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Abstract

We propose a method for the specification and the automated verification of temporal properties
of infinite state reactive systems. Given a reactive system K and a formula ϕ of the branching
time temporal logic CTL, we construct a locally stratified constraint logic program PK[ϕ] such
that the system K verifies ϕ if and only if prop ∈ M(PK[ϕ]), where prop is a predicate symbol
defined in PK[ϕ] and M(PK[ϕ]) is the perfect model of PK[ϕ]. Then we check whether or not
prop ∈ M(PK[ϕ]) by specializing the program PK[ϕ] w.r.t. prop and deriving a new program Psp

containing either the fact prop ← (in which case the temporal formula ϕ is verified by the system)
or no clause for prop (in which case the temporal formula ϕ is not verified by the system). Our
specialization method makes use of: (i) a set of specialization rules that preserve the perfect
model of constraint logic programs, and (ii) an automatic strategy that guides the application
of these rules for deriving the specialized program Psp . Our strategy always terminates and is
sound for verifying CTL formulas. Due to the undecidability of CTL formulas in the case of
infinite state systems, our strategy is incomplete, that is, we may derive a specialized program
Psp containing a clause for prop different from the fact prop ←. However, as indicated by the
results we have obtained by using our prototype verification system, our strategy allows us to
verify a large collection of properties of infinite state systems.

Key words: Verification of reactive systems, program specialization, constraint logic program-
ming.
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1. Introduction

Model checking is a highly successful technique for the automatic verification of properties of
finite state reactive systems [12]. In model checking the time evolution of a reactive system
is modeled as a binary transition relation on a finite set of states, and the properties of that
evolution are expressed as propositional temporal formulas. Model checking is very useful in
practice, because the problem of checking whether or not a given propositional temporal formula
is true for a finite transition relation, is decidable. In particular, there are very efficient model
checking algorithms for the Computation Tree Logic (CTL, for short), which is a very expressive
branching time propositional temporal logic where one can describe, among others, the so-called
safety and liveness properties of reactive systems [12].

One of the most challenging problems in the area of verification of reactive systems, is the ex-
tension of the model checking technique to infinite state reactive systems (see, for instance, [43]).
In this case, a reactive system is modeled as a binary transition relation over an infinite set of
states. Unfortunately, when considering model checking of infinite state systems, the verification
problem is undecidable for most classes of temporal formulas.

In recent years three main approaches have been followed for trying to overcome that unde-
cidability limitation.

The first approach consists in considering decidable subclasses of systems and formulas (see,
for instance, [1, 22, 47]). By following this approach one may provide fully automatic tech-
niques that, however, are not applicable outside the restricted classes of systems and properties
considered.

The second approach consists in enhancing finite state model checking with more general
deductive techniques (see, for instance, [48, 52, 63, 64]). This approach provides a greater
generality, but it needs some degree of human guidance which is often difficult to provide when
dealing with complex reactive systems.

The third approach consists in designing methods based on abstractions, that is, mappings
by which one can reduce an infinite state system (or a finite state system with a large number
of states) to a finite state system with the same properties of interest and, hopefully, easier to
verify (see, for instance, [2, 11, 16, 68]). Once an abstraction is provided, these techniques are
fully automatic, but the choice of the suitable abstraction cannot be always mechanized.

We propose a verification method that combines the generality of the approaches based on
deduction with the mechanizability of the approaches based on abstractions. By merging and
extending the techniques presented in [19, 27, 55], our method makes use of constraint logic
programs (or CLP programs, for short) with negation [6, 32] for specifying infinite state systems
and their properties. Our method is automatic, sound, but incomplete, and its main novelty
resides in the idea of making use of some program specialization techniques [25, 29, 34, 37] for
CLP programs as an inference mechanism for checking the properties of interest.

In our method the transition relation that models the system under consideration is specified
by a finite collection of constraints over pairs of states. The use of constraints allows us to
model an infinite state system in a simple way, because a single constraint can represent the
possibly infinite set of pairs of states that satisfy it. Given an infinite state system K specified
by constraints, the temporal properties of K are encoded as a CLP program PK which defines a
binary predicate sat(s, ϕ), meaning that in the state s the CTL formula ϕ holds.

In order to encode negated CTL formulas, the program PK uses locally stratified negation,
that is, if we consider the set of the ground instances of clauses in PK no ground atom depends
negatively on itself [6]. The semantics of PK is provided by its perfect model, denoted M(PK).
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(Recall that for a program with locally stratified negation the perfect model is unique and it
is equal to the unique stable model and to the well-founded model [6].) We will show that PK,
with the perfect model semantics, provides an adequate encoding of the temporal properties of
K, and thus, we may check whether or not the temporal formula ϕ holds in state s of system K
by checking whether or not sat(s, ϕ) belongs to M(PK).

Unfortunately, the proof procedures normally used in constraint logic programming, such as
SLDNF resolution [6, 41] or tabled resolution [10, 59], often diverge when trying to check whether
or not sat(s, ϕ) belongs to M(PK) for an infinite state system K. This is due to the limited
ability of these proof procedures to cope with infinitely failed derivations.

In order to overcome the limitations of SLDNF resolution and tabled resolution, in this paper
we propose a method for the verification of infinite state systems based on program specialization.
Program specialization is a program transformation technique whose objective is the adaptation
of a program to the context of use (see, for instance, [25, 29, 34, 37]). By applying our program
specialization technique we will be able to check whether or not sat(s, ϕ) belongs to M(PK)
for many nontrivial formulas ϕ and systems K in which neither SLDNF resolution nor tabled
resolution are successful.

Now we briefly indicate how program specialization can be used for checking whether or not,
for all initial states s of a given system K, the atom sat(s, ϕ) belongs to M(PK). We start off by
considering the task of checking the equivalent property that there exists no initial state s such
that ¬ϕ holds in s. A predicate prop that encodes this property can be defined by the following
two clauses:

γ1 : prop ← ¬negprop
γ2 : negprop ← sat(X, init ∧ ¬ϕ)

where: (i) init is a property that holds in a state X iff X is an initial state of the system K, and
(ii) negprop is a new predicate symbol. We have that:

for all initial states s, sat(s, ϕ) ∈ M(PK) iff prop ∈ M(PK ∪ {γ1, γ2})
In order to check whether or not prop ∈ M(PK ∪ {γ1, γ2}) we first transform the program
PK ∪ {γ1, γ2} into an equivalent program Psp such that,

for all initial states s, sat(s, ϕ) ∈ M(PK) iff prop ∈ M(Psp) (†)
The transformation of PK∪{γ1, γ2} into Psp is performed by specializing PK∪{γ1, γ2} w.r.t. prop.

At the end of the specialization process, we check whether or not the specialized program Psp

satisfies one of the following two properties:
(T) Psp contains the clause prop ←
(F) Psp does not contain any clause for the predicate prop.
If Property (T) is satisfied, then we infer that property prop holds, that is, for all initial states
s of a system K, sat(s, ϕ) belongs to M(PK). If Property (F) is satisfied, then we infer that
property prop does not hold, that is, there exists an initial state s such that sat(s,¬ϕ) belongs
to M(PK).

Our specialization technique follows the approach based on transformation rules and strategies
advocated in [9]. The transformation rules we will present below, are variants of the familiar
unfolding, folding, clause deletion, and constraint replacement rules presented in the literature.
Various versions of these sets of rules can be found in [8, 23, 26, 42, 61, 66]. The rules we
will use in this paper preserve the perfect model semantics [26], and thus, they ensure that
the above equivalence (†) holds. This fact validates our method for verifying whether or not a
property holds in a given system. We will also present a transformation strategy that guides the
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application of the transformation rules with the aim of deriving a program Psp satisfying either
Property (T) or Property (F). Our strategy is fully automatic and always terminates, and thus,
due to the above mentioned undecidability limitations, it is incomplete. Indeed, it may be the
case that our strategy derives a program Psp which satisfies neither Property (T) nor Property
(F), that is, Psp contains some clauses for prop which are different from prop ←. In this case
we are not able to tell whether or not sat(s, ϕ) belongs to M(PK).

In order to ensure termination, our strategy uses a generalization technique that is related
to some abstract interpretation techniques [13] and it plays a role similar to that of abstraction
in the verification methods described in [11, 16, 2]. However, since it is applied during the
verification process, and not before the verification process, our generalization is often more
flexible than abstraction.

The main technical contributions of this paper are the following ones. (i) We have shown
that the CTL properties of the concurrent systems defined in [62], can be expressed by using
locally stratified CLP programs. (ii) We have defined variants of the usual transformation rules
(such as unfolding, folding, clause deletion, and constraint replacement) which are suitable for
performing the specialization of locally stratified CLP programs, and we have shown that these
rules preserve the perfect model semantics. (iii) We have proposed an automatic strategy for
program specialization and, in particular, a technique for generalization that makes program
specialization always terminating. (iv) Finally, we have demonstrated that our technique is
powerful enough to automatically verify safety and liveness properties of many infinite state
systems considered in the literature.

The structure of the paper is as follows. In Section 2 we recall some preliminary notions
concerning locally stratified constraint logic programs and the CTL temporal logic. In Section 3
we consider a class of reactive systems and we show how the CTL properties of the systems in
that class can be encoded by using locally stratified CLP programs. In Section 4 we present
the transformation rules we use for specializing programs and we prove the correctness of these
rules w.r.t. the perfect model semantics. In Section 5 we describe our strategy for program
specialization, and we describe the generalization technique we use for ensuring the termination
of the strategy. In Section 6 we report on some experiments of automatic protocol verification
we have done by using a prototype implementation of our method on the MAP transformation
system [44]. In particular, we have proved safety and liveness properties of mutual exclusion
protocols, parameterized cache coherence protocols, and reset Petri nets. In Section 7, we show
how to generate witnesses of Finally, in Section 8 we compare our work with other verifica-
tion techniques proposed in the literature. Among them we devote special attention to those
techniques that use logic programming, constraints, tabled resolution, program analysis, and
program transformation [19, 24, 27, 28, 38, 40, 49, 55, 57, 58].

2. Preliminaries

In this section we recall some basic notions of constraint logic programming. For notions not
defined here the reader may refer to [4, 6, 32, 33, 41]. We also present our notational conventions
and we briefly recall the syntax and the semantics of the Computation Tree Logic (CTL, for
short), which is the logic we use for expressing properties of reactive systems. For a more detailed
treatment of CTL the reader may look at [12].
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2.1. Syntax of Constraint Logic Programs

We consider a first order language L generated by an infinite set Vars of variables, a set Funct
of function symbols with arity, and a set Pred of predicate symbols with arity. We assume that
Pred is the union of two disjoint sets: (i) the set Predc of constraint predicate symbols, including
true, false, and the equality symbol =, and (ii) the set Predu of user defined predicate symbols.

A term of L is either a variable or an expression of the form f(t1, . . . , tn), where f is a symbol
of arity n ≥ 0 in Funct and t1, . . . , tn are terms. An atomic formula is an expression of the form
p(t1, . . . , tn) where p is a symbol of arity n ≥ 0 in Pred and t1, . . . , tn are terms. A formula of
L is either an atom or a formula constructed, as usual, from already constructed formulas by
means of connectives (¬, ∧, ∨, →, ←, ↔) and quantifiers (∃, ∀).

Let e be a term or a formula. The set of variables occurring in e is denoted by vars(e). Similar
notation will be used for denoting the set of variables occurring in a set of terms or formulas.
Given a formula ϕ, the set of the free variables in ϕ is denoted by FV (ϕ). A term or a formula
is ground if it contains no variables. Given a set X = {X1, . . . , Xn} of variables, by ∀X ϕ we
denote the formula ∀X1 . . . ∀Xn ϕ. By ∀(ϕ) we denote the universal closure of ϕ, that is, the
formula ∀X ϕ, where FV (ϕ) = X. Analogously, by ∃(ϕ) we denote the existential closure of ϕ.
We denote a formula ϕ whose free variables are among X1, . . . , Xn also by ϕ(X1, . . . , Xn).

An atomic constraint is an atomic formula p(t1, . . . , tn) where p is a predicate symbol in Predc.
A constraint is either an atomic constraint, or a formula of the form c1 ∧ c2, where c1 and c2 are
constraints, or a formula of the form ∃X c, where c is a constraint. We denote by C the set of
constraints of the language L.

An atom is an atomic formula p(t1, . . . , tn) where p is an element of Predu and t1, . . . , tn are
terms. A literal is either an atom A, also called positive literal, or a negated atom ¬A, also called
negative literal. A goal is a (possibly empty) conjunction of literals (here we depart from [41],
where a goal is defined as the negation of a conjunction of literals). A constrained literal is the
conjunction of a constraint and a literal. A constrained goal is the conjunction of a constraint
and a goal. The empty conjunction of constraints or literals is identified with true.

A clause γ is a formula of the form H ← c ∧ G, where: (i) H is an atom, called the head
of γ and denoted hd(γ), and (ii) c ∧ G is a constrained goal, called the body of γ and denoted
bd(γ). If H is of the form p(t1, . . . , tn) we say that clause γ is a clause for p. Clauses of the
form H ← c, where c is a constraint, are called constrained facts. Clauses of the form H ← true
are called facts, and they are also written as H ←.

A constraint logic program (or program, for short) is a finite set of clauses. A definite constraint
logic program is a finite set of clauses whose bodies have no occurrences of negative literals.

Given two atoms A and B, we denote by A = B the following constraint: (i) t1 =u1∧ . . .∧tn =
un, if A is of the form p(t1, . . . , tn) and B is of the form p(u1, . . . , un), for some n−ary predicate
symbol p, and (ii) false, otherwise. We say that a term t is free for a variable X in a formula
ϕ if by substituting all free occurrences of X in ϕ by t, we do not introduce new occurrences of
bound variables. A formula ψ is an instance of a formula ϕ if ψ is obtained from ϕ by applying
a substitution {X1/t1, . . . , Xn/tn} such that, for i = 1, . . . , n, the term ti is free for Xi in ϕ.

We say that a predicate p immediately depends on a predicate q in a program P , and we write
p depP q, if in P there exists a clause of the form p(. . .) ← B such that an atom of the form q(. . .)
occurs in B. Let dep+P be the transitive closure of the depP relation. We say that p depends on
q in P if p dep+P q.

Given a user defined predicate symbol p and a program P , the definition of p in P , denoted
Def (p, P ), is the set of clauses γ in P such that p is the predicate symbol of hd(γ). By Def ∗(p, P )



7.

we denote the set Def (p, P ) ∪ {γ ∈ P | p depends on the predicate symbol of hd(γ)}.
A variable renaming is a bijective mapping from Vars to Vars. The application of a variable

renaming ρ to a formula ϕ returns the formula ρ(ϕ), which is said to be a variant of ϕ, obtained
by replacing each (bound or free) variable X in ϕ by the variable ρ(X). A variant of a set
{ϕ1, . . . , ϕn} of formulas is a set {ϕ′1, . . . , ϕ′n}, where, for i = 1, . . . , n, ϕ′i is a variant of ϕi.

We will feel free to apply to clauses the following transformations that, as the reader may
verify, preserve the perfect model semantics (see Section 2.2):
(1) application of variable renamings,
(2) reordering of constraints and literals in the body (we will usually move all constraints to the
left of the body and all literals to the right of the body), and
(3) replacement of a clause of the form H ← X = t ∧ c ∧ G, where X 6∈ vars(t), by the clause
(H ← c ∧G){X/t}, and vice versa.

2.2. Semantics of Constraint Logic Programs

Now we introduce the notions of local stratification and perfect model for constraint logic pro-
grams. These notions are extensions of similar notions for logic programs [6, 54] and they are
parametric w.r.t. the interpretation of the constraints [32, 33].

A constraint interpretation D consists of: (1) a non-empty set D, called carrier, (2) an assign-
ment of a function fD: Dn → D to each n-ary function symbol f in Funct, and (3) an assignment
of a relation pD over Dn to each n-ary constraint predicate symbol p in Pred c. We say that f
is interpreted as fD and p is interpreted as pD. In particular, for any constraint interpretation
D, true is interpreted as the relation D0, that is, the singleton {〈〉} whose unique element is the
empty tuple, false is interpreted as the empty set, and the equality symbol = is interpreted as
the set {〈d, d〉 | d ∈ D}.

We assume that D is a set of ground terms. This is not restrictive because we may enlarge the
language L by making every element of D to be an element of the set Funct of function symbols.
Sometimes in the sequel, by abuse of language, we will identify the constraint interpretation D
with its carrier D.

Given a formula ϕ where all predicate symbols belong to Pred c, we consider the satisfac-
tion relation D |= ϕ, which is defined as usual in the first order predicate calculus (see, for
instance, [4]).

An interpretation of the predicate symbols in Predu is called a D-interpretation and is defined
as follows. Given a constraint interpretation D, a D-interpretation I assigns a relation over Dn

to each n-ary predicate symbol in Predu, that is, I is a subset of the set BD defined as follows:

BD = {p(d1, . . . , dn) | p is a predicate symbol in Predu and 〈d1, . . . , dn〉 ∈ Dn}
Now we define the notion of D-model of a program, which is a D-interpretation where all clauses
of the program are true. First we need to introduce the notion of a valuation, that is, a function
v: Vars → D. Then we extend the domain of v to terms, constraints, literals, and clauses
as we now indicate. Given a term t, we inductively define the term v(t) as follows: (i) if t is
a variable X then v(t) = v(X), and (ii) if t is f(t1, . . . , tn) then v(t) = fD(v(t1), . . . , v(tn)).
Given a constraint c, v(c) is the constraint obtained by replacing every free variable X ∈ FV (c)
by the ground term v(X). Note that v(c) is a closed (possibly not ground) formula. Given
a literal L, (i) if L is the atom p(t1, . . . , tn), then v(L) is the ground atom p(v(t1), . . . , v(tn)),
and (ii) if L is the negated atom ¬A, then v(L) is the ground literal ¬v(A). Given a clause γ:
H ← c ∧ L1 ∧ . . . ∧ Lm, v(γ) is the clause v(H) ← v(c) ∧ v(L1) ∧ . . . ∧ v(Lm).
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Let I be a D-interpretation and v a valuation. A literal v(L) is true in I if either (i) L is an
atom and v(L) ∈ I, or (ii) L is a negated atom ¬A and v(A) 6∈ I. A literal v(L) is false in I if
it is not true in I. Given a clause γ: H ← c ∧ L1 ∧ . . . ∧ Lm, v(γ) is true in I if either (i) v(H)
is true in I, or (ii) D 6|= v(c), or (iii) there exists i ∈ {1, . . . ,m} such that v(Li) is false in I.

A D-interpretation M is a D-model of a program P if for every clause γ in P and for every
valuation v, we have that v(γ) is true in M . It can be shown that every definite constraint logic
program P has a least D-model w.r.t. set inclusion (see, for instance, [33]). This least D-model
can be constructed as the least fixpoint of the immediate consequence function TP from the set
of D-interpretations to the set of D-interpretations, defined as follows:

TP (I) = {H | there exist a valuation v and a clause γ in P such that:
(i) v(γ) = (H ← c ∧ L1 ∧ . . . ∧ Lm), (ii) D |= c, and
(iii) L1, . . . , Lm are true in I}

It can be shown that TP is a monotonic function over the complete lattice of D-interpretations,
ordered by set inclusion, and its least fixpoint, denoted by lfp(TP ), is the least D-model of P [33].
Moreover, since TP is continuous, it has a least fixpoint which can be constructed by iterating
the application of TP starting from the empty D-interpretation, that is:

lfp(TP ) = Tω
P (∅)

where ω is the first limit ordinal [4, 33, 41].
Unfortunately, for some constraint logic program P which are not definite, the function TP is

not monotonic and P does not have a least D-model. For example, the program consisting of the
clause p ← ¬q has the two non-least D-models {p} and {q}. A well-known approach followed
in logic programming to overcome this difficulty consists in considering particular classes of
programs with suitable restrictions such that we are still able to associate a unique model to
every program in any of these classes. Here we consider the classes of: (i) stratified programs,
and (ii) locally stratified programs, and now we show how to construct their perfect models
[6, 54]. We need the following definitions.

A level mapping is a function from the set of predicate symbols to the set of finite ordinals.
Given a level mapping λ, we extend it to literals as follows: if L is an atom p(. . .) or a negated
atom ¬p(. . .), then λ(L) = λ(p). A clause γ of the form H ← c∧L1∧ . . .∧Lm is stratified w.r.t. a
level mapping λ if for i = 1, . . . ,m, if Li is a positive literal then λ(H) ≥ λ(Li), otherwise, if Li

is a negative literal then λ(H) > λ(Li). A program P is stratified if there exists a level mapping
λ such that every clause of P is stratified w.r.t. λ. If a program P is stratified w.r.t. λ, then
there exists a finite sequence S1, . . . , Sk of sets of clauses, called a stratification of P , such that:
(i) P = S1 ∪ . . . ∪ Sk, and (ii) for any two clauses α and β in P , for any two clauses α and β
in P , λ(hd(α)) < λ(hd(β)) iff there exist i and j such that: (a) 1 ≤ i < j ≤ k, (b) α ∈ Si, and
(c) β ∈ Sj . The sets S1, . . . , Sk are said to be the strata of P . Note that, as a consequence of
the definition, the strata of a program are pairwise disjoint sets of clauses and two clauses with
the same head predicate belong to the same stratum.

Thus, in a clause γ of a stratified program P the predicate appearing in a negative literal of
the body of γ does not depend in P on the predicate of the head of γ. For instance, the program
consisting of the clause p ← ¬q is stratified w.r.t. any level mapping λ such that λ(p) > λ(q).
It has been shown that we can construct a unique standard model for any given stratified logic
program by working bottom-up on its strata [6]. The construction of the standard model of a
stratified program is generalized by the construction of the perfect model of a locally stratified
program that we now present.
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A local stratification is a function σ: BD → W , where W is the set of countable ordinals.
If A ∈ BD and σ(A) = α we say that the stratum of A is α, or A is in stratum α. Given a
clause γ in P , a valuation v, and a local stratification σ, we say that the clause v(γ) of the form:
H ← c∧L1 ∧ . . .∧Lm is locally stratified w.r.t. σ if either D 6|= c or, for i = 1, . . . ,m, if Li is an
atom A then σ(H) ≥ σ(A), otherwise, if Li is a negated atom ¬A then σ(H) > σ(A). Given a
local stratification σ, we say that program P is locally stratified w.r.t. σ if for every clause γ in
P and for every valuation v, the clause v(γ) is locally stratified w.r.t. σ. A program P is locally
stratified if there exists a local stratification σ such that P is locally stratified w.r.t. σ.

Thus, a local stratification of a program P corresponds to a, possibly infinite, stratification of
the following set of ground clauses:

{H ← L1 ∧ . . . ∧ Lm | there exist a valuation v and a clause γ in P such that
v(γ) is H ← c ∧ L1 ∧ . . . ∧ Lm and D |= c}

We have that a stratified program is also locally stratified, but not vice versa. For instance, let
us consider the following program Even:

even(0) ←
even(X) ← X =Y +1 ∧ ¬even(Y )

where the constraint interpretation is as follows: (1) the carrier is the set N of the natural
numbers, (2) the addition function is assigned to the function symbol +, and (3) the identity
relation is assigned to the equality predicate. The program Even is not stratified, but it is locally
stratified w.r.t. σ defined as follows: σ(even(n)) = n, for every n ∈ N.

Now we present the definition of the perfect model of a locally stratified program. Our
presentation is slightly different from those in [6, 54] for two reasons: (i) we consider constraint
logic programs, instead of logic programs, and (ii) we do not rely on the preference relation
between Herbrand interpretations. However, it can be shown that, for every logic program
without constraints, our construction generates a model which is equal to the one defined in
[6, 54].

The perfect model M(P ) of a locally stratified constraint logic program P is constructed by
generalizing the immediate consequence function TP to a function TP,α that depends also on a
stratum α. The function TP,α is defined as follows. Given a constraint logic program P which
is locally stratified w.r.t. a local stratification σ, and an interpretation I, we have that:

TP,α(I) = {H | there exist a valuation v and a clause γ in P such that:
(i) v(γ) is H ← c∧L1∧. . .∧Lm, (ii) σ(H)=α, (iii) D |= c, and
(iv) for i = 1, . . . ,m, if σ(Li)=α then Li is true in I

else Li is true in lfp(TP,σ(Li)) }
Informally, TP,α(I) computes the set of immediate consequences of I which are in stratum α,
knowing the truth value of the literals in stratum β, for β < α. Indeed, at Condition (iv) of the
above definition of TP,α, we have that if λ 6= α then λ < α, because the program P is locally
stratified.

Note that in this definition of TP,α we refer to the least fixpoint of TP,β, for all β < α. The
following result ensures that the least fixpoint of TP,β is defined for all ordinals β, and thus, TP,α

is a total function on the lattice of D-interpretations.

Theorem 2.1. Given a locally stratified program P , for every countable ordinal α ∈ W , TP,α

is a monotonic function on the complete lattice of D-interpretations and, thus, TP,α has a least
fixpoint lfp(TP,α). Moreover, TP,α is continuous and, thus, lfp(TP,α) = Tω

P,α(∅).
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Proof : The proof proceeds by well-founded induction on the ordinal α. Assume that, for all
β < α, TP,β is a monotonic function on the complete lattice of D-interpretations. Then, by the
Knaster-Tarski Theorem (see, for instance, [4, 41]) TP,β has a least fixpoint lfp(TP,β). Hence,
TP,α is a total function. Let us now show that TP,α is monotonic. Let I, J be D-interpretations
such that I ⊆ J . Let us consider any valuation v and any clause γ in P . Let v(γ) be of the
form: H ← c ∧ L1 ∧ . . . ∧ Lm. For i = 1, . . . , m, if Li is true in I then Li is true in J , and thus,
if H ∈ TP,α(I) then H ∈ TP,α(J).

Finally, we show that, for every countable ordinal α ∈ W , TP,α is continuous, by proving that,
for every ω-chain I0 ⊆ I1 ⊆ . . . of D-interpretations [4],

TP,α(
⋃
n<ω

In) ⊆
⋃
n<ω

TP,α(In)

Suppose that A ∈ TP,α(
⋃

n<ω In). Then, by the definition of TP,α, there exists a valuation v and
a clause γ in P such that: (i) v(γ) = (A ← c ∧ L1 ∧ . . . ∧ Lm), (ii) σ(A) = α, (iii) D |= c, and
(iv) for i = 1, . . . , m, if σ(Li) = α then Li is true in

⋃
n<ω In else if σ(Li) = β < α then Li is true

in lfp(TP,β). Li is true in
⋃

n<ω In iff there exists n < ω such that Li is true in In. Hence, there
exists n such that, for i = 1, . . . , m, if σ(Li) = α then Li is true in In, and if σ(Li) = β < α
then Li is true in lfp(TP,β). Thus, A ∈ TP,α(In), and therefore, A ∈ ⋃

n<ω TP,α(In). 2

Now we define the perfect model M(P ) of a locally stratified constraint logic program P as
follows:

M(P ) =
⋃

α∈W

lfp(TP,α)

The following property is a straightforward consequence of the definitions of M(P ) and TP,α.

Lemma 2.2. Let P be a program which is locally stratified w.r.t. a local stratification function σ.
Then, for every A ∈ BD, A ∈ M(P ) iff A ∈ lfp(TP,α), where α = σ(A).

It can be shown that M(P ) is independent of the particular local stratification function we use
in the definition of TP,α.

In this paper we do not specify any particular algorithm for solving constraints in C. We only
assume that there exists a computable total function solve: C×Pfin(Vars) → C, where Pfin(Vars)
is the set of all finite subsets of Vars. solve is assumed to be sound w.r.t. constraint equivalence,
that is, for every constraint c1 and for every finite set X of variables, if solve(c1, X) = c2 then
D |= ∀X((∃Y c1) ↔ c2), where Y = FV (c1)−X and FV (c2) ⊆ FV (∃Y c1). We also assume that
solve is complete w.r.t. satisfiability in the sense that, for any constraint c,

(i) solve(c, ∅) = true iff c is satisfiable, that is, D |= ∃(c), and
(ii) solve(c, ∅) = false iff c is unsatisfiable, that is, D |= ¬∃(c).

The soundness and the totality of the solve function guarantee the correctness and the termina-
tion of the specialization strategy we will present in Section 5. The assumption that the solve
function is complete w.r.t. satisfiability guarantees that constraint satisfiability is decidable and
indeed, constraint satisfiability tests can be performed by applying the solve function.

We assume that, for any constraints c1 and c2, the entailment relation D |= ∀(c1 → c2)
is decidable. (This decidability assumption is not a consequence of the existence of the solve
function because, in general, c1 → c2 is not a constraint.)

Note that the definition of the solve function considered in this paper includes three different
functions described in the literature [32, 33, 45]: (i) a projection function that, given a constraint
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c and a set W of variables, returns a constraint which is equivalent to ∃W c with fewest existential
quantifiers, (ii) a simplification function which given a constraint, returns its simplified form
(such as the solved form of a system of equations), and (iii) a function for testing the satisfiability
of constraints.

2.3. The Computation Tree Logic

The Computation Tree Logic (CTL, for short) is a propositional temporal logic for expressing
properties of the time behavior of a reactive system. This behavior is represented as the tree
of the states that the system can reach, and each path of this tree is called a computation
path. CTL formulas are built from a given set Elem of elementary properties by using: (i) the
connectives: ¬ (‘not’) and ∧ (‘and’), (ii) the following linear-time operators along a computation
path: G (‘always’), F (‘sometimes’), X (‘nexttime’), and U (‘until’), and (iii) the quantifiers
over computation paths: A (‘for all paths’) and E (‘for some path’), as indicated by the following
definition.

Definition 1 (CTL formulas) Let Elem be a given set of elementary properties. We assume
that true and false belong to Elem. A CTL formula ϕ has the following syntax:

ϕ ::= e | ¬ϕ | ϕ1 ∧ ϕ2 | EX(ϕ) | EU(ϕ1, ϕ2) | AF (ϕ)

where e belongs to Elem.

We also use the following abbreviations:
EF (ϕ) ≡ EU(true, ϕ)
EG(ϕ) ≡ ¬AF (¬ϕ)
AX(ϕ) ≡ ¬EX(¬ϕ)
AU(ϕ1, ϕ2) ≡ ¬EU(¬ϕ2, ¬ϕ1∧¬ϕ2) ∧ ¬EG(¬ϕ2)
AG(ϕ) ≡ ¬EF (¬ϕ)

The semantics of CTL formulas is given by introducing a Kripke structure K and defining the
satisfaction relation K, s |= ϕ, which denotes that a formula ϕ holds in a state s of K. The
context will disambiguate between the use of the symbol |= for denoting the satisfaction relation
in a Kripke structure and the use of the symbol |= for providing the semantics of constraint
logic programs (see Section 2.2).

Definition 2 (Kripke Structure) A Kripke structure K is a 4-tuple 〈S, I, R, L〉 where:
1. S is a set of states,
2. I ⊆ S is a set of initial states,
3. R ⊆ S × S is a transition relation. R is a total relation, that is, for every state s ∈ S there
exists a state s′ ∈ S, called a successor state of s, such that sR s′, and
4. L : S → P(Elem) is a function that assigns to each state s ∈ S a subset L(s) of Elem, that is,
a set of elementary properties that hold in s. In particular, true, false, and init are elementary
properties such that, for all s ∈ S: (i) true ∈ L(s), (ii) false 6∈ L(s), and (iii) init ∈ L(s) iff
s ∈ I.
A computation path in K starting from a state s0 is an infinite sequence of states s0 s1 . . . such
that si R si+1 for every i≥0.
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Definition 3 (Satisfaction Relation for a Kripke Structure) Given a Kripke structure K =
〈S, I, R, L〉, a state s ∈ S, and a formula ϕ, we inductively define the relation K, s |= ϕ, denoting
that ϕ holds in the state s of K, as follows:
K, s |= e iff e is an elementary property belonging to L(s)
K, s |= ¬ϕ iff it is not the case that K, s |= ϕ
K, s |= ϕ1 ∧ ϕ2 iff K, s |= ϕ1 and K, s |= ϕ2

K, s |= EX(ϕ) iff there exists a computation path s0 s1 . . . in K such that
s=s0 and K, s1 |= ϕ

K, s |= EU(ϕ1, ϕ2) iff there exists a computation path s0 s1 . . . in K such that
(i) s = s0 and (ii) for some n ≥ 0 we have that:
K, sn |= ϕ2 and K, sj |= ϕ1 for all j ∈ {0, . . . , n−1}

K, s |= AF (ϕ) iff for all computation paths s0 s1 . . . in K, if s=s0 then
there exists n≥0 such that K, sn |= ϕ.

3. Expressing CTL Properties by Locally Stratified CLP Programs

In this section we present: (i) a method based on constraints for specifying reactive systems by
particular Kripke structures, and (ii) an algorithm for encoding the set of temporal properties
of a system as a locally stratified constraint logic program.

Our specification method of Point (i) is basically a constraint-based extension of the method
for specifying concurrent systems presented in [62]. According to our method, a reactive system
is specified by a constraint-based Kripke structure as we now define. First, we need the following
definition of an event.

Definition 4 (Event) Let D be a constraint interpretation. (i) An event t(X, Y ) is a constraint
of the form cond(X) ∧ act(X,Y ) such that:
1. D |= ∀X (cond(X) → ∃Y act(X, Y )), and
2. D |= ∀X ∀Y ∀Z (act(X,Y ) ∧ act(X,Z) → Y =Z).
The constraint cond(X) is called the enabling condition of the event, and act(X, Y ) is called
the action of the event.
(ii) A disjunction t1(X, Y ) ∨ . . . ∨ tk(X, Y ) of events is exhaustive if

D |= ∀X (cond1(X) ∨ . . . ∨ condk(X))

where, for i = 1, . . . , k, cond i(X) is the enabling condition of ti(X, Y ).

Conditions 1 and 2 mean that the relation act is a function of its first argument X, and this
function is defined for every X satisfying cond(X).

Definition 5 (Constraint-based Kripke Structure) Let D be a constraint interpretation.
A constraint-based Kripke structure K, is a 4-tuple 〈D, I, R, L〉 where:
1. The carrier D of the interpretation D is the (possibly infinite) set of states of the Kripke
structure K.
2. The set I ⊆ D of initial states is defined by a constraint init(X), that is, for all states s ∈ D,
we have that: s ∈ I iff D |= init(s).
3. The transition relation R ⊆ D ×D is defined by a finite, exhaustive disjunction t1(X,Y ) ∨
. . . ∨ tk(X, Y ) of events, that is, for all states s1 and s2 in D, we have that: s1 R s2 iff D |=
t1(s1, s2) ∨ . . . ∨ tk(s1, s2).
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4. The function L : D → P(Elem), where Elem is the set of elementary properties, is defined by
associating a constraint e(X) with each elementary property e, that is, for all states s ∈ D, we
have that: e ∈ L(s) iff D |= e(s) (note that, we use the same symbol for an elementary property
and the constraint associated with it). In particular, (i) with the elementary property true we
associate the constraint true, (ii) with the elementary property false we associate the constraint
false, and (iii) with the elementary property init we associate the constraint init(X).

The fact that the disjunction t1(X,Y ) ∨ . . . ∨ tk(X, Y ) is exhaustive, together with Condition 1
of Definition 4, implies that the transition relation R is a total relation on D (and this is in
accordance with Point 3 of Definition 2).

Obviously, a constraint-based Kripke structure 〈D, I, R, L〉 is a Kripke structure 〈S, I,R, L〉,
where S is the carrier of D. Thus, for constraint-based Kripke structures, we use the notion of
satisfaction relation given in Definition 3.

Note that not all reactive systems can be specified in a natural way by a constraint-based
Kripke structure. In particular, Point 3 of Definition 5 implies that each state has a finite set
of successor states. For instance, let us consider a system such that: (i) the set of states is
the set of the natural numbers and (ii) the system has a transition from a number n to any
number m greater than n, that is, the transition relation is the relation m > n. Let N be the
constraint interpretation consisting of the set of natural numbers with the > relation. Then,
N 6|= ∀X ∀Y ∀Z ((X > Y ∧ X > Z) → Y = Z) and, thus, the system cannot be specified by a
constraint-based Kripke structure 〈N , I, R, L〉 in a straightforward way. However, we will show
in Section 6 that several interesting reactive systems can indeed be naturally specified by using
our method.

In order to verify the temporal properties of the reactive system specified by a Kripke structure
K, we construct a locally stratified CLP program PK that defines a binary predicate sat such
that, for all states s and CTL formulas ϕ, we have that K, s |= ϕ iff sat(s, ϕ) ∈ M(PK).

Program PK, which is given in Definition 8 below, consists of clauses associated with the
initial states, the transition relation, the elementary properties, the logical connectives, and
the temporal operators. All these clauses are self-explanatory, except those introduced for the
temporal operator AF, which require some explanation. The clauses of PK that define the
operator AF are the following:

sat(X, af (F )) ← sat(X,F )
sat(X, af (F ))← ts(X,Ys) ∧ sat all(Ys, af (F ))
sat all([ ], F )←
sat all([X|Xs], F )← sat(X, F ) ∧ sat all(Xs, F )

In these four clauses the function symbol af denotes the CTL operator AF. In general, when
writing an occurrence of a CTL formula as an argument of sat , we will slightly depart from the
CTL syntax given in Section 2.3 and, according to the usual logic programming syntax, we will
use lower-case function symbols instead of the corresponding upper-case operator symbols.

The meaning of the binary predicate ts is the following: ts(X,Ys) holds iff Ys is a list of all
successor states of X, that is, a state Y belongs to the list Ys iff there exists an event such that
ti(X, Y ) holds. Thus, the second clause for sat(X, af (F )) means that sat(X, af (F )) holds if, for
all successor states Y of X, sat(Y, af (F )) holds.

In the case where the Kripke structure has a finite set of states, the definition of the predicate
ts can be given by a finite collection of ground facts of the form ts(s, [s1, . . . , sq]) ←, where
s1, . . . , sq are the successor states of s. In the case where the Kripke structure has an infinite
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set of states the definition of ts is more complicated. Indeed, the definition of ts would consist
of an infinite set of ground facts of the form ts(s, [s1, . . . , sq]) ←, even though by Point 3 of
Definition 5, each state has a finite set of successor states.

We will avoid the difficulty of having an infinite set of facts in our programs, by assuming
that the constraint interpretation D used to specify the Kripke structure, satisfies a property
called Partitioning Property (see below). When that property holds we are able to find a finite
number m of mutually exclusive constraints c1(X), . . . , cm(X) which determine m subsets of the
set D of states such that each state s in the i-th subset of D: (i) satisfies the constraint ci(s)
and does not satisfy any other constraint cj(s) with i 6= j, and (ii) has qi successor states that
can be determined by using qi actions acti1(X, Y1), . . . , actiqi(X, Yqi). Thus, ts can be defined
by m clauses of the form:

ts(X,Ys) ← Ys = [Y1, . . . , Yqi ] ∧ ci(X) ∧ acti1(X, Y1) ∧ . . . ∧ actiqi(X, Yqi)
for i = 1, . . . ,m.

Now we introduce a formal definition of the Partitioning Property.

Partitioning Property
For every constraint c(X), there exist m constraints c1(X), . . . , cm(X) such that:
(i) D |= ∀X (¬c(X) ↔ (c1(X)∨. . .∨cm(X))), and
(ii) for any two distinct i and j in {1, . . . , m}, ci(X) ∧ cj(X) is unsatisfiable, that is, D |=
¬∃X (ci(X) ∧ cj(X)).

The Partitioning Property tells us that for every constraint c(X), the negated constraint ¬c(X)
is equivalent to a finite disjunction c1(X)∨. . .∨cm(X) of pairwise mutually exclusive constraints.
If the Partitioning Property holds, we say that ¬c(X) is partitioned into c1(X) ∨ . . . ∨ cm(X),
or equivalently, c1(X) ∨ . . . ∨ cm(X) is a partition of the negated constraint ¬c(X).

Example 1. Let us consider the set Link of constraints consisting of conjunctions of linear
inequations, constructed by using : (i) the predicate symbols < and ≤, (ii) k variables, and
(iii) integer coefficients. In linear inequations we can also use the symbols > and ≥, defined as
usual in terms of < and ≤. An equation of the form c1 = c2 will be considered as an abbreviation
for the conjunction of the two inequations c1 ≤ c2 and c1 ≥ c2. By QLin we denote the constraint
interpretation where: (1) the carrier is the setQ of rational numbers, (2) the function symbols ‘+’
and ‘·’ are interpreted as addition and multiplication over Q, respectively, and (3) the predicate
symbols < and ≤ are interpreted as the ‘less-than’ and ‘less-than-or-equal-to’ relations over
Q, respectively. Without loss of generality, we assume that no existentially quantified variable
occurs in Link, because all quantified variables can be eliminated by applying, for instance, the
Fourier-Motzkin algorithm (see [5] for a proof-theoretic presentation).

The negation of any constraint in Link can be partitioned into a finite disjunction of con-
straints, because:

(i) QLin |= ∀ (¬ (t1 <t2) ↔ (t1≥ t2))
(ii) QLin |= ∀ (¬ (t1≤ t2) ↔ (t1 >t2))

where t1 and t2 are linear polynomials. Thus, QLin satisfies the Partitioning Property.
Let us now consider the set TermEqs of constraints consisting of equations between terms that

are built out of an infinite set of function symbols. Let H be the usual interpretation, where
equality is interpreted as identity between ground terms. In TermEqs there are constraints
whose negation cannot be partitioned into a finite disjunction of constraints. For instance, the
negation of the constraint X =a, where a is a ground term, can only be expressed by an infinite
disjunction of constraints, as follows:
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H |= ∀X (¬X =a ↔ ∨
t∈G−{a}X = t)

where G denotes the infinite set of all ground terms. Thus, H does not satisfy the Partitioning
Property.

However, if we consider a set of terms constructed from a finite set of function symbols, then
the negation of any constraint can be partitioned into a finite disjunction of constraints. For
instance, if the function symbols are 0 (nullary) and s (unary), the negation of X =s(0) can be
partitioned into the disjunction X =0 ∨ ∃Y X =s(s(Y )). 2

The construction of the definition of the binary predicate ts may require a preparatory step by
which, from the disjunction t1(X, Y )∨ . . .∨tk(X, Y ) of events that defines the transition relation
of the Kripke structure K (see Definition 5), we derive an equivalent disjunction r1(X, Y )∨ . . .∨
rn(X, Y ) of mutually exclusive, nondeterministic events defined as follows.

Definition 6 (Nondeterministic Event) (i) A nondeterministic event is a formula of the
form:

cond(X)∧(act1(X,Y ) ∨ . . . ∨ actq(X, Y ))

where, for i = 1, . . . , q, cond(X)∧ act i(X,Y ) is an event. cond(X) is the enabling condition of
the nondeterministic event.
(ii) A disjunction r1(X, Y ) ∨ . . . ∨ rn(X, Y ) of n nondeterministic events is exhaustive if D |=
∀X (cond1(X) ∨ . . . ∨ condn(X)), where, for i = 1, . . . , n, cond i(X) is the enabling condition of
ri(X,Y ).
(iii) Two nondeterministic events with enabling conditions cond1(X) and cond2(X), respectively,
are mutually exclusive if D |= ¬∃X (cond1(X) ∧ cond2(X)).

If 〈D, I, R, L〉 is a constraint-based Kripke structure such that D satisfies the Partitioning Prop-
erty, then from any disjunction of events we can derive an equivalent disjunction of pairwise mu-
tually exclusive, nondeterministic events by using the following algorithm, called Mutex (short
for Mutually exclusive).

Algorithm Mutex
Input : an exhaustive disjunction t1(X,Y ) ∨ . . . ∨ tk(X, Y ) of events.
Output : an exhaustive disjunction r(X, Y ) of pairwise mutually exclusive, nondeterministic
events such that D |= ∀X∀Y (t1(X, Y ) ∨ . . . ∨ tk(X,Y ) ↔ r(X, Y )).

For h = 1, . . . , k, let the event th(X, Y ) be of the form: condh(X) ∧ acth(X, Y ) and let Dh(X)
be a partition of ¬condh(X). First we construct the set C of constraints as follows:

C = {v1(X) ∧ . . . ∧ vk(X) | for h = 1, . . . , k,
vh(X) is either condh(X) or a disjunct in Dh(X)}

Let c1(X), . . . , cn(X) be the satisfiable constraints in C. For i = 1, . . . , n, we define the nonde-
terministic event ri(X, Y ) =def ci(X)∧(act i1(X, Y )∨ . . .∨act iqi(X,Y )), where {act i1(X, Y ), . . . ,
act iqi(X, Y )} = {acth(X, Y ) | (i) 1 ≤ h ≤ k, (ii) th(X, Y ) is the event condh(X) ∧ acth(X, Y ),
and (iii) D |= ∀X(ci(X) → condh(X)).
We return r(X,Y ) =def r1(X,Y ) ∨ . . . ∨ rn(X, Y ).

In Example 2 below we will see the Mutex algorithm in action.
Note that the construction of the set C of constraints performed by the Mutex algorithm may

require, in the worst case, O(mk) steps, where m is the maximum number of disjuncts which
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constitute a partition Dh of a negated enabling condition ¬condh(X), for h = 1, . . . , k. However,
the set {c1(X), . . . , cn(X)} can be generated in less than O(mk) steps if during its construction,
we eliminate the constraints which are unsatisfiable, and we replace each constraint d(X) by the
new constraint solve(d(X), {X}).

The correctness of the Mutex algorithm, stated by the following Proposition 3.1, is a straight-
forward consequence of the fact that the constraints in the set C are, by construction, pairwise
mutually exclusive and exhaustive.

Proposition 3.1 (Correctness of the Mutex Algorithm) Let D be a constraint interpre-
tation that satisfies the Partitioning Property. From any exhaustive disjunction t1(X,Y )∨ . . .∨
tk(X, Y ) of events defined by constraints in D, the Mutex algorithm derives an exhaustive dis-
junction r1(X, Y ) ∨ . . . ∨ rn(X, Y ) of pairwise mutually exclusive, nondeterministic events such
that:

D |= ∀X ∀Y (t1(X, Y ) ∨ . . . ∨ tk(X,Y )) ↔ (r1(X, Y ) ∨ . . . ∨ rn(X,Y ))

Now we are able to introduce the clauses defining the predicate ts that occurs in the clause
sat(X, af (F ))← ts(X,Ys) ∧ sat all(Ys, af (F )), which will be used in the encoding of the tem-
poral operator AF (see Definition 8 below).

Definition 7. Let K = 〈D, I, R, L〉 be a constraint-based Kripke structure, where D satisfies the
Partitioning Property. Let the transition relation R of K be defined by an exhaustive disjunction
t1(X,Y )∨ . . .∨ tk(X,Y ) of events and let r1(X, Y )∨ . . .∨ rn(X, Y ) be the exhaustive disjunction
of pairwise mutually exclusive, nondeterministic events constructed by the Mutex algorithm. We
denote by R̃ the relation defined by the disjunction ts1(X,Ys) ∨ . . . ∨ tsn(X,Ys), where, for
i = 1, . . . , n,
(1) tsi(X,Ys) =def Ys =[Y1, . . . , Yqi ] ∧ ci(X) ∧ act i1(X, Y1) ∧ . . . ∧ act iqi(X,Yqi),
(2) Y1, . . . , Yqi are distinct variables, and
(3) ci(X) ∧ (act i1(X, Y ) ∨ . . . ∨ act iqi(X, Y )) is the nondeterministic event ri(X,Y ).
The predicate ts associated with R̃ is defined by the following clauses:

ts(X,Ys) ← ts1(X,Ys)
. . .

ts(X,Ys) ← tsn(X,Ys)

In the following example we show how, given an exhaustive disjunction of events, the Mutex
algorithm produces an equivalent exhaustive disjunction of mutually exclusive, nondeterministic
events, and how the associated predicate ts is defined.

Example 2. Let us consider a constraint-based Kripke structureK and let its transition relation
R be defined by the disjunction t(X, Y ) of the following two events t1(X, Y ) and t2(X, Y ):

event enabling condition action
t1(X, Y ) =def X≥0 ∧ Y =X+1
t2(X, Y ) =def X≤1 ∧ Y =X−1

where ≥ and ≤ denote the usual inequality relations between rational numbers. Since the
negation of the constraints X ≥ 0 and X ≤ 1 can be expressed as the constraints X < 0 and
X >1, respectively, by using the Mutex algorithm we can rewrite t(X,Y ) as the disjunction of
the following three nondeterministic events:
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event enabling condition action
r1(X, Y ) =def X <0 ∧ Y =X−1
r2(X, Y ) =def X≥0 ∧X≤1 ∧ (Y =X+1 ∨ Y =X−1)
r3(X, Y ) =def X >1 ∧ Y =X+1

Thus, the predicate ts is defined by the following three clauses:
ts(X,Ys) ← Ys = [Y ] ∧ X <0 ∧ Y =X−1
ts(X,Ys) ← Ys = [Y1, Y2] ∧ X≥0 ∧ X≤1 ∧ Y1 =X+1 ∧ Y2 =X−1
ts(X,Ys) ← Ys = [Y ] ∧ X >1 ∧ Y =X+1 2

The following proposition states the correctness of the program that defines the predicate ts
constructed from the transition relation R as indicated in Definition 7.

Proposition 3.2. Let Ts be the set of clauses defining the predicate ts associated with the
transition relation R̃. For all s ∈ D, {s1, . . . , sq} = {s′ ∈ D | s R s′} iff M(Ts) |= ts(s, ss) for
some list ss which is a permutation of [s1, . . . , sq].

Now we introduce the locally stratified constraint logic program PK that encodes a Kripke
structure K and the satisfiability of a CTL formula in K. As already mentioned, when writing
an occurrence of a CTL formula as an argument of sat , we will use lower-case function symbols
instead of the corresponding upper-case operator symbols.

Definition 8 (Encoding Program) Given a constraint-based Kripke structure K=〈D, I, R, L〉
such that D satisfies the Partitioning Property, the encoding program PK for K consists of the
following clauses:

t(X, Y ) ← t1(X,Y )
. . .
t(X, Y ) ← tk(X, Y )

ts(X,Ys) ← ts1(X,Ys)
. . .
ts(X,Ys) ← tsn(X,Ys)

sat(X, e1) ← e1(X)
. . .
sat(X, em) ← em(X)

sat(X,¬F ) ← ¬sat(X,F )
sat(X,F1 ∧ F2) ← sat(X, F1) ∧ sat(X, F2)

sat(X, ex (F )) ← t(X, Y ) ∧ sat(Y, F )

sat(X, eu(F1, F2)) ← sat(X, F2)
sat(X, eu(F1, F2)) ← sat(X, F1) ∧ t(X,Y ) ∧ sat(Y, eu(F1, F2))

sat(X, af (F )) ← sat(X,F )
sat(X, af (F ))← ts(X,Ys) ∧ sat all(Ys, af (F ))

sat all([ ], F )←
sat all([X|Xs], F )← sat(X, F ) ∧ sat all(Xs, F )

where:
(1) t1(X,Y )∨. . .∨tk(X, Y ) is the disjunction of constraints that defines the transition relation R;
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(2) ts1(X,Ys) ∨ . . . ∨ tsn(X,Ys) is the disjunction that defines the relation R̃;
(3) for i = 1, . . . ,m, ei(X) is the constraint associated with the elementary property ei. In
particular, (i) if ei is the elementary property true, then ei(X) is the constraint true, (ii) if ei is
the elementary property false, then ei(X) is the constraint false, and (iii) if ei is the elementary
property init, then ei(X) is the constraint init(X) that defines the set I of initial states. For
reasons of simplicity, we usually omit to write the clause sat(X, false) ← false (indeed, this
clause can be removed from PK by applying the clause removal rule R6 which will be presented
in Section 4).

As already mentioned in Section 2.3, the CTL formulas written by using the operators EF,
EG, AX, AU, and AG are considered as abbreviations of formulas written by using EX, EU,
and AF. Thus, in order to verify formulas that use EF, EG, AX, AU, and AG, we can rewrite
them as formulas that use EX, EU, and AF only, and then we can use the encoding program of
Definition 8.

Since the operator EF is often used in our examples, for the reader’s convenience, we present
specialized clauses for dealing with formulas of the form EF (ϕ). Since EF (ϕ) stands for
EU(true, ϕ) and sat(X, true) is true for all states X, the clauses for EF (ϕ) can be derived
as a specialization of the clauses:

sat(X, eu(F1, F2)) ← sat(X, F2)
sat(X, eu(F1, F2)) ← sat(X, F1) ∧ t(X,Y ) ∧ sat(Y, eu(F1, F2))

by: (i) substituting true for F1, (ii) substituting ef (F2) for eu(true, F2), and (iii) removing the
occurrence of sat(X, true). Thus, we obtain the following two clauses:

sat(X, ef (F )) ← sat(X, F )
sat(X, ef (F )) ← t(X,Y ) ∧ sat(Y, ef (F ))

The program PK constructed as indicated in Definition 8 is locally stratified w.r.t. the stratifi-
cation function σ defined as follows:

σ(t(s1, s2)) = 0, for all ground terms s1 and s2,
σ(ts(s, ss)) = 0, for all ground terms s and ss,
σ(sat(s, ϕ)) = size(ϕ), for all ground terms s and ϕ,
σ(sat all(s, ϕ)) = size(ϕ), for all ground terms s and ϕ,

where, for any ground term t, size(t) is the number of occurrences of function symbols in t.
The following result, whose proof is given in the Appendix, establishes the correctness of the

encoding of a Kripke structure.

Theorem 3.3 (Correctness of the Encoding Program) Let K = 〈D, I, R, L〉 be a con-
straint-based Kripke structure and let PK be the encoding program for K. For all states s ∈ D
and CTL formulas ϕ, we have that:

K, s |= ϕ iff sat(s, ϕ) ∈ M(PK)

In the following example we consider a simple reactive system specified by a Kripke structure
K based on a constraint interpretation D and we construct the corresponding program PK.

Example 3. Let us consider the reactive system depicted in Figure 1. A state of this system
is a 〈control state, counter〉 pair. The control state is either a or b and the counter is a rational
number. The constraint-based Kripke structure K = 〈D, I, R, L〉 that models that system can
be defined as follows.
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Figure 1: A simple reactive system. The initial state is 〈a, 0〉.

The carrier of D is the set D = {a, b} × Q, where Q is the set of rational numbers. We
assume that in D the following operations and relations are defined: (i) addition of rational
numbers, (ii) equality between elements in {a, b}, and (iii) equality and inequality between
rational numbers. We use the same symbol = to denote the equality between elements in {a, b}
and the equality between rational numbers.

The set I of initial states is defined by the constraint init(〈X1, X2〉) =def (X1 =a ∧ X2 =0),
that is, I is the singleton {〈a, 0〉}.

The transition relation R from state 〈X1, X2〉 to state 〈Y1, Y2〉 is defined as the disjunction of
the following three events:

event enabling condition action
t1(〈X1, X2〉, 〈Y1, Y2〉) =def X1 =a ∧ Y1 =a ∧ Y2 =X2 + 2
t2(〈X1, X2〉, 〈Y1, Y2〉) =def X1 =a ∧X2 >0 ∧ Y1 =b ∧ Y2 =X2

t3(〈X1, X2〉, 〈Y1, Y2〉) =def X1 =b ∧ Y1 =b ∧ Y2 =X2 + 1
Let the elementary property neg hold in a state 〈X1,X2〉 iff X2 <0. Note that the conditions

occurring in the events t1(〈X1, X2〉, 〈Y1, Y2〉) and t2(〈X1, X2〉, 〈Y1, Y2〉) are not mutually exclusive
because D |= ∃X1∃X2 ((X1 =a) ∧ (X1 =a∧X2 >0)). Thus, in order to construct the clauses for
the predicate ts we have to apply the Mutex algorithm. This algorithm can indeed be applied
because the constraint interpretation D satisfies the Partitioning Property (see also Example 1).
In particular, we use the following equivalences:
D |= ∀X((¬X >0) ↔ X≤0)
D |= ∀X((¬X =a) ↔ X =b)

From the transition relation R the Mutex algorithm derives the following three, pairwise mutu-
ally exclusive, nondeterministic events:

nondeterministic event enabling condition action
r1(〈X1, X2〉, 〈Y1, Y2〉) =def X1 =a ∧X2≤0 ∧ Y1 =a ∧ Y2 =X2 + 2
r2(〈X1, X2〉, 〈Y1, Y2〉) =def X1 =a ∧X2 >0 ∧ ((Y1 =a ∧ Y2 =X2 + 2) ∨ (Y1 =b ∧ Y2 =X2))
r3(〈X1, X2〉, 〈Y1, Y2〉) =def X1 =b ∧ Y1 =b ∧ Y2 =X2 + 1

The encoding program PK consists of the following clauses:

t(〈X1, X2〉, 〈Y1, Y2〉) ← X1 =a ∧ Y1 =a ∧ Y2 =X2 + 2
t(〈X1, X2〉, 〈Y1, Y2〉) ← X1 =a ∧X2 >0 ∧ Y1 =b ∧ Y2 =X2

t(〈X1, X2〉, 〈Y1, Y2〉) ← X1 =b ∧ Y1 =b ∧ Y2 =X2 + 1

ts(〈X1, X2〉, [〈Y1, Y2〉]) ← X1 =a ∧X2≤0 ∧ Y1 =a ∧ Y2 =X2 + 2
ts(〈X1, X2〉, [〈Y11, Y12〉, 〈Y21, Y22〉]) ← X1 =a ∧X2 >0 ∧Y11 =a ∧ Y12 =X2 + 2∧

Y21 =b ∧ Y22 =X2

ts(〈X1, X2〉, [〈Y1, Y2〉]) ← X1 =b ∧ Y1 =b ∧ Y2 =X2 + 1
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sat(〈X1, X2〉, init) ← X1 =a ∧X2 =0
sat(〈X1, X2〉, true) ←
sat(〈X1, X2〉,neg) ← X2 <0

together with the clauses defining sat(X,¬F ), sat(X,¬F1∧F2), sat(X, ex (F )), sat(X, eu(F1, F2)),
sat(X, af (F )), and sat all(Xs, F ) (see Definition 8). 2

The problem of proving K, s |= ϕ, for all initial states s ∈ I, can be encoded as a goal for a
CLP program as specified by the following definition.

Definition 9. Let K be a Kripke structure, let PK be the encoding program for K, and let ϕ be a
CTL formula. By PK[ϕ] we denote the program PK ∪{γ1, γ2}, where γ1 and γ2 are the following
two clauses:

γ1 : prop ← ¬negprop
γ2 : negprop ← sat(X, init ∧ ¬ϕ)

The following result is a direct consequence of Theorem 3.3 and of the definition of perfect
model, and it is the basis of our verification technique.

Corollary 3.4. Let K be a Kripke structure, let I be the set of initial states of K, and let ϕ be
a CTL formula. Then,

K, s |= ϕ, for all states s ∈ I iff prop ∈ M(PK[ϕ]).

4. The Rules for Specializing CLP Programs

The process of specializing a given program P and deriving a new program Psp , which is required
by our verification task, will be formalized as the construction of a sequence P0, . . . , Pn of
programs, called a transformation sequence, where: (i) P0 = P, (ii) Pn = Psp and, (iii) for
k = 0, . . . , n−1, program Pk+1 is obtained from program Pk by applying one of the transformation
rules listed below. These rules are variants, tailored to the verification technique we present in
this paper, of the unfold/fold rules considered in the literature for transforming logic programs
and constraint logic programs (see, in particular, [8, 23, 26, 42, 61, 66]).

The first rule R1 allows us to introduce a new predicate definition by adding to program Pk,
for some k such that 0 ≤ k ≤ n−1, a new clause whose body consists of a constrained atom.

Rule R1 (Constrained Atomic Definition)
By constrained atomic definition (or definition, for short), we introduce a clause, called a defi-
nition, of the form

δ : newp(X1, . . . , Xm) ← c ∧A

where: (i) newp is a predicate symbol not occurring in the transformation sequence P0, . . . , Pk,
(ii) FV (A) = {X1, . . . , Xm}, (iii) FV (c) ⊆ {X1, . . . , Xm}, and (iv) the predicate of A occurs in
P0. We derive the program Pk+1 = Pk ∪ {δ}.
For k ≥ 0, Defsk denotes the set of definitions introduced during the construction of the trans-
formation sequence P0, . . . , Pk. In particular, Defs0 = ∅.
Each of the following two unfolding rules R2 and R3 corresponds to a symbolic computation
step. These unfolding rules essentially consist in replacing an atom A occurring in the body of
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a clause of Pk by the bodies of the clauses which define A in program Pk. If the atom A to
be replaced occurs positively in the body of the clause to be unfolded, we apply the positive
unfolding rule R2. If A occurs negatively, we apply the negative unfolding rule R3.

Rule R2 (Positive Unfolding)
Let γ : H ← c ∧GL ∧A ∧GR be a clause in program Pk and let P ′

k be a variant of Pk without
variables in common with γ. Let

γ1 : K1 ← c1 ∧G1

· · ·
γm : Km ← cm ∧Gm

where m ≥ 0, be all clauses of program P ′
k such that, for i = 1, . . . ,m, the constraint c∧A=Ki∧ci

is satisfiable.
By unfolding γ w.r.t. A we derive the clauses

η1 : H ← c ∧A=K1 ∧ c1 ∧GL ∧G1 ∧GR

. . .
ηm : H ← c ∧A=Km ∧ cm ∧GL ∧Gm ∧GR

and we derive the program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}.
Note that if m=0 then, by positive unfolding, clause γ is deleted from Pk.

By using rule R3, we can unfold a clause w.r.t. a negative literal provided that this literal is
a decided literal in the sense specified by the following definition.

Definition 10 (Decided Predicate and Decided Literal) We say that a predicate p is de-
cided in a program P if Def (p, P ) is a (possibly empty) set of constrained facts. A literal L is
decided in P if the predicate of L is decided in P .

We will see in Section 6 that our restricted form of negative unfolding w.r.t. decided literals
is sufficient for many interesting verification examples.

When we apply the negative unfolding rule R3 we assume that the Partition Property holds
for the class of constraints we consider.

Rule R3 (Negative Unfolding)
Let γ : H ← c∧GL ∧¬A∧GR be a clause in program Pk and let P ′

k be a variant of Pk without
variables in common with γ. Let us assume that ¬A is a decided literal in P ′

k and let
γ1 : K1 ← c1

· · ·
γm : Km ← cm

where m ≥ 0, be all clauses of program P ′
k such that, for i = 1, . . . ,m, the constraint c∧A=Ki∧ci

is satisfiable.
By unfolding γ w.r.t. ¬A we derive the clauses

η1 : H ← c ∧ f1 ∧GL ∧GR

· · ·
ηs : H ← c ∧ fs ∧GL ∧GR

where s ≥ 0 and f1, . . . , fs are constraints obtained by performing the following four steps.

Step 1. (Project) We consider the following formula ψ0, which is equivalent to ¬A in M(Pk):

ψ0 : ¬(∃Y1 (A=K1 ∧ c1) ∨ . . . ∨ ∃Ym (A=Km ∧ cm))
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where, for i = 1, . . . , m, Yi = FV (Ki) ∪ FV (ci). From ψ0 we derive the following equivalent
formula:

ψ1 : ¬(d1 ∨ . . . ∨ dm)
where, for i = 1, . . . , m, di = solve(A=Ki ∧ ci,FV (A)).
Step 2. (Push ¬ inside) We apply De Morgan’s law to ψ1 and we derive the following equivalent
formula:

ψ2 : ¬d1 ∧ . . . ∧ ¬dm

Step 3. (Eliminate ¬) From ψ2 we derive an equivalent formula of the form:
ψ3 : D1 ∧ . . . ∧Dm

where, for i = 1, . . . ,m, Di is a partition of the negated constraint ¬di (that is, a disjunction of
constraints equivalent to ¬di). This step is possible because the Partition Property holds.
Step 4. (Push ∨ outside) We apply to ψ3 as long as possible the following rewriting of formulas
(that is, the distributivity law):

ϕ1 ∧ (ϕ2 ∨ ϕ3) −→ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)
and we get an equivalent formula of the form:

ψ4 : f1 ∨ . . . ∨ fs

Note that for i = 1, . . . , s, fi is a constraint of the form e1 ∧ . . . ∧ em, where, for j = 1, . . . , m,
ej is a disjunct occurring in Dj .
We derive the program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηs}.
Note that: (i) if m = 0, that is, if we unfold clause γ w.r.t. a negative literal ¬A such that the
constraint c∧A=Ki∧ ci is satisfiable for no clause in P ′

k, then we get the new program Pk+1 by
deleting ¬A from the body of clause γ, and (ii) if we unfold clause γ w.r.t. a negative literal ¬A
such that a variant of the fact A ← is in P ′

k, then we derive the new program Pk+1 by deleting
clause γ from Pk.

The following folding rules R4 and R5 allow us to replace an atom A which is an instance of the
body of a definition by the corresponding instance of the head of the definition. If the atom A
occurs positively in the body of a clause, then we apply the positive folding rule R4, otherwise,
if A occurs negatively in the body of a clause, then we apply the negative folding rule R5.

Rule R4 (Positive Folding)
Let γ : H ← c ∧ GL ∧ A ∧ GR be a clause in Pk and let δ : N ← d ∧ B be a clause in Defsk
such that: (i) δ has no variables in common with γ, (ii) A = Bϑ, for some substitution ϑ, and
(iii) D |= ∀ (c → ∃Y dϑ), where Y = FV (d)− FV (N).
By folding γ w.r.t. A using δ we derive the clause

η : H ← c ∧GL ∧Nϑ ∧GR

and we derive the program Pk+1 = (Pk − {γ}) ∪ {η}.
Rule R5 (Negative Folding)
Let γ : H ← c ∧ G1 ∧ ¬A ∧ G2 be a clause in Pk and let δ : N ← d ∧ B be a clause in Defsk
such that: (i) δ has no variables in common with γ, (ii) A = Bϑ, for some substitution ϑ, and
(iii) D |= ∀ (c → dϑ).
By folding γ w.r.t. ¬A using δ we derive the clause

η : H ← c ∧GL ∧ ¬Nϑ ∧GR

and we derive the program Pk+1 = (Pk − {γ}) ∪ {η}.
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The following clause removal rule R6 can be used for removing from Pk a redundant clause γ,
that is, a clause such that M(Pk) = M(Pk − {γ}). Since the problem of testing whether or
not M(Pk) = M(Pk − {γ}) is undecidable, we will consider some sufficient conditions based on
decidable properties. These sufficient conditions are based on the notions of subsumed clause
and useless clause, which we now define.

A clause of the form H ← c ∧ G is subsumed by a constrained fact of the form H ← d if
D |= ∀ (c → d).

The set of useless predicates in a program P is the maximal set U of predicates occurring in P
such that a predicate p is in U iff every clause γ in Def (p, P ) is of the form H ← c∧G1∧q(. . .)∧G2

for some q in U . A clause in a program P is useless if the predicate of its head is useless in P .
For example, in the following program:

p(X) ← q(X) ∧ ¬r(X)
q(X) ← p(X)
r(X) ← X >0

p and q are useless predicates, while r is not useless.

Rule R6 (Clause Removal)
Let γ be a clause in Pk. By clause removal we derive the program Pk+1 = Pk − {γ} if one of
the following two cases occurs:
R6s. γ is subsumed by a constrained fact occurring in Pk − {γ};
R6u. γ is useless in Pk.

The following constraint replacement rule R7 allows us to replace a constraint occurring in the
body of a clause by an equivalent constraint.

Rule R7 (Constraint Replacement)
Let γ1 : H ← c1 ∧G be a clause in Pk. Suppose that for some constraint c2, we have that:
D |= ∀ (∃Y c1 ↔ ∃Z c2)

where: (i) Y = FV (c1)−(FV (H) ∪ FV (G)), and (ii) Z = FV (c2)−(FV (H) ∪ FV (G)). Then
by constraint replacement we derive the clause

γ2 : H ← c2 ∧G

and we derive the program Pk+1 = (Pk − {γ1}) ∪ {γ2}.
The following Theorem 4.1 states that, under suitable conditions, the transformation rules

R1–R7 we have presented, preserve the perfect model semantics. These conditions ensure that
during the construction of a transformation sequence, each clause introduced by the constrained
atomic definition (Rule R1) and used for positive folding (Rule R4), is unfolded (before or after
folding) w.r.t. the unique atom in its body.

Theorem 4.1 (Correctness of the Transformation Rules) Let P0 be a locally stratified
program and let P0, . . . , Pn be a transformation sequence. Let us assume that for every k ∈
{1, . . . , n − 1} such that Pk+1 is derived by applying Rule R4 and folding a clause in Pk using
a clause δ in Defsk , there exists j ∈ {1, . . . , n− 1} − {k} such that δ belongs to Pj and Pj+1 is
derived by applying Rule R2 and unfolding δ w.r.t. the unique atom in its body.
Then Pn is locally stratified and for every ground atom A whose predicate occurs in P0, we have
that A ∈ M(P0) iff A ∈ M(Pn).

Theorem 4.1 is a consequence of the fact that the transformation rules R1–R7 are particular
cases of the transformation rules presented in [26], and the latter rules preserve the perfect model
semantics (see Theorem 3 in [26]).
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5. The Specialization Strategy

In this section we present the specialization strategy which will be used for verifying CTL
properties of reactive systems.

Suppose that we are given a reactive system specified by a Kripke structure K and a CTL
formula ϕ. We want to verify that, for all initial states s, the formula ϕ holds in state s, that
is, K, s |= ϕ. This verification can be performed by considering the program PK[ϕ] constructed
as described in Definition 9. Indeed, by Corollary 3.4 of Section 3 we have that:

K, s |= ϕ, for all initial states s iff prop ∈ M(PK[ϕ])
In order to accomplish our verification task, in this section we will present a specialization
strategy which applies the transformation rules of Section 4 and from program PK[ϕ] derives a
specialized program Psp . The correctness of the transformation rules with respect to the perfect
model semantics (see Theorem 4.1 of Section 4) ensures that prop ∈ M(PK[ϕ]) iff prop ∈ M(Psp).
Thus, if Psp contains the fact prop ←, then for all initial states s, we have that K, s |= ϕ.
Moreover, if Psp does not contain any clause for prop, then there exists an initial state s such
that K, s 6|= ϕ.

We will make sure that our specialization strategy always terminates by employing a suitable
generalization technique. However, due to the undecidability of CTL for infinite state systems,
we cannot hope that in all cases our strategy allows us to determine whether or not K, s |= ϕ.
Indeed, in some cases our strategy derives a program Psp where prop is defined by one or more
clauses with non-empty body.

5.1. Outline of the Specialization Strategy

Our strategy specializes the program PK[ϕ] w.r.t. prop by sequentially applying the UDF proce-
dure and the RU procedure which we will describe below. (UDF stands for ‘unfolding–definition–
folding’ and RU stands for ‘removal–unfolding’.) Now, recall that by PK[ϕ] we denote the
program PK ∪ {γ1, γ2}, where γ1 and γ2 are the clauses (see Definition 9):

γ1 : prop ← ¬negprop
γ2 : negprop ← sat(X, init ∧ ¬ϕ)

The UDF procedure specializes the program PK ∪ {γ1, γ2} w.r.t. negprop leaving clause γ1

untouched, thereby deriving a program PA of the form Pnegprop ∪ {γ1}. The RU procedure
completes the specialization of PK ∪ {γ1, γ2} w.r.t. prop by performing the specialization of PA

w.r.t. prop.
The UDF procedure consists in the iterated execution of the ‘unfolding–definition–folding cy-

cle’ which is typical of the specialization techniques based on the unfolding/folding approach (see,
for instance, [25, 53, 60]). In a generic execution of the unfolding–definition–folding cycle we
consider a clause γ of the form H ← c(X)∧ sat(X, ψ) (at the first execution we consider clause
γ2). By applying the positive unfolding rule R2 one or more times, from clause γ we derive a
new set of clauses, say Γ. Then, for each constrained literal of the form c1(X) ∧ sat(X, ψ1)
or c1(X) ∧ ¬sat(X, ψ1) occurring in the body of a clause in Γ, by applying the definition
rule R1, we introduce a new definition of the form newp(X) ← d(X) ∧ sat(X, ψ1) such that
D |= ∀X (c1(X) → d(X)). Thus, by applying the positive and negative folding rules R4 and
R5, from Γ we derive a new set Φ of clauses without occurrences of sat literals. For each new
definition introduced by Rule R1, we perform again unfolding, definition, and folding steps, and
we iterate this unfolding–definition–folding cycle until no new definitions need to be introduced
for applying the folding rule w.r.t. all (positive or negative) constrained occurrences of the sat
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literals. This is the case when those occurrences can be folded using the definitions that have
been already introduced by previous applications of the definition rule.

The UDF procedure depends on the auxiliary procedures used for unfolding and for the
introduction of new definitions which will be presented in Section 5.2.1. In particular, the
introduction of new definitions is realized by applying a suitable generalization technique which
ensures that a finite set of definitions will be introduced during the application of the UDF
procedure, thereby guaranteeing the termination of this procedure (see Theorem 5.9).

The RU procedure derives decided predicates, with the objective of obtaining a final program
Psp where prop is a decided predicate, that is, a program Psp which either contains the fact
prop ← or contains no clauses for prop. We will prove that the program, denoted by PA, which
is derived at the end of the UDF procedure, is stratified, that is, PA has a finite number of strata.
Thus, the RU procedure works bottom-up on the strata of PA and simplifies the definition of
every predicate p occurring in the program, with the aim of deriving either the fact p ← or
the empty definition for p. In order to do so the RU procedure applies: (i) the clause removal
rule R6 and (ii) the positive and negative unfolding rules R2 and R3 w.r.t. decided literals.

Before describing in more detail the UDF and RU procedures of our specialization strategy,
let us illustrate through an example some of the ideas upon which our strategy is based.

Example 4. Let us consider a reactive system consisting of an integer counter X which is
initialized to 1 and is incremented by 1 at each time unit. The state of the system is the value
of the counter X. We want to prove that starting from the initial state it is impossible to reach
a state where the value of the counter is 0.

The system is specified by the following constraint-based Kripke structure Count = 〈I, I, R, L〉,
where: (i) I is the usual constraint interpretation for the integer numbers with addition, (ii) the
set I of the initial states is defined by the constraint X = 1, (iii) the transition relation R is
defined by the single event Y = X +1, (iv) the function L is defined by associating with the
elementary property null the constraint X =0.

The encoding program for Count is the following CLP program PCount (see Definition 8):

1. t(X,Y ) ← Y =X+1
2. sat(X, init) ← X =1
3. sat(X,null) ← X =0
4. sat(X,¬F ) ← ¬sat(X, F )
5. sat(X, ef (F )) ← sat(X, F )
6. sat(X, ef (F )) ← t(X, Y ) ∧ sat(Y, ef (F ))

where we have listed only the clauses which are needed in this verification example. Our property
of interest is expressed by the CTL formula ¬EF (null) and we want to verify that Count , X |=
¬EF (null) holds for the initial state defined by the constraint X = 1. In order to verify this
property, we introduce the following two clauses:

γ1 : prop ← ¬negprop
γ2 : negprop ← sat(X, init ∧ ef (null))

where we have simplified ¬¬ef (null) to ef (null). By Corollary 3.4, we can perform our verifica-
tion task by proving that prop ∈ M(PCount [¬EF (null)]), where PCount [¬EF (null)] denotes the
program PCount ∪ {γ1, γ2}.

Let us remark that this proof cannot be done by using the standard operational semantics
of constraint logic programs (see, for instance, [45]). Indeed, by using the standard operational



26.

semantics, PCount [¬EF (null)] does not terminate for the goal prop, because the following infinite
derivation is generated from negprop:

sat(X, init ∧ ef (null))
sat(X, init) ∧ sat(X, ef (null))
X =1 ∧ sat(X, ef (null))
X =1 ∧X1=X+1 ∧ sat(X1, ef (null))
X =1 ∧X1=X+1 ∧X2=X1+1 ∧ sat(X2, ef (null))
. . .

Note that program PCount [¬EF (null)] does not terminate either if one uses a system for tabled
constraint logic programming [15], because each element of the above infinite derivation is a
constrained atom which is not an instance of a preceding element.

Now we prove that prop ∈ M(PCount [¬EF (null)]) by using the transformation rules of Sec-
tion 4 according to the UDF and RU procedures of the specialization strategy we have outlined
above.
UDF procedure. We repeatedly perform the unfolding–definition–folding transformation cycle
described above, starting from clause γ2.

(A.1) We unfold clause γ2 and we get:
7. negprop ← X =1 ∧ sat(X, ef (null))

We introduce the following new definition:
8. new1(X) ← X =1 ∧ sat(X, ef (null))

and we fold clause 7 using clause 8, thereby deriving the clause:
9. negprop ← X =1 ∧ new1(X)

(A.2) The specialization process continues by applying the unfolding–definition–folding trans-
formation cycle starting from the new definition clause 8. We unfold clause 8 and we get:

10. new1(X) ← X =1 ∧ Y =X+1 ∧ sat(Y, ef (null))
In order to fold clause 10 we introduce the following new definition:

11. new2(X) ← X≥1 ∧ sat(X, ef (null))
whose body is obtained from the body of clause 8 by generalizing the constraint X = 1 to the
constraint X ≥ 1. By applying rule R4 we fold clause 10 using clause 11 and we get:

12. new1(X) ← X =1 ∧ Y =X+1 ∧ new2(Y )

(A.3) We perform once again the unfolding–definition–folding transformation cycle starting from
clause 11. We first unfold clause 11, thereby deriving the following clause:

13. new2(X) ← X ≥ 1 ∧ Y =X+1 ∧ sat(Y, ef (null))
No new definition is needed for folding clause 13. Indeed clause 13 can be folded by using
clause 11 thereby deriving:

14. new2(X) ← X ≥ 1 ∧ Y =X+1 ∧ new2(Y )
This folding step concludes the UDF procedure. By applying this procedure we have derived
the following program PA:

γ1. prop ← ¬negprop
9. negprop ← X =1 ∧ new1(X)
12. new1(X) ← X =1 ∧ Y =X+1 ∧ new2(Y )
14. new2(X) ← X ≥ 1 ∧ Y =X+1 ∧ new2(Y )
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RU procedure. We derive decided predicates as follows. The predicates negprop, new1, and new2
are useless in PA (see Section 4). Thus, by using the clause removal rule R6u, clauses 9, 12,
and 14 are deleted, and we derive a program consisting of clause γ1 only. By using the negative
unfolding rule R3 we unfold clause γ1 w.r.t. negprop and we derive a final specialized program
Psp where the definition of predicate prop consists of the following clause only:

15. prop ←
Thus, prop ∈ M(Psp) and, by the correctness of the rules (see Theorem 4.1 above), we get
that prop ∈ M(PCount [¬EF (null)]). By Corollary 3.4 at the end of Section 3 we have that
Count , X |= ¬EF (null) holds for the initial state X =1, and this concludes our proof. 2

Now we want to briefly discuss a few points related to the proof we have presented in Exam-
ple 4.

(1) We use the folding rule to infer that some atoms are infinitely failed and, thus, they are
false in the perfect model of the program. Indeed, by folding, the clauses defining infinitely
failed atoms are transformed into useless clauses, which are then deleted by applying the clause
removal rule. For instance, we infer that the atom new2(X) is infinitely failed (see clause 14)
by folding clause 13 by using clause 11.

(2) In order to perform the folding steps required for generating useless clauses as indicated at
Point (1), we may need to introduce new definitions by applying a generalization technique. In
our case we have introduced clause 11 by generalizing the body of clause 8, and indeed, by using
clause 11 we were able to perform folding steps w.r.t. all constrained sat literals occurring in
the program at hand.

(3) The choice of a suitable generalization technique plays a crucial rôle in our verification
method because, as already mentioned, it ensures the termination of the specialization strategy.
However, in some cases generalization can also prevent the proof of the properties of interest as
indicated by the following example.

Example 5. Let us consider again the above Example 4 and suppose that we generalize the
constraint X =1 in the body of clause 8 to true, instead of X ≥ 1. Then, instead of clause 11,
we would have introduced the following clause:

11*. new3(X) ← sat(X, ef (null))

In this case the program PA derived at the end of the UDF procedure is:

γ1. prop ← ¬negprop
9. negprop ← X =1 ∧ new1(X)
16. new1(X) ← X =1 ∧ Y =X+1 ∧ new3(Y )
17. new3(X) ← X =0
18. new3(X) ← Y =X+1 ∧ new3(Y )

The application of the RU procedure does not change program PA because no clause is useless in
PA. Thus, no decided predicate can be derived and the property of interest cannot be proved. 2

5.2. The Strategy for Specializing CLP Programs

Suppose that K is a Kripke structure based on a constraint interpretation D, and ϕ is the
CTL property to be verified. Let us consider the program PK[ϕ] constructed as described in
Definition 9 of Section 3. Our specialization strategy consists of the sequential composition of
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the two procedures UDF and RU , which we will describe in detail in Sections 5.2.1 and 5.2.2,
respectively.

The Specialization Strategy

Input : The program PK[ϕ].
Output : A specialized program Psp such that:

prop ∈ M(PK[ϕ]) iff prop ∈ M(Psp)

UDF (PK[ϕ], PA);
RU (PA, Psp)

5.2.1. The UDF procedure

As briefly described in Section 5.1, the UDF procedure consists in the iterated application of the
unfolding, definition, folding rules, possibly interleaved with applications of the clause removal
and constraint replacement rules. The unfolding rule is applied according to the Unfold auxiliary
procedure, and the definition and folding rules are applied according to the Generalize&Fold
auxiliary procedure. These auxiliary procedures are described below.

In order to control the generalizations to be performed, we follow an approach which is similar
to one considered in the context of partial deduction [46, 37]. We consider the set Defs made out
of the clauses introduced by the definition rule during the UDF procedure together with clause
γ2: negprop ← sat(X, init ∧¬ϕ), and we arrange this set Defs as a tree whose root is clause γ2.
Although γ2 is not introduced by the definition rule R1, by abuse of language we will refer to
Defs as a set of definitions or as a tree of definitions. Since, by construction, all clauses in Defs
are distinct, we will identify each clause with a node of that tree. During the construction of
Defs the UDF procedure may mark some of its nodes as ‘terminated’, which means that they
have no son-clauses.

Initially, Defs consists of clause γ2 only, which is not marked as ‘terminated’. The UDF
procedure considers a leaf γ of Defs which is not marked as ‘terminated’ and unfolds it, by
using the Unfold procedure, thereby deriving a set Γ of clauses. Then the Generalize&Fold
procedure introduces a set NewDefs of new definitions such that, for each constrained literal
of the form c1(X) ∧ sat(X, ψ1) or c1(X) ∧ ¬sat(X,ψ1) occurring in the body of a clause in Γ,
there exists in Defs ∪NewDefs a definition of the form newp(X) ← d(X)∧ sat(X,ψ1) such that
D |= ∀X (c1(X) → d(X)). Thus, by folding the clauses in Γ w.r.t. all sat literals, we derive
a new set Φ of clauses without occurrences of sat literals. The clauses of NewDefs are added
to Defs as son-clauses of γ. If NewDefs is empty, then γ has no son-clauses and is marked as
‘terminated’. When all leaf-clauses of Defs are marked as ‘terminated’, the UDF procedure
halts, and the output program is obtained by collecting all clauses defining the predicates on
which the predicate prop depends (in particular, prop does not depend on sat in the program
derived by the UDF procedure and, thus, the clauses for sat are dropped).

In the UDF procedure we will use the functions leaf and add -son-clauses defined as follows.
Given a clause γ, leaf (γ) is a tree with precisely one node consisting of clause γ. Given a tree
Defs of clauses, a leaf-clause γ, and a set NewDefs of clauses, add -son-clauses(Defs, γ,NewDefs)
is the tree of clauses obtained from Defs by adding a son-clause δ of γ for each clause δ occurring
in NewDefs.
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Procedure UDF (PK[ϕ], PA)

Input : The program PK[ϕ].
Output : A program PA such that:

prop ∈ M(PK[ϕ]) iff prop ∈ M(PA).

PT := PK[ϕ]; Defs := leaf (γ2), where γ2 is negprop ← sat(X, init ∧ ¬ϕ);
while there exists a clause γ ∈ PT which is a leaf of Defs and is not marked as ‘terminated’

do Unfold(γ, Γ);
Generalize&Fold(Defs, γ, Γ,NewDefs, Φ);
PT := (PT − {γ}) ∪NewDefs ∪ Φ;
Defs := add -son-clauses(Defs, γ,NewDefs);
if NewDefs = ∅ then mark γ as ‘terminated’

end-while;
PA := Def ∗(prop, PT )

The Unfold Procedure.
The Unfold procedure takes as input a clause γ ∈ PT of the form H ← c(X) ∧ sat(X, ψ), and
returns as output a set of clauses derived from γ by applying the positive unfolding rule R2,
the clause removal rule R6, and the constraint replacement rule R7. The Unfold procedure first
unfolds γ w.r.t. sat(X, ψ), and then applies the positive unfolding rule zero or more times as
long as in the bodies of the clauses derived from δ there are atoms of one of the following forms:
(i) t(s1, s2), (ii) ts(s, ss), (iii) sat(s, e), where e is an elementary property, (iv) sat(s,¬ψ1),
(v) sat(s, ψ1 ∧ ψ2), (vi) sat(s, ex (ψ1)), and (vii) sat all(ss, ψ1).

Due to the structure of the clauses defining the predicates t, ts, sat, and sat all , the Unfold
procedure terminates for any ground CTL formula ψ occurring in γ (see Lemma 5.1 below).
Note that, in particular, a clause is not unfolded w.r.t. any atom of the form sat(X, af (ψ1)) or
sat(X, eu(ψ1)), because in these cases the recursive structure of the clauses defining sat may
cause nontermination.

Then the set of clauses derived from γ by applying the unfolding rule is simplified by: (i) using
rule R6s, thereby removing all clauses which are subsumed by a constrained fact, and (ii) using
rule R7, thereby applying the solve function to the constraints occurring in the bodies of the
clauses. Rules R6s and R7 are applied according to the following two auxiliary procedures:
Remove-Subsumed and Solve-Constraints. Given a set Γ1 of clauses in program PT , (i) Remove-
Subsumed(Γ1, Γ2) derives a set Γ2 of clauses by removing from Γ1 every clause δ subsumed by
a constrained fact in PT different from δ, and (ii) Solve-Constraints(Γ1, Γ2) derives a set Γ2 of
clauses by applying the solve function to every constraint occurring in the body of a clause in Γ1,
that is, Γ2 = {(H ← solve(c, Y )∧G) | (H ← c∧G) ∈ Γ1 and Y = FV (c)∩ (FV (H)∪FV (G))}.

Procedure Unfold(γ, Γ)
Input : A clause γ of the form H ← c(X) ∧ sat(X, ψ) in program PT .
Output : A set Γ of clauses.

Γu := {γu | γu is derived by unfolding γ w.r.t. sat(X,ψ)};
while there exists a clause δ : K ← d ∧G1 ∧A ∧G2 in Γu,

where A is of one of the following forms:
(i) t(s1, s2), (ii) ts(s, ss), (iii) sat(s, e), where e is an elementary property,



30.

(iv) sat(s,¬ψ1), (v) sat(s, ψ1 ∧ ψ2), (vi) sat(s, ex (ψ1))
do Γu := (Γu − {δ}) ∪ {δu | δu is derived by unfolding δ w.r.t. A}
end-while ;
while there exists a clause δ : K ← d ∧G1 ∧ sat all(ss, ψ1) ∧G2 in Γu

do Γu := (Γu − {δ}) ∪ {δu | δu is derived by unfolding δ w.r.t. sat all(ss, ψ1)}
end-while ;
Remove-Subsumed(Γu,Γs);
Solve-Constraints(Γs, Γ)

Examples of application of the Unfold procedure will be given in Section 5.3.
Note that, during an application of the Unfold procedure, only the instance R6s of rule R6

is used to remove clauses. The other instance of rule R6, that is, rule R6u, is used to remove
useless clauses during the RU procedure, which is executed after the UDF procedure.

Lemma 5.1. The Unfold procedure terminates.

Proof : Let us consider an application of the Unfold procedure with input clause γ and input
program PT . By analyzing the UDF procedure it can be verified that the clauses of PT defining
the predicates t, ts, sat , and sat all are the ones of PK[ϕ].

Let us now show that the execution of the first while-do statement terminates. Since at each
unfolding step we derive a finite number of clauses, it is enough to prove the finiteness of every
sequence of clauses δ1, δ2, . . . such that δ1 belongs to the initial set Γu of clauses (see the first
statement of the Unfold procedure) and δi+1 is derived by unfolding δi during the execution of
the first while-do statement.

Let us consider the well-founded ordering >c over clauses defined as follows. We introduce
a function µ from goals to natural numbers such that: (i) for every constraint c, we have
µ(c) = 0, (ii) for every atom of the form t(s1, s2), we have µ(t(s1, s2)) = 1, (iii) for every
atom of the form ts(s, ss), we have µ(ts(s, ss)) = 1, (iv) for every atom of the form sat(s, ψ),
we have µ(sat(s, ψ)) = 1 + size(ψ), (v) for every other atom A, we have µ(A)) = 0, and
(vi) for every literal of the form ¬A, we have µ(¬A) = µ(A). With any constrained goal
c∧L1 ∧ . . .∧Ln, we associate a multiset ms(c∧L1 ∧ . . .∧Ln) = {µ(c), µ(L1), . . . , µ(Ln)} (here
we use {. . .} also to denote multisets). Now, given any two clauses δi and δj , we define δi >c δj

iff ms(bd(δi)) À ms(bd(δj)), where À is the multiset ordering over natural numbers [20]. Since
À is a well-founded ordering, we have that also >c is a well-founded ordering.

During the execution of the first while-do statement a clause δi+1 is derived by unfolding δi

w.r.t. an atom of one of the following forms: (i) t(s1, s2), (ii) ts(s, ss), (iii) sat(s, e), where e is
an elementary property, (iv) sat(s,¬ψ1), (v) sat(s, ψ1 ∧ψ2), and (vi) sat(s, ex (ψ1)). By looking
at the clauses defining the predicates t, ts, and sat (see Definition 8), the reader can verify that
δi >c δi+1. This proves that the sequence δ1, δ2, . . . is finite.

Next we show that the execution of the second while-do statement terminates. Note that
the first while-do statement performs unfolding steps w.r.t. all atoms of the form ts(s, ss).
Thus, by the definition of ts (see Definition 7), upon termination of the execution of the first
while-do statement every atom of the form sat all(ss, ψ1) occurring in the body of a clause in
Γu will have ss bound to a list of the form [s1, . . . , sk], with k ≥ 1, where s1, . . . , sk are terms
representing states. Thus, the termination of the execution of the second while-do statement
easily follows from the definition of the predicate sat all (see Definition 8).
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Finally, since we perform at most one application of the clause removal rule and constraint
replacement rule for each clause derived by unfolding, we have that the Unfold procedure ter-
minates. 2

The Generalize&Fold Procedure
The choice of a suitable generalization technique is a difficult task because it should meet two
somewhat conflicting requirements. On the one hand, generalization should ensure the termina-
tion of the specialization strategy by enforcing that the set of new definitions introduced during
the application of the UDF procedure is finite. On the other hand, generalization should en-
sure that as many properties as possible can be proved. This issue has already been illustrated
through Examples 4 and 5 in Section 5.1, where we have seen that: (i) if we make no general-
ization then we get nontermination, (ii) a suitable generalization (the one from X =1 to X≥1)
allows us to prove the property of interest, and (iii) overgeneralization (the one from X =1 to
true) prevents us to prove the property of interest.

The Generalize&Fold procedure proposed in this paper ensures the termination of the spe-
cialization strategy by extending to constraint logic programs some techniques for controlling
generalization during positive supercompilation [65] and partial deduction [39, 36]. Our tech-
nique is based on the combined use of a well-quasi-ordering relation [20] and of a generalization
operator defined on the set of clauses introduced by the definition rule during the UDF pro-
cedure. The use of a well-quasi-ordering guarantees that generalization is eventually applied
and the properties of our clause generalization operator guarantee that each definition can be
generalized a finite number of times only. The combined use of a well-quasi-ordering and a
generalization operator ensures that a finite number of definitions is introduced during the UDF
procedure.

Definition 11 (Well-Quasi-Ordering) A well-quasi-ordering (wqo, for short) on a set S is a
reflexive, transitive, binary relation - such that, for every infinite sequence e1, e2, . . . of elements
of S, there exist i and j such that i < j and ei - ej.

Given e1, e2 ∈ S we write e1 ≺ e2 if e1 - e2 and not e2 - e1, and we write e1 ≈ e2 if e1 - e2

and e2 - e1. We say that the wqo - is thin if for all e ∈ S the set {e′ ∈ S | e ≈ e′} is finite.

The following property of wqo’s, whose proof is left to the reader, will be used in our termi-
nation proof for the UDF procedure.

Proposition 5.2. Suppose that - is a thin wqo on a set S. Then, for every infinite sequence
e1, e2, . . . of distinct elements of S, there exist i and j such that i < j and ei ≺ ej.

We will now show how a wqo on the atomic constraints of C can be extended to a wqo on C. For
reasons of simplicity, we will assume that every c ∈ C is equivalent to a conjunction c1 ∧ . . .∧ cm

of atomic constraints, that is, we will assume that C is closed under projection, as specified by
the following definition.

Definition 12 (Closure Under Projection) A set C of constraints is closed under projec-
tion if for every c ∈ C there exist m atomic constraints c1 ∈ C, . . . , cm ∈ C, such that D |= ∀ (c ↔
(c1 ∧ . . . ∧ cm)), where D is the given constraint interpretation.

Thus, if C is closed under projection, then all existential quantifiers can be eliminated from
constraints in C.
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Now, let us assume that C is closed under projection. A wqo - on the atomic constraints of
C can be extended to a wqo on C, still denoted by -, as follows:

c1 ∧ . . . ∧ cm - d1 ∧ . . . ∧ dn if, for i = 1, . . . , m, there exists j, with 1 ≤ j ≤ n,
such that ci - dj .

We have the following property whose proof is left to the reader.

Proposition 5.3. - is a thin wqo on C iff - is a thin wqo on the atomic constraints of C.

For our specialization examples of Sections 5.3 and 6 we will use the wqo defined in the following
example.

Example 6. [Wqo on Linear Constraints] Let us consider the set Link of constraints, whose
atomic constraints are inequations (constructed by using the predicates < and ≤) with k vari-
ables X1, . . . , Xk and integer coefficients. Recall that an equation is considered as an abbrevia-
tion for the conjunction of two inequations. Let QLin be the constraint interpretation for Link

introduced in Example 1. Link is closed under projection and, thus, without loss of generality,
we may assume that any constraint c ∈ Link is of the form c1∧ . . .∧ cm, where, for i = 1, . . . , m:
(1) ci is an atomic constraint of the form pi ≤ 0 or pi < 0, (2) pi is a polynomial of the form
ai

0 +ai
1X1 + . . . ai

kXk, and (3) ai
0, a

i
1, . . . , a

i
k are integer coefficients. For any atomic constraint ci

of the form specified above, we define maxcoeff (ci) = max{|ai
0|, |ai

1|, . . . , |ai
k|}, and for any two

atomic constraints b1, b2, we define:

b1 -mc b2 if maxcoeff (b1) ≤ maxcoeff (b2)

The relation -mc is a thin wqo on the atomic constraints of Link and it can be extended to a
thin wqo on Link, also denoted -mc. 2

Now, we extend the notion of wqo between constraints to the notion of wqo between the
definitions introduced by the Generalize&Fold procedure. Every definition introduced by the
Generalize&Fold procedure is a clause of the form newp(X) ← c(X) ∧ sat(X, ψ) and for this
reason we now introduce the notions of wqo and generalization operator for clauses of this form.

Definition 13. Let - be a wqo on the set C of constraints. Given two clauses δ1 and δ2 of the
form:

δ1 : newp1(X) ← c1(X) ∧ sat(X, ψ1)
δ2 : newp2(X) ← c2(X) ∧ sat(X, ψ2)

we define δ1 - δ2 if c1(X) - c2(X) and ψ1 = ψ2. We write δ1 ≺ δ2 if δ1 - δ2 and not δ2 - δ1.

For any CTL formula ϕ, let ∆ϕ be the set of clauses of the form newp(X) ← c(X)∧sat(X, ψ),
where ψ is a subformula of ϕ (including ϕ itself). We say that two clauses in ∆ϕ are equivalent
modulo renaming if one clause can be obtained from the other by renaming the head predicate
symbol and the variables.

The following lemma, which will be used in the proof of termination of the UDF procedure,
is a straightforward consequence of the fact that the set of the subformulas of ϕ is finite.

Lemma 5.4. Let D be a subset of ∆ϕ such that no two clauses in D are equivalent modulo
renaming. For any given CTL formula ϕ, the relation - is a wqo on D iff - is a wqo on the
set C of all constraints. Moreover, - is a thin wqo on D iff - is a thin wqo on C.
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In order to introduce our generalization operator, we define a partial order v on the set C of
all constraints with constraint interpretation D, as follows: for any two constraints c1 and c2 in
C, we say that c2 is more general than (or is a generalization of ) c1, and we write c1 v c2 if
D |= ∀ (c1 → c2). Given two clauses δ1 and δ2 of the form:

δ1 : newp1(X) ← c1(X) ∧ sat(X, ψ)
δ2 : newp2(X) ← c2(X) ∧ sat(X, ψ)

we say that δ2 is more general than (or is a generalization of ) δ1, and we write δ1 v δ2 if
c1(X) v c2(X).

The following lemma follows directly from the definition of the folding rules R4 and R5, and
from the definition of v.

Lemma 5.5. If a clause γ can be folded using a clause δ (by applying either rule R4 or Rule
R5), and ϑ is a clause such that δ v ϑ, then γ can also be folded using clause ϑ.

Definition 14 (Generalization Operator) Let - be a wqo on C. A generalization operator
on C is a binary operator ª such that, for all constraints c, d in C, we have:

(1) d v cª d, and
(2) cª d - c.

Note that, in general, ª is not commutative.
Our generalization operator ª bears some similarities with the widening operator ∇ used in

the field of abstract interpretation [13, 14]. In particular, similarly to the case of widening, every
infinite sequence constructed by using the generalization operator stabilizes, that is, for every
infinite sequence d1, d2, . . . , if we consider the infinite sequence c1, c2, . . . of constraints defined
as follows:

c1 = d1

ci+1 = ci ª di+1, for i ≥ 1,
then there exists m such that, for every n > m ≥ 1, cm = cn.

However, there are also some differences between our generalization operator and the widening
operator. Indeed, c∇d is required to be an upper bound of both c and d (w.r.t. v), while cª d
is required to be an upper bound (w.r.t. v) of d only. Moreover, for our generalization operator
we have required that cªd - c, while for the widening operator no similar property is required.

Let us consider again the case where C is closed under projection (as it is the case for Link).
Let - be a thin wqo on C and let c, d be two constraints in C which are conjunctions of atomic
constraints of the forms c1 ∧ . . . ∧ cm and d1 ∧ . . . ∧ dn, respectively. We define:

cª d = ci1 ∧ . . . ∧ cir ∧ dj1 ∧ . . . ∧ djs

where: (1) {ci1, . . . , cir} = {ch | 1 ≤ h ≤ m and d v ch}, and
(2) {dj1, . . . , djs} = {dk | 1 ≤ k ≤ n and dk - c}.

We leave it to the reader to show that, for any thin wqo -, the operator ª is indeed a
generalization operator on C, that is, ª satisfies Conditions (1) and (2) of Definition 14. We say
that ª is the generalization operator associated with -.

Example 7. Let us consider the wqo -mc of Example 6 and the generalization operator ªmc

associated with -mc. We have that (X ≥ 0 ∧X < 1)ªmc (X ≥ 1∧X ≤ 2) = (X ≥ 0∧X ≥ 1),
which is equivalent to X ≥ 1. Indeed, (i) (X ≥ 1 ∧ X ≤ 2) v (X ≥ 0), (ii) (X ≥ 1 ∧
X ≤ 2) 6v (X < 1), (iii) (X ≥ 1) -mc (X ≥ 0 ∧ X < 1), and (iv) it is not the case that
(X ≤ 2) -mc (X ≥ 0 ∧X < 1). 2
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Similarly to what we have done for wqo’s, now we extend any given generalization operator
acting on pairs of constraints to a generalization operator acting on pairs of definitions introduced
by the Generalize&Fold procedure.

Definition 15. Let ª be a generalization operator on C. Given two clauses δ1 and δ2 of the
form:

δ1: newp1(X) ← c1(X) ∧ sat(X, ψ)
δ2: newp2(X) ← c2(X) ∧ sat(X, ψ)

the generalization of δ1 and δ2, denoted δ1 ª δ2, is the clause
genp(X) ← (c1(X)ª c2(X)) ∧ sat(X,ψ)

where genp is a new predicate symbol.

The following lemma follows directly from the definitions.

Lemma 5.6. Let ϕ be a CTL formula. The operator ª is a generalization operator on ∆ϕ, that
is, for any two clauses δ1 and δ2 in ∆ϕ, we have that: (1) δ2 v δ1 ª δ2, and (2) δ1 ª δ2 - δ1.

Thus, by Lemmata 5.5 and 5.6 every clause that can be folded using a clause δ2 can also be
folded using the generalization δ1 ª δ2 for any given clause δ1.

We now present the Generalize&Fold procedure, which takes as input: (i) the tree Defs of
definitions introduced during the UDF procedure by applying Rule R1, (ii) a clause γ which
occurs at a leaf of Defs, (iii) a finite set Γ of clauses obtained by unfolding γ using the Unfold
procedure, and (iv) a thin wqo - on constraints. The Generalize&Fold procedure returns as
output: (i) a finite set NewDefs of new definitions, and (ii) a set Φ of clauses derived by folding
the clauses in Γ w.r.t. all sat literals occurring in their bodies by using definitions taken either
from Defs or from NewDefs. Thus, no clause in Φ contains occurrences of sat literals.

A clause δ ∈ Γ is folded w.r.t. a sat literal occurring in its body as follows. Suppose that δ is
of the form H ← d∧G1 ∧L∧G2, where L is either a literal of the form sat(X, ψ) or a literal of
the form ¬sat(X,ψ). We consider a clause ζ of the form newp(X) ← solve(d, {X})∧ sat(X, ψ),
where newp is a new predicate symbol. Clause ζ is called a folder for δ. Clause δ can be
folded w.r.t. sat(X, ψ) or w.r.t. ¬sat(X, ψ) using clause ζ. However, if at every application of
the Generalize&Fold procedure we introduce all folder clauses for the clauses in Γ, then the
UDF procedure may not terminate. In order to guarantee the termination of this procedure,
we introduce suitable generalizations of folder clauses and we fold the clauses of Γ using these
generalizations (indeed, by Lemma 5.5, a clause δ can be folded using any generalization of a
folder clause for δ).

We consider the following two cases.
(1) If a generalization η of ζ exists in Defs, then we add no clause to NewDefs and we fold δ
using η.
(2) Otherwise, if no generalization of ζ exists in Defs, we construct a generalization of ζ by
matching this clause against γ and the ancestors of γ in Defs. We consider the path α1, . . . , αm

of Defs, denoted by anc(γ,Defs), where α1 is the root of Defs (that is, α1 is γ2), and αm is γ.
(2.1) If there exists a clause α in anc(γ,Defs) such that α ≺ ζ and β is the rightmost (that
is, last generated) such clause, then we apply the generalization operator and we introduce the
clause ϑ = β ª ζ. (Recall that the order ≺ is extended from constraints to clauses as indicated
in Definition 13.) Then we add ϑ to NewDefs and we fold δ using ϑ.
(2.2) Otherwise, we add ζ to NewDefs and we fold δ using ζ.
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In the Generalize&Fold procedure we use the following notation. Given a clause δ, by
folders(δ) we denote the set of clauses which are folders for δ. By fold(δ, ϑ) we denote a clause
derived by folding clause δ using clause ϑ.

Procedure Generalize&Fold(Defs, γ,Γ,NewDefs,Φ)
Input : (i) a tree Defs of definitions, (ii) a clause γ which is a non-terminated leaf of Defs, (iii) a
set Γ of clauses obtained from γ by the Unfold procedure, and (iv) a thin wqo - on constraints.
Output : (i) A set NewDefs of new definitions, and (ii) a set Φ of folded clauses.

NewDefs := ∅ ; Φ := Γ;
while there exist a clause δ ∈ Φ and a clause ζ ∈ folders(δ) do

Generalize:
if there exists a clause η in Defs such that ζ v η
then ϑ := η
else (if there exists a clause α in anc(γ,Defs) such that α ≺ ζ and

β is the rightmost clause in anc(γ,Defs) such that β ≺ ζ
then ϑ := β ª ζ
else ϑ := ζ ;
NewDefs := NewDefs ∪ {ϑ} ) ;

Fold :
Φ := (Φ− {δ}) ∪ {fold(δ, ϑ)} ;
end-while

Examples of application of the Generalize&Fold procedure can be found in Section 5.3.

Lemma 5.7. The Generalize&Fold procedure terminates.

Proof : Each execution of the body of the while-do statement deletes from Φ one occurrence
of sat. 2

Now we show that the UDF procedure indeed preserves the perfect model semantics.

Theorem 5.8 (Correctness of the UDF Procedure) Let PK[ϕ] and PA be the input and
output programs, respectively, of the UDF procedure. Then

prop ∈ M(PK[ϕ]) iff prop ∈ M(PA)

Proof : The use of the transformation rules according to the UDF procedure generates a trans-
formation sequence P0, . . . , Pn (see Section 4), where: (i) P0 is PK[ϕ] and (ii) Pn is the final
value of program PT . We will show that this transformation sequence satisfies the hypothe-
sis of Theorem 4.1 presented at the end of Section 4. Let us consider an application of the
positive folding rule R4, performed during an application of the Generalize&Fold procedure.
Suppose that this application of R4 consists in folding clause δ using clause ϑ (see the statement
Φ := (Φ − {δ}) ∪ {fold(δ, ϑ)}). Either ϑ occurs in Defs (that is, it has been introduced by the
definition rule in a previous application of the Generalize&Fold procedure) or ϑ is added to
NewDefs and, after the completion of the Generalize&Fold procedure, it is added to Defs (by
the statement Defs := add -son-clauses(Defs, γ,NewDefs) of the UDF procedure). Every clause
in Defs is unfolded by using the Unfold procedure. Thus, the hypothesis of Theorem 4.1 is sat-
isfied and, since prop occurs in PK[ϕ], we have that prop ∈ M(PK[ϕ]) iff prop ∈ M(PT ). Now,
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by a property of perfect models, we have that prop ∈ M(PT ) iff prop ∈ M(Def ∗(prop, PT )).
Thus, the thesis follows from the fact that PA = Def ∗(prop, PT ). 2

We end this section by showing that the UDF procedure terminates.

Theorem 5.9. The UDF procedure terminates for every input program PK[ϕ].

Proof : By Lemmata 5.1 and 5.7 each execution of the Unfold and Generalize&Fold procedures
terminates. Hence, every execution of the body of the while-do statement terminates. At
each execution of the body of the while-do statement the UDF procedure adds zero or more
new clauses to the tree Defs of definitions. Let Defsλ be the limit value of Defs, that is,
Defsλ is the final value of Defsλ, if the UDF procedure terminates, and Defsλ is the infinite
tree constructed by the perpetual execution of the UDF procedure, otherwise. Thus, the UDF
procedure terminates if and only if Defsλ is a finite tree. Let us consider a maximally long,
possibly infinite, path δ1, δ2, . . . of Defsλ. We have that: (i) δ1 is the input clause γ2: negprop ←
sat(X, init ∧ ¬ϕ), and (ii) for n ≥ 1, there exist values of Γ, Defs, NewDefs, and Φ such that
δn ∈ Defs and δn+1 is a member of the set NewDefs obtained from δn by applying the procedure
Unfold(δn, Γ) followed by the procedure Generalize&Fold(Defs, δn, Γ,NewDefs, Φ).

Now we prove that the path δ1, δ2, . . . is finite. First, note that the following property holds:

Property (A) (i) δ2, δ3, . . . are clauses of the form newp(X) ← c(X) ∧ sat(X, ψ), where ψ is a
subformula of the CTL formula ϕ occurring in the input clause γ2, and (ii) no two clauses in
δ2, δ3, . . . are equivalent modulo renaming.

Point(i) follows from the fact that, by the structure of the clauses defining the sat predicate (see
Definition 8), every sat literal generated during the UDF procedure is of the form sat(X, ψ),
where ψ is a subformula of ϕ. Point (ii) follows from the fact that the Generalize&Fold procedure
never adds a new definition ζ to NewDefs, if in Defs there exists a definition η such that ζ v η
and, if ζ is equivalent to η modulo renaming, then ζ v η.

By Property (A) and Lemma 5.4, - is a thin wqo on the set {δ2, δ3, . . .} and, thus, - is a thin
wqo on {δ1, δ2, . . .}. Next we show that the following property holds for the sequence δ1, δ2, . . . :

Property (B) for any i, j such that i < j, we have that δi 6≺ δj .

The proof of Property (B) proceeds by induction. We assume that this property holds for an
initial segment of δ1, δ2, . . . say δ1, . . . , δn, and we show that it holds also for δ1, . . . , δn, δn+1.

Clause δn+1 is added to NewDefs by an application of the Generalize&Fold procedure with
input clause δn and input tree Defs. Thus, anc(δn,Defs) is the sequence δ1, . . . , δn and, according
to the Generalize phase of the Generalize&Fold procedure, clause δn+1 is computed as follows,
for a suitable clause ζ:

if there exists a clause α in δ1, . . . , δn such that α ≺ ζ and
β is the rightmost clause in δ1, . . . , δn such that β ≺ ζ

then δn+1 := β ª ζ

else δn+1 := ζ

Thus, there are the following two cases:
(Case 1) There exists k, with 1 ≤ k ≤ n, such that δk ≺ ζ and, for j = k + 1, . . . , n, δj 6≺ ζ.
We have that δn+1 = δk ª ζ. Now we prove by contradiction that, for i = 1, . . . , n, δi 6≺ δn+1.
Assume to the contrary that, for some i, with 1 ≤ i ≤ n, δi ≺ δn+1. From Condition (2) of
Definition 14, it follows that δn+1 - δk and, therefore, we get δi ≺ δk and δi ≺ ζ. If i < k then
we contradict the assumption that Property (B) holds for the sequence δ1, . . . , δn. If i = k then



37.

we get δi ≺ δi, contradicting the irreflexivity of ≺. If i > k then we contradict the fact that for
j = k + 1, . . . , n, δj 6≺ ζ.
(Case 2) There is no clause α in δ1, . . . , δn such that α ≺ ζ. In this case δn+1 = ζ.

In both cases, there is no clause δi in δ1, . . . , δn such that δi ≺ δn+1, and, thus, the sequence
δ1, . . . , δn, δn+1 enjoys Property (B). Now the finiteness of the sequence δ1, δ2, . . . follows from
Property (B), from the fact that ≺ is a thin wqo, and from Proposition 5.2. Thus, Defsλ is a
finite tree and we may conclude that the UDF procedure terminates. 2

5.2.2. The RU procedure

The goal of the RU procedure is to derive decided predicates. In particular, this procedure
has the objective of obtaining a final program Psp where the predicate prop which encodes the
property of interest is decided, that is, either Psp contains the fact prop ← or Psp contains no
clauses for prop.

Let us first prove that the program PA which has been derived from PK[ϕ] at the end of the
UDF procedure, is stratified, that is, PA has a finite number of strata.

Lemma 5.10. Let PA be the output program of the UDF procedure. Then PA is stratified.

Proof : Each predicate occurring in PA is: either (i) prop, or (ii) negprop, or (iii) a predicate newp
introduced during the UDF procedure. (In particular, no clause for sat which belongs to the
encoding program PK occurs in PA.) Program PA is stratified w.r.t. the level mapping λ defined
as follows: (i) λ(prop) = λ(negprop) + 1, (ii) λ(negprop) = max{λ(newp) | newp occurs in PA},
and (iii) λ(newp) = size(ψ), where the definition of newp in Defs is newp(X) ← c(X)∧sat(X, ψ).
Indeed, by construction, for every clause γ in PA of the form newp(X) ← c(X) ∧G and for all
literals L in G we have that:

(1) if L is of the form newq(Y ) then λ(newq) ≤ λ(newp), and
(2) if L is of the form ¬newq(Y ) then λ(newq) < λ(newp). 2

By Lemma 5.10, the RU procedure may work bottom-up on the strata of PA. This procedure
simplifies the definition of every predicate p occurring in the program, with the aim of deriving
either the fact p ← or the empty definition for p. In order to do so the RU procedure makes
use of two auxiliary procedures: (1) the Remove-Clauses procedure consisting of applications of
the clause removal rule R6, and (2) the Unfold-Decided procedure consisting of applications of
the positive and negative unfolding rules R2 and R3 w.r.t. decided literals.

Given a program Pin the procedure Remove-Clauses(Pin , Pout) derives a program Pout by
applying the clause removal rule as follows: (i) a program P ′ is derived from Pin by applying
rule R6u and deleting all clauses that are useless in Pin , and (ii) program Pout is derived from
P ′ by applying rule R6s and deleting every clause γ that is subsumed by a constrained fact
occurring in P ′ − {γ}.

Given a program Pin the procedure Unfold-Decided(Pin , Pout) derives a program Pout as fol-
lows: (i) a program P ′ is derived from Pin by applying the positive unfolding rule R2 and the
negative unfolding rule R3 w.r.t. all decided literals occurring in bodies of clauses of Pin , and
(ii) program Pout is derived from P ′ by applying the function solve(c(X), {X}) to every con-
straint occurring in the body of a clause in P ′. (These applications of the function solve can be
viewed as applications of the procedure Solve-Constraints introduced in Section 5.2.1 as a part
of the procedure Unfold.)
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Thus, the Remove-Clauses procedure may derive new decided predicates either: (i) by re-
moving, via rule R6u, the whole definition of a useless predicate, or (ii) by removing from the
definition of a predicate, via rule R6s, all clauses which are not constrained facts. Also the
Unfold-Decided procedure may derive new decided predicates by unfolding the program clauses
w.r.t. decided literals. For every stratum of the input program, the RU procedure iterates the
execution of the Remove-Clauses procedure followed by the Unfold-Decided procedure so to
derive new decided predicates, until a fixpoint is reached.

Procedure RU (Pin , Pout)
Input : A stratified program Pin .
Output : A program Pout such that M(Pin) = M(Pout).

Let S1, . . . , Sn be a stratification of program Pin .
Pout := ∅;
for i := 1, . . . , n do

Pout := Pout ∪ Si ;
repeat P1 := Pout ;

Remove-Clauses(P1, P2);
Unfold-Decided(P2, P3);
Pout := P3

until P1 = P3

end-for

An example of application of the RU procedure will be given in Section 5.3.
The correctness of the RU procedure follows from the correctness of the transformation rules,

as we now show.

Theorem 5.11 (Correctness of the RU Procedure) Let Pin and Pout be the input and
output programs, respectively, of the RU procedure. Then M(Pin) = M(Pout).

Proof : The RU procedure constructs a transformation sequence Pin , . . . , Pout by using rules R2,
R3, R6, and R7. The positive folding rule R4 is never applied and, therefore, the hypothesis
of Theorem 4.1 is trivially satisfied. Thus, by Theorem 4.1, for every ground atom A whose
predicate occurs in Pin , we have that A ∈ M(Pin) iff A ∈ M(Pout). The definition rule R1
is not applied when constructing the transformation sequence Pin , . . . , Pout and, hence, every
predicate that occurs in Pout also occurs in Pin . Thus, for every ground atom A whose predicate
occurs in Pin ∪ Pout , we have that A ∈ M(Pin) iff A ∈ M(Pout). Hence, M(Pin) = M(Pout). 2

The termination of the RU procedure is a consequence of the fact that by unfolding a clause
γ w.r.t. a decided literal, γ is replaced by a set of clauses whose body has strictly fewer literals
than the body of γ. Thus, there exists no infinite sequence of programs constructed by clause
removal and by unfolding w.r.t. decided literals, and eventually, the exit condition P1 = P3 of
the repeat-until statement of the RU procedure is true. Thus, we have the following result.

Theorem 5.12 (Termination of the RU Procedure) Let Pin be a stratified program. Then
the RU procedure terminates for the input program Pin .



39.

5.2.3. Soundness and Termination of the Verification Method

Now we use the results of Sections 5.2.1 and 5.2.2 to show that our verification method always
terminates with a sound result. As already mentioned, no complete method exists.

As an immediate consequence of Theorems 5.8, 5.11, 5.9, and 5.12 we get the following two
results, which establish the correctness and termination of our specialization strategy.

Theorem 5.13 (Correctness of the Specialization Strategy) Let PK[ϕ] and Psp be the
input and output programs, respectively, of the specialization strategy. Then prop ∈ M(PK[ϕ])
iff prop ∈ M(Psp).

Theorem 5.14 (Termination of the Specialization Strategy) The specialization strategy
terminates for every input program PK[ϕ].

Now, we can prove the soundness of our verification method based on program specialization.

Theorem 5.15 (Soundness of the Verification Method) Let K be a Kripke structure and
let ϕ be a CTL formula. Let Psp be the output of the specialization strategy for the input program
PK[ϕ].
If Def (prop, Psp) = {prop ←}, then K, s |= ϕ, for all initial states s of K.
If Def (prop, Psp) = ∅, then K, s 6|= ϕ, for some initial state s of K.

Proof : If Def (prop, Psp) = {prop ←} then prop ∈ M(Psp) and, hence, by Theorem 5.13,
prop ∈ M(PK[ϕ]). Thus, by Theorem 3.4, we have that K, s |= ϕ, for all initial states s of K.
If Def (prop, Psp) = ∅ then prop 6∈ M(Psp) and, hence, by Theorem 5.13, prop 6∈ M(PK[ϕ]).
Thus, by Theorem 3.4, we have that K, s 6|= ϕ, for some initial state s of K. 2

5.3. An Example of Application of the Specialization Strategy

Let us consider the Kripke structure K presented in Example 3 at the end of Section 3. We want
to verify that, starting from the initial state 〈a, 0〉, there exists a computation path in K such
that, for all states 〈X1, X2〉 along that path, we have that X2≥ 0. This property is expressed
by the relation K, 〈a, 0〉 |= ¬AF (neg) which asserts that the CTL formula ¬AF (neg) is true in
the initial state 〈a, 0〉 of K.

In order to verify this property, we consider the program PK[¬AF (neg)], that is, PK∪{γ1, γ2},
where: (i) PK is the encoding program constructed in Example 3 according to Definition 8, and
(i) γ1 and γ2 are the following clauses:

γ1: prop ← ¬negprop
γ2: negprop ← sat(〈X1, X2〉, init ∧ af(neg))

We will prove that K, 〈a, 0〉 |= ¬AF (neg) by applying the specialization strategy to PK∪{γ1, γ2}
and deriving a program Psp where the predicate prop is defined by the fact prop ←.

First we apply the UDF procedure. Initially, program PT is PK ∪ {γ1, γ2} and Defs is a tree
of clauses consisting of clause γ2 only. The tree Defs is represented as the set of its root-to-leaf
paths, each of which is of the form (δ1, . . . , δn), where δ1 is the root γ2 of Defs, δn is a leaf-
clause, and for i = 1, . . . , n−1, with n≥1, clause δi+1 is a son-clause of δi. A clause δ marked
as ‘terminated’ is denoted by δ†, and a terminated clause may occur only at the right end of a
path. Since in the tree Defs every clause occurs only once, from a given set of paths there exists
at most one tree Defs represented by that set.
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First iteration.
We consider γ2, which is a non-terminated leaf of Defs.
Unfold. By applying the unfolding rule according to the Unfold procedure, from clause γ2 we
derive

δ1: negprop ← X1 =a ∧X2 =0 ∧ sat(〈X1, X2〉, af (neg))
Note that the Unfold procedure halts because the last argument of sat in the body of δ1 is of
the form af (. . .).

Generalize&Fold. For the application of the Generalize&Fold auxiliary procedure we will use
the wqo defined as follows. The constraints used in PK are of the form X1 = s ∧ c(X2), where
s ∈ {a, b} and c(X2) is a conjunction of linear equations and inequations with integer coefficients
(see Examples 1 and 3). As already mentioned, an equation of the form p1 = p2, where p1 and
p2 are polynomials, is considered as an abbreviation for p1 − p2 ≤ 0 ∧ p1 − p2 ≥ 0.

We define (X1 =s1∧c1(X2)) -emc (X1 = s2∧c2(X2)) if s1 is equal to s2 and c1(X2) -mc c2(X2),
where -mc is the wqo defined in Example 6. Since -mc is a thin wqo and {a, b} is a finite set,
we have that also -emc is a thin wqo. We will also consider the extension of -emc to clauses (see
Definition 13) and the associated generalization operator for clauses (see Definition 15), denoted
ªemc.

Let us now execute Generalize&Fold where the input is: (i) the tree Defs of clauses consisting
of clause γ2 only, (ii) clause γ2, and (iii) the set Γ = {δ1} of clauses derived from γ2 by the
Unfold procedure. We have that anc(γ2,Defs) is the sequence consisting of clause γ2 only. The
only folder clause for δ1 is:

δ2: new1(〈X1, X2〉) ← X1 =a ∧X2 =0 ∧ sat(〈X1, X2〉, af (neg))
There is no clause η in Defs such that δ2 v η and there is no clause α in anc(γ2,Defs) such that
α ≺emc δ2 (indeed, γ2 6≺emc δ2). Therefore, we fold δ1 using δ2, thereby deriving:

γ3: negprop ← X1 =a ∧X2 =0 ∧ new1(〈X1, X2〉)
We replace clause γ2 in PT by clauses γ3 and δ2, and we add δ2 to Defs as a non-terminated
son-clause of γ2. Thus, PT = PK ∪ {γ1, γ3, δ2} and Defs = {(γ2, δ2)}.
Second iteration.
We consider δ2 ∈ PT , which is a non-terminated leaf-clause of Defs.
Unfold. By unfolding and constraint replacement, from δ2 we derive:

δ3: new1(〈X1, X2〉) ← X1 =a ∧X2 =0 ∧ Y1 =a ∧ Y2 =2 ∧ sat(〈Y1, Y2〉, af (neg))

Generalize&Fold. The only folder clause for δ3 is:
δ4: new2(〈X1, X2〉) ← X1 =a ∧X2 =2 ∧ sat(〈X1, X2〉, af (neg))

whose body has been obtained from the body of δ3 by applying the solve function and then
renaming variables. In Defs there is no clause η such that δ4 v η. Indeed, δ4 6v γ2 and δ4 6v δ2.
However, δ2 is a clause in anc(δ2,Defs) such that δ2 ≺emc δ4 (because maxcoeff (X2 ≤ 0) <
maxcoeff (X2 − 2 ≤ 0) and maxcoeff (X2 ≥ 0) < maxcoeff (X2 − 2 ≥ 0)). Thus, we use the
generalization operator ªemc and we introduce the following clause δ5 =def δ2 ªemc δ4:

δ5: new3(〈X1, X2〉) ← X1 =a ∧X2≥0 ∧ sat(〈X1, X2〉, af (neg))
(When computing the generalization, recall that a linear equation with integer coefficients is
considered as an abbreviation for the conjunction of two linear inequations). Now, we fold δ3

using δ5 and we derive:
γ4: new1(〈X1, X2〉) ← X1 =a ∧X2 =0 ∧ Y1 =a ∧ Y2 =2 ∧ new3(〈Y1, Y2〉)
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We replace clause δ2 in PT by clauses γ4 and δ5, and we add δ5 to Defs as a non-terminated
son-clause of δ2. Thus, PT = PK ∪ {γ1, γ3, γ4, δ5} and Defs = {(γ2, δ2, δ5)}.
Third iteration.
We consider δ5 ∈ PT , which is a non-terminated leaf-clause of Defs.
Unfold. By unfolding and constraint replacement, from δ5 we derive:

δ6: new3(〈X1, X2〉) ←X1 =a ∧X2 =0 ∧ Y1 =a ∧ Y2 =2 ∧ sat(〈Y1, Y2〉, af (neg))
δ7: new3(〈X1, X2〉) ←X1 =a ∧X2 >0 ∧ Y1 =a ∧ Y2 =X2+2 ∧ Y3 =b ∧ Y4 =X2 ∧

sat(〈Y1, Y2〉, af (neg)) ∧ sat(〈Y3, Y4〉, af (neg))
Generalize&Fold. Clause δ6 has the following folder clause:

δ8: new4(〈X1, X2〉) ← X1 =a ∧X2 =2 ∧ sat(X1, X2, af (neg))
We have that δ8 v δ5 and, therefore, δ8 is not added to Defs. We fold δ6 using δ5 and we get:

γ5: new3(〈X1, X2〉) ← X1 =a ∧X2 =0 ∧ Y1 =a ∧ Y2 =2 ∧ new3(〈Y1, Y2〉)
Clause δ7 has the following two folder clauses:

δ9: new5(〈X1, X2〉) ← X1 =a ∧X2 >2 ∧ sat(〈X1, X2〉, af (neg))
δ10: new6(〈X1, X2〉) ← X1 =b ∧X2 >0 ∧ sat(〈X1, X2〉, af (neg))

We have that δ9 v δ5. We also have that δ10 6v η for any clause η in Defs, because the constraint
X1 = b does not occur in any clause in Defs. For the same reason, α 6≺emc δ10 for any clause α
in anc(δ5,Defs). Thus, we fold w.r.t. the two sat literals in δ7 using clauses δ5 and δ10, and we
derive:

γ6: new3(〈X1, X2〉) ←X1 =a ∧X2 >0 ∧ Y1 =a ∧ Y2 =X2+2 ∧ Y3 =b ∧ Y4 =X2 ∧
new3(〈Y1, Y2〉) ∧ new6(〈Y3, Y4〉)

We replace clause δ5 in PT by clauses γ5, γ6, and δ10, and we add δ10 to Defs as a non-terminated
son-clause of δ5. Thus, PT = PK ∪ {γ1, γ3, γ4, γ5, γ6, δ10} and Defs = {(γ2, δ2, δ5, δ10)}.
Fourth iteration.
We consider δ10 ∈ PT , which is a non-terminated leaf-clause of Defs.
Unfold. By unfolding and constraint replacement, from δ10 we derive:
δ11: new6(〈X1, X2〉) ← X1 =b ∧X2 >0 ∧ Y1 =b ∧ Y2 =X2 + 1 ∧ sat(〈Y1, Y2〉, af (neg))

Generalize&Fold. Clause δ11 has the following folder clause:
δ12: new6(〈X1, X2〉) ← X1 =b ∧X2 >1 ∧ sat(〈X1, X2〉, af (neg))

Since δ12 v δ10, we fold δ11 using δ10 and we get:
γ7: new6(〈X1, X2〉) ← X1 =b ∧X2 >0 ∧ Y1 =b ∧ Y2 =X2 + 1 ∧ new6(〈Y1, Y2〉)

We replace clause δ10 in PT by clause γ7 and, since no new definition clause has been introduced
by the Generalize&Fold procedure, we mark δ10 as a terminated leaf-clause of Defs. Thus,
PT = PK ∪ {γ1, γ3, γ4, γ5, γ6, γ7} and Defs = {(γ2, δ2, δ5, δ

†
10)}.

The only leaf-clause δ10 of Defs is marked as terminated (as indicated by the † super-
script) and, thus, we exit from the while-do loop. By deleting from PT all clauses for sat
on which prop does not depend, we get the output program of the UDF procedure, which is
PA = {γ1, γ3, γ4, γ5, γ6, γ7}.

Now we apply the RU procedure to the input program PA and we derive the specialized
program Psp as follows. We compute a stratification of program PA and we get PA = S1 ∪ S2,
where S1 = {γ3, γ4, γ5, γ6, γ7} and S2 = {γ1}. Then, we compute Psp by processing the two
strata of S1 and S2 as described below.
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Stratum 1. Since the predicates negprop, new1, new3, and new6 are useless in stratum S1, we
remove their definitions and we derive S′1 = ∅.
Stratum 2. We consider the program S′1 ∪ S2 = {γ1}. The predicate negprop has an empty
definition in this program. Thus, by applying the negative unfolding rule R3 to clause γ1

w.r.t. ¬negprop, we replace γ1 by the following clause:

γ8: prop ←
Thus, the final specialized program is Psp = {prop ←} and, as desired, we have proved that
K, 〈a, 0〉 |= ¬AF (neg).

6. Examples of Verification via Specialization

In this section we present some examples of verification of reactive systems by using our method
based on program specialization. We have verified properties of the following reactive systems:
(i) the Bakery protocol [35], (ii) the Ticket protocol [3], (iii) a Petri net with reset arcs [7],
and (iv) several parameterized cache coherence protocols [30]. The verification of the various
properties was performed automatically by using the experimental constraint logic program
transformation system MAP [44].

Let us first make the following two preliminary remarks about our verification examples.

Remark 1
The reactive systems considered in this section are modeled by using linear equations and in-
equations over non-negative integers. However, our verification technique has been implemented
in a constraint logic programming system which provides a solver for linear equations and in-
equations over rational numbers (see Section 6.5). We now show that the use of the solver for
rational numbers provided by the system is correct for our verification examples.

Suppose that we want to verify that a temporal formula ϕ holds in a constraint-based Kripke
structure K, and let a state of K be represented by the (k + m)-tuple of variables 〈S1, . . . , Sk,
X1, . . . , Xm〉, where we have singled out the variables X1, . . . , Xm which range over non-negative
integers. Now let us consider the constraint-based Kripke structure Q which is equal to K
except that, for a state 〈S1, . . . , Sk, X1, . . . , Xm〉, the valuation of the variables X1, . . . , Xm

ranges over rational numbers. For the encoding of the temporal property ϕ, instead of program
PK[ϕ] = PK ∪ {γ1, γ2}, we consider the program Pnat

Q [ϕ] = PQ ∪ {γ1, γ
nat
2 , ν1, ν2}, where γnat

2 is
the following clause:

γnat
2 : negprop ← nat(X1) ∧ . . . ∧ nat(Xm) ∧ sat(〈S1, . . . , Sk, X1, . . . , Xm〉, init ∧ ¬ϕ)

and ν1 and ν2 are the clauses that define the predicate nat :

ν1: nat(0) ←
ν2: nat(Y ) ← Y =X+1 ∧ nat(X)

It can be shown that in all verification examples we will consider later in this section, the
following property holds:

Property N

M(Pnat
Q [ϕ]) |= ∀( nat(X1) ∧ . . . ∧ nat(Xm) ∧

t(〈S1, . . . , Sk, X1, . . . , Xm〉, 〈T1, . . . , Tk, Y1, . . . , Ym〉)
→ nat(Y1) ∧ . . . ∧ nat(Ym))

where t is a predicate interpreted as the transition relation in the structureQ. Property N tells us
that if in a state 〈S1, . . . , Sk, X1, . . . , Xm〉 the components X1, . . . , Xm are non-negative integers,
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Figure 2: The Bakery Protocol: the transition relation Rα for process α. It depends also on the
counter B2 of process β.

then in the successor state 〈T1, . . . , Tk, Y1, . . . , Ym〉 the components Y1, . . . , Ym are non-negative
integers. Property N guarantees that prop ∈ M(PK[ϕ]) if and only if prop ∈ M(Pnat

Q [ϕ]), where
prop is the predicate defined by the clause γ1: prop ← ¬negprop. In our verification examples
we have exploited this property and we have used program Pnat

Q [ϕ] together with a constraint
solver for linear equations and inequations over the rational numbers.

Remark 2
In this section, when presenting formal specifications of reactive systems, we slightly depart from
the definition of a constraint-based Kripke structure given in Section 3 (see Definition 5). In
order to illustrate this point we need the following definition. We say that a state s is reachable
if there exists a finite sequence s0, s1, . . . , sn of states such that: (i) s0 is an initial state, (ii) for
i = 0, . . . , n − 1, state si+1 is a successor state of si, and (iii) state sn is s. In the examples of
this section we assume that the carrier of the constraint interpretation coincides with the set
of reachable states. By making this assumption we can write simpler specifications, because we
may not define the transitions which start from unreachable states without loosing the totality
property of the transition relation in accordance with Point 3 of Definition 5.

6.1. The Bakery Protocol

The Bakery Protocol ensures mutual exclusion between two concurrent processes that try to
access a shared resource. Let α and β be the two concurrent processes we consider. The state of
process α is represented by a pair 〈A1, A2〉, where A1 is an element of the set {think ,wait , use}
of control states, and A2 is a counter that takes values over the nonnegative integers. The state
of process β is represented by a pair 〈B1, B2〉 defined in a similar way. The time evolution of
process α is modeled by the transition relation Rα depicted in Figure 2. This relation is defined
by the following formula which is the disjunction of four events:

tα(〈A1, A2〉, 〈A′1, A′2〉, B2) =def

(A1 = think ∧ A′1 =wait ∧ A′2 =B2+1) ∨
(A1 =wait ∧ A2 <B2 ∧ A′1 =use ∧ A′2 =A2) ∨
(A1 =wait ∧ B2 =0 ∧ A′1 =use ∧ A′2 =A2) ∨
(A1 =use ∧ A′1 = think ∧ A′2 =0)

The time evolution of process β is modeled by an analogous transition relation Rβ. It is
defined by the disjunction tβ(〈B1, B2〉, 〈B′

1, B
′
2〉, A2) obtained from tα(〈A1, A2〉, 〈A′1, A′2〉, B2) by

interchanging Ai with Bi and A′i with B′
i, for i = 1, 2.

The state of the system resulting by the parallel composition of processes α and β, is rep-
resented by the 4-tuple 〈A1, A2, B1, B2〉. The transition relation is defined by the following
formula:
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t(〈A1, A2, B1, B2〉, 〈A′1, A′2, B′
1, B

′
2〉) =def

(tα(〈A1, A2〉, 〈A′1, A′2〉, B2) ∧ B′
1 =B1 ∧ B′

2 =B2) ∨
(tβ(〈B1, B2〉, 〈B′

1, B
′
2〉, A2) ∧ A′1 =A1 ∧ A′2 =A2)

which, by distributing conjunction over disjunction, can be transformed into a disjunction of
eight events.

This system has an infinite number of states, because there is no upper bound for the value
of the counters, as illustrated by the underlined states of the following computation path:

〈think , 0, think , 0〉, 〈wait , 1, think , 0〉, 〈wait , 1,wait , 2〉, 〈use, 1,wait , 2〉,
〈think , 0,wait , 2〉, 〈think , 0, use, 2〉, 〈wait , 3, use, 2〉, 〈wait , 3, think , 0〉, . . .

The set I of the initial states is a singleton specified by the constraint init(〈A1, A2, B1, B2〉)
defined as follows:

init(〈A1, A2, B1, B2〉) =def (A1 = think ∧A2 = 0 ∧B1 = think ∧B2 = 0).

We have verified that the protocol indeed guarantees the mutually exclusive access to the
resource. This property, also called safety, is expressed by the CTL formula ¬EF (unsafe),
where unsafe is an elementary property that holds if both processes are in the control state use,
that is, the constraint unsafe(〈A1, A2, B1, B2〉) is defined as follows:

unsafe(〈A1, A2, B1, B2〉) =def (A1 = use ∧B1 = use)

where A2 and B2 are any nonnegative integers.

We have also verified a liveness property ensuring that a process which requests the resource
will eventually get it. For process α, liveness is expressed by the CTL formula ¬EF (waitα ∧
¬AF (useα)), where the elementary properties waitα and useα are defined as follows:

waitα(〈A1, A2, B1, B2〉) =def (A1 = wait),

useα(〈A1, A2, B1, B2〉) =def (A1 = use)

where A2 and B2 are nonnegative integers and B1 is any element of {think ,wait , use}.

6.2. The Ticket Protocol

Similarly to the Bakery Protocol, the Ticket Protocol provides a solution to the mutual exclusion
problem. The interaction between the two processes α and β is controlled by a process γ that
assigns tickets to α and β. The states of the processes α and β are represented as in the case
of the Bakery Protocol. The state of process γ is represented by a pair 〈T, N〉 of nonnegative
integers, where T is used for assigning a new ticket to α or β, and N provides an upper bound
for the value of the ticket required for using the shared resource.

The transition relation Rα|γ for the parallel composition of α | γ of the processes α and γ
(depicted in Figure 3), is defined by the following disjunction of three events:

tα|γ(〈A1, A2, T, N〉, 〈A′1, A′2, T ′, N ′〉) =def

(A1 = think ∧ A′1 =wait ∧ A′2 =T ∧ T ′=T +1 ∧ N ′=N) ∨
(A1 =wait ∧ A2≤N ∧ A′1 =use ∧ A′2 =A2 ∧ T ′=T ∧ N ′=N) ∨
(A1 =use ∧ A′1 = think ∧ A′2 =0 ∧ T ′=T ∧ N ′=N+1)

The definition of the transition relation Rβ|γ for the parallel composition β | γ of the processes
β and γ is obtained from tα|γ by replacing A1 by B1 and A2 by B2.

The state of the overall system is represented by the 6-tuple 〈A1, A2, B1, B2, T, N〉 and its
transition relation R is defined by the following formula:
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Figure 3: The Ticket Protocol: the transition relation Rα|γ for the parallel composition α |γ of
the processes α and γ.

t(〈A1, A2, B1, B2, T, N〉, 〈A′1, A′2, B′
1, B

′
2, T

′, N ′〉) =def

(tα|γ(〈A1, A2, T, N〉, 〈A′1, A′2, T ′, N ′〉) ∧ B1 =B′
1 ∧ B2 =B′

2) ∨
(tβ|γ(〈B1, B2, T,N〉, 〈B′

1, B
′
2, T

′, N ′〉) ∧ A1 =A′1 ∧ A2 =A′2)
which, by distributing conjunction over disjunction, can be transformed into a disjunction of six
events.

This system has an infinite number of states, because there is no upper bound for the values of
T and N . The set I of the initial states is defined by the constraint init(〈A1, A2, B1, B2, T, N〉)
as follows:

init(〈A1, A2, B1, B2, T, N〉) =def (A1 = think ∧A2 =0 ∧B1 = think ∧B2 =0 ∧ T =N)

We have applied our verification method for proving the safety and the liveness properties of
the Ticket Protocol. The safety property is expressed by the CTL formula ¬EF unsafe, where
the elementary property unsafe is defined by the constraint unsafe(〈A1, A2, B1, B2, T,N〉) as
follows:

unsafe(〈A1, A2, B1, B2, T, N〉) =def (A1 = use ∧B1 = use)
where A2, B2, T, and N are nonnegative integers.

The starvation freedom property for a process, say process α, is expressed by the CTL formula
¬EF (waitα∧¬AF useα), where the elementary properties waitα and useα are defined as follows:

waitα(〈A1, A2, B1, B2, T, N〉) =def (A1 = wait), and
useα(〈A1, A2, B1, B2, T, N〉) =def (A1 = use)

where A2, B2, T, and N are nonnegative integers and B1 is any element of {think , wait , use}.

6.3. Reset Petri Nets

Reset Petri nets are Petri nets [56] augmented with reset arcs from places to transitions. We will
not provide the general definition of this kind of Petri nets, but we will illustrate them through
an example which is a variant of an example in [38].

Let us consider the reset Petri net shown in Figure 4, with the two places S1 and S2 depicted
as circles, the two transitions t1 and t2 depicted as rectangles, the flow relation depicted as
labeled arrows, and a reset arc from S1 to t1 depicted as an arrow with double head. A state, or
marking, of the net is given by associating with each place a nonnegative integer which denotes
the number of tokens residing in it. The initial state consists of one token in S1 (depicted as a
dot in the circle S1 in Figure 4) and zero tokens in S2. The state of the net changes according
to the following two rules:
(T1) If in S1 there is at least one token, then transition t1 fires, and (i) the number of tokens in
S1 is reset to zero and (ii) two tokens are added to S2;
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Figure 4: A Petri net with reset arcs.

(T2) If in S2 there is at least one token, then transition t2 fires, and (i) one token is taken away
from S2 and (ii) two tokens are added to S1.

Note that, unlike the net presented as a working example in [38], the net of Figure 4 is not
bounded, that is, there is no maximal number of tokens that can reside in a state. In other
words, our net has infinitely many states.

Let us now apply our verification method for proving that the reset Petri net of Figure 4
never reaches a state where three tokens are in S1 and no token is in S2. The state of our net
is represented by a pair 〈N1, N2〉, where, for i ∈ {1, 2}, Ni is the number of tokens which are in
place Si. The transition relation R, which encodes the two rules T1 and T2, is defined by the
disjunction of the following two events:

t1(〈N1, N2〉, 〈N ′
1, N

′
2〉) =def N1≥1 ∧ N2≥0 ∧ N ′

1 =0 ∧ N ′
2 =N2+2

t2(〈N1, N2〉, 〈N ′
1, N

′
2〉) =def N1≥0 ∧ N2≥1 ∧ N ′

1 =N ′
1+2 ∧ N ′

2 =N2−1

The set I of the initial states is defined by the constraint init(〈N1, N2〉) as follows:

init(〈N1, N2〉) =def (N1 = 1 ∧N2 = 0)

We have applied our verification method to prove that the state 〈3, 0〉 cannot be reached from
the initial state. This safety property is expressed by the CTL formula ¬EF p30 where the
elementary property p30 holds in the state 〈3, 0〉 only, that is:

p30(〈N1, N2〉) =def (N1 = 3 ∧N2 = 0).

6.4. Parameterized Cache Coherence Protocols

Shared-memory multiprocessing systems make use of local caches associated with processors, for
improving the efficiency of main memory access [30]. Every processor can modify the content
of its local cache and, through a bus which is accessed in a mutually exclusive fashion, it can
modify the content of the corresponding locations in main memory, and also modify the state
of all local caches. As a consequence of write operations, the various local caches may hold
inconsistent data. A cache coherence protocol guarantees data consistency, that is, it ensures
that a read operation issued by a processor, for any given location, gets from its local cache the
most recent data written on that location by any of the processors. Thus, a cache coherence
protocol guarantees that, from a logical point of view, the system works as if each processor
performs, in a mutually exclusive way, read and write operations directly on the shared main
memory. We have verified properties of the following cache coherence protocols: Berkeley RISC,
DEC Firefly, IEEE Futurebus+, Illinois University, MESI, MOESI, Synapse N+1, and Xerox
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PARC Dragon. We have considered parameterized versions of these protocols, that is, protocols
designed for an arbitrary number of processors with their associated local caches.

Here we present only the verification of the Synapse protocol for the N+1 computer. The
verification of the other protocols is similar and for them we present the results of our experiments
in Section 6.5. For a formal specification of all cache coherence protocols considered in this paper
we refer to [17, 18].

For the description of the Synapse protocol, we make the following simplifying assumptions:
(1) the system has a single bus and each processor has a single local cache, which is connected
to the bus, (2) all local caches correspond to the same unique memory location, (3) the protocol
is independent of the values stored in the local caches and in main memory. A cache can be in
one of the following three states: valid, dirty, and invalid. If a cache is in state valid, then it
holds the most recent data written by any processor and this data is also stored in main memory
(more than one cache is allowed to be in state valid). If a cache is in state dirty, then it holds,
in an exclusive way among all caches, the most recent data written by any processor (at most
one cache is allowed to be in state dirty, and if a cache is in state dirty then all other caches are
in state invalid). If a cache is in state invalid, then we cannot say whether it holds the most
recent data written by any processor, and we cannot say whether it holds the data which is also
stored in main memory.

We now describe the five rules of the protocol for a system of n processors and n caches,
c1, . . . , cn. Each rule should be regarded as atomic.
When a processor issues a read command to its cache ci, one of the following two rules is applied.

Rule 1: Read Hit. If ci is in state valid or dirty, then ci returns its content and does not change
its state.

Rule 2: Read Miss. If ci is in state invalid, then the following actions take place sequentially:

(2.1) ci issues a public read command to the bus;

(2.2) for all j 6= i, when a cache cj receives the public read command from the bus, then:
(2.2.1) if cj is in state dirty, then it writes its content to main memory and goes to state
invalid, else (2.2.2) if cj is in state valid or invalid, no action is performed and, in particular,
cj does not change its state;

(2.3) ci updates its content from main memory, and goes to state valid;

When a processor issues a write command to its cache, one of the following three rules is applied.

Rule 3: Write Hit 1. If the cache ci is in state dirty, then ci stores the new data and does not
change its state.

Rule 4: Write Hit 2. If the cache ci is in state valid, then the following actions take place
sequentially:

(4.1) ci issues a private read command to the bus;

(4.2) for all j 6= i, when a cache cj receives the private read command from the bus, then:
(4.2.1) if cj is in state dirty, then it writes its content to main memory and goes to state
invalid, else (4.2.2) if cj is in state valid or invalid, no memory change is performed and cj

goes to state invalid.

(4.3) ci stores the new data and changes its state to dirty;
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Rule 5: Write Miss. If the cache ci is in state invalid, then the following actions take place
sequentially:

(5.1) ci issues a private read command to the bus;

(5.2) all other caches react to the private read command received from the bus as described
at Point (4.2);

(5.3) ci updates its content from main memory and goes to state dirty.

It will be shown that Case 4.2.1 never occurs when applying Rule 4, because the protocol ensures
that it is never the case that there is a cache in state valid and a cache in state dirty (see the
property ¬EF (unsafe2) below). However, we have not exploited this property in the above
description of the protocol.

The state of the parameterized Synapse protocol is the collection of the states of each cache.
In the initial state each cache is invalid. The data consistency property for the protocol is the
following: it is impossible to reach a state where either (1) there are two or more dirty caches
or (2) there are one or more dirty caches and one or more valid caches (see the elementary
properties unsafe1 and unsafe2 below, respectively).

In order to verify data consistency, we consider an abstraction of the protocol, called counting
abstraction [18], which consists in representing each state as a triple 〈V, D, I〉 of non-negative
integers, where V , D, and I are the numbers of caches in state valid, dirty, and invalid, re-
spectively. The transition relation which encodes Rules 1–5 for the abstracted protocol is the
following:
t(〈V, D, I〉, 〈V ′, D′, I ′〉) =def (V +D≥1∧V ′=V ∧D′=D∧ I ′=I) ∨

(I≥1 ∧V ′=V +1∧D′=0∧ I ′=D+I−1) ∨
(D≥1 ∧V ′=V ∧D′=D∧ I ′=I) ∨
(V ≥1 ∧V ′=0 ∧D′=1∧ I ′=D+V +I−1) ∨
(I≥1 ∧V ′=0 ∧D′=1∧ I ′=D+V +I−1)

where each disjunct corresponds to a rule.
The set of the initial states is given by the constraint init(〈V, D, I〉) defined as follows:
init(〈V, D, I〉) =def (V = 0 ∧D = 0 ∧ I ≥ 1)

We have applied our method to prove the data consistency properties expressed by the CTL for-
mulas ¬EF (unsafe1) and ¬EF (unsafe2), where the elementary properties unsafe1 and unsafe2
are defined by constraints as follows:

unsafe1(〈V,D, I〉) =def (D ≥ 2), and
unsafe2(〈V,D, I〉) =def (D ≥ 1 ∧ V ≥ 1).

6.5. Experimental Results

All verification examples presented in Sections 6.1 – 6.4 have been developed in a fully automatic
way by using our experimental transformation system MAP [44] for constraint logic programs.
We have also verified a version of the Bakery protocol for three processes and the various cache
coherence protocols mentioned in Section 6.4. The MAP system is implemented in SICStus
Prolog 3.12.8 and uses the SICStus Prolog clpq library to solve constraints (see Table 1).

We have performed the same verification experiments by using the DMC system [19] and the
HyTech system, version 1.04f [31] (see Table 1). All experiments have been conducted on an
Intel Pentium M740, 1.73 GHz under the Linux operating system.
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Protocol Property MAP DMC (no Abs.) DMC (Abs.) HyTech
Bakery (2 processes) safety 0.05 0.01 0.05 0.02
(mutual exclusion) liveness 0.13 0.10 0.10 −
Bakery (3 processes) safety 0.37 0.71 4.95 0.55
(mutual exclusion)

Ticket safety 0.20 ↑ 0.09 ↑
(mutual exclusion) liveness 0.39 ↑ 0.34 −
Reset Petri Net safety 0.08 ≤0.005 ≤0.005 ≤0.005

Synapse N+1 safety 0.04 ≤0.005 ≤0.005 0.01
(cache coherence)

Berkeley RISC safety 0.07 0.04 0.05 0.01
(cache coherence)

Xerox Dragon safety 0.07 0.12 0.12 0.04
(cache coherence)

DEC Firefly safety 0.05 0.08 0.13 0.03
(cache coherence)

IEEE Futurebus+ safety 0.22 7.41 15.97 0.63
(cache coherence)

Illinois University safety 0.06 0.11 0.18 0.03
(cache coherence)

MESI safety 0.07 0.06 0.10 0.02
(cache coherence)

MOESI safety 0.11 0.08 0.14 0.02
(cache coherence)

Table 1: Experimental verification results. Times are expressed in seconds.
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In Table 1, the safety and liveness properties of the Bakery protocol for two processes are
defined as indicated in Section 6.1. The safety property of the Bakery protocol for three processes
is defined similarly to the same property for two processes. The safety and liveness properties
of the Ticket protocol are defined as indicated in Section 6.2. The safety property of the reset
Petri net is defined, as indicated in Section 6.3, by the CTL formula ¬EF (p30), where p30 is the
elementary property that holds in the state 〈N1, N2〉 iff N1 = 3 ∧N2 = 0.

The safety property of the Synapse protocol is defined by the CTL formula ¬EF (unsafe1 ∨
unsafe2), where unsafe1 and unsafe2 are the elementary properties defined at the end of Sec-
tion 6.4. For the other cache coherence protocols the specification of the various safety properties
can be found in [17, 18].

From the third to the sixth column of Table 1 we have reported the times needed to verify
the various properties by using MAP, DMC, and HyTech. For the DMC system we have two
columns: in DMC (no Abs.) and DMC (Abs.) we have reported the running times obtained by
using DMC without and with an abstraction operator, respectively.

In Table 1 the symbol “↑” means “nontermination within 10 minutes”, and the symbol “−”
indicates that the test has not been performed. Note that the liveness properties have not been
tested by using HyTech (see the entries “−” in the last column), because it has no specific
primitives for encoding such properties, while the safety properties have been encoded by using
the reach backward primitive provided by that system. HyTech diverges on all our examples
when the safety properties are encoded by using the reach forward primitive.

No abstraction techniques have been used to approximate the computation of the fixpoints in
the examples reported in column DMC (no Abs.) and HyTech. This explains the nontermination
observed for the Ticket example. By comparing the columns DMC (no Abs.) and DMC (Abs.)
it can be noted that the use of abstraction improves termination at the expense of an increase
of the verification time.

In the experiments we have performed, MAP is less efficient than DMC and HyTech when
verifying safety properties in simple protocols, while it performs better on the two most complex
protocols, that is, the Bakery protocol for three processes and the IEEE Futurebus+ protocol.
In conclusion, we may say that the performance of our system is comparable with the one of
DMC and HyTech.

The encodings of the various reactive systems reported in Table 1 are available from
http://www.iasi.rm.cnr.it/~proietti/system.html.

7. Witnesses and Counterexamples

One of the most important features of the model checking techniques for finite state systems is
the ability to find witnesses and counterexamples [12]. A witness of a formula with an existential
path quantifier is a computation path which shows that the formula holds, and a counterexample
of a formula with a universal path quantifier is a computation path which shows that the
formula does not hold. In this section, we demonstrate, by means of examples, how to enhance
our verification technique for infinite state systems so that witnesses and counterexamples are
generated. In particular, we consider the reactive system presented in Example 3 of Section 3
(and continued in Section 5.3), and we show how to generate a witness of a formula of the form
EU(ϕ1, ϕ2) and how to generate a counterexample of a formula of the form AF ϕ. The case of
formulas with the operator EX is simpler and we leave it to the reader.

The basic idea consists in adding an extra argument to the sat predicate defined by the
Encoding Program PK. This extra argument keeps track of the transitions connecting the
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states to their successor states. Note that, by our assumptions on the transition relation (see
Definition 5), a sequence of transitions and an initial state uniquely determine a sequence of
states.

Example 8. [Generating Witnesses] Let us consider the reactive system depicted in Figure 1
(see Example 3 of Section 3). Suppose that we want to generate a witness of a formula of the
form EU (ϕ1, ϕ2) starting from the initial state, that is, a sequence of transitions to be applied
from the initial state 〈a, 0〉 so to get to a state where ϕ2 holds, passing through states where ϕ1

holds. In order to do so we perform the following two steps. (Step 1) We modify the clauses of
PK which define the satisfiability of the formula EU (ϕ1, ϕ2) by adding to the predicate sat an
extra argument which is a witness of that formula. (Step 2) We generate a witness of EU (ϕ1, ϕ2)
by applying the specialization strategy of Section 5 to the program with the modified clauses.
Step 1. In order to modify the definition of satisfiability, we first modify the encoding of the
transition relation by adding to t(X, Y ) an extra argument T which is the transition connecting
state X to state Y . The resulting predicate tw(X, T, Y ) is defined by the following three clauses,
one for each transition t1, t2, and t3 (recall that in this example every state is represented by a
pair):

tw(〈X1, X2〉, t1, 〈Y1, Y2〉) ← X1 =a ∧ Y1 =a ∧ Y2 =X2 + 2
tw(〈X1, X2〉, t2, 〈Y1, Y2〉) ← X1 =a ∧X2 >0 ∧ Y1 =b ∧ Y2 =X2

tw(〈X1, X2〉, t3, 〈Y1, Y2〉) ← X1 =b ∧ Y1 =b ∧ Y2 =X2 + 1

Next, we modify the clauses of the predicate sat relative to the EU operator by adding a third
argument which is a witness of EU (ϕ1, ϕ2) starting from a state X. By doing so we obtain a
new predicate satw defined as follows:

satw(X, eu(F1, F2), [ ]) ← sat(X, F2)
satw(X, eu(F1, F2), [T |Ts]) ← sat(X, F1) ∧ tw(X, T, Y ) ∧ satw(Y, eu(F1, F2),Ts)

Suppose that we want to generate a witness of EU(is a, is b∧geq4), where is a, is b, and geq4
are elementary properties such that the following constrained facts hold:

sat(〈X1, X2〉, is a) ← X1 =a

sat(〈X1, X2〉, is b) ← X1 =b

sat(〈X1, X2〉, geq4) ← X2≥4

We introduce the clause:

γweu: witnesseu(W ) ← X1 = a ∧X2 = 0 ∧ satw(〈X1, X2〉, eu(is a, is b∧geq4),W )

Clearly, witnesseu(W ) holds iff W is a witness of EU(is a, is b∧geq4) starting from the initial
state 〈a, 0〉.
Step 2. Now, we apply the UDF procedure starting from γweu and we get the following specialized
program:

witnesseu([t1|W ]) ← X1 =a ∧X2 =2 ∧ new1(〈X1, X2〉,W )
new1(〈X1, X2〉, [t1|W ]) ← X1 =a ∧X2≥0 ∧ Y2 =X2+2 ∧ new1(〈X1, Y2〉,W )
new1(〈X1, X2〉, [t2|W ]) ← X1 =a ∧X2 >0 ∧ Y1 =b ∧ new2(〈Y1, X2〉,W )
new2(〈X1, X2〉, [ ]) ← X1 =b ∧X2≥4

By repeatedly applying the unfolding rule we get, among other clauses, the following one:

witnesseu([t1, t1, t2]) ←
which shows that a witness of the formula EU(is a, is b∧ geq4) is the sequence [t1, t1, t2] of
transitions. 2
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Now we show an example of generation of a counterexample for a formula AF ϕ that does not
hold.

Example 9. [Generating Counterexamples] Let us consider again the reactive system presented
in Example 3 of Section 3. Suppose that we want to generate a counterexample of the formula
AF neg , which does not hold for the reactive system under consideration (see Section 5.3). Sim-
ilarly to the previous Example 8, we perform two steps. (Step 1) We modify the predicate
sat(X, af (F )) by introducing a new predicate satw(X, af (F ),W ), where the extra argument W
encodes a witness of the formula AF ϕ starting from X. That witness is a tree of transitions
(rather than a sequence of transitions, as in the case of the witness of EU(ϕ1, ϕ2)) such that for
every root-to-leaf path, if we apply the sequence of transitions corresponding to that path, start-
ing from the state X we get to a state where ϕ holds. (Step 2) We generate the counterexamples
of AF ϕ by applying our specialization strategy to the program defining satw.
Step 1. The predicate satw, and the predicates sat allw and tsw on which satw depends, are
defined as follows:

satw(X, af (F ), [ ]) ← sat(X, F )
satw(X, af (F ), W )← tsw(X,TYs) ∧ sat allw(TYs, af (F ),W )
sat allw([ ], F, [ ])←
sat allw([(T, Y )|TYs], F, [(T, W )|Ws])← satw(Y, F,W ) ∧ sat allw(TYs, F,Ws)
tsw(〈X1, X2〉, [(t1, 〈Y1, Y2〉)]) ← X1 =a ∧X2≤0 ∧ Y1 =a ∧ Y2 =X2 + 2
tsw(〈X1, X2〉, [(t1, 〈Y11, Y12〉), (t2, 〈Y21, Y22〉)]) ←X1 =a ∧X2 >0 ∧ Y11 =a ∧ Y12 =X2 + 2∧

Y21 =b ∧ Y22 =X2

tsw(〈X1, X2〉, [(t3, 〈Y1, Y2〉)]) ← X1 =b ∧ Y1 =b ∧ Y2 =X2 + 1

In the above program tsw(X, [(tr1, Z1), . . . , (trn, Zn)]) holds iff tr1, . . . , trn are all the transitions
starting from state X, where, for i = 1, . . . , n, tr i belongs to {t1, t2, t3} and from state X by
applying tr i we get to the successor state Zi. Note that the last argument W of satw is a term
encoding a tree of transitions which is a witness of AF ϕ. For instance, the tree of transitions
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is encoded by the term [(t1, [(t2, [ ]), (t3, [ ])], (t2, [(t1, [ ])])].
Now we introduce the new clause:

γwaf : witnessaf (W ) ← X1 =a ∧X2 =0 ∧ satw(〈X1, X2〉, initial ∧ af (neg),W )

We have that witnessaf (W ) holds iff W is a witness of AF neg starting from the initial state
〈a, 0〉.
Step 2. By applying the UDF procedure starting from γwaf we get the following specialized
program PW :

1. witnessaf ([(t1,W )]) ← X1 =a ∧X2 =2 ∧ new1(〈X1, X2〉,W )
2. new1(〈X1, X2〉, [(t1,W )]) ← X1 =a ∧X2 =0 ∧ Y2 =2 ∧ new1(〈X1, Y2〉,W )
3. new1(〈X1, X2〉, [(t1,W1), (t2,W2)]) ←X1 =a ∧X2 > 0 ∧ Y2 =X2 + 2 ∧ Y3 =b ∧

new1(〈X1, Y2〉,W1) ∧ new2(〈Y3, X2〉,W2)
4. new2(〈X1, X2〉, [(t3,W )]) ← X1 =b ∧X2 > 0 ∧ Y2 =X2 + 1 ∧ new2(〈X1, Y2〉,W )
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All predicates in PW are useless (see Definition 4) and all clauses of PW are removed by the RU
procedure (see Section 5.2.2), thereby proving that witnessaf (W ) does not hold for any value of
W . Indeed, the execution of PW does not terminate for the goal witnessaf (W ) and generates an
infinite tree for W . Now, we have that the maximal paths of that infinite tree are exactly all the
counterexamples of AF neg (that is, the witnesses of EG¬neg). These paths can be generated
by the following program PC :

1.1 counterexampleaf ([t1|W ]) ← X1 =a ∧X2 =2 ∧ c1(〈X1, X2〉,W )
2.1 c1(〈X1, X2〉, [t1|W ]) ← X1 =a ∧X2 =0 ∧ Y2 =2 ∧ c1(〈X1, Y2〉,W )
3.1 c1(〈X1, X2〉, [t1|W1]) ← X1 =a ∧X2 > 0 ∧ Y2 =X2 + 2 ∧ c1(〈X1, Y2〉,W1)
3.2 c1(〈X1, X2〉, [t2|W2]) ← X1 =a ∧X2 > 0 ∧ Y3 =b ∧ c2(〈Y3, X2〉,W2)
4.1 c2(〈X1, X2〉, [t3|W ]) ← X1 =b ∧X2 > 0 ∧ Y2 =X2 + 1 ∧ c2(〈X1, Y2〉,W )

Each clause of PC has been obtained from a clause γ of PW by: (i) renaming predicates,
(ii) selecting a branch of the tree in the head of γ, (iii) selecting the corresponding atom in the
body of γ, and (iv) applying the solve function to the constraint of γ w.r.t. the set of variables
which occur either in the head of γ or in the atom of γ selected at Point (iii).

For instance, clause 3.1 has been obtained from clause 3 by: (i) renaming new1 to c1, (ii) se-
lecting the branch [t1|W1] from the tree [(t1,W1), (t2,W2)] occurring in the head of clause 3,
(iii) selecting the atom new1(W1, 〈X1, Y2〉), with new1 renamed to c1, and (iv) computing
solve(X1 =a ∧X2 > 0 ∧ Y2 =X2 + 2 ∧ Y3 = b, {X1, X2, Y2}). We can generate all finite prefixes
of counterexamples of AF neg by adding to PC the facts: c1(X, [ ]) ← and c2(X, [ ]) ←.

Finally, looking at program PC , we have that the counterexamples of AF neg are the infinite
sequences belonging to the regular ω-language {tω1 , t1t2t

ω
3 } [67]. Note, however, that in the

case of an arbitrary infinite state system, the set of counterexamples of AF ϕ is not a regular
ω-language, because otherwise AF ϕ would be a decidable property. 2

8. Related Work and Conclusions

We have presented a method based on constraint logic programming and program transformation
to perform model checking of infinite state concurrent systems. The main features of our method
are: (i) the representation of an infinite state concurrent system by means of constraints over
the set of states, and the encoding of the temporal properties of the system, expressed by CTL
formulas, as general logic programs with the perfect model semantics, (ii) the application of a
rule-based specialization strategy for verifying CTL formulas, and (iii) the use of a generalization
strategy to ensure that our verification method terminates in all cases.

The main motivation for developing our approach is that it allows us to transfer techniques
and tools for constraint solving, logic programming, and program transformation, to the field
of infinite state model checking. Moreover, due to the generality of the methodologies we pro-
pose, our verification method could easily be adapted to solve a wide variety of model checking
problems.

Our approach shares with the techniques of deductive model checking (see, for instance, [48, 52,
63, 64]) the idea that first order formulas can be suitably used to describe infinite sets of states
and logical inference rules can be applied to verify properties of systems. However, our method
is characterized by the use of constraint logic programming and program transformation, which
from a technical point of view make our approach very different from the approaches described
in the above mentioned deductive model checking works.
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Our method is specifically related to the methods that make use of logic programming and
constraints as a basis for the verification of finite or infinite state concurrent systems [19, 24,
27, 28, 40, 38, 49, 55, 57, 58]. Let us now briefly compare these methods with our work.

The methods presented in [55] and [49] make use of logic programming and constraint logic
programming, respectively, for the verification of finite state systems. In particular, in [55] the
authors present XMC, a model checking system implemented in the tabulation-based logic pro-
gramming language XSB [59]. XMC can verify temporal properties expressed in the alternation-
free fragment of the µ-calculus of finite state concurrent systems specified in a CCS-like language.
The XMC implementation contains many source-level optimizations that take advantage of the
tabulation-based execution mechanism of XSB, thereby achieving performances comparable to
those of the most advanced model checkers. The model checker presented in [49] can be ap-
plied to verify CTL properties of finite state systems by using CLP programs with constraints
which are defined over finite domains and are closed under conjunction, disjunction, variable
projection, and negation. The verification process is performed by executing a CLP program
encoding the semantics of CTL in an extended execution model that uses constructive negation
and tabled resolution.

Our method is more general than those presented in [55, 49], as we can verify properties of
infinite state systems. Indeed, it could be shown that the case of finite state systems can be
handled by our transformation strategy without using any generalization technique.

The use of constraint logic programs as a means of representing and reasoning about infinite
state systems has been first advocated in [27, 28], where an automatic method for verifying safety
properties of Petri nets with parametric initial markings is presented. By using this method the
set of reachable markings of a Petri net is characterized as the least fixpoint of a suitable logic
program with arithmetic constraints. The aim of the method is to express, if at all possible,
the least fixpoint of this logic program as a Presburger formula, so that the reachability of a
given marking can be checked. Invariant checking and transformations of Petri nets are used for
improving performance.

In Section 6.3 we have shown through an example that our method can be used to prove
safety properties of Petri nets. It should be noted that our method can also be applied to verify
properties more complex than safety, such as liveness. We think that, however, in order to assess
the viability of our approach for the verification of Petri nets, a more extensive experimentation
is needed.

The method described in [19] is aimed at the verification of CTL properties of infinite state
concurrent systems by using constraint logic programming. Depending on the formula and the
system being verified, suitable definite CLP programs are introduced. CTL properties are then
verified by computing exact and approximated least and greatest fixpoints of those programs.

The main differences between our method and the one presented in [19] are the following.
(i) In order to specify concurrent systems and their temporal properties we use general logic
programs with the perfect model semantics, instead of least and greatest fixpoints of definite
logic programs, and thus our specifications are, in principle, executable by currently available
logic programming systems. (ii) Our transformation strategy always returns a program which
has the same perfect model as the initial one, and not an over or under approximation of that
model; thus, our approach allows us to apply further analysis and transformation to the final
program in the case where we are not able to complete the desired verification task in the first
step. (iii) We use a generalization strategy which, unlike the technique presented in [19], always
guarantees termination. We have shown in Section 6.5 that the performances achieved by the
two methods are similar.
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The approach presented in [40] combines partial deduction (that is, partial evaluation of logic
programs) and abstract interpretation for the verification of properties of infinite state systems.
This approach is applied to solve coverability problems of Petri nets with reset arcs and, in
particular, to compute the Karp-Miller tree and Finkel’s minimal coverability set [38].

The use of constraints makes our approach more powerful than the one proposed in [40].
Indeed, during program specialization we manipulate clauses by constraint solving, and this
transformation rule is not available in partial deduction. Our specialization strategy also makes
use of other transformation rules, such as negative unfolding (R3), removal of subsumed clauses
(R6s), and removal of useless clauses (R6u), which are not considered by partial deduction.
Finally, our generalization technique makes use of a constraint generalization operator which
exploits the properties of the constraints (see Definition 15), while the most specific generalization
used in [40] is based on syntactic term anti-unification.

Logic programming and program transformation have been applied in [57, 58] for proving
safety and liveness properties of parameterized finite state systems with various network topolo-
gies. The verification process is carried out by proving equivalences of predicates defined by
definite logic programs using unfold/fold transformations. Unlike our method, the verification
technique of [57, 58] is not fully automatic, as it requires human intervention to invent suitable
invariants during transformation.

The method presented in [24] allows the specification and verification of concurrent systems
by means of a concurrent extension of constraint logic programming, called timed concurrent
constraint programming (tccp). Similarly to our approach and to others mentioned above, this
work makes use of constraints to specify infinite state systems. A model checking algorithm
for tccp programs is obtained by restricting time to a finite interval given by the user, thereby
reducing a potentially infinite state program to a finite state approximation. This approach
seems to be less general and mechanical than ours, because in ours no time interval has to be
fixed in advance.

The transformation rules for locally stratified constraint logic programs considered in this
paper (see Section 4) are specialized versions of the unfold/fold rules presented in [26] and,
indeed, their correctness with respect to the perfect model semantics is a consequence of some
results proved in that paper.

The unfold/fold rules for definite CLP programs have been first introduced in [8, 23] by
extending the rules for definite logic programs presented in [66]. If we consider definite CLP
programs only, the definition and folding rules of [8, 23] are more general than those defined
in Section 4, because they allow the body of a definition to be a non-atomic constrained goal.
However, in Sections 5 and 6 we have shown that by allowing atomic definitions only, we are
able to verify several interesting CTL properties of infinite state systems.

Unfold/fold rules for transforming stratified constraint logic programs have been first presented
in [42]. However, the set of rules considered in [42] does not include the negative unfolding and
negative folding rules (Rules R3 and R5, respectively, of Section 4). Moreover, the folding rule
of [42] is not capable to derive recursive clauses, and the derivation of recursive clauses is a
crucial feature of the method we propose in the present paper (see Section 5).

The rule for deleting useless clauses (Rule R6u of Section 4) is not present in [8, 23, 42].
The idea of using unfold/fold transformation strategies for theorem proving and, in partic-

ular, for proving properties of logic programs, has been explored in various papers (see, for
instance, [50, 51, 57, 58]).

The unfold/fold-based specialization strategy presented in this paper is an extension to locally
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stratified CLP programs of the strategy for specializing definite CLP programs presented in [25].
Note that, however, the specialization strategy of Section 5 is specifically designed to transform
programs that encode properties of infinite state systems, while the specialization strategy of [25]
is a general purpose strategy.

The specialization strategy presented in Section 5 is also related to other techniques for logic
program specialization (see [29, 34, 37] for surveys) and, in particular, to specialization tech-
niques based on unfold/fold rules [53, 60]. As already mentioned, the main feature of our strat-
egy is that it is oriented to the specialization of locally stratified CLP programs that encode
properties of infinite state systems.

In order to guarantee the termination of our specialization strategy, we make use of a gener-
alization technique which extends to constraint logic programs other techniques, based on well-
quasi orderings, employed in various methods for the specialization of logic programs [36, 39, 65].
To make this extension we have introduced a generalization operator which is inspired to the
widening operator for linear constraints defined in the field of abstract interpretation [13]. How-
ever, as discussed in Section 5.2.1, our generalization operator is different from the widening
operator. In fact, it could be shown that by applying our verification technique with the gen-
eralization operator replaced by the widening operator, we would fail to prove many of the
properties considered in Section 6.

We have already mentioned that notions related to abstract interpretation have been used in
other techniques for the verification of infinite state systems, such as those in [2, 16, 19, 68].
However, it should be noted that our generalization technique preserves the semantics of the
program that encodes the infinite state system to be verified, while the techniques presented
in [2, 16, 19, 68] compute approximated models of the system.

In conclusion, the present work contributes to demonstrate that the use of constraint logic
programming as a modeling language together with program transformation as an inference
device, provides a very flexible and powerful methodology for the verification of infinite state
systems and, more generally, for proving properties of software systems. Indeed, we have shown
that constraints allow simple representations of infinite sets of values, and the declarative nature
of logic programming makes it easy to model a large variety of systems and properties. We have
also shown that transformation-based proof methods are very general and powerful, and they
can also be very efficient when tailored to the task of proving properties of infinite state systems.
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Appendix

Proof :[Proof of Theorem 3.3] By Lemma 2.2 it suffices to show that for all states s ∈ D and
CTL formulas ϕ, we have that: K, s |= ϕ iff sat(s, ϕ) ∈ lfp(TPK,α), where α = size(ϕ). The
proof is by structural induction on ϕ. By induction hypothesis we assume that, for all states
s ∈ D and for all proper subformulas ψ of ϕ,

K, s |= ψ iff sat(s, ψ) ∈ lfp(TPK,β) (IndHyp1)

where β = size(ψ). Now we consider the following cases.
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Case 1. (ϕ is the elementary property e) For all states s ∈ D we have that:
K, s |= e
iff D |= e(s) (by Point 4 of Definition 5)
iff sat(s, e) ∈ lfp(TPK,1) (by the definitions of PK and TPK,1).

Case 2. (ϕ is ¬ψ) For all states s ∈ D we have that:
K, s |= ¬ψ
iff K, s |= ψ does not hold (by the definition of K, s |= ¬ψ, see Section 2.3)
iff sat(s, ψ) 6∈ lfp(TPK,β), where β = size(ψ) (by IndHyp1)
iff sat(s,¬ψ) ∈ lfp(TPK,α), where α = β + 1 = size(¬ψ)

(by the definitions of PK and TPK,α).

Case 3. (ϕ is ψ1 ∧ ψ2) For all states s ∈ D we have that:
K, s |= ψ1 ∧ ψ2

iff K, s |= ψ1 and K, s |= ψ2

(by the definition of K, s |= ψ1 ∧ ψ2, see Section 2.3)
iff sat(s, ψ1) ∈ lfp(TPK,β1) and sat(s, ψ2) ∈ lfp(TPK,β2)

where β1 = size(ψ1) and β2 = size(ψ2) (by IndHyp1)
iff sat(s, ψ1 ∧ ψ2) ∈ lfp(TPK,α), where α = β1 + β2 + 1 = size(ψ1 ∧ ψ2)

(by the definitions of PK and TPK,α).

Case 4. (ϕ is EX(ψ)) For all states s ∈ D we have that:
K, s |= EX ψ
iff there exists a state s′ ∈ D such that sR s′ and K, s′ |= ψ

(by the definition of K, s |= EX(ψ), see Section 2.3)
iff there exist a state s′ ∈ D and j ∈ {1, . . . , k} such that:

(i) D |= tj(s, s′) and (ii)sat(s′, ψ) ∈ lfp(TPK,β), where β = size(ψ)
(by the definition of R and IndHyp1)

iff there exist a state s′ ∈ D, a valuation v, and a clause γ ∈ PK such that:
(i) v(γ) is of the form sat(s, ex (ψ)) ← t(s, s′) ∧ sat(s′, ψ),
(ii) t(s, s′) ∈ lfp(TPK,0), and (iii) sat(s′, ψ) ∈ lfp(TPK,β)
(by the definitions of PK and TPK,0)

iff sat(s, ex (ψ)) ∈ lfp(TPK,α), where α = β + 1 = size(ex (ψ))
(by the definition of TPK,α).

In the rest of the proof, given a formula ψ, the set {s ∈ D | K, s |= ψ}, that is, the set of states
of K in which ψ is true, is also denoted by [ψ].

Case 5. (ϕ is EU(ψ1, ψ2)) Given a set of states Y , let τEU (Y ) denote the set [ψ2] ∪ ([ψ1] ∩
{s ∈ D | there exists s′ ∈ D such that sR s′ and s′ ∈ Y }). From [21] we have that K, s |=
EU(ψ1, ψ2) holds iff s ∈ lfp(τEU ). Thus, we have to show that, for all states s ∈ D, s ∈ lfp(τEU )
iff sat(s, eu(ψ1, ψ2)) ∈ lfp(TPK,α), where α = size(eu(ψ1, ψ2)).

We split the proof into two parts and we prove: (5.1) for all h ≥ 0 and for all s ∈ D,
s ∈ τh

EU (∅) implies sat(s, eu(ψ1, ψ2)) ∈ lfp(TPK,α) and (5.2) for all h ≥ 0 and for all s ∈ D,
sat(s, eu(ψ1, ψ2)) ∈ T h

PK,α(∅) implies s ∈ lfp(τEU ). We show the proof of (5.1) only. The proof
of (5.2) is similar and is omitted.

We proceed by induction on h. The base case trivially holds because τ0
EU (∅) = ∅. Now, we

assume the following inductive hypothesis:

for all s ∈ D, s ∈ τh
EU (∅) implies sat(s, eu(ψ1, ψ2)) ∈ lfp(TPK,α) (IndHyp2)



58.

where α = size(eu(ψ1, ψ2)), and we prove that, for all s ∈ D, s ∈ τh+1
EU (∅) implies sat(s, eu(ψ1, ψ2)) ∈

lfp(TPK,α).
We have that:

s ∈ τh+1
EU (∅)

implies either K, s |= ψ2

or K, s |= ψ1 and there exists s′ ∈ D such that sR s′ and s′ ∈ τh
EU (∅)

(by the definition of τEU )

implies either sat(s, ψ2) ∈ lfp(TPK,β2)
or sat(s, ψ1) ∈ lfp(TPK,β1) and there exists s′ ∈ D such that
D |= t1(s, s′) ∨ . . . ∨ tk(s, s′) and sat(s′, eu(ψ1, ψ2)) ∈ lfp(TPK,α),
where β1 = size(ψ1) and β2 = size(ψ2)

(by the definition of R and the inductive hypotheses IndHyp1 and IndHyp2)

implies that there exist a valuation v and a clause γ ∈ PK such that:
either(i) v(γ) is of the form sat(s, eu(ψ1, ψ2)) ← sat(s, ψ2) and

(ii) sat(s, ψ2) ∈ lfp(TPK,β2)
or there exists s′ ∈ D such that:

(i) v(γ) is of the form:
sat(s, eu(ψ1, ψ2)) ← sat(s, ψ1) ∧ t(s, s′) ∧ sat(s′, eu(ψ1, ψ2))

(ii) sat(s, ψ1) ∈ lfp(TPK,β1),
(iii) t(s, s′) ∈ lfp(TPK,0), and
(iv) sat(s′, eu(ψ1, ψ2)) ∈ lfp(TPK,α)

(by the definitions of the encoding program PK and TPK,0,
and recalling that σ(t(s, s′)) = 0)

implies sat(s, eu(ψ1, ψ2)) ∈ lfp(TPK,α)
where α = β1 + β2 + 1 = size(eu(ψ1, ψ2))
(by the definition of TPK,α).

Case 6. (ϕ is AF (ψ)) Given a set of states Y , let τAF (Y ) denote the set [ψ]∪{s ∈ D | for all s′ ∈
D if sR s′ then s′ ∈ Y }. From [21] we have that K, s |= AF (ψ) holds iff s ∈ lfp(τAF ). Thus,
we have to show that, for all states s ∈ D, s ∈ lfp(τAF ) iff sat(s, af (ψ)) ∈ lfp(TPK,α), where
α = size(af (ψ)). As in Case 5, we split the proof into two parts and we prove: (6.1) for all
h ≥ 0 and for all s ∈ D, s ∈ τh

AF (∅) implies sat(s, af (ψ)) ∈ lfp(TPK,α) and (6.2) for all h ≥ 0
and for all s ∈ D, sat(s, af (ψ)) ∈ T h

PK,α(∅) implies s ∈ lfp(τAF ).
We show the proof of (6.1) only. The proof of (6.2) is similar and is omitted.
We proceed by induction on h. The base case trivially holds because τ0

AF (∅) = ∅. Now, we
assume the following inductive hypothesis:

for all s ∈ D, s ∈ τh
AF (∅) implies sat(s, af (ψ)) ∈ lfp(TPK,α) (IndHyp3)

where α = size(eu(ψ1, ψ2)), and we prove that, for all s ∈ D, s ∈ τh+1
AF (∅) implies sat(s, af (ψ)) ∈

lfp(TPK,α).
We have that:

s ∈ τh+1
AF (∅)

implies either K, s |= ψ
or for all s′ ∈ D, if sR s′ then s′ ∈ τh

AF (∅)
(by the definition of τAF )

implies either sat(s, ψ) ∈ lfp(TPK,β), where β = size(ψ)
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or for all s′∈D, if D|= t1(s, s′)∨. . .∨tk(s, s′) then sat(s′,af (ψ))∈ lfp(TPK,α),
(by the definition of R and the inductive hypotheses IndHyp1 and IndHyp3)

implies either sat(s, ψ) ∈ lfp(TPK,β)
or there exists i ∈ {1, . . . , n} such that:

for all s′ ∈ D, if D |= cond i(s) ∧ (act i1(s, s′) ∨ . . . ∨ act iqi(s, s
′))

then sat(s′, af (ψ)) ∈ lfp(TPK,α)
where cond i(X) ∧ (act i1(X, Y ) ∨ . . . ∨ act iqi(X,Y )) is a nondeterministic
event (by Proposition 3.1)

implies either sat(s, ψ) ∈ lfp(TPK,β)
or there exist i ∈ {1, . . . , n} and si1, . . . , siqi ∈ D such that:
D |= cond i(s) ∧ act i1(s, si1) ∧ . . . ∧ act iqi(s, siqi) and

sat(si1, af (ψ)) ∈ lfp(TPK,α) and . . . and sat(siqi , af (ψ)) ∈ lfp(TPK,α)
(by Point 2 of Definition 4)

implies that there exist a valuation v and a clause γ ∈ PK such that:
either(i) v(γ) is of the form sat(s, af (ψ)) ← sat(s, ψ) and

(ii) sat(s, ψ) ∈ lfp(TPK,β)
or there exist si1 ∈ D, . . . , siqi ∈ D such that:

(i) v(γ) is of the form:
sat(s, af (ψ)) ← ts(s, [si1 , . . . , siqi ]) ∧ sat all([si1 , . . . , siqi ], af (ψ)),

(ii) ts(s, [si1 , . . . , siqi ]) ∈ lfp(TPK,0), and
(iii) sat all([si1, . . . , siqi ], af (ψ)) ∈ lfp(TPK,α)

(by the definition of the encoding program PK and TPK,0,
and recalling that σ(ts(s, [si1, . . . , siqi ])) = 0)

implies sat(s, af (ψ)) ∈ lfp(TPK,α), where α = β + 1 = size(af (ψ))
(by the definition of TPK,α). 2
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