated
formula of Γ is true in I. If an annotated formula ϕ is true in a W-interpretation I, then we
write I |= ϕ and we say that I is a W-model of ϕ. The same terminology will also be used for
sets of annotated formulas (in particular, for annotated programs).

Similarly to the case of constraint logic programs, it can be shown that every annotated
program P has a least W-model which we will denote by M(P) (for least W-models we adopt
the same notation used for least Herbrand models of definite logic programs). It can also be
shown that for every annotated program P the least W-model of P can be computed as the
least fixpoint of a suitable continuous function TP over W-interpretations, called the immediate
consequence operator of the program P . TP is defined as follows. For every annotated program
P we define a function TP : P(BW) → P(BW), where P(BW) denotes the powerset of BW , such
that for every I ∈ P(BW),
TP (I) = {H | there exists a ground instance H ← c ∧G of an annotated clause in P

such that I |= c ∧G}
Similarly to the case of definite and constraint logic programs (see, for instance, [1, 12, 15]), we
have the following result.

Theorem 3.1. The set P(BW) is a complete lattice with respect to set inclusion and, for every
annotated program P , the immediate consequence operator TP : P(BW) → P(BW) is a contin-
uous function. Thus, TP has a least fixpoint lfp(TP) and a greatest fixpoint gfp(TP). Moreover,
lfp(TP) is the least upper bound of the chain {Tn

P
(∅) | n ∈ N} and lfp(TP) is the least W-model

M(P) of P .

16.

We can erase annotation formulas and annotation terms from annotated atoms, annotated
goals, annotated clauses, and annotated programs by using the projection function π defined as
follows:

- π(A〈w〉) = A, for every annotated atom A〈w〉,
- π(A1 ∧ . . . ∧An) = π(A1) ∧ . . . ∧ π(An), for every annotated goal A1 ∧ . . . ∧An,
- π(H ← c ∧G) = π(H) ← π(G), for every annotated clause H ← c ∧G, and
- π({C1, . . . , Ck}) = {π(C1), . . . , π(Ck)}, for every annotated program {C1, . . . , Ck}.

When we apply the projection function π to an annotated program P , we obtain an ordinary
program π(P) such that the least W-model of P is isomorphic to a subset of the least Herbrand
model of π(P). This property is formally stated by the following proposition whose proof is
straightforward and is omitted.

Proposition 3.2. Let P be an annotated program and let P be π(P). For every ground atom
A, if there exists a ground annotation term w such that A〈w〉 ∈ M(P) then A ∈ M(P).

The converse of Proposition 3.2 does not hold in the sense that, for some ground annotated
atom A〈w〉, we have that: A〈w〉 6∈ M(P) and A ∈ M(P), as shown by the following example.

Example 6. Let us also consider the following annotated program P :

p〈1〉 ← q〈0〉
q〈1〉 ←

By applying the projection function π we get the following program P :

p ← q

q ←
We have that M(P) = {q〈1〉} and M(P) = {p, q}. 2

For the theory of total correctness of logic program transformations developed in this paper it is
important to construct a class of annotated programs for which the converse of Proposition 3.2
holds, so that A ∈ M(P) if and only if there exists a ground annotation term w such that
A〈w〉 ∈ M(P). In order to construct such a class of annotated programs we introduce the
following definition of annotation function.

Definition 8 (Annotation Function) Let W be a well-founded ordering (W,Â) providing
an interpretation for the annotation language La. An annotation over W is a function α :
Clauses → AClauses such that, for every clause C of the form H ← A1∧ . . .∧An, the annotated
clause α(C) is of the form H〈X〉 ← c ∧A1〈X1〉 ∧ . . . ∧An〈Xn〉, such that:

(i) X, X1, . . . , Xn are distinct annotation variables, and

(ii) W |= ∀X1 . . .∀Xn ∃Y1 . . .∃Ym c, where {Y1, . . . , Ym} = vars(c)− {X1, . . . , Xn}.
The annotation α can be extended to a function, also denoted by α, from Programs to APrograms,
by stipulating that, for every program {C1, . . . , Cn}, the annotated program α({C1, . . . , Cn}) is
{α(C1), . . . , α(Cn)}.

For any program P , we have P = π(α(P)). The following proposition states the converse
of Proposition 3.2 under the hypothesis that annotated programs are constructed by using
annotation functions.

17.

Proposition 3.3. Let P be a program, let α be an annotation function, and let P be the an-
notated program α(P). For every ground atom A, if A ∈ M(P) then there exists a ground
annotation term w such that A〈w〉 ∈ M(P).

Proof : Recall that M(P) is the least upper bound of the chain {Tn
P (∅) | n ∈ N} and M(P) is

the least upper bound of the chain {Tn
P
(∅) | n ∈ N}. Thus, it is enough to prove that, for every

n ∈ N, the following property holds:
ϕ(n) : if A ∈ Tn

P (∅) then there exists a ground annotation term w such that A〈w〉 ∈ Tn
P
(∅)

We proceed by induction on n. (Basis) ϕ(0) is trivially true. (Step) We assume ϕ(k) and we
prove ϕ(k + 1). Suppose that A ∈ T k+1

P (∅). Then, by the definition of TP , there exists a ground
instance (H ← A1∧ . . .∧Am)ϑ, for some substitution ϑ, of a clause H ← A1∧ . . .∧Am in P such
that A = Hϑ and A1ϑ ∈ T k

P (∅), . . . , Amϑ ∈ T k
P (∅). Let H〈X〉 ← c ∧A1〈X1〉 ∧ . . . ∧Am〈Xm〉 be

the annotated clause α(H ← A1 ∧ . . .∧Am) in P . By the induction hypothesis ϕ(k), there exist
m ground annotation terms w1, . . . , wm such that A1ϑ〈w1〉 ∈ T k

P
(∅), . . . , Amϑ〈wm〉 ∈ T k

P
(∅). Let

σ be the substitution {X1/w1, . . . , Xm/wm}. By Conditions (i) and (ii) of Definition 8, there
exists a ground substitution τ such that c στ is a ground annotation formula, W |= c στ , and
Xτ is a ground annotation term. Thus, by the definition of TP , A〈Xτ〉 ∈ T k+1

P
(∅). 2

In the following example we present two annotation functions.

Example 7. Let N be the well-founded ordering (N, >), where N is the set of natural numbers
and > is the usual ‘greater than’ ordering on N.

(i) The annotation α1 over N is defined as follows: for every clause C: H ← A1 ∧ . . . ∧An, the
annotated clause α1(C) is

H〈X〉 ← X >X1+ . . . +Xn ∧A1〈X1〉 ∧ . . . ∧An〈Xn〉
where + is interpreted in N as the addition of natural numbers.
(ii) The annotation α2 over N is defined as follows: for every clause C: H ← A1 ∧ . . .∧An, the
annotated clause α2(C) is

H〈X〉 ← X >X1 ∧ . . . ∧X >Xn ∧A1〈X1〉 ∧ . . . ∧An〈Xn〉
Both α1 and α2 are indeed annotation functions, because the following properties hold:
N |= ∀X1 . . .∀Xn ∃X (X >X1+ . . . +Xn)
N |= ∀X1 . . .∀Xn ∃X (X >X1 ∧ . . . ∧X >Xn) 2

Now we give an example of annotated program which is not obtained by applying an annotation
function.

Example 8. Let us consider the following annotated program P :
p〈Y 〉 ← Y =1 ∧X =0 ∧ q〈X〉
q〈Y 〉 ← Y =1

which is an equivalent way of writing the annotated program of Example 6. We have that
N 6|= ∀X ∃Y (Y =1∧X =0) and, thus, P is not obtained by applying an annotation function. 2

In the rest of the paper, we assume that every annotated program is constructed by applying
an annotation function. Moreover, for any program P , we denote by P the annotated pro-
gram obtained from P by applying some annotation function to P . Thus, for any P , we have
that: (i) there exists an annotation function α such that P = α(P), and (ii) π(P) = P . A similar

18.

notation is also used for clauses and, thus, for any clause C, we denote by C the annotated clause
obtained from C by applying some annotation function.

Let us now introduce the notion of well-founded annotation, which is an annotation function
yielding annotated programs that are terminating and, thus, univocal. We will use the following
notations. Given two annotated atoms A1 = A1〈w1〉 and A2 = A2〈w2〉, the formula w1 Â w2

is also written as A1 Â A2. Moreover, given an annotated atom H and an annotated goal
A1 ∧ . . . ∧An, the formula HÂA1 ∧ . . . ∧HÂAn is also written as HÂ(A1 ∧ . . . ∧An).

Definition 9 (Well-Founded Annotation) Let W be the well-founded ordering (W,Â). An
annotated clause H ← c ∧A1 ∧ . . . ∧An is said to be decreasing w.r.t. Â iff
W |= ∀ (c → HÂ(A1 ∧ . . . ∧An))

An annotated program P is said to be decreasing w.r.t. Â iff every clause in P is decreasing
w.r.t. Â. An annotation α is said to be well-founded w.r.t. Â iff for every program P , the
annotated program α(P) is decreasing w.r.t. Â.

The annotations α1 and α2 presented in Example 7 are both well-founded w.r.t. >. The next
theorem gives us a sufficient condition for an annotated program to be univocal. This condition
is based on the notion of decreasing, annotated program.

Theorem 3.4. Suppose that an annotated program P is decreasing w.r.t. a given well-founded
ordering. Then P is univocal and M(P) is the unique fixpoint of TP .

Proof : Let α be an annotation over the well-founded ordering W = (W,Â) such that P = α(P)
and P is decreasing w.r.t. Â. Assume that I and J are fixpoints of TP . By well-founded induction
on Â we prove that: for every ground annotated atom A, we have that A ∈ I iff A ∈ J . The
inductive hypothesis is the following: for every ground annotated atom B, if W |= A Â B then
B ∈ I iff B ∈ J . Assume that A ∈ I. Since I = TP (I), we have that there exists a clause of
the form A ← c ∧ A1 ∧ . . . ∧ An in P such that W |= c and, for i = 1, . . . , n, Ai ∈ I. Since P
is decreasing w.r.t. Â, we have that, by definition, for i = 1, . . . , n, W |= A Â Ai. Therefore,
by the inductive hypothesis, for i = 1, . . . , n, we have that Ai ∈ J . Since J is a fixpoint of TP

and W |= c, we get that A ∈ J . Thus, we have proved that if A ∈ I then A ∈ J . Similarly, we
can prove that if A ∈ J then A ∈ I. Thus, TP has a unique fixpoint, which is equal to its least
fixpoint M(P). 2

The notions introduced in Definition 1 (if-form of a set of clauses), Definition 2 (implication,
reverse-implication, and equivalence between sets of clauses), and Definition 5 (implication-
based and reverse-implication-based program sequence) can be extended to annotated clauses
and annotated programs by simply considering annotated formulas, instead of formulas, and
W-interpretations, instead of Herbrand interpretations. For reasons of brevity, we will not
present these definitions in the cases of annotated clauses and annotated programs and, instead,
we will refer, also in these cases, to Definitions 1, 2, and 5 given above. The context will tell
the reader whether these definitions are used in the annotated case or in the ordinary case. We
have that the properties stated by Lemmata 2.1 and 2.2, and Theorems 2.4 and 2.6, hold for
annotated programs as well.

Unlike the above mentioned notions, the clause replacement rule will be re-defined in the case
of annotated programs (see Definition 10 below), and the results concerning the total correctness
of the transformation sequences constructed by applying this rule will be given later on.

19.

We are now able to prove a sufficient condition for a sequence P0 7→ . . . 7→ Pn of programs
to be totally correct. This condition is based on the existence of a sequence P 0 7→ . . . 7→Pn of
annotated programs such that Pn is decreasing with respect to a given well-founded ordering
and, thus, by Theorem 3.4, Pn is univocal. This sufficient condition will be used to prove that
any transformation sequence constructed by applying the clause replacement rule for annotated
programs is totally correct.

Theorem 3.5 (Total Correctness via Well-Founded Annotations) Let P 0, . . . , Pn be
annotated programs over a well-founded ordering (W,Â). Suppose that:
(i) P0 7→ . . . 7→Pn is an implication-based sequence of programs,
(ii) P 0 7→ . . . 7→Pn is a reverse-implication-based sequence of programs, and
(iii) Pn is decreasing w.r.t. Â.
Then:
(1) M(P 0) ⊆ M(Pn), and
(2) the sequence P0 7→ . . . 7→Pn of programs is totally correct, that is, M(P0) = M(Pn).

Proof : (Point 1) By Hypothesis (iii), Pn is decreasing w.r.t. Â, and thus, it follows from Theo-
rem 3.4 that Pn is univocal. Since, by Hypothesis (ii), P 0 7→ . . . 7→Pn is a reverse-implication-
based sequence of programs, by Theorem 2.6 we get that M(P 0) ⊆ M(Pn).
(Point 2) By Hypothesis (i) and Theorem 2.4, P0 7→ . . . 7→Pn is partially correct, that is, M(P0) ⊇
M(Pn). Now it remains to prove that P0 7→ . . . 7→Pn is conservative, that is, M(P0) ⊆ M(Pn).
Let A be a ground atom in M(P0). By Proposition 3.3 there exists a ground annotation term w
such that A〈w〉 belongs to M(P 0). By Point (1), we have that M(P 0) ⊆ M(Pn). Thus, A〈w〉
belongs to M(Pn) and, by Proposition 3.2, A belongs to M(Pn). 2

Note that the annotated programs P 0, . . . , Pn−1 are not required to be decreasing, while Pn

is required to be decreasing. In practice, however, it is often useful to start from an annotated
program P 0 which is decreasing w.r.t. a given well-founded orderingÂ, and to apply the following
clause replacement rule which acts on annotated programs so that the decreasingness w.r.t. Â
is preserved and, thus, the final annotated program Pn is decreasing by construction. In the
definition below we assume that the notion of transformation sequence for annotated programs
is the obvious extension of the notion given in Definition 3 for ordinary programs.

Definition 10 (Clause Replacement Rule for Annotated Programs) Let Â be a well-
founded ordering. Let us consider a transformation sequence P 0 7→ . . . 7→P k, for any k≥0, such
that, for i = 0, . . . , k, the annotated program P i is decreasing w.r.t. Â. Let Γk be a set of clauses
for a predicate p such that Γk ⊆ P k, and let ∆k be a set of annotated clauses for p such that:
(i) M(P0) |= Γk ⇐ ∆k,
(ii) M(P 0) |= Γk ⇒ ∆k, and
(iii) ∆k is decreasing w.r.t. Â.
By applying the clause replacement rule we derive the program P k+1 = (P k − Γk) ∪∆k and we
derive the transformation sequence P 0 7→ . . . 7→P k 7→P k+1.

We would like to note that, if P 0 7→ . . . 7→ Pn is a transformation sequence of annotated
programs, then the sequence P0 7→ . . . 7→Pn obtained by applying the projection function π to
each program of the given sequence, is a transformation sequence of ordinary programs. Indeed,
by the following Lemma 3.6 (whose proof is given in the Appendix), Point (ii) of Definition 10

20.

?

6

P0 7→ . . . 7→ Pn M(P0) = M(Pn)

P 0 7→ . . . 7→ Pn M(P 0) ⊆ M(Pn)

πα

Figure 1: Program Transformation via Well-Founded Annotations. α is a well-founded annota-
tion w.r.t. a given well-founded ordering. π is the projection function.

implies M(P0) |= Γk ⇒ ∆k and, thus, by Point (i) of the same definition, we have that P0 7→
. . . 7→Pn is an equivalence-based sequence of programs.

Lemma 3.6. Let P be an annotated program and let Γ1 and Γ2 be sets of annotated clauses. If
M(P) |= Γ1 ⇒ Γ2 then M(P) |= Γ1 ⇒ Γ2.

The transformation sequence P0 7→ . . . 7→Pn constructed by applying the projection function
π to the programs of a transformation sequence P 0 7→ . . . 7→ Pn is totally correct. Indeed, by
Point (i) of Definition 10, P0 7→ . . . 7→ Pn is an implication-based sequence of programs, by
Point (ii) of Definition 10, P 0 7→ . . . 7→Pn is a reverse-implication-based sequence of programs,
and by Point (iii) of Definition 10, Pn is decreasing. Hence, by Theorem 3.5 we have that
M(P 0) ⊆ M(Pn) and M(P0) = M(Pn). Thus, we have proved the following total correctness
result for transformation sequences constructed by using the clause replacement rule.

Corollary 3.7 (Total Correctness of Transformation Sequences) Let P 0 7→ . . . 7→Pn be
a transformation sequence constructed by applying the clause replacement rule of Definition 10.
Then:
(1) M(P 0) ⊆ M(Pn), and
(2) M(P0) = M(Pn).

Note that in the transformation sequence P 0 7→ . . . 7→ Pn of Corollary 3.7, the programs
P0, . . . , Pn are not required to be univocal and, in particular, they are not required to be termi-
nating.

Corollary 3.7 supports a methodology for program transformation which consists of the fol-
lowing steps (see also Figure 1). Given an initial program P0, in order to derive a program Pn

such that M(P0) = M(Pn),
(1) first, we choose a well-founded ordering (W,Â) and an annotation α which is well-founded
w.r.t. Â (thus, the annotated program P 0 = α(P0) is decreasing w.r.t. Â);
(2) then, we construct a transformation sequence P 0 7→ . . . 7→ Pn where, for k = 0, . . . , n − 1,
P k+1 is derived from P k by applying the clause replacement rule of Definition 10 and replacing
a set Γk of annotated clauses in P k by a new set ∆k, such that every clause in ∆k is decreasing
w.r.t. Â; and
(3) finally, we apply the projection π to Pn, thereby erasing the annotation terms and the
annotation formulas from Pn.

We conclude this section by giving an example of application of Corollary 3.7. Note that the
total correctness of the transformation sequence considered in this example cannot be shown by
using in a straightforward way the results of Section 2.

21.

Example 9. Let us consider the following program R1:
C1: reach(X,X) ←
C2: reach(X,Z) ← reach(X, Y) ∧ arc(Y,Z)
C3: arc(a, a) ←
C4: arc(b, b) ←

The following equivalence holds:
M(R1) |= ∀X ∀Z (∃Y (reach(X,Y) ∧ arc(Y, Z)) ↔ ∃Y (arc(X, Y) ∧ reach(Y, Z)))

Hence, the following clause:
C5: reach(X,Z) ← arc(X, Y) ∧ reach(Y,Z)

is equivalent to clause C2 in M(R1), that is, M(R1) |= {C2} ⇔ {C5}. Thus, by applying
the clause replacement rule for ordinary programs (see Definition 4) we get the transformation
sequence R1 7→R2, where R2 is the program derived from R1 by replacing clause C2 by clause
C5. Unfortunately, we cannot apply Corollary 2.7 of Section 2 to prove the total correctness of
R1 7→R2, because R2 is not univocal. Indeed, reach(a, b) ∈ gfp(TR2) and reach(a, b) 6∈ lfp(TR2)
and, therefore, lfp(TR2) 6= gfp(TR2).

Let us now use the method based on well-founded annotations to prove the total correctness of
R1 7→R2. We consider the following annotated program R1, obtained by applying the annotation
α1 considered in Example 7:

C1: reach(X,X)〈K〉 ←
C2: reach(X,Z)〈K〉 ← K >M+N ∧ reach(X, Y)〈M〉 ∧ arc(Y,Z)〈N〉
C3: arc(a, a)〈K〉 ←
C4: arc(b, b)〈K〉 ←

R1 is decreasing w.r.t. >. We have that:
M(R1) |= ∀K ∀X ∀Z (∃M ∃N ∃Y (K >M+N ∧ reach(X, Y)〈M〉 ∧ arc(Y, Z)〈N〉) ↔

∃M ∃N ∃Y (K >M+N ∧ arc(X, Y)〈M〉 ∧ reach(Y, Z)〈N〉))
and, therefore, M(R1) |= {C2} ⇔ {C5}, where C5 is the following annotated clause:

C5: reach(X,Z)〈K〉 ← K >M+N ∧ arc(X,Y)〈M〉 ∧ reach(Y,Z)〈N〉
Moreover, C5 is decreasing w.r.t. > and, thus, by applying the clause replacement rule of
Definition 10 we derive the transformation sequence R1 7→R2, where R2 = (R1 − {C2})∪ {C5}.
By Corollary 3.7, R1 7→R2 is totally correct. 2

4. Unfold/Fold Transformation Rules for Annotated Programs

In this section we use the results presented in Section 3 to prove the total correctness of pro-
gram sequences constructed by applying suitable variants of the usual unfolding, folding, and
goal replacement rules. These three rules are collectively called unfold/fold transformation rules
and the program sequences constructed by using the unfold/fold transformation rules are called
unfold/fold transformation sequences. We will show that the unfold/fold transformation rules
are instances of the clause replacement rule for annotated programs presented in Definition 10,
and thus, the total correctness of unfold/fold transformation sequences is guaranteed by Corol-
lary 3.7. In particular, a totally correct unfold/fold transformation sequence from program P0

to program Pn can be constructed, by following the three-step methodology described at the
end of Section 3, as follows:
(1) first, we choose a well-founded ordering (W,Â) and an annotation α over (W,Â), such that
the annotated program P 0 = α(P0) is decreasing w.r.t. Â;

22.

(2) then, we construct an unfold/fold transformation sequence P 0 7→ . . . 7→ Pn where, for k =
0, . . . , n− 1, program P k+1 is derived from program P k by applying any one of the unfold/fold
transformation rules for annotated programs (which, as shown below, preserve decreasingness);
and
(3) finally, we apply the projection π to Pn thereby erasing the annotation terms and the
annotation formulas from Pn.

The unfold/fold transformation rules for annotated programs are very similar to the un-
fold/fold transformation rules for ordinary programs and, indeed, for any transformation se-
quence P 0 7→ . . . 7→Pn constructed by applying the unfold/fold transformation rules for anno-
tated programs, the transformation sequence P0 7→ . . . 7→Pn can be constructed by applying the
usual unfold/fold transformation rules for ordinary programs. However, the unfold/fold trans-
formation rules for annotated programs also ensure that decreasingness is preserved. Indeed, if
Γk is a set of clauses which are decreasing w.r.t. Â, then the clauses in the set ∆k derived from
Γk by applying a transformation rule are all decreasing w.r.t. Â, whenever suitable applicability
conditions based on the annotation formulas hold.

Now we show how the unfold/fold transformation sequences are constructed by using un-
fold/fold transformation rules for annotated programs. Given an unfold/fold transformation
sequence P 0 7→ . . . 7→P k, for some k≥0, program P k+1 is derived from program P k by applying
one of the three transformation rules: R1 (unfolding), R2 (folding), and R3 (goal replacement),
which are defined below. As already mentioned is Section 2, for reasons of simplicity, among the
transformation rules here we do not include the definition introduction rule [28]. This simplifying
assumption is made also in [11, 24, 29].

The presentation of the transformation rules is parametric with respect to an arbitrarily chosen
well-founded ordering W = (W,Â). We assume that the initial annotated program P 0 of the
unfold/fold transformation sequence P 0 7→ . . . 7→P k is annotated over W and is decreasing with
respect to Â. We also assume that P 0 and P k have no variables in common. This assumption
is not restrictive because we can always rename the variables of an annotated program without
changing its least W-model. In fact, we will feel free to rename variables whenever needed.

Rule R1 (Unfolding) Let C: H ← c ∧ GL ∧ A ∧ GR be a clause of the annotated program
P k. Let

C1 : H1 ← c1 ∧G1

· · ·
Cm : Hm ← cm ∧Gm

with m ≥ 0, be all clauses of program P 0 such that, for i = 1, . . . ,m, A is unifiable with H i via
a most general unifier ϑi. By unfolding clause C w.r.t. atom A we derive the clauses

D1 : (H ← c ∧ c1 ∧GL ∧G1 ∧GR)ϑ1

· · ·
Dm : (H ← c ∧ cm ∧GL ∧Gm ∧GR)ϑm

and from program P k we derive program P k+1 = (P k − {C}) ∪ {D1, . . . , Dm}.
Basically, the unfolding rule for annotated programs is like the usual, totally correct unfolding

rule for definite logic programs. Note, however, that we cannot unfold an annotated clause with
respect to an annotation formula (such as c in clause C above), but only with respect to an
annotated atom. The following lemma, whose proof is given in the Appendix, shows that the
unfolding rule is a particular case of the clause replacement rule for annotated programs.

23.

Lemma 4.1. Let P 0 7→ . . . 7→ P k be an unfold/fold transformation sequence whose programs
are annotated over the well-founded ordering W = (W,Â). Let C be a clause in the annotated
program P k, and let D1, . . . , Dm be the clauses derived by unfolding C w.r.t. an annotated atom
in its body, as described in Rule R1. Then:
(1) M(P 0) |= {C} ⇔ {D1, . . . , Dm}, and
(2) D1, . . . , Dm are decreasing w.r.t. Â.

Note that, by Lemma 3.6, Point (1) of Lemma 4.1 implies M(P0) |= {C} ⇒ {D1, . . . , Dm},
that is, Condition (i) of Definition 10.

Rule R2 (Folding) Let
C1 : H ← c1 ∧G1

· · ·
Cm : H ← cm ∧Gm

with m≥1, be clauses in P 0 and, for a substitution ϑ, let
D1 : K ← d ∧ c1ϑ ∧GL ∧G1ϑ ∧GR

· · ·
Dm : K ← d ∧ cmϑ ∧GL ∧Gmϑ ∧GR

be clauses in P k. Suppose that the following conditions hold:

1. there exists no clause in P 0 − {C1, . . . , Cm} whose head is unifiable with Hϑ;

2. for i = 1, . . . , m and for every variable U in the set vars(ci ∧ Gi) − vars(H): (i) Uϑ is a
variable not occurring in {K, d, GL, GR}, and (ii) Uϑ does not occur in the term V ϑ, for
any variable V occurring in ci ∧Gi and different from U ; and

3. W |= ∀ (d → KÂ(GL ∧Hϑ ∧GR)).

By folding clauses D1, . . . , Dm using clauses C1, . . . , Cm we derive the clause
E: K ← d ∧GL ∧Hϑ ∧GR

and from program P k we derive program P k+1 = (P k − {D1, . . . , Dm}) ∪ {E}.
The only difference between the folding rule for annotated programs and the usual, partially

correct folding rule for definite logic programs consists in the extra Condition 3. This extra
condition ensures that the annotated clause E derived by folding is decreasing w.r.t. Â.

The following Lemma 4.2 (together with Lemma 3.6) shows that, like the unfolding rule, also
the folding rule is a particular case of the clause replacement rule for annotated programs. The
proof is given in the Appendix.

Lemma 4.2. Let P 0 7→ . . . 7→ P k be an unfold/fold transformation sequence whose programs
are annotated over the well-founded ordering W = (W,Â). Let C1, . . . , Cm be clauses in P 0,
let D1, . . . , Dm be clauses in P k, and let E be the clause derived by folding D1, . . . ,Dm using
C1, . . . , Cm, as described in Rule R2. Then:
(1) M(P 0) |= {D1, . . . , Dm} ⇔ {E}, and
(2) E is decreasing w.r.t. Â.

The goal replacement rule for annotated programs consists in replacing a conjunction of the
form c1∧G1 occurring in the body of a clause of P k, by a new conjunction of the form c2∧G2.
As already mentioned, we want to present this goal replacement rule as a particular case of the
clause replacement rule for annotated programs, so that the total correctness of the unfold/fold

24.

transformation sequences will easily follow from Corollary 3.7. Thus, Conditions (i), (ii), and
(iii) of Definition 10 should be satisfied when performing a goal replacement.

Condition (i) and (ii) of Definition 10 are ensured by suitably quantified implications which
correspond to Conditions (i) and (ii) of the definition of replacement law (see Definition 11
below). Condition (iii) of Definition 10 is ensured by Condition (δ) of the goal replacement
rule R3 below.

In Definition 11 we will use the following notation. Given a set X = {X1, . . . , Xm} of variables,
∀X is a shorthand for ∀X1 . . .∀Xm and analogously for ∃X.

Definition 11 (Replacement Law) Let c1, c2 be annotation formulas, let G1, G2 be anno-
tated goals, and let X ⊆ vars({c1, c2, G1, G2}) be a set of variables. We say that the replacement
law c1∧G1 ⇒X c2∧G2 holds in P 0 iff the following conditions hold:
(i) M(P0) |= ∀X ′ (∃Y ′G1 ← ∃Z ′G2) and
(ii) M(P 0) |= ∀X (∃Y (c1 ∧G1) → ∃Z (c2 ∧G2))
where: (1) G1 and G2 are the goals π(G1) and π(G2), respectively, (2) X ′ = X∩vars({G1, G2}),
(3) Y ′ = vars(G1) − X ′, (4) Z ′ = vars(G2) − X ′, (5) Y = vars(c1 ∧ G1) − X, and (6) Z =
vars(c2 ∧G2)−X.

By using Lemma 3.6 and Condition (ii) of Definition 11, it can be shown that M(P0) |=
∀X ′ (∃Y ′G1 ↔ ∃Z ′G2), which corresponds to one of the applicability conditions of the goal
replacement rule for definite programs given in [28].

Let us consider again the program R1 given in Example 9 and its annotated version R1. The
following replacement law holds in the annotated program R1:

K >M+N ∧ reach(X, Y)〈M〉 ∧ arc(Y, Z)〈N〉 ⇒{K,X,Z} (Swap)
K >M+N ∧ arc(X,Y)〈M〉 ∧ reach(Y,Z)〈N〉

Indeed, as already mentioned, we have that:
M(R1) |= ∀K ∀X ∀Z (∃M ∃N ∃Y (K >M+N ∧ reach(X, Y)〈M〉 ∧ arc(Y, Z)〈N〉)

→ ∃M ∃N ∃Y (K >M+N ∧ arc(X,Y)〈M〉 ∧ reach(Y, Z)〈N〉))
and

M(R1) |= ∀X ∀Z (∃Y (reach(X, Y) ∧ arc(Y, Z)) ← ∃Y (arc(X,Y) ∧ reach(Y, Z))).
In the next section we will present a method, called unfold/fold proof method, for proving that
a replacement law holds in an annotated program.

Rule R3 (Goal Replacement) Let C: H ← c∧c1∧GL∧G1∧GR be a clause of the annotated
program P k and suppose that the replacement law λ: c1∧G1 ⇒X c2∧G2 holds in P 0, where
X = vars({H, c,GL, GR}) ∩ vars({c1, G1, c2, G2}). Suppose also that:
W |= ∀ ((c ∧ c2) → HÂ(GL ∧G2 ∧GR)) (δ)

By goal replacement using law λ, from clause C we derive the clause D : H ← c∧c2∧GL∧G2∧GR

and from program P k we derive program P k+1 = (P k − {C}) ∪ {D}.
The goal replacement rule R3 for annotated programs differs from the usual, partially correct

goal replacement rule for definite logic programs because of Condition (δ). This condition ensures
that the annotated clause D derived by goal replacement is decreasing w.r.t. Â. (The notion of
replacement law for definite logic programs can be obtained from the notion of replacement law
for annotated programs by replacing: (i) c1 and c2 by true, and (ii) G1 and G2 by G1 and G2,
respectively. Thus, X ′=X, Y ′=Y , and Z ′=Z).

The following lemma, whose proof is given in the Appendix, shows that also the goal replace-
ment rule is a particular case of the clause replacement rule for annotated programs.

25.

Lemma 4.3. Let P 0 7→ . . . 7→P k be an unfold/fold transformation sequence whose programs are
annotated over the well-founded ordering W = (W,Â). Let C be a clause in P k and let D be a
clause derived from C by goal replacement, as described in Rule R3. Then:
(1) M(P0) |= {C} ⇒ {D},
(2) M(P 0) |= {C} ⇐ {D}, and
(3) D is decreasing w.r.t. Â.

An application of the goal replacement rule is given in the above Example 9. Indeed, the
derivation of clause C5 from clause C2 can be viewed as an application of Rule R3 based on the
fact that the above replacement law (Swap) holds in R1.

Note that a particular application of the goal replacement rule allows us to replace in the body
of a clause of the form H ← c ∧ c1 ∧G the annotation formula c1 by an annotation formula c2

provided that the following two conditions are satisfied:
(A1) W |= ∀X (∃Y c1 → ∃Z c2)
where: (i) X =vars({H, c,G}) ∩ vars({c1, c2}), (ii) Y =vars(c1)−X, and (iii) Z =vars(c2)−X,
and
(A2) W |= ∀ ((c ∧ c2) → HÂG).
Indeed, Conditions (A1) and (A2) imply Conditions (i) and (ii) of Definition 11 and Condition (δ)
of Rule R3, when both G1 and G2 are the empty conjunction true and GL ∧ GR is G. This
particular replacement of annotation formulas will be called annotation weakening. For instance,
by annotation weakening, the clause

p(A)〈X〉 ← X >Y ∧ Y >Z ∧ q(A)〈Z〉
can be replaced by the clause

p(A)〈X〉 ← X >Z ∧ q(A)〈Z〉
The following example illustrates the construction of an unfold/fold transformation sequence of
annotated programs.

Example 10. Let us consider the following annotated program P 0, where we use the well-
founded annotation α2 over N of Example 7:

1. p(a)〈X〉 ←
2. p(A)〈X〉 ← X >X1 ∧ X >X2 ∧ t(A,B)〈X1〉 ∧ p(B)〈X2〉
3. q(b)〈X〉 ←
4. q(A)〈X〉 ← X >X1 ∧ r(A)〈X1〉
5. r(A)〈X〉 ← X >X1 ∧ X >X2 ∧ t(A,B)〈X1〉 ∧ q(B)〈X2〉
6. s(A)〈X〉 ← X >X1 ∧ p(A)〈X1〉
7. s(A)〈X〉 ← X >X1 ∧ q(A)〈X1〉

By unfolding clause 6 w.r.t. p(A)〈X1〉, we get:
8. s(a)〈Y 〉 ← Y >Y1

9. s(C)〈Y 〉 ← Y >Y1 ∧ Y1 >Y2 ∧ Y1 >Y3 ∧ t(C, D)〈Y2〉 ∧ p(D)〈Y3〉
Thus, P 1 is (P 0 − {6}) ∪ {8, 9}. By two applications of the unfolding rule, from clause 7 we
derive:

10. s(b)〈Y 〉 ← Y >Y1

11. s(C)〈Y 〉 ← Y >Z ∧ Z >Y1 ∧ Y1 >Y2 ∧ Y1 >Y3 ∧ t(C,D)〈Y2〉 ∧ q(D)〈Y3〉
Thus, P 3 is (P 0 − {6, 7}) ∪ {8, 9, 10, 11}. Now, by annotation weakening from clauses 9 and 11
we derive:

26.

12. s(C)〈Y 〉 ← Y >Y2 ∧ Y >Y1 ∧ Y1 >Y3 ∧ t(C, D)〈Y2〉 ∧ p(D)〈Y3〉
13. s(C)〈Y 〉 ← Y >Y2 ∧ Y >Y1 ∧ Y1 >Y3 ∧ t(C, D)〈Y2〉 ∧ q(D)〈Y3〉

By the above two transformation steps we get program P 5 which is (P 0−{6, 7})∪{8, 12, 10, 13}.
Now, Conditions 1–3 of the folding rule are verified by taking: (i) ϑ to be the substitution
{X/Y1, X1/Y3, A/D}, and (ii) d to be the annotation formula Y > Y2 ∧ Y > Y1. By folding
clauses 12 and 13 using clauses 6 and 7 we derive the clause:

14. s(C)〈Y 〉 ← Y >Y2 ∧ Y >Y1 ∧ t(C,D)〈Y2〉 ∧ s(D)〈Y1〉.
which is decreasing w.r.t. >. The final program is P 6 = (P 0 − {6, 7}) ∪ {8, 10, 14}. By Theo-
rem 4.4 we have that M(P0) = M(P6), where P0 = π(P 0) and P6 = π(P 6). 2

The total correctness of the transformation sequences constructed by applying Rules R1, R2,
and R3 readily follows from the fact that these rules are particular cases of the clause replacement
rule for annotated programs and Corollary 3.7.

Theorem 4.4 (Total Correctness of Unfold/Fold Transformation Sequences) Let
P 0 7→ . . . 7→Pn be an unfold/fold transformation sequence. Then:
(1) M(P 0) ⊆ M(Pn), and
(2) M(P0) = M(Pn).

Proof : For k = 0, . . . , n−1, the annotated program P k+1 is derived from P k by the application
of a transformation rule among R1, R2, and R3. Then, for some sets Γk and ∆k of annotated
clauses, we have that P k+1 = (P k − Γk) ∪ ∆k. By Lemmata 4.1, 4.2, and 4.3, we have the
following properties:
(1) M(P0) |= Γk ⇒ ∆k,
(2) M(P 0) |= Γk ⇐ ∆k, and
(3) ∆k is decreasing w.r.t. Â.
Thus, P 0 7→ . . . 7→Pn can be viewed as a transformation sequence constructed by using the clause
replacement rule of Definition 10 and, by Corollary 3.7, we have that: (1) M(P 0) ⊆ M(Pn),
and (2) M(P0) = M(Pn). 2

5. Unfold/Fold Proofs of Replacement Laws

In this section we describe a method which can be used to prove that a replacement law holds
in an annotated program. (Recall that, in order to apply the goal replacement rule, we have
to show that a suitable replacement law does hold.) Our method constructs the proof of the
given replacement law by using the transformation rules presented in Section 4 and, thus, it is
an extension to annotated programs of the unfold/fold proof method presented in [20] in the
case of ordinary programs. We will use the term unfold/fold proof method also for the method
for annotated programs presented in this section. The basic idea behind the unfold/fold proof
method is that when we transform a program into a new one by using semantics preserving
rules, we also prove an implication (or equivalence) between predicate definitions with respect
to the given semantics.

Let us consider the replacement law λ: c1 ∧ G1 ⇒X c2 ∧ G2. For reasons of simplicity, we
assume that X = {V,N} where V is an ordinary variable and N is an annotation variable. The
generalization to the case where V and N are tuples of variables, instead of single variables, is
straightforward. In order to prove that λ holds in the annotated program P , the unfold/fold

27.

proof method works as follows. First we introduce two new predicates new1 and new2 defined
by the following two clauses:

D1: new1(V)〈N〉 ← c1 ∧G1

D2: new2(V)〈N〉 ← c2 ∧G2

Then we construct two unfold/fold transformation sequences of the forms:
P ∪ {D1} 7→ . . . 7→Q
P ∪ {D2} 7→ . . . 7→R

such that the following two conditions hold:

1. Program R can be obtained from program Q by renamings of predicates and variables;

2. The unfold/fold transformation sequence P ∪ {D2} 7→ . . . 7→R is equivalence-based (not
only reverse-implication-based, as guaranteed by the use of the transformation rules of
Section 4).

Now we introduce the notion of syntactic equivalence between programs, which formalizes the
above Condition 1. Then we will give a simple condition which ensures that Condition 2 is
indeed satisfied.

Given a set Preds of predicate symbols, a predicate renaming over Preds is a bijective mapping
ρ : Preds → Preds. Two annotated programs Q and R are syntactically equivalent if there exist:
(i) a variant Q

′ of Q, and (ii) a predicate renaming ρ over the set of predicate symbols occurring
in Q∪R, such that R is obtained from Q

′ by replacing every predicate symbol p occurring in Q
by ρ(p). Syntactic equivalence implies semantic equivalence, as stated by the following lemma,
whose straightforward proof is omitted.

Lemma 5.1. If program Q is syntactically equivalent to program R via a predicate renaming ρ
then, for every predicate p occurring in Q, ground ordinary term t, and ground annotation term
w, p(t)〈w〉 ∈ M(Q) iff ρ(p)(t)〈w〉 ∈ M(R).

Let us now introduce a restricted version of the goal replacement rule R3 of Section 4, called
symmetric goal replacement, such that every unfold/fold transformation sequence constructed
by applying the unfolding, folding, and symmetric goal replacement rules, is an equivalence-
based transformation sequence. Given an annotated program P , we say that the replacement
law c1∧G1 ⇒X c2∧G2 holds symmetrically in P if in Definition 11 Conditions (i) and (ii) are
replaced by the following stronger condition:

(ii′) M(P) |= ∀X (∃Y (c1 ∧G1) ↔ ∃Z (c2 ∧G2))
(Recall that, by Lemma 3.6, Condition (ii′) implies Condition (i) of Definition 11.) An applica-
tion of the symmetric goal replacement rule consists in an application of the goal replacement rule
R3 using a replacement law that holds symmetrically in the initial program P 0 of the unfold/fold
transformation sequence. An unfold/fold transformation sequence is said to be symmetric iff it is
constructed by applications of the unfolding and folding rules and/or by symmetric applications
of the goal replacement rule.

If P 0 7→ . . . 7→Pn is a symmetric unfold/fold transformation sequence, then we not only have
that M(P0) = M(Pn), like for any unfold/fold transformation sequence (see Theorem 4.4), but
we also have that M(P 0) = M(Pn), as shown by the following lemma.

Lemma 5.2. Let P 0 7→ . . . 7→ Pn be a symmetric unfold/fold transformation sequence. Then
M(P 0) = M(Pn).

28.

Proof : For k = 0, . . . , n−1, P k+1 = (P k − Γk) ∪ ∆k, where Γk and ∆k are sets of annotated
clauses such that, by Lemmata 4.1, 4.2, 4.3, and Condition (ii′) the following properties hold:
(1) M(P 0) |= Γk ⇔ ∆k, and
(2) ∆k is decreasing w.r.t. Â.
Thus, P 0 7→ . . . 7→Pn is an equivalence-based sequence of programs and Pn is decreasing w.r.t. Â.
By Theorems 2.4, 2.6, and 3.4, we have that M(P 0) = M(Pn). 2

Now we are able to show the soundness of our unfold/fold proof method.

Theorem 5.3 (Soundness of the Unfold/Fold Proof Method) Let P be an annotated pro-
gram and let c1∧G1 ⇒X c2∧G2 be a replacement law. Let us consider the following two annotated
clauses:

D1: new1(V)〈N〉 ← c1 ∧G1

D2: new2(V)〈N〉 ← c2 ∧G2

where X = {V, N}, V is an ordinary variable, and N is an annotation variable. Suppose that
there exist an unfold/fold transformation sequence of the form:

P ∪ {D1} 7→ . . . 7→Q

and a symmetric unfold/fold transformation sequence of the form:

P ∪ {D2} 7→ . . . 7→R

such that Q is syntactically equivalent to R. Then the replacement law λ: c1 ∧G1 ⇒X c2 ∧G2

holds in P .

Proof : From the definition of replacement law (see Definition 11) and from the fact that the
predicates new1 and new2 are defined by clauses D1 and D2, respectively, it follows that the
replacement law λ holds in P iff the following two properties hold for every ground ordinary
term t and ground annotation term w:

(I1) new1(t) ∈ M(P ∪ {D1}) if new2(t) ∈ M(P ∪ {D2})
(I2) new1(t)〈w〉 ∈ M(P ∪ {D1}) only if new2(t)〈w〉 ∈ M(P ∪ {D2})

Now we show that indeed Properties (I1) and (I2) do hold. Since there exists an unfold/fold
transformation sequence P∪{D1} 7→ . . . 7→Q, by Theorem 4.4 we have that M(P∪{D1}) = M(Q)
and M(P ∪ {D1}) ⊆ M(Q). Thus,

(J1) new1(t) ∈ M(P ∪ {D1}) iff new1(t) ∈ M(Q)
(J2) new1(t)〈w〉 ∈ M(P ∪ {D1}) only if new1(t)〈w〉 ∈ M(Q)

Since Q is syntactically equivalent to R via the predicate renaming ρ such that ρ(new1) = new2,
by Lemma 5.1 we have that:

(K1) new1(t) ∈ M(Q) iff new2(t) ∈ M(R)
(K2) new1(t)〈w〉 ∈ M(Q) iff new2(t)〈w〉 ∈ M(R)

Now, since P ∪ {D2} 7→ . . . 7→ R is a symmetric unfold/fold transformation sequence, by
Lemma 5.2 we have that M(P ∪ {D2}) = M(R) and M(P ∪ {D2}) = M(R). Thus,

(L1) new2(t) ∈ M(R) iff new2(t) ∈ M(P ∪ {D2})
(L2) new2(t)〈w〉 ∈ M(R) iff new2(t)〈w〉 ∈ M(P ∪ {D2})

and we have proved Properties (I1) and (I2). Actually, we have also proved the converse of
property (I1). 2

29.

Note that in the proof of Theorem 5.3 we have indeed used the hypothesis that P ∪ {D2} 7→
. . . 7→ R is a symmetric unfold/fold transformation sequence, and thus, it is an equivalence-
based transformation sequence. In particular, Property (L2) holds if P ∪ {D2} 7→ . . . 7→ R is
equivalence-based, but it may not hold for an arbitrary unfold/fold transformation sequence.

As an example of application of the unfold/fold proof method, we prove the replacement law
(Swap) considered in Section 4.

Example 11. Let us consider again the annotated program R1 given in Example 9 and let us
prove that the replacement law (Swap) holds in R1. By applying the unfold/fold proof method
we introduce the following two clauses:

D1 : new1(X, Z)〈K〉 ← K >M+N ∧ reach(X,Y)〈M〉 ∧ arc(Y, Z)〈N〉
D2 : new2(X, Z)〈K〉 ← K >M+N ∧ arc(X, Y)〈M〉 ∧ reach(Y, Z)〈N〉

Now we construct two symmetric transformation sequences R1∪{D1} 7→ . . . 7→Q and R1∪{D2} 7→
. . . 7→R, where Q and R are syntactically equivalent. Note that, actually, for the unfold/fold
proof of the replacement law (Swap) it is not needed that R1 ∪ {D1} 7→ . . . 7→Q be symmetric.
Indeed, by constructing two symmetric transformation sequences we prove both (Swap) and the
following inverse replacement law:

K >M+N ∧ arc(X,Y)〈M〉 ∧ reach(Y, Z)〈N〉 ⇒{K,X,Z} (Inv-Swap)
K >M+N ∧ reach(X, Y)〈M〉 ∧ arc(Y, Z)〈N〉

Let us now show how the first transformation sequence R1 ∪ {D1} 7→ . . . 7→Q is constructed.
By unfolding clause D1 w.r.t. reach(X, Y)〈M〉, by replacing annotation formulas by equivalent
ones, and by renaming variables, we derive the following two clauses:

E1: new1(X1, Z1)〈K1〉 ← K1 >M1 ∧ arc(X1, Z1)〈M1〉
E2: new1(X1, Z1)〈K1〉 ← K1 >M1+N1 ∧M1 >M2+N2 ∧ reach(X1, Y1)〈M2〉∧

arc(Y1, Y2)〈N2〉 ∧ arc(Y2, Z1)〈N1〉
By folding clause E2 using clause D1 we derive:

E3: new1(X1, Z1)〈K1〉 ← K1 >M1+N1 ∧ new1(X1, Y2)〈M1〉 ∧ arc(Y2, Z1)〈N1〉
The final program Q of the first transformation sequence is R1 ∪ {E1, E3}. Let us now con-
struct the second transformation sequence R1 ∪ {D2} 7→ . . . 7→ R. By unfolding clause D2

w.r.t. reach(Y, Z)〈N〉, by replacing annotation formulas by equivalent ones, and by renaming
variables, we derive the following clauses:

F 1: new2(X1, Z1)〈K1〉 ← K1 >M1 ∧ arc(X1, Z1)〈M1〉
F 2: new2(X1, Z1)〈K1〉 ← K1 >M1+N1 ∧M1 >M2+N2 ∧ arc(X1, Y1)〈M2〉∧

reach(Y1, Y2)〈N2〉 ∧ arc(Y2, Z1)〈N1〉
By folding clause F 2 using clause D2 we derive:

F 3: new2(X1, Z1)〈K1〉 ← K1 >M1+N1 ∧ new2(X1, Y2)〈M1〉 ∧ arc(Y2, Z1)〈N1〉
The final program R of the second transformation sequence is R1 ∪ {F 1, F 3}. We have that R
is syntactically equivalent to Q via the predicate renaming that maps new1 to new2, new2 to
new1, and it is the identity on the other predicate symbols occurring in Q ∪R.

Let us observe that the applications of the goal replacement rule during the construction of the
two transformation sequences shown above are symmetric. Indeed, they consist of replacements
of annotation formulas by equivalent ones. 2

30.

6. An Extended Example

In this section we revisit an example of program transformation taken from [24]. The authors
of [24] justify that transformation by a rather intricate proof of the total correctness of the
transformation sequences. Now we show that the total correctness of the program transformation
of that example can easily be established by our well-founded annotation method. Let us consider
the following program P :

1. thm(X) ← gen(X) ∧ test(X)
2. gen([]) ←
3. gen([0|X]) ← gen(X)
4. test(X) ← canon(X)
5. test(X) ← trans(X, Y) ∧ test(Y)
6. canon([]) ←
7. canon([1|X]) ← canon(X)
8. trans([0|X], [1|X]) ←
9. trans([1|X], [1|Y]) ← trans(X, Y)

where we have that thm(X) holds iff X is a list of 0’s that can be transformed into a list of 1’s
by repeated applications of trans(X, Y). Given the list X, the predicate trans(X, Y) generates
the list Y by replacing the leftmost 0 in X by 1.

We want to prove that the formula ∀X (thm(X) ↔ gen(X)) is true in the least Herbrand model
of program P . As a special case of the unfold/fold proof method, the truth of this formula can
be established by constructing a totally correct transformation sequence from program P into
a program Q where the predicates thm and gen are defined by two syntactically equivalent sets
of clauses. Let us see how we construct this transformation sequence by applying our rules of
Section 4.

Let us consider the well-founded annotation α1 introduced in Example 7. By applying α1 we
get the following annotated program P :

1a. thm(X)〈N〉 ← N >N1+N2 ∧ gen(X)〈N1〉 ∧ test(X)〈N2〉
2a. gen([])〈N〉 ←
3a. gen([0|X])〈N〉 ← N >N1 ∧ gen(X)〈N1〉
4a. test(X)〈N〉 ← N >N1 ∧ canon(X)〈N1〉
5a. test(X)〈N〉 ← N >N1+N2 ∧ trans(X,Y)〈N1〉 ∧ test(Y)〈N2〉
6a. canon([])〈N〉 ←
7a. canon([1|X])〈N〉 ← N >N1 ∧ canon(X)〈N1〉
8a. trans([0|X], [1|X])〈N〉 ←
9a. trans([1|X], [1|Y])〈N〉 ← N >N1 ∧ trans(X, Y)〈N1〉

Now, let us construct a totally correct transformation sequence by using our rules of Section 4.
By applying several times the unfolding rule, from clause 1a we derive:

10a. thm([])〈N〉 ← N≥3
11a. thm([0|X])〈N〉 ← N >N1+N2+4 ∧ gen(X)〈N1〉 ∧ canon(X)〈N2〉
12a. thm([0|X])〈N〉 ← N >N1+N2+N3+4 ∧ gen(X)〈N1〉∧

trans(X, Y)〈N2〉 ∧ test([1|Y])〈N3〉
The replacement law

test([1|Y])〈N3〉 ⇒{Y,N3} (N3≥N4 ∧ test(Y)〈N4〉)
holds in P (see the unfold/fold proof of this law in the Appendix) and, moreover,

31.

N |= ∀ ((N >N1+N2+N3+4 ∧N3≥N4) → (N >N1 ∧N >N2 ∧N >N4)).
Thus, we may apply the goal replacement rule and we replace clause 12a by the following clause:

13a. thm([0|X])〈N〉 ← N >N1+N2+N3+4 ∧N3≥N4 ∧ gen(X)〈N1〉 ∧
trans(X, Y)〈N2〉 ∧ test(Y)〈N4〉

By folding clauses 11a and 13a using clauses 4a and 5a we get:
14a. thm([0|X])〈N〉 ← N >N1+N5+3 ∧ gen(X)〈N1〉 ∧ test(X)〈N5〉

Finally, by folding clause 14a using clause 1a, we derive:
15a. thm([0|X])〈N〉 ← N >N6+2 ∧ thm(X)〈N6〉

The final annotated program is (P −{1a})∪ {10a, 15a}. By applying the projection π we erase
the annotations from clauses 10a and 15a and we get:

10. thm([]) ←
15. thm([0|X]) ← thm(X)

Thus, the final program is Q = (P − {1})∪ {10, 15}. By Theorem 4.4 of Section 4 the transfor-
mation of P into Q is totally correct. In Q the predicates thm and gen are defined by two sets of
clauses (namely, clauses 10, 15 and clauses 2, 3, respectively) which are syntactically equivalent
and, therefore, as mentioned above, we may conclude that ∀X (thm(X) ↔ gen(X)) is true in
the least Herbrand model of P .

7. Related Work and Conclusions

We have proposed a general transformation rule, called clause replacement, which generalizes
the familiar unfolding, folding, and goal replacement transformations of definite logic programs.
Then we have introduced a method for proving the total correctness of the clause replacement
rule. Our method is based on program annotations, which are functions that add suitable
arguments to the predicates occurring in a given program. In particular, we have introduced well-
founded annotations, which ensure that the annotated program is terminating and, thus, it has
a unique fixpoint [3]. Note that annotated logic programs can be considered as a generalization
of the instrumented SOS rules introduced in [26], because SOS rules [21] can be viewed as
particular logic programs.

Our proof method uses the unique fixpoint principle, which has been first introduced for
proving properties of recursive equation programs (see [9] for a brief presentation and more
bibliographic references) and it has also been extended to inductive definitions [22]. The unique
fixpoint principle generalizes McCarthy’s recursion induction principle [18] by replacing the
requirement that a set of equations (viewed as rewriting rules) terminate, by the requirement
that this set of equations has a unique solution in a suitable semantic domain.

However, our proof method is more general than the unique fixpoint method. Indeed, in order
to prove the total correctness of the transformation of program P into program Q, the unique
fixpoint method requires that the immediate consequence operator TQ has a unique fixpoint,
while according to Theorem 3.5 of Section 3, we only need to derive from the annotated program
P an annotated program Q such that TQ has a unique fixpoint (and this is ensured by the fact
that Q is decreasing and, thus, terminating). Note, however, that in order to apply the well-
founded annotation method, TQ need not have a unique fixpoint and, in particular, Q need not
be terminating (see, for instance, Example 9 of Section 3).

We claim that our proof method is also more general than the improvement method [25, 26],
in the sense that if the total correctness of a transformation can be proved by the improvement

32.

method, then it can also be proved by our method, and not vice versa, as we now show in the
particular case where the transformation is performed by using the goal replacement rule R3 (see
Section 4). Suppose that, by applying Rule R3, an annotated clause of the form C: H〈X〉 ←
c1(X,X1) ∧ A1〈X1〉 is replaced by an annotated clause of the form D: H〈X〉 ← c2(X, X2) ∧
A2〈X2〉. Suppose also that, as required by the hypotheses of Theorem 4.4, clause C is decreasing
w.r.t. a suitable well-founded ordering Â, that is, W |= ∀ (c1(X, X1) → X ÂX1). Let X º Y
be defined as (XÂY ∨ Y =X). By adapting the definitions of [25, 26] to our context, we have
that the replacement of C by D is an improvement iff c2(X, X2) is of the form c1(X,X1) ∧
X1ºX2 and A1〈X1〉 ⇒{X1}∪vars({A1,A2}) X1ºX2 ∧ A2〈X2〉 holds in the initial program P 0 of
the transformation sequence, that is, for every ground instance a1〈w1〉 of A1〈X1〉 belonging to
M(P 0), there exists a ground instance a2〈w2〉 of A2〈X2〉 in M(P 0) such that w1ºw2. Since C
is decreasing w.r.t.Â, if the replacement of C by D is an improvement, then Condition (δ) of
Rule R3 is fulfilled, that is, W |= ∀ (c2(X, X2) → X ÂX2). Thus, the total correctness of this
replacement is a consequence of our well-founded annotation method. However, the opposite
implication is not true, that is, there exists a goal replacement which satisfies Condition (δ)
of Rule R3, and it is not an improvement. Indeed, with reference to the formalization of the
notion of improvement considered above, it is possible to find a replacement such that, for a
suitable well-founded ordering Â, we have that X Â X1 and X Â X2, and it is not the case that
X1 º X2.

As already mentioned, the clause replacement rule presented here is more general than the
unfolding, folding, and goal replacement rules for definite programs presented in the landmark
paper by Tamaki and Sato [28] and in subsequent papers (see, for instance, [4, 11, 13, 24, 29]).

Recall that, as already discussed in the Introduction, the total correctness of the unfolding,
folding, and goal replacement rules presented in [11, 13, 24, 28, 29] is ensured if suitable (rather
complex) proof measures do not increase when these rules are applied during the construction
of a transformation sequence. The fact that a given proof measure does not increase can be
viewed as an improvement in the sense of [25, 26]. (Actually, the basic idea underlying the
improvement method has been strongly influenced by early work in the field of logic program
transformation.) Thus, the general argument used above to claim that our proof method is more
powerful than the improvement method, can also be used to claim that our unfolding, folding,
and goal replacement rules of Section 4 are more powerful than the unfolding, folding, and goal
replacement rules presented in [11, 13, 24, 28, 29], in the sense that there are transformations
that can be performed by our rules and cannot be proved correct by showing that a given proof
measure does not increase.

In practice, when we limit ourselves to the use of the unfolding and folding rules presented
in [11, 13, 24, 28, 29] (that is, we do not use the goal replacement rule), we may avoid checking
that the given proof measure does not increase, and we may, instead, analyze the transformation
sequence and check that each application of the folding rule is preceded by suitable applications
of the unfolding rule. However, if we also use the goal replacement rule, the verification that the
given proof measure does not increase cannot be avoided and, unfortunately, no general method
is proposed in [11, 13, 24, 28, 29] to do this verification.

Note also that, unlike [11, 13, 24, 28, 29], our conditions for the total correctness of a trans-
formation sequence constructed by using the unfolding, folding, and goal replacement rules of
Section 4, do not depend on the results of an analysis of the transformation sequence and can
be checked by proving that suitable first order formulas hold in the least W-model of the initial
annotated program of the transformation sequence.

33.

The unfolding and folding rules presented in [4] do not depend on proof-theoretic conditions,
like the ones in [11, 13, 24, 28, 29]. Instead, the applicability condition of the folding rule is
based on a property, called semantic delay, of the immediate consequence operator associated
with the program to be transformed. Let us briefly recall the notion of semantic delay in the
simple case where the semantics of the program is defined as its least Herbrand model and the
application of the folding rule consists in replacing a ground atom A1 in the body of a clause of
a program P by a new ground atom A2. The semantic delay of A2 with respect to A1 is the least
integer number n such that, for every natural number m, if A1 ∈ Tm

P (∅) then A2 ∈ Tm+n
P (∅).

A sufficient condition for the total correctness of folding is that the semantic delay of A2 with
respect to A1 is not positive.

The notion of semantic delay can be extended to other semantics and more complex re-
placements. In particular, in [5] Bossi et al. consider general logic programs with Fitting’s
three-valued semantics and introduce the simultaneous replacement transformation rule, which
simultaneously replaces n (> 0) conjunctions of literals, each of which occurs in the body of a
clause. Then in [5] it is shown that if each conjunction of literals is replaced by an equivalent
(with respect to Fitting’s semantics) new conjunction of literals and the semantic delay of each
new conjunction with respect to the corresponding old conjunction is not positive, then the
initial and the transformed program have the same Fitting three-valued model.

When restricted to definite programs the simultaneous replacement rule is less general than
our clause replacement rule. Indeed, the unfolding rule is not an instance of the simultaneous
replacement rule, while it is an instance of the clause replacement rule. Moreover, the equiva-
lence with respect to the least Herbrand model does not imply the equivalence with respect to
Fitting’s semantics (while the opposite implication holds) and, thus, some clause replacements
may not be performed by simultaneous replacements. Finally, similarly to [11, 13, 24, 28, 29],
in [5] Bossi et al. do not provide any method to prove that the semantic delay is not positive,
while by using our method based on well-founded annotations, the total correctness of a clause
replacement can be shown by proving suitable first order formulas.

Various notions of termination have been considered in [6, 8, 14] to prove the total correctness
of transformations of logic programs. Let us briefly describe how the results of these papers are
related to the method presented here.

In [8] Cook and Gallagher present a result which ensures the total correctness of the goal
replacement rule based on the termination of the programs derived by applying this rule. This
result is generalized by our Corollary 2.7 in Section 2. Indeed, our clause replacement rule is
more general than the goal replacement rule and the uniqueness of fixpoint is a more general
property than termination. Thus, the result by Cook and Gallagher suffers from the same
limitation as our Corollary 2.7, in that it cannot be used to prove the total correctness of a
transformation when the derived program is not terminating. In particular, the total correctness
of the transformation of the reachability program presented in Example 9 cannot be proved by
using the results in [8]. To overcome this limitation is, indeed, one of the main motivations of
our paper, and our method based on well-founded annotations allows us to prove the correctness
of a transformation sequence even if the final program in the sequence is not terminating.

In [6] Bossi and Etalle prove that the unfolding and folding transformation rules for general
logic programs presented in [27] preserve acyclicity, and this property implies the termination
of each program of a transformation sequence. In the case of definite programs, the results
presented here are strictly more general than the ones presented in [6] because: (i) the unfold-
ing and folding rules considered in [6] are particular cases of our clause replacement rule, and

34.

(ii) similarly to [8], the results in [6] cannot be used to prove the total correctness of a transfor-
mation that produces a non-terminating (thus, non-acyclic) program (consider, once again, our
reachability Example 9).

In [14] the correctness of the unfold/fold program transformations is proved under the addi-
tional hypothesis that they preserve existential termination. A program P is said to be exis-
tentially terminating with respect to an atom A iff there exists a finite SLD-tree for P ∪ {¬A}
with either a success branch or all failure branches. However, no method is given in [14] to
check whether or not existential termination is preserved by a program transformation, while
the well-founded annotation method presented here provides first order formulas to be checked
for proving the total correctness of transformation sequences.

From a practical point of view, the main advantage of using the transformation rules proposed
in this paper is that, as already mentioned, the correctness of a transformation sequence is guar-
anteed by the validity of suitable first-order annotation formulas, instead of proof-theoretic or
semantics-based conditions, and the validity of these formulas can be checked by using available
theorem provers. For the sake of generality, we have assumed that annotation formulas are ar-
bitrary first-order formulas. However, in practice, as shown by our examples, linear constraints
over natural numbers are sufficient to deal with a large class of program transformations. Even
though the validity problem for this class of constraints is NP-complete, some tools that work
efficiently in most practical cases have been developed (see, for instance, [23]).

In order to make use of our transformation rules in practice, one has to choose a suitable well-
founded orderingÂ and a suitable annotation function for the initial program of a transformation
sequence. In Section 4 the presentation of the rules is parametric with respect to this well-
founded ordering Â and this annotation function, but in general a suitable choice is needed to
be able to derive a final annotated program which is decreasing w.r.t. Â. The well-founded
orderings and the annotation functions given in the examples of this paper are quite powerful
in practice. However, more sophisticated well-founded orderings may be needed, depending
on the specific applications of the transformation rules. These sophisticated orderings can be
constructed by using well-established techniques developed for proving termination of Term
Rewrite Systems [10].

Due to its generality, we believe that our approach can easily be extended to other logic
programming languages and, in particular, to normal logic programs. This extension can be
based on the fact that the immediate consequence operator of an acyclic normal logic program
has a unique fixpoint. Thus, we may construct a totally correct transformation from program
P0 to program Pn by the following three steps: (i) we construct from P0 an annotated program
P 0, (ii) we transform the annotated program P 0 into an acyclic annotated program Pn, and
(iii) we erase the annotations from Pn, thereby getting Pn. Note that, if at Step (i) we construct
an acyclic annotated program, then we can use the transformation rules that preserve acyclicity
considered in [6] to perform Step (ii).

Finally, we would like to note that the notion of total correctness considered in this paper
is different from the one used in the case of imperative programs, where a program is said to
be totally correct with respect to a given specification iff its input-output relation satisfies the
specification and, moreover, the program terminates (see, for instance, [17]). In fact, as already
mentioned, the transformation of program P into program Q can be totally correct even if Q
is not terminating. However, in order to prove that the transformation of P into Q is totally
correct we transform an annotated program P into a terminating annotated program Q. In this
sense we may say that the program Q is totally correct with respect to the specification provided

35.

by the program P . Similarly to the proofs of total correctness for imperative programs based
on the axiomatic approach [17], also the derivation of the terminating program Q is performed
by proving first order implications and suitable well-founded ordering relations.

Acknowledgments

We would like to thank Sandro Etalle and John Gallagher for many stimulating discussions
concerning various issues addressed in this paper. Our thanks also go to the anonymous referees
for helpful comments and suggestions.

Appendix

In this Appendix we will use the following notation. Given a substitution ϑ =
{X1/t1, . . . , Xn/tn}, by dom(ϑ) we denote the set of variables {X1, . . . , Xn}. Given a set V
of variables, by ϑ¹V we denote the substitution {X/t | X/t ∈ ϑ and X ∈ V }.

Proof of Lemma 2.1

For reasons of simplicity we assume that Γ1 is of the form:

{p(t1) ← B1, . . . , p(tm) ← Bm}
and Γ2 is of the form:

{p(u1) ← D1, . . . , p(un) ← Dn}
The general case where the heads of the clauses have several predicate symbols of arbitrary
arities is a straightforward extension.

It follows directly from Definitions 1 and 2 and from the definition of Herbrand interpretation
that I |= Γ1 ⇒ Γ2 iff the following property, called IMP, holds.
Property IMP: for every ground term x, for every j, with 1 ≤ j ≤ n, such that

I |= ∃Z1 . . . ∃Zk (x=uj ∧Dj)

where {Z1, . . . , Zk} = vars(uj) ∪ vars(Dj), there exists i, with 1 ≤ i ≤ m, such that

I |= ∃Y1 . . .∃Yh (x= ti ∧Bi)

where {Y1, . . . , Yh} = vars(ti) ∪ vars(Bi).
Let us prove the only-if part of the lemma. Assume that Property IMP holds. Now, let us

take a ground instance (p(uj) ← Dj)ϑ of a clause in Γ2 such that I |= Djϑ and ϑ is a ground
substitution of the form {Z1/z1, . . . , Zk/zk}. Let x be the ground term ujϑ. We have that
I |= ∃Z1 . . .∃Zk (x = uj ∧ Dj) and, thus, by Property IMP, for some i, with 1 ≤ i ≤ m, we
have that I |= ∃Y1 . . .∃Yh (x = ti ∧ Bi). By the definition of Herbrand interpretation, there
exists a ground substitution η of the form {Y1/y1, . . . , Yh/yh}, such that I |= (x = ti ∧ Bi)η.
Thus, there exists a ground instance (p(ti) ← Bi)η of a clause in Γ1 which has the same head
as (p(uj) ← Dj)ϑ (because tiη is identical to ujϑ, which is x) and I |= Biη.

Let us now prove the if part of the lemma. Assume that for every ground instance C2 of a
clause in Γ2 such that I |= bd(C2) there exists a ground instance C1 of a clause in Γ1 such that
hd(C1) = hd(C2) and I |= bd(C1). Now, let us consider a ground term x and a clause p(uj) ← Dj

in Γ2 such that I |= ∃Z1 . . . ∃Zk (x = uj ∧ Dj). By definition of Herbrand interpretation there
exists a ground substitution ϑ = {Z1/z1, . . . , Zk/zk} such that x is identical to ujϑ and I |= Djϑ.
Thus, there exists a ground instance (p(uj) ← Dj)ϑ of a clause in Γ2 such that I |= Djϑ. By

36.

hypothesis, there exists a ground instance (p(ti) ← Bi)η of a clause in Γ1 such that: (i) η is
a ground substitution of the form {Y1/y1, . . . , Yh/yh}, (ii) (p(ti) ← Bi)η has the same head
as (p(uj) ← Dj)ϑ, and (iii) I |= Biη. By (ii), tiη is identical to ujϑ, which is x. Thus,
I |= ∃Y1 . . .∃Yh (x= ti ∧Bi) and we have proved that Property IMP holds. 2

Proof of Lemma 3.6

Suppose that M(P) |= Γ1 ⇒ Γ2. Without loss of generality we assume that Γ1 and Γ2 are sets
of clauses for a single predicate p. By Definition 2, M(P) |= ∀U ∀X (ϕ2 → ϕ1), where:
(i) U is a set {U1, . . . , Uh} of ordinary variables,
(ii) X is an annotation variable,
(iii) if (Γ1) is of the form p(U1, . . . , Uh)〈X〉 ← ϕ1,
(iv) ϕ1 is of the form ∃V1∃Y1 (c1 ∧ G1) ∨ . . . ∨ ∃Vm∃Ym (cm ∧ Gm), where, for i = 1, . . . ,m, Vi

is the set of ordinary variables occurring in Gi and not in U , and Yi is the set of annotation
variables occurring in ci ∧Gi and different from X,
(v) if (Γ2) is of the form p(U1, . . . , Uh)〈X〉 ← ϕ2, and
(vi) ϕ2 is of the form ∃W1∃Z1 (d1 ∧Q1) ∨ . . . ∨ ∃Wn∃Zn (dn ∧Qn), where, for i = 1, . . . , n, Wi

is the set of ordinary variables occurring in Qi and not in U , and Zi is the set of annotation
variables occurring in di ∧Qi and different from X.
We want to show that M(P) |= Γ1 ⇒ Γ2, that is, by Definition 2, M(P) |= ∀U (ϕ2 → ϕ1),
where:
(vii) ϕ1 is of the form ∃V1 G1 ∨ . . . ∨ ∃Vm Gm, and
(viii) ϕ2 is of the form ∃W1 Q1 ∨ . . . ∨ ∃Wn Qn.
Let α be a ground substitution with dom(α) = U , and suppose that M(P) |= ϕ2α. Hence there
exist i ∈ {1, . . . , n} and a ground substitution βi such that dom(βi) = Wi and M(P) |= Qiαβi.
Let Qi be a conjunction of atoms of the form A1∧. . .∧Ak. Thus, for r = 1, . . . , k, Arαβi ∈ M(P).
Let Qi be a conjunction of annotated atoms of the form A1〈N1〉∧ . . .∧Ak〈Nk〉, where N1, . . . , Nk

are distinct annotation variables. Since N1, . . . , Nk are distinct variables, by Proposition 3.3
there exists a ground substitution γi such that dom(γi) = {N1, . . . , Nk} and, for r = 1, . . . , k,
Ar〈Nr〉αβiγi ∈ M(P). Thus, M(P) |= Qiαβiγi. Moreover, since dom(γi) = {N1, . . . , Nk}, by
Definition 8, there exists a ground substitution δi such that dom(δi) = vars(di)− {N1, . . . , Nk}
and W |= diγiδi. Therefore, M(P) |= diγiδi ∧ Qiαβiγi. Since di = diαβi (because dom(αβi) ∩
vars(di) = ∅) and Qiαβiγi = Qiαβiγiδi (because Qiαβiγi is a ground goal), we have that
M(P) |= (di ∧ Qi)αβiγiδi. Hence, M(P) |= ∃Wi∃Zi (di ∧ Qi)αη, where η = δi ¹ {X}, and
thus, M(P) |= ϕ2αη. Since M(P) |= ∀U ∀X (ϕ2 → ϕ1), we have that M(P) |= ϕ1αη. Thus,
there exist j ∈ {1, . . . , m} and two ground substitutions ϑj , λj such that: (i) dom(ϑj) = Vj ,
(ii) dom(λj) = Yj , and (iii) M(P) |= (cj ∧ Gj)αηϑjλj . Hence, M(P) |= Gjαηϑjλj and, by
Proposition 3.2, since (dom(η) ∪ dom(λj)) ∩ vars(Gj) = ∅, we have that M(P) |= Gjαϑj .
Therefore, M(P) |= ∃V1 G1α ∨ . . . ∨ ∃Vm Gmα, and thus, we have that M(P) |= ϕ1α. 2

Proof of Lemma 4.1

Let C be a clause of the form H ← c∧GL ∧A∧GR and let C1: H1 ← c1 ∧G1, . . . , Cm: Hm ←
cm ∧ Gm, with m ≥ 0, be all the clauses of program P 0 such that, for i = 1, . . . , m, A is
unifiable with H i via a most general unifier ϑi. Then, for i = 1, . . . , m, Di is a clause of the
form (H ← c ∧ ci ∧GL ∧Gi ∧GR)ϑi.

37.

Proof of (1). We will first give the proof of M(P 0) |= {C} ⇒ {D1, . . . , Dm} and then the proof
of M(P 0) |= {C} ⇐ {D1, . . . , Dm}.

In order to prove M(P 0) |= {C} ⇒ {D1, . . . , Dm}, by Lemma 2.1 it is enough to prove that, for
i = 1, . . . , m, for every ground instance Diσi of clause Di such that M(P 0) |= bd(Diσi), there
exists a ground instance Cτ of C such that hd(Cτ) = hd(Diσi) and M(P 0) |= bd(Cτ).

Let Diσi be a clause of the form (H ← c ∧ ci ∧ GL ∧ Gi ∧ GR)ϑiσi such that M(P 0) |=
(c ∧ ci ∧ GL ∧ Gi ∧ GR)ϑiσi and, therefore, M(P 0) |= (c ∧ GL ∧ GR)ϑiσi and M(P 0) |= (ci ∧
Gi)ϑiσi. Let (H i ← ci ∧Gi)ϑiσiτi be a ground instance of Ci, where τi is a ground substitution
such that dom(τi) = vars(H i) − vars(ci ∧ Gi). Since (ci ∧ Gi)ϑiσiτi = (ci ∧ Gi)ϑiσi (because
(ci ∧ Gi)ϑiσi is ground), M(P 0) |= (ci ∧ Gi)ϑiσi, and H i ← ci ∧ Gi is true in M(P 0), we have
that M(P 0) |= H iϑiσiτi. Since ϑi is a unifier of A and H i, we have that Aϑiσiτi = H iϑiσiτi

and M(P 0) |= Aϑiσiτi. Let us consider the clause Cϑiσiτi, which is of the form Hϑiσi ←
cϑiσi ∧ GLϑiσi ∧ Aϑiσiτi ∧ GRϑiσi, because Hϑiσi, cϑiσi, GLϑiσi, and GRϑiσi are ground
and, thus, Hϑiσiτi = Hϑiσi, cϑiσiτi = cϑiσi, GLϑiσiτi = GLϑiσi, and GRϑiσiτi = GRϑiσi.
We have that Cϑiσiτi is a ground instance of C such that: (i) hd(Cϑiσiτi) = hd(Diσi) and
(ii) M(P 0) |= bd(Cϑiσiτi).

Now we prove that M(P 0) |= {C} ⇐ {D1, . . . , Dm}. By Lemma 2.1 it is enough to prove
that, for every ground instance Cσ of C such that dom(σ) = vars(C) and M(P 0) |= bd(Cσ),
there exists i ∈ {1, . . . , m} and a ground instance Diτi of Di such that dom(τi) = vars(Di),
hd(Diτi) = hd(Cσ), and M(P 0) |= bd(Diτi).

Let Cσ be a clause of the form (H ← c∧GL∧A∧GR)σ such that M(P 0) |= (c∧GL∧A∧GR)σ.
We have that M(P 0) |= Aσ and, since M(P 0) is a fixpoint of TP 0

, there exists a ground
instance (H i ← ci ∧ Gi)σi of a clause Ci ∈ P 0, whose head H i is unifiable with A, such that:
(i) Aσ = H iσi and (ii) M(P 0) |= (ci∧Gi)σi. Since vars(C)∩ vars(Ci) = ∅, we may assume that
dom(σ) ∩ vars(Ci) = ∅. Thus, we have that: Aσσi = Aσ (because Aσ is a ground annotated
atom) = H iσi = H iσσi (because dom(σ) ∩ vars(Hi) = ∅), that is, σσi is a unifier of A and H i.
Since ϑi is the most general unifier of A and H i, it follows that σσi = ϑiτi for some ground
substitution τi. Let us now consider the clause Di of the form (H ← c∧ci∧GL∧Gi∧GR)ϑi. We
have that Diτi is a ground instance of Di such that: (i) hd(Diτi) = hd(Cσ) and (ii) M(P 0) |=
bd(Diτi). Indeed, we have that: (i) hd(Diτi) = Hϑiτi = Hσσi (because ϑiτi = σσi) = Hσ
(because Hσ is a ground annotated atom) = hd(Cσ), and we have that: (ii.a) bd(Diτi) is
(c∧ ci∧GL∧Gi∧GR)ϑiτi, (ii.b) M(P 0) |= (c∧GL∧GR)ϑiτi, because M(P 0) |= (c∧GL∧GR)σ
and (c ∧ GL ∧ GR)σ = (c ∧ GL ∧ GR)σσi (because (c ∧ GL ∧ GR)σ is a ground annotated
formula) = (c ∧ GL ∧ GR)ϑiτi (because σσi = ϑiτi), and (ii.c) M(P 0) |= (ci ∧ Gi)ϑiτi, because
M(P 0) |= (ci ∧ Gi)σi and (ci ∧ Gi)σi = (ci ∧ Gi)σσi (because dom(σ) ∩ vars(ci ∧ Gi) = ∅)
= (ci ∧Gi)ϑiτi (because σσi = ϑiτi).

Proof of (2). Let us consider a clause Di ∈ {D1, . . . , Dm} of the form (H ← c∧ci∧GL∧Gi∧GR)ϑi.
By hypothesis, the clause C of the form H ← c ∧ GL ∧ A ∧ GR is decreasing w.r.t. Â, that is,
W |= ∀ (c → H Â (GL ∧A ∧GR)) and, therefore, W |= ∀ ((c → H Â (GL ∧A ∧GR))ϑi). Let us
now consider the clause Ci ∈ P 0 of the form H i ← ci∧Gi. Since every clause of P 0 is decreasing
w.r.t. Â, we have that W |= ∀ (ci → H i Â Gi) and, therefore, W |= ∀ ((ci → H i Â Gi)ϑi). Since
Aϑi = H iϑi, by transitivity of Â, we conclude that W |= ∀ ((c ∧ ci → H Â (GL ∧Gi ∧GR))ϑi),
that is, Di is decreasing w.r.t. Â. 2

38.

Proof of Lemma 4.2

For i = 1, . . . , m, Ci is a clause in P 0 of the form H ← ci ∧Gi and Di is a clause in P k of the
form K ← d∧ ciϑ∧GL ∧Giϑ∧GR, where ϑ is a substitution such that Conditions 1–3 of Rule
R2 are satisfied. The clause E derived by folding D1, . . . , Dm using clauses C1, . . . , Cm is of the
form K ← d ∧GL ∧Hϑ ∧GR.

Proof of (1). We will first give the proof of M(P 0) |= {D1, . . . ,Dm} ⇒ {E} and then the proof
of M(P 0) |= {D1, . . . , Dm} ⇐ {E}.
In order to prove M(P 0) |= {D1, . . . , Dm} ⇒ {E}, by Lemma 2.1 it is enough to prove that, for
every ground instance Eσ of E such that dom(σ) = vars(E) and M(P 0) |= bd(Eσ), there exist
i ∈ {1, . . . , m} and a ground instance Diτi of Di such that dom(τi) = vars(Di), hd(Diτi) =
hd(Eσ), and M(P 0) |= bd(Diτi).
Let Eσ be a clause of the form (K ← d ∧ GL ∧ Hϑ ∧ GR)σ and suppose that M(P 0) |=
(d ∧ GL ∧ Hϑ ∧ GR)σ. Let us consider the following substitutions: η = ϑ ¹ vars(H) and, for
i = 1, . . . , m, γi = ϑ ¹ (vars(ci ∧ Gi) − vars(H)). By Condition 2 of Rule R2, γi is of the form:
{U1/W1, . . . , Uni/Wni}, where W1, . . . ,Wni are distinct variables not occurring in E. Let ρi be
the substitution {W1/U1, . . . , Wni/Uni}. The following two properties hold: (C1) Hϑ = Hη
and (C2) (ci ∧ Gi)η = (ci ∧ Gi)ϑρi. Since M(P 0) |= (d ∧ GL ∧ Hϑ ∧ GR)σ, we also have
that M(P 0) |= Hϑσ and, by Property C1, M(P 0) |= Hησ. Since M(P 0) is a fixpoint of TP 0

and, by Condition 1 of Rule R2, all clauses of P 0 whose head is unifiable with Hϑ are in
{C1, . . . , Cm}, there exist a clause Ci: H ← ci ∧Gi in {C1, . . . , Cm} and a ground substitution
ν such that M(P 0) |= (ci ∧ Gi)ησν where dom(ν) = vars(ci ∧ Gi) − vars(H). We have that:
(ci ∧ Gi)ησν = (ci ∧ Gi)ϑρiσν (by Property C2) = (ci ∧ Gi)ϑσρiν (because no variable occurs
simultaneously in ρi and σ) and, therefore, M(P 0) |= (ci ∧Gi)ϑσρiν. Since (d ∧GL ∧GR)σ is
a ground goal and M(P 0) |= (d ∧ GL ∧ GR)σ, we also have that M(P 0) |= (d ∧ GL ∧ GR)σρiν
and, therefore, M(P 0) |= (ciϑ ∧ d ∧GL ∧Giϑ ∧GR)σρiν. Let us now consider the substitution
τi = σρiν. We have that: hd(Diτi) = Kσρiν = Kσ (because Kσ is a ground atom) = hd(Eσ)
and M(P 0) |= bd(Diτi).

Now we prove that M(P 0) |= {D1, . . . , Dm} ⇐ {E}. By Lemma 2.1, it is enough to prove that,
for i = 1, . . . ,m, for every ground instance Diσi of Di such that M(P 0) |= bd(Diσi), there exists
a ground instance Eτ of E such that hd(Eτ) = hd(Diσi) and M(P 0) |= bd(Eτ).
Let Diσi be a clause of the form (K ← d∧ ciϑ∧GL ∧Giϑ∧GR)σi and suppose that M(P 0) |=
(d ∧ ciϑ ∧ GL ∧ Giϑ ∧ GR)σi. Let (H ← ci ∧ Gi)ϑσiτi be a ground instance of Ci, where
dom(τi) = vars(H)−vars(ci∧Gi). Since M(P 0) |= H ← ci∧Gi, we have that M(P 0) |= (d∧GL∧
Hϑ∧GR)σiτi. Now, let us consider the clause Eσiτi of the form (K ← d∧GL∧Hϑ∧GR)σiτi. We
have that: (i) hd(Eσiτi) = Kσiτi = Kσi (because Kσi is a ground annotated atom) = hd(Diσi)
and (ii) M(P 0) |= bd(Eσiτi).

Proof of (2). Straightforward from Condition 3 of Rule R2. 2

Proof of Lemma 4.3

Let C be an annotated clause of the form H ← c∧c1∧GL∧G1∧GR. Suppose that the replacement
law c1∧G1 ⇒X c2∧G2 holds in P 0, where X = vars({H, c,GL, GR}) ∩ vars({c1, G1, c2, G2}).
Then, the clause D derived by goal replacement is of the form H ← c ∧ c2 ∧GL ∧G2 ∧GR.

Proof of (1). C is a clause of the form H ← GL ∧G1 ∧GR and D is a clause of the form H ←
GL∧G2∧GR. We will prove that for every ground instance Dσ of D such that M(P0) |= bd(Dσ),

39.

there exists a ground instance Cτ of C such that hd(Cτ) = hd(Dσ) and M(P0) |= bd(Cτ). Then,
by Lemma 2.1, M(P0) |= {C} ⇒ {D}.
Let Dσ be a clause of the form (H ← GL ∧ G2 ∧ GR)σ and suppose that M(P0) |= (GL ∧
G2 ∧ GR)σ. Then M(P0) |= G2σ and, since the replacement law c1∧G1 ⇒X c2∧G2 holds
in P 0, by Condition (i) of Definition 11, we have that: M(P0) |= (∃Y ′G1σ) ← G2σ, where
Y ′ = vars(G1σ) − vars((H,GL, GR)σ). Thus, there exists a ground substitution η such that
dom(η) = Y ′ and M(P0) |= G1ση. Therefore, M(P0) |= (GL∧G1∧GR)ση. Let us now consider
the ground instance Cση: (H ← GL ∧G1 ∧GR)ση of C. We have that: hd(Cση) = Hση = Hσ
(because Hσ is a ground atom) = hd(Dσ) and M(P0) |= bd(Cση).

Proof of (2). We show that, for every ground instance Cσ of C such that M(P 0) |= bd(Cσ),
there exists a ground instance Dτ of D such that hd(Dτ) = hd(Cσ) and M(P 0) |= bd(Dτ).
Then, by Lemma 2.1, M(P 0) |= {C} ⇐ {D}.
Let Cσ be a clause of the form (H ← c∧c1∧GL∧G1∧GR)σ and suppose that M(P 0) |= (c∧c1∧
GL∧G1∧GR)σ. Then M(P 0) |= (c1∧G1)σ and, since the replacement law c1∧G1 ⇒X c2∧G2 holds
in P 0, by Condition (ii) of Definition 11, we have that: M(P 0) |= (c1 ∧G1)σ → ∃Z (c2 ∧G2)σ,
where Z = vars(c2∧G2)−vars((H, c,GL, GR)σ). Thus, there exists a ground substitution η such
that dom(η) = Z and M(P 0) |= (c2 ∧G2)ση. Therefore, M(P 0) |= (c ∧ c2 ∧GL ∧G2 ∧GR)ση.
Let us now consider the ground instance Dση: (H ← c ∧ c2 ∧ GL ∧ G2 ∧ GR)ση of D. We
have that: hd(D)ση = Hση = Hσ (because Hσ is a ground annotated atom) = hd(Cσ) and
M(P 0) |= bd(Dση).

Proof of (3). Straightforward from Condition (δ) of Rule R3. 2

Proof of the Replacement Law of Section 6

We want to prove that the replacement law

τ : test([1|X])〈N〉 ⇒{X,N} N≥N1 ∧ test(X)〈N1〉
holds in the annotated program P considered in Section 6. (Note that we have renamed the
annotation variables.) We start off by introducing the following two clauses:

D1 : new1(X)〈N〉 ← test([1|X])〈N〉
D2 : new2(X)〈N〉 ← N≥N1 ∧ test(X)〈N1〉

Let us construct a transformation sequence from P ∪ {D1}. By unfolding, from clause D1 we
get:

E1 : new1(X)〈N〉 ← N >N1 ∧ N1 >N2 ∧ canon(X)〈N2〉
E2 : new1(X)〈N〉 ← N >N1+N2 ∧ N1 >N3 ∧ trans(X, Y)〈N3〉 ∧ test([1|Y])〈N2〉

By annotation weakening and variable renaming we get:

E3 : new1(X)〈N〉 ← N >N1 ∧ canon(X)〈N1〉
E4 : new1(X)〈N〉 ← N >N1+N2 ∧ trans(X,Y)〈N1〉 ∧ test([1|Y])〈N2〉

By folding clause E4 using clause D1 we derive:

E5 : new1(X)〈N〉 ← N >N1+N2 ∧ trans(X,Y)〈N1〉 ∧ new1(Y)〈N2〉
The final program of the transformation sequence starting from P ∪ {D1} is P ∪ {E3, E5}.
Now we construct a symmetric transformation sequence starting from P ∪ {D2}. By unfolding
clause D2 we derive:

F 1 : new2(X)〈N〉 ← N≥N1 ∧ N1 >N2 ∧ canon(X)〈N2〉
F 2 : new2(X)〈N〉 ← N≥N1 ∧ N1 >N2+N3 ∧ trans(X, Y)〈N2〉 ∧ test(Y)〈N3〉

40.

By symmetric applications of the goal replacement rule, consisting in the replacement of an-
notation formulas by equivalent ones (in particular, here we use the equivalence N |= ∀ (N1 >
N2+N3 ↔ ∃N4(N1 >N2+N4 ∧N4≥N3))), and by variable renaming, we get:

F 3 : new2(X)〈N〉 ← N >N1 ∧ canon(X)〈N1〉
F 4 : new2(X)〈N〉 ← N >N1+N2 ∧ N2≥N3 ∧ trans(X, Y)〈N1〉 ∧ test(Y)〈N3〉

By folding clause F4 using clause D2 and by variable renaming, we derive:

F 5 : new2(X)〈N〉 ← N >N1+N2 ∧ trans(X,Y)〈N1〉 ∧ new2(Y)〈N2〉
The final program of the transformation sequence starting from P ∪{D2} is P ∪{F 3, F 5}. Since
P ∪ {D1} is syntactically equivalent to P ∪ {D2}, we have proved that the replacement law τ
holds in P .

References

[1] K. R. Apt, “Introduction to logic programming,” in Handbook of Theoretical Computer
Science (J. van Leeuwen, ed.), pp. 493–576, Elsevier, 1990.

[2] K. R. Apt and D. Pedreschi, “Reasoning about termination of pure logic programs,” Infor-
mation and Computation, vol. 106, pp. 109–157, 1993.

[3] M. Bezem, “Strong termination of logic programs,” Journal of Logic Programming, vol. 15,
pp. 79–97, 1993.

[4] A. Bossi, N. Cocco, and S. Etalle, “On safe folding,” in Proceedings PLILP ’92, Leuven,
Belgium, Lecture Notes in Computer Science 631, pp. 172–186, Springer-Verlag, 1992.

[5] A. Bossi, N. Cocco, and S. Etalle, “Simultaneous replacement in normal programs,” Journal
of Logic and Computation, vol. 6, no. 1, pp. 79–120, 1996.

[6] A. Bossi and S. Etalle, “Transforming acyclic programs,” ACM Transactions on Program-
ming Languages and Systems, vol. 16, pp. 1081–1096, July 1994.

[7] R. M. Burstall and J. Darlington, “A transformation system for developing recursive pro-
grams,” Journal of the ACM, vol. 24, pp. 44–67, January 1977.

[8] J. Cook and J. P. Gallagher, “A transformation system for definite programs based on
termination analysis,” in Proceedings of LoPSTr’94 and META’94, Pisa, Italy (L. Fribourg
and F. Turini, eds.), Lecture Notes in Computer Science 883, pp. 51–68, Springer-Verlag,
1994.

[9] B. Courcelle, “Recursive applicative program schemes,” in Handbook of Theoretical Com-
puter Science (J. van Leeuwen, ed.), vol. B, pp. 459–492, Elsevier, 1990.

[10] N. Dershowitz, “Termination of rewriting,” Journal of Symbolic Computation, vol. 3, no. 1-
2, pp. 69–116, 1987.

[11] M. Gergatsoulis and M. Katzouraki, “Unfold/fold transformations for definite clause pro-
grams,” in Proceedings Sixth International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP ’94) (M. Hermenegildo and J. Penjam, eds.),
Lecture Notes in Computer Science 844, pp. 340–354, Springer-Verlag, 1994.

41.

[12] J. Jaffar, M. Maher, K. Marriott, and P. Stuckey, “The semantics of constraint logic pro-
gramming,” Journal of Logic Programming, vol. 37, pp. 1–46, 1998.

[13] T. Kanamori and H. Fujita, “Unfold/fold transformation of logic programs with counters,”
Technical Report 179, ICOT, Tokyo, Japan, 1986.

[14] K.-K. Lau, M. Ornaghi, A. Pettorossi, and M. Proietti, “Correctness of logic program
transformation based on existential termination,” in Proceedings of the 1995 International
Logic Programming Symposium (ILPS ’95) (J. W. Lloyd, ed.), pp. 480–494, MIT Press,
1995.

[15] J. W. Lloyd, Foundations of Logic Programming. Berlin: Springer-Verlag, 1987. Second
Edition.

[16] M. J. Maher, “Correctness of a logic program transformation system,” IBM Research Report
RC 13496, T. J. Watson Research Center, 1987.

[17] Z. Manna and A. Pnueli, “Axiomatic approach to total correctness of programs,” Acta
Informatica, vol. 3, pp. 243–263, 1974.

[18] J. McCarthy, “Towards a mathematical science of computation,” in Information Processing:
Proceedings of IFIP 1962 (C. Popplewell, ed.), (Amsterdam), pp. 21–28, North Holland,
1963.

[19] H. A. Partsch, Specification and Transformation of Programs. Springer-Verlag, 1990.

[20] A. Pettorossi and M. Proietti, “Synthesis and transformation of logic programs using un-
fold/fold proofs,” Journal of Logic Programming, vol. 41, no. 2&3, pp. 197–230, 1999.

[21] G. D. Plotkin, “A structural approach to operational semantics,” Tech. Rep. DAIMI FN-19,
Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.

[22] M. Proietti and A. Pettorossi, “Transforming inductive definitions,” in Proceedings of the
1999 International Conference on Logic Programming (D. De Schreye, ed.), pp. 486–499,
MIT Press, 1999.

[23] W. Pugh, “A practical algorithm for exact array dependence analysis,” Communications of
the ACM, vol. 35, no. 8, pp. 102–114, 1992.

[24] A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan, “An un-
fold/fold transformation framework for definite logic programs,” ACM Transactions on
Programming Languages and Systems, vol. 26, pp. 264–509, 2004.

[25] D. Sands, “Total correctness by local improvement in the transformation of functional
programs,” ACM Toplas, vol. 18, no. 2, pp. 175–234, 1996.

[26] D. Sands, “From SOS rules to proof principles: An operational metatheory for functional
languages,” in Proceedings of the 24th ACM Symposium on Principles of Programming
Languages (POPL ’97), pp. 428–441, ACM Press, 1997.

[27] H. Seki, “Unfold/fold transformation of stratified programs,” Theoretical Computer Science,
vol. 86, pp. 107–139, 1991.

42.

[28] H. Tamaki and T. Sato, “Unfold/fold transformation of logic programs,” in Proceedings of
the Second International Conference on Logic Programming (S.-Å. Tärnlund, ed.), (Upp-
sala, Sweden), pp. 127–138, Uppsala University, 1984.

[29] H. Tamaki and T. Sato, “A generalized correctness proof of the unfold/fold logic program
transformation,” Technical Report 86-4, Ibaraki University, Japan, 1986.

