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Abstract

We consider an extension of logic programs, called ω-programs, that can be used to define
predicates over infinite lists. ω-programs allow us to specify properties of the infinite behavior
of reactive systems and, in general, properties of infinite sequences of events. The semantics of
ω-programs is an extension of the perfect model semantics. We present variants of the familiar
unfold/fold rules which can be used for transforming ω-programs. We show that these new rules
are correct, that is, their application preserves the perfect model semantics. Then we outline a
general methodology based on program transformation for verifying properties of ω-programs.
We demonstrate the power of our transformation-based verification methodology by proving
some properties of Büchi automata and ω-regular languages.

KEYWORDS: Program Transformation, Program Verification, Infinite Lists.
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1. Introduction

The problem of specifying and verifying properties of reactive systems, such as protocols and
concurrent systems, has received much attention over the past fifty years or so. The main
peculiarity of reactive systems is that they perform nonterminating computations and, in order to
specify and verify the properties of these computations, various formalisms dealing with infinite
sequences of events have been proposed. Among these we would like to mention: (i) Büchi
automata and other classes of finite automata on infinite sequences [27], (ii) ω-languages [25],
and (iii) various temporal and modal logics (see [4] for a brief overview of these logics).

Also logic programming has been proposed as a formalism for specifying computations over
infinite structures, such as infinite lists or infinite trees (see, for instance, [5, 13, 14, 24]). One
advantage of using logic programming languages is that they are general purpose languages
and, together with a model-theoretic semantics, they also have an operational semantics. Thus,
logic programs over infinite structures can be used for specifying infinite computations and, in
fact, providing executable specifications for them. However, very few techniques which use logic
programs over infinite structures, have been proposed in the literature for verifying properties
of infinite computations. We are aware only of a recent work presented in [10], which is based
on coinductive logic programming, that is, a logic programming language whose semantics is
based on greatest models.

In this paper our aim is to develop a methodology based on the familiar unfold/fold transfor-
mation rules [3, 26] for reasoning about infinite structures and verifying properties of programs
over such structures. In order to do so, we do not introduce a new programming language, but
we consider a simple extension of logic programming on finite terms by introducing the class of
the so-called ω-programs, which are logic programs on infinite lists. Similarly to the case of logic
programs, for the class of locally stratified ω-programs we define the perfect model semantics
(see [2] for a survey on negation in logic programming).

We extend to ω-programs the transformation rules for locally stratified programs presented
in [8, 16, 21, 22, 23] and, in particular: (i) we introduce an instantiation rule which is specific for
programs on infinite lists, (ii) we weaken the applicability conditions for the negative unfolding

rule, and (iii) we consider a more powerful negative folding rule (see Sections 3 and 4 for more
details). We prove that these rules preserve the perfect model semantics of ω-programs.

Then we extend to ω-programs the transformation-based methodology for verifying proper-
ties of programs presented in [16]. We demonstrate the power of our verification methodology
through some examples. In particular, we prove: (i) the non-emptiness of the language recog-
nized by a Büchi automaton, and (ii) the containment between languages denoted by ω-regular
expressions.

The paper is structured as follows. In Section 2 we introduce the class of ω-programs and we
define the perfect model semantics for locally stratified ω-programs. In Section 3 we present the
transformation rules and in Section 4 we prove that they preserve the semantics of ω-programs. In
Section 5 we present the transformation-based verification method and we see it in action in some
examples. Finally, in Section 6 we discuss related work in the area of program transformation
and program verification.

2. Programs on Infinite Lists

Let us consider a first order language Lω given by a set Var of variables, a set Fun of function
symbols, and a set Pred of predicate symbols. We assume that Fun includes: (i) a finite, non-
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empty set Σ of constants, (ii) the constructor J | K of the infinite lists of elements of Σ, and
(iii) at least one constant not in Σ. Thus, Js|tK is an infinite list whose head is s ∈ Σ and whose
tail is the infinite list t. Let Σω denote the set of the infinite lists of elements of Σ.

We assume that Lω is a typed language [13] with three basic types: (i) fterm, which is the
type of the finite terms, (ii) elem, which is the type of the constants in Σ, and (iii) ilist, which
is the type of the infinite lists of Σω. Every function symbol in Fun−(Σ ∪ {J | K}), with arity
n (≥ 0), has type (fterm×· · ·×fterm) → fterm, where fterm occurs n times to the left of →.
The function symbol J | K has type (elem×ilist)→ilist. A predicate symbol of arity n (≥0)
in Pred has type of the form τ1×· · ·×τn, where τ1, . . . , τn ∈ {fterm, elem, ilist}. For every
term (or formula) t, we denote by vars(t) the set of variables occurring in t.

An ω-clause γ is a formula of the form A← L1∧ . . .∧Lm, with m≥0, where A is an atom and
L1, . . . , Lm are (positive or negative) literals, constructed as usual from symbols in the typed
language Lω, with the following extra condition: every predicate in γ has, among its arguments,
at most one argument of type ilist. This condition makes it easier to prove the correctness of
the positive and negative unfolding rules (see Section 3 for further details). We denote by true

the empty conjunction of literals, and we denote by hd(γ) and bd(γ) the head and the body,
respectively, of a clause γ. An ω-program is a set of ω-clauses.

Let HU be the Herbrand universe constructed from the set Fun−(Σ ∪ {J | K}) of function
symbols. An interpretation for our typed language Lω, called an ω-interpretation, is a function
I such that: (i) I assigns to the types fterm, elem, and ilist, respectively, the sets HU, Σ, and
Σω (which by our assumptions are non-empty), (ii) I assigns to the function symbol J | K, the
function J | KI such that, for any element s ∈ Σ, for any infinite list t ∈ Σω, Js|tKI is the infinite
list Js|tK, (iii) I is an Herbrand interpretation for all function symbols in Fun − (Σ ∪ {J | K}),
and (iv) I assigns to every n-ary predicate p ∈Pred of type τ1×. . .×τn, a relation on D1×· · ·×Dn,
where, for i = 1, . . . , n, Di is either HU or Σ or Σω, if τi is either fterm or elem or ilist,
respectively. We say that an ω-interpretation I is an ω-model of an ω-program P if for every
clause γ∈P we have that I � ∀X1 . . . ∀Xk γ, where vars(γ) = {X1, . . . ,Xk}.

A valuation is a function v : Var → HU ∪Σ ∪ Σω such that: (i) if X has type fterm then
v(X)∈HU, (ii) if X has type elem then v(X)∈Σ, and (iii) if X has type ilist then v(X)∈Σω.
The valuation function v is extended to any term t, or literal L, or conjunction B of literals,
or clause γ, by making the function v act on the variables occurring in t, or L, or B, or γ.
(Obviously, v(t)= t if vars(t)=∅.)

We extend the notion of Herbrand base [13] to ω-programs by defining it to be the set Bω =
{p(v(X1), . . . , v(Xn)) | p is an n-ary predicate symbol in Pred and v is a valuation}. Thus, any
ω-interpretation can be identified with a subset of Bω.

A local stratification is a function σ: Bω → W , where W is the set of countable ordinals.
Given A ∈ Bω, we define σ(¬A) = σ(A)+1. Given an ω-clause γ of the form H ← L1 ∧ . . .∧Lm

and a local stratification σ, we say that γ is locally stratified w.r.t. σ if, for i = 1, . . . ,m, for
every valuation v, σ(v(H)) ≥ σ(v(Li)). An ω-program P is locally stratified w.r.t. σ, or σ is a
local stratification for P , if every clause in P is locally stratified w.r.t. σ. An ω-program P is
locally stratified if there exists a local stratification σ such that P is locally stratified w.r.t. σ.

A level mapping is a function ℓ : Pred → N. A level mapping is extended to literals as
follows: for any literal L having predicate p, if L is a positive literal, then ℓ(L) = ℓ(p) and, if
L is a negative literal then ℓ(L) = ℓ(p) + 1. An ω-clause γ of the form H ← L1 ∧ . . . ∧ Lm is
stratified w.r.t. ℓ if, for i = 1, . . . ,m, ℓ(H) ≥ ℓ(Li). An ω-program P is stratified if there exists
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a level mapping ℓ such that all clauses of P are stratified w.r.t. ℓ [13]. Clearly, every stratified
ω-program is a locally stratified ω-program.

Similarly to the case of logic programs on finite terms, for every locally stratified ω-program P ,
we can construct a unique perfect ω-model (or perfect model, for short) denoted by M(P ) (see [2]
for the case of logic programs on finite terms). Now we present an example of this construction.

Example 1. Let: (i) Σ={a, b} be the set of constants of type elem, (ii) H and S be variables of
type elem, and (iii) X be a variable of type ilist. Let inf often b be a predicate of type ilist,
and member and last occ be predicates of type elem × ilist. Let us consider the following
ω-program P :

1. inf often b(X)←member(b,X)∧¬ last occ(b,X)
2. last occ(S, JS|XK)←¬member(S,X)
3. last occ(S, JH|XK)← last occ(S,X)
4. member(S, JS|XK)←
5. member(S, JH|XK)← member(S,X)

We have that: (i) last occ(s,w) holds iff there is a last, rightmost occurrence of s in w, and
(ii) inf often b(w) holds iff b occurs infinitely often in w.

Program P is stratified w.r.t. the level mapping ℓ such that ℓ(member)=0, ℓ(last occ)=1, and
ℓ(inf often b)=2. We construct the perfect model M(P ) by starting from the ground atoms of
level 0 (i.e., those with predicate member) and going up to the ground atoms of level 2 (i.e., those
with predicate inf often b). For level 0 we have that, for all w ∈ {a, b}ω, member(b, w) 6∈M(P )
iff w ∈ aω. Then, we consider the ground atoms of level 1 (i.e., those with predicate last occ).
For all w ∈ {a, b}ω, last occ(b, w) ∈ M(P ) iff w ∈ (a+b)∗baω. Thus, last occ(b, w) 6∈ M(P ) iff
w ∈ aω +(a∗b)ω. Finally, we consider the ground atoms of level 2 (i.e., those with predicate
inf often b). For all w ∈ {a, b}ω , inf often b(w) ∈M(P ) iff (see clause 1) member(b, w) ∈M(P )
and last occ(b, w) 6∈M(P ), that is, w ∈ (a∗b)ω.

3. Transformation Rules

Given an ω-program P0, a transformation sequence is a sequence P0, . . . , Pn, with n ≥ 0, of
ω-programs constructed as follows. Suppose that we have constructed a sequence P0, . . . , Pk,
for 0≤k≤n−1. Then, the next program Pk+1 in the sequence is derived from program Pk by
applying one of the following transformation rules R1–R7.

First we have the definition introduction rule which allows us to introduce a new predicate
definition.

R1. Definition Introduction. Let us consider m (≥1) clauses of the form:

δ1 : newp(X1, . . . ,Xd)← B1, . . . , δm : newp(X1, . . . ,Xd)← Bm

where: (i) newp is a predicate symbol not occurring in {P0, . . . , Pk}, (ii) X1, . . . ,Xd are distinct
variables occurring in {B1, . . . , Bm}, (iii) none of the Bi’s is the empty conjunction of literals, and
(iv) every predicate symbol occurring in {B1, . . . , Bm} also occurs in P0. The set {δ1, . . . , δm}
of clauses is said to be the definition of newp.
By definition introduction from program Pk we derive the new program Pk+1 =Pk∪{δ1, . . . , δm}.
For n≥0, Defsn denotes the set of clauses introduced by the definition rule during the transfor-
mation sequence P0, . . . , Pn. In particular, Defs0 ={}.

In the following instantiation rule we assume that the set of constants of type elem in the
language Lω is the finite set Σ={s1, . . . , sh}.
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R2. Instantiation. Let γ: H ← B be a clause in program Pk and X be a variable of type ilist
occurring in γ. By instantiation of X in γ, we get the clauses:

γ1: (H ← B){X/Js1|XK}, . . . , γh: (H ← B){X/Jsh|XK}

and we say that clauses γ1, . . . , γh are derived from γ. From Pk we derive the new program Pk+1 =
(Pk − {γ}) ∪ {γ1, . . . , γh}.

The unfolding rule consists in replacing an atom A occurring in the body of a clause by its
definition in Pk. We present two unfolding rules: (1) the positive unfolding, and (2) the negative

unfolding. They correspond, respectively, to the case where A or ¬A occurs in the body of the
clause to be unfolded.

R3. Positive Unfolding. Let γ : H ← BL ∧A∧BR be a clause in program Pk and let P ′
k be

a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k such that, for i = 1, . . . ,m, A is unifiable with Ki, with most

general unifier ϑi.
By unfolding γ w.r.t. A we get the clauses η1, . . . , ηm, where for i = 1, . . . ,m, ηi is (H ←
BL ∧ Bi ∧ BR)ϑi, and we say that clauses η1, . . . , ηm are derived from γ. For i = 1, . . . ,m, we
say that clause ηi is derived by unfolding γ w.r.t. A using clause γi. From Pk we derive the new
program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}.

In rule R3, and also in the following rule R4, the most general unifier can be computed by
using a unification algorithm for finite terms (see, for instance, [13]). Note that this is correct,
even in the presence on infinite terms, because in any ω-program each predicate has at most
one argument of type ilist. On the contrary, if predicates may have more than one argument
of type ilist, in the unfolding rule it is necessary to use a unification algorithm for infinite
structures [5]. For reasons of simplicity, here we do not make that extension of the unfolding rule
and we stick to our assumption that every predicate has at most one argument of type ilist.

The existential variables of a clause γ are the variables occurring in the body of γ and not in
its head.

R4. Negative Unfolding. Let γ: H ← BL ∧ ¬A ∧BR be a clause in program Pk and let P ′
k

be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k, such that, for i = 1, . . . ,m, A is unifiable with Ki, with most general

unifier ϑi. Assume that: (1) A = K1ϑ1 = · · · = Kmϑm, that is, for i = 1, . . . ,m, A is an instance
of Ki, (2) for i = 1, . . . ,m, γi has no existential variables, and (3) from ¬(B1ϑ1 ∨ . . . ∨ Bmϑm)
we get a logically equivalent disjunction D1 ∨ . . .∨Dr of conjunctions of literals, with r ≥ 0, by
first pushing ¬ inside and then pushing ∨ outside.
By unfolding γ w.r.t. ¬A using Pk we get the clauses η1, . . . , ηr, where, for i=1, . . . , r, clause ηi

is H ← BL ∧Di ∧BR, and we say that clauses η1, . . . , ηr are derived from γ. From Pk we derive
the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

The following subsumption rule allows us to remove from Pk a clause γ such that M(Pk) =
M(Pk− {γ}).

R5. Subsumption. Let γ1: H ← be a clause in program Pk and let γ2 in Pk − {γ1} be a
variant of (H ← B)ϑ, for some conjunction of literals B and substitution ϑ. Then, we say that
γ2 is subsumed by γ1 and by subsumption, from Pk we derive the new program Pk+1 = Pk−{γ2}.
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The folding rule consists in replacing instances of the bodies of the clauses that define an atom
A by the corresponding instance of A. Similarly to the case of the unfolding rule, we have two
folding rules: (1) positive folding and (2) negative folding. They correspond, respectively, to the
case where folding is applied to positive or negative occurrences of literals.

R6. Positive Folding. Let γ be a clause in Pk and let Defs ′k be a variant of Defsk without
variables in common with γ. Let the definition of a predicate in Defs ′k consist of the clause
δ : K ← B, where B is a non-empty conjunction of literals. Suppose that there exists a
substitution ϑ such that clause γ is of the form H ← BL ∧ Bϑ ∧ BR and, for every variable
X ∈ vars(B) − vars(K), the following conditions hold: (i) Xϑ is a variable not occurring in
{H,BL, BR}, and (ii) Xϑ does not occur in the term Y ϑ, for any variable Y occurring in B and
different from X.

By folding γ using δ we get the clause η: H ← BL ∧ Kϑ ∧ BR, and we say that clause η is
derived from γ. From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η}.

R7. Negative Folding. Let γ be a clause in Pk and let Defs ′k be a variant of Defsk without
variables in common with γ. Let the definition of a predicate in Defs ′k consist of the q clauses
δ1 : K ← L1, . . . , δq : K ← Lq, with q≥ 1, such that, for i = 1, . . . , q, Li is a literal and δi has
no existential variables. Suppose that there exists a substitution ϑ such that clause γ is of the
form H ← BL ∧ (M1 ∧ . . . ∧Mq)ϑ ∧BR, where, for i = 1, . . . , q, if Li is the negative literal ¬Ai

then Mi is Ai, and if Li is the positive literal Ai then Mi is ¬Ai.

By folding γ using δ1, . . . , δq we get the clause η: H ← BL ∧¬Kϑ∧BR, and we say that clause
η is derived from γ. From Pk we derive the program Pk+1 = (Pk − {γ}) ∪ {η}.

Note that the negative folding rule is not included in the sets of transformation rules presented
in [21, 22, 23]. The negative folding rule presented in [8, 16] corresponds to our rule R7 in the
case where q=1.

4. Correctness of the Transformation Rules

Now let us introduce the notion of correctness of a transformation sequence w.r.t. the perfect
model semantics.

Definition 4.1 (Correctness of a Transformation Sequence) Let P0 be a locally stratified

ω-program and P0, . . . , Pn, with n ≥ 0, be a transformation sequence. We say that P0, . . . , Pn

is correct if (i) P0 ∪Defsn and Pn are locally stratified ω-programs and (ii) M(P0 ∪Defsn) =
M(Pn).

In order to guarantee the correctness of a transformation sequence P0, . . . , Pn (see Theorem 4.7
below) we will require that the application of the transformation rules satisfy some suitable
conditions that refer to a given local stratification σ. In order to state those conditions we need
the following definitions.

Definition 4.2 (σ-Maximal Atom) Consider a clause γ: H ← G. An atom A in G is said to

be σ-maximal if, for every valuation v and for every literal L in G, we have σ(v(A))≥σ(v(L)).

Definition 4.3 (σ-Tight Clause) A clause δ: H ← G is said to be σ-tight if there exists a

σ-maximal atom A in G such that, for every valuation v, σ(v(H))=σ(v(A)).
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Definition 4.4 (Descendant Clause) A clause η is said to be a descendant of a clause γ if

either η is γ itself or there exists a clause δ such that η is derived from δ by using a rule in

{R2,R3,R4,R6,R7}, and δ is a descendant of γ.

Definition 4.5 (Admissible Transformation Sequence) Let P0 be a locally stratified

ω-program and let σ be a local stratification for P0. A transformation sequence P0, . . . , Pn,

with n≥0, is said to be admissible if:

(1) every clause in Defsn is locally stratified w.r.t. σ,

(2) for k=0, . . . , n−1, if Pk+1 is derived from Pk by positive folding of clause γ using clause δ,
then: (2.1) δ is σ-tight and either (2.2.i) the head predicate of γ occurs in P0, or (2.2.ii) γ is a

descendant of a clause β in Pj , with 0<j≤k, such that β has been derived by positive unfolding

of a clause α in Pj−1 w.r.t. an atom which is σ-maximal in the body of α and whose predicate

occurs in P0, and

(3) for k = 0, . . . , n−1, if Pk+1 is derived from Pk by applying the negative folding rule thereby

deriving a clause η, then η is locally stratified w.r.t. σ.

Note that Condition (1) can always be fulfilled because the predicate introduced in program
Pk+1 by rule R1 does not occur in any of the programs P0, . . . , Pk. Conditions (2) and (3) cannot
be checked in an algorithmic way for arbitrary programs and local stratification functions. In
particular, the program property of being locally stratified is undecidable. However, there
are significant classes of programs, such as the stratified programs, where these conditions are
decidable and easy to verify.

The following Lemma 4.6 and Theorem 4.7, whose proofs can be found in the Appendix, show
that: (i) when constructing an admissible transformation sequence P0, . . . , Pn, the application
of the transformation rules preserves the local stratification σ for the initial program P0 and,
thus, all programs in the transformation sequence are locally stratified w.r.t. σ, and (ii) any
admissible transformation sequence preserves the perfect model of the initial program.

Lemma 4.6 (Preservation of Local Stratification) Let P0 be a locally stratified ω-program,

σ be a local stratification for P0, and P0, . . . , Pn be an admissible transformation sequence. Then

the programs P0∪Defsn, P1, . . . , Pn, are all locally stratified w.r.t. σ.

Theorem 4.7 (Correctness of Admissible Transformation Sequences)Every admissible

transformation sequence is correct.

Now let us make a few comments on Condition (2) of Definition 4.5 and related conditions
presented in the literature. Transformation sequences of stratified programs over finite terms
constructed by using rules R1, R3, and R6 have been first considered in [22]. In that paper
there is a sufficient condition, called (F4), for the preservation of the perfect model. Condi-
tion (F4) is like our Condition (2) except that (F4) does not require the σ-maximality of the
atom w.r.t. which positive unfolding is performed. A set of transformation rules which includes
also the negative unfolding rule R4, was proposed in [16] for locally stratified logic programs,
and in [8] for locally stratified constraint logic programs. In [23] Condition (F4) is shown to be
insufficient for the preservation of the perfect model if rule R4 is used together with rules R1,
R3, and R6, as demonstrated by the following example.
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Example 2. Let us consider the initial program P0 made out of the following clauses:
m←
e← ¬m
e← e

By rule R1 we introduce the clause
δ1: f ← m ∧ ¬e

and we derive program P1 =P0∪{δ1} and Defs1 ={δ1}.
By rule R3 we unfold δ1 w.r.t. m and we get the clause
δ2: f ← ¬e.

We derive program P2 =P0 ∪ {δ2}. Thus, Condition (F4) is satisfied. By rule R4 we unfold δ2

w.r.t. ¬e and we get
δ3: f ← m ∧ ¬e.

We derive program P3 = P0 ∪ {δ3}. By rule R6 we fold clause δ3 using clause δ1, and we get
δ4: f ← f .

We derive program P4 = P0 ∪ {δ4} and Defs4 = {δ1}. We have that f ∈ M(P0 ∪ Defs4) and
f 6∈M(P4). Thus, the transformation sequence P0, . . . , P4 is not correct.

In order to guarantee the preservation of the perfect model semantics, [23] has proposed the
following stronger applicability condition for negative unfolding:

Condition (NU): the negative unfolding rule R4 can be applied only if it does not increase the
number of positive occurrences of atoms in the body of any derived clause.

Indeed, in the incorrect transformation sequence of Example 2 the negative unfolding does not
comply with this Condition (NU).

However, Condition (NU) is very restrictive, because it forbids the unfolding of a clause w.r.t. a
negative literal ¬A when the body of a clause defining A contains an occurrence of a negative
literal. Unfortunately, many of the correct transformation strategies proposed in [16, 8] would
be ruled out if Condition (NU) is enforced. Our Condition (2) is more liberal than Condition
(NU) and, in particular, it allows us to unfold w.r.t. a negative literal ¬A also if the body of
a clause defining A contains occurrences of negative literals. The following is an example of a
correct, admissible transformation sequence which violates Condition (NU).

Example 3. Let us consider the initial program P0 made out of the following clauses:
even(0)←
even(s(s(X)))←even(X),
odd(s(0))←
odd(s(X))←¬ odd (X)

and the transformation sequence we now construct starting from P0. By rule R1 we introduce
the following clause

δ1: p← even(X) ∧ ¬ odd(s(X))
and we derive P1 = P0 ∪ {δ1}. By taking a local stratification function σ such that, for all
ground terms t1 and t2, σ(p)=σ(even(t1))>σ(odd (t2)), we have that δ1 is σ-tight and even(X)
is a σ-maximal atom in its body. By unfolding δ1 w.r.t. even(X) we derive P2 = P0 ∪ {δ2, δ3},
where

δ2: p← ¬ odd(s(0))
δ3: p← even(X) ∧ ¬ odd(s(s(s(X))))

By unfolding, clause δ2 is removed and we derive P3 = P0 ∪ {δ3}.
By unfolding δ3 w.r.t. ¬odd(s(s(s(X)))) we derive P4 = P0 ∪ {δ4}, where
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δ4: p← even(X) ∧ odd(s(s(X)))

By unfolding δ4 w.r.t. odd(s(s(X))), we derive P5 = P0 ∪ {δ5}, where

δ5: p← even(X) ∧ ¬ odd(s(X))

By applying rule R6, we fold clause δ5 using clause δ1 and derive the final program P6 = P0∪{δ6},
where

δ6: p← p.

The transformation sequence P0, . . . , P6 is admissible and, thus, correct. In particular, the
application of rule R6 satisfies Condition (2) of Definition 4.5 because δ1 is σ-tight and δ5 is a
descendant of δ3 which has been derived by unfolding w.r.t. a σ-maximal atom whose predicate
occurs in P0.

Note that, P0, . . . , P6 violates Condition (NU) because, by unfolding clause δ3 w.r.t. the literal
¬odd(s(s(s(X)))), the number of positive occurrences of atoms in the body of the derived clause
δ4 is larger than that number in δ3.

Finally, note that the incorrect transformation sequence of Example 2 is not an admissible
transformation sequence in the sense of our Definition 4.5, because it does not comply with
Condition (2). Indeed, consider any stratification σ. The atom m is not σ-maximal in m ∧ ¬e
because e depends on ¬m and, hence, σ(¬e) > σ(m). Thus, the positive folding rule R6 is
applied to the clause δ3 which is not a descendant of any clause derived by unfolding w.r.t. a
σ-maximal atom.

5. Verifying Properties of ω-Programs by Program Transformation

In this section we will outline a general method, based on the transformation rules presented
in Section 3, for verifying properties of ω-programs. Then we will see our transformation-based
verification method in action in the proof of: (i) the non-emptiness of the language accepted by
a Büchi automaton, and (ii) the containment between ω-regular languages.

We assume that we are given an ω-program P defining a unary predicate prop of type ilist,
which specifies a property of interest, and we want to check whether or not M(P ) |= ∃X prop(X).
Our verification method consists of two steps.

Step 1. By using the transformation rules for ω-programs presented in Section 3 we derive a
monadic ω-program T (see Definition 5.1 below), such that

M(P ) |= ∃X prop(X) iff M(T ) |= ∃X prop(X).

Step 2. We apply to T the decision procedure of [17] for monadic ω-programs and we check
whether or not M(T ) |= ∃X prop(X).

Our verification method is an extension to ω-programs of the transformation-based method for
proving properties of logic programs on finite terms presented in [16]. Furthermore, our method
is more powerful than the transformation-based method for verifying CTL∗ properties of finite
state reactive systems presented in [17]. Indeed, at Step 1 of the verification method proposed
here, (i) we start from an arbitrary ω-program, instead of an ω-program which encodes the
branching time temporal logic CTL∗, and (ii) we use transformation rules more powerful than
those in [17]. In particular, similarly to [16], the rules applied at Step 1 allow us to eliminate
the existential variables from program P , while the transformation presented in [17] consists of
a specialization of the initial program w.r.t. the property to be verified.

Note that there exists no algorithm which always succeeds in transforming an ω-program into
a monadic ω-program. Indeed, (i) the problem of verifying whether or not, for any ω-program P
and unary predicate prop, M(P ) |= ∃X prop(X) is undecidable, because the class of ω-programs
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includes the locally stratified logic programs on finite terms, and (ii) the proof method for
monadic ω-programs presented in [17] is complete. However, we believe that automatic trans-
formation strategies can be proposed for significant subclasses of ω-programs along the lines
of [19, 16].

Definition 5.1 (Monadic ω-Programs) A monadic ω-clause is an ω-clause of the form A0←
L1 ∧ . . . ∧ Lm, with m≥0, such that :
(i) A0 is an atom of the form p0 or q0(Js|X0K), where q0 is a predicate of type ilist and s∈Σ,

(ii) for i=1, . . . ,m, Li is either an atom Ai or a negated atom ¬Ai, where Ai is of the form pi

or qi(Xi), and qi is a predicate of type ilist, and

(iii) there exists a level mapping ℓ such that, for i= 1, . . . ,m, if Li is an atom and vars(A0) 6⊇
vars(Li), then ℓ(A0)>ℓ(Li) else ℓ(A0)≥ℓ(Li).

A monadic ω-program is a finite set of monadic ω-clauses.

Example 4 (Non-Emptiness of Languages Accepted by Büchi Automata) In this first
application of our verification method, we will consider Büchi automata, which are finite au-
tomata acting on infinite words [27], and we will check whether or not the language accepted
by a Büchi automaton is empty. It is well known that this verification problem has important
applications in the area of model checking (see, for instance, [4]).

A Büchi automaton A is a nondeterministic finite automaton 〈Σ, Q, q0, δ, F 〉, where, as usual,
Σ is the input alphabet, Q is the set of states, q0 is the initial state, δ ⊆ Q×Σ×Q is the transition
relation, and F is the set of final states. A run of the automaton A on an infinite input word
w = a0 a1 . . . ∈ Σω is an infinite sequence ρ= ρ0 ρ1 . . . ∈ Qω of states such that ρ0 is the initial
state q0 and, for all n ≥ 0, 〈ρn, an, ρn+1〉 ∈ δ. Let Inf (ρ) denote the set of states that occur
infinitely often in the infinite sequence ρ of states. An infinite word w ∈ Σω is accepted by A if
there exists a run ρ of A on w such that Inf (ρ) ∩ F 6= ∅ or, equivalently, if there is no state ρm

in ρ such that every state ρn, with n ≥ m, is not final.
The language accepted by A is the subset of Σω, denoted L(A), of the infinite words accepted

by A. In order to check whether or not the language L(A) is empty, we construct an ω-program
which defines a unary predicate accepting run such that:

(α) L(A) 6= ∅ iff ∃X accepting run(X)

The predicate accepting run is defined by the following formulas:

(1) accepting run(X) ≡def run(X) ∧ ¬ rejecting(X)

(2) run(X) ≡def ∃S (occ(0,X, S) ∧ initial(S))∧
∀N ∀S1 ∀S2 (nat(N) ∧ occ(N,X,S1) ∧ occ(s(N),X, S2)→ ∃A tr(S1, A, S2)))

(3) rejecting(X) ≡def ∃M(nat(M) ∧ ∀N∀S(geq(N,M) ∧ occ(N,X,S)→ ¬ final(S)))

where, for all n≥0, for all ρ=ρ0 ρ1 . . . ∈ Qω, for all q, q1, q2∈Q, for all a∈Σ,
(i) occ(sn(0), ρ, q) iff ρn =q,
(ii) initial(q) iff q=q0,
(iii) nat(sn(0)) iff n≥0,
(iv) tr(q1, a, q2) iff 〈q1, a, q2〉∈δ,
(v) geq(sn(0), sm(0)) iff n≥m, and
(vi) final(q) iff q∈F .

By (α) and (1)–(3) above, L(A) 6= ∅ iff there exists an infinite sequence ρ = ρ0 ρ1 . . . ∈ Qω

of states such that: (i) ρ0 is the initial state q0, (ii) for all n≥ 0, there exists a ∈ Σ such that
〈ρn, a, ρn+1〉 ∈ δ (see (2)), and (iii) there exists no state ρm, with m≥0, in ρ such that, for all
n≥m, ρn /∈ F (see (3)).
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Now we introduce an ω-program PA defining the predicates accepting run, run, rejecting,
nat, occ, and geq. In particular, clause 1 corresponds to formula (1), clauses 2–4 correspond
to formula (2), and clauses 5 and 6 correspond to formula (3). (Actually, clauses 1–6 can be
derived from formulas (1)–(3) by applying the Lloyd-Topor transformation [13].) In program PA

any infinite sequence ρ0ρ1. . . of states is represented by the infinite list Jρ0, ρ1, . . .K of constants.

Given a Büchi automaton A = 〈Σ, Q, q0, δ, F 〉, the encoding ω-program PA consists of the
following clauses (independent of A):

1. accepting run(X)← run(X) ∧ ¬ rejecting(X)

2. run(X)← occ(0,X, S) ∧ initial(S) ∧ ¬ not a run(X)

3. not a run(X)← nat(N) ∧ occ(N,X,S1) ∧ occ(s(N),X,S2)∧ ¬ exists tr(S1,S2)

4. exists tr(S1, S2)← tr(S1, A, S2)

5. rejecting(X)← nat(M) ∧ ¬ exists final(M,X)

6. exists final(M,X)← geq(N,M) ∧ occ(N,X,S) ∧ final(S)

7. nat(0)←
8. nat(s(N))← nat(N)

9. occ(0, JS|XK, S) ←
10. occ(s(N), JS|XK, R)← occ(N,X,R)

11. geq(N, 0)←
12. geq(s(N), s(M))← geq(N,M)

together with the clauses (depending on A) which define the predicates initial, tr, and final,
where: for all states s, s1, s2∈Q, for all symbols a∈Σ, (i) initial(s) holds iff s is q0, (ii) tr(s1,a,s2)
holds iff 〈s1,a,s2〉∈δ, and (iii) final(s) holds iff s∈F .

The ω-program PA is locally stratified w.r.t. the stratification function σ defined as follows:
for every atom A in Bω, σ(A)=0, except that: for every element n in {sk(0) | k≥0}, for every
infinite list ρ in Qω, (i) σ(rejecting(ρ)) = σ(not a run(ρ)) = σ(nat(n)) = 1, and (ii) σ(run(ρ)) =
σ(accepting run(ρ))=2.

Now, let us consider a Büchi automaton A such that:

Σ={a, b}, Q={1, 2}, q0 =1, δ={〈1, a, 1〉, 〈1, b, 1〉, 〈1, a, 2〉, 〈2, a, 2〉}, F ={2}
which can be represented by the following graph:

1 2
a

a, b a

For this automaton A, program PA consists of clauses 1–12 and the following clauses 13–18 that
encode the initial state (clause 13), the transition relation (clauses 14–17), and the final state
(clause 18):

13. initial(1)←
14. tr(1, a, 1) ← 15. tr(1, b, 1) ← 16. tr(1, a, 2) ← 17. tr(2, a, 2) ←
18. final(2)←

In order to check whether or not L(A)=∅ we proceed in two steps as indicated at the beginning
of this Section 5. In the first step we use the rules of Section 3 for transforming the ω-program
PA into a monadic ω-program T . This transformation aims at the elimination of the existential
variables from clauses 1–6, with the objective of deriving unary predicates of type ilist. We
start from clause 6 and, by instantiation of the variable X of type ilist, we get:

19. exists final(M, J1|XK)← geq(N,M) ∧ occ(N, J1|XK, S) ∧ final(S)
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20. exists final(M, J2|XK)← geq(N,M) ∧ occ(N, J2|XK, S) ∧ final(S)

By some unfolding and subsumption steps, from clauses 19 and 20 we get:

21. exists final(0, J1|XK)← occ(N,X,S) ∧ final(S)

22. exists final(s(M), J1|XK)← geq(N,M) ∧ occ(N,X,S) ∧ final(S)
23. exists final(0, J2|XK)←
24. exists final(s(M), J2|XK)← geq(N,M) ∧ occ(N,X,S) ∧ final(S)

Note that clauses 21–24 are descendants of clauses derived by unfolding clauses 19 and 20 w.r.t.
the σ-maximal atom geq(N,M). By rule R1, we introduce:

25. new1(X)← occ(N,X,S) ∧ final(S)

This clause is σ-tight by taking, for every infinite list ρ of states, σ(new1(ρ)) = 0. By folding
clause 21 using clause 25, and folding clauses 22 and 24 using clause 6 (indeed, without loss of
generality, we may assume that clauses 1–6 have been introduced by rule R1), we get:

26. exists final(0, J1|XK)← new1(X)
27. exists final(s(M), J1|XK)← exists final(M,X)

28. exists final(s(M), J2|XK)← exists final(M,X)

By instantiation of the variable X and by some unfolding and subsumption steps, from clause
25 we get:

29. new1(J1|XK)← occ(N,X,S) ∧ final(S)

30. new1(J2|XK)←

Note that clause 29 is a descendant of clause 25, that has been unfolded w.r.t. the σ-maximal
atom occ(N,X,S). By folding clause 29 using clause 25 we get:

31. new1(J1|XK)← new1(X)

At this point we have obtained the definitions of the predicates exists final and new1 (that is,
clauses 23, 26–28, 30, and 31) that do not have existential variables.

Now the transformation of program PA proceeds by performing on clauses 1–5 a sequence
of transformation steps, which is similar to the one we have performed above on clause 6 for
eliminating its existential variables. By doing so, we get:

32. accepting run(J1|XK)← ¬ not a run(X) ∧ new1(X) ∧ ¬ rejecting(X)

33. run(J1|XK)← ¬ not a run(X)
34. not a run(J1|XK)← not a run(X)

35. not a run(J2|XK)← new2(X)
36. not a run(J2|XK)← not a run(X)
37. new2(J1|XK)←
38. rejecting(J1|XK)← ¬new1(X)
39. rejecting(J1|XK)← rejecting(X)

40. rejecting(J2|XK)← rejecting(X)

The final ω-program T obtained from program PA, consists of clauses 30–40 and it is a monadic
ω-program.

Now, in the second step of our verification method, we check whether or not the formula
∃X accepting run(X) holds in M(T ) by applying the proof method of [17]. We construct the
tree depicted in Figure 1, where the literals occurring in the two lowest levels are the same (see
the two rectangles) and, thus, we have detected an infinite loop. According to the conditions
given in Definition 6 of [17], this tree is a proof of ∃X accepting run(X). The run ρ= 12ω is a
witness for X and corresponds to the accepted word aω. Thus, L(A) 6= ∅.
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Figure 1: Proof of ∃X accepting run(X) w.r.t. the monadic ω-program T . On the right we have
shown the infinite loop and the associated accepting run 122ω (that is, 12ω).

Example 5 (Containment Between ω-Regular Languages) In this second application of
our verification method, we will consider regular sets of infinite words over a finite alphabet
Σ [27]. These sets are denoted by ω-regular expressions whose syntax is defined as follows:

e ::= a | e1e2 | e1+e2 | e
∗ with a ∈ Σ (regular expressions)

f ::= eω | e1e
ω
2 | f1+f2 (ω-regular expressions)

Given a regular (or an ω-regular) expression r, by L(r) we indicate the set of all words in Σ∗

(or Σω, respectively) denoted by r. In particular, given a regular expression e, we have that
L(eω) = {w0w1 . . . ∈ Σω | for i≥0, wi ∈ L(e)⊆Σ∗}.

Now we introduce an ω-program, called Pf , which defines the predicate ω-acc such that for
any ω-regular expression f , for any infinite word w, ω-acc(f,w) holds iff w ∈ L(f). Any infinite
word a0a1 . . . ∈ Σω is represented by the infinite list Ja0, a1, . . .K of symbols in Σ. The ω-program
Pf is made out of the following clauses:

1. acc(E, [E]) ← symb(E)

2. acc(E1E2,X)← app(X1,X2,X) ∧ acc(E1,X1) ∧ acc(E2,X2)

3. acc(E1+E2,X)← acc(E1,X)

4. acc(E1+E2,X)← acc(E2,X)

5. acc(E∗, [ ])←
6. acc(E∗,X)← app(X1,X2,X) ∧ acc(E,X1) ∧ acc(E∗,X2)

7. ω-acc(F1+F2,X)← ω-acc(F1,X)

8. ω-acc(F1+F2,X)← ω-acc(F2,X)

9. ω-acc(Eω,X)← ¬ new1(E,X)

10. ω-acc(E1E
ω
2 ,X)← prefix(X,N,X1) ∧ acc(E1,X1) ∧ ω-acc1(Eω

2 ,X1,X)

11. new1(E,X)← nat(M) ∧ ¬ new2(E,M,X)

12. new2(E,M,X)← geq(N,M) ∧ prefix (X,N, V ) ∧ acc(E∗, V )

13. ω-acc1(E, [ ],X) ← ω-acc(E,X)

14. ω-acc1(E, [H|T ], JH|XK) ← ω-acc1(E,T,X)

15. geq(N, 0)←
16. geq(s(N), s(M))← geq(N,M)

17. nat(0)←
18. nat(s(N))← nat(N)

19. prefix (X, 0, [ ]) ←
20. prefix (JS|XK, s(N), [S|Y ])← prefix (X,N, Y )
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21. app([ ], Y, Y )←
22. app([S|X], Y, [S|Z]) ← app(X,Y,Z)

together with the clauses defining the predicate symb, where symb(a) holds iff a ∈ Σ. We have
that prefix (X,N, Y ) holds iff Y is the list of the N (≥ 0) leftmost symbols of the infinite list
X. Clauses 1–6 stipulate that, for any finite word w and regular expression e, acc(e,w) holds
iff w ∈ L(e). Analogously, clauses 7–14 stipulate that, for any infinite word w and ω-regular
expression f , ω-acc(f,w) holds iff w ∈ L(f). In particular, clauses 9, 11, and 12 correspond to
the following definition:

ω-acc(Eω,X) ≡def ∀M(nat(M)→ ∃N∃V (geq(N,M) ∧ prefix (X,N, V ) ∧ acc(E∗, V )))

The ω-program Pf is stratified and, thus, it is locally stratified.

Now, let us consider the ω-regular expressions f1 ≡def aω and f2 ≡def (b∗a)ω. The following
two clauses:

23. expr1(X)← ω-acc(aω,X)
24. expr2(X)← ω-acc((b∗a)ω,X)

together with program Pf , define the predicates expr1 and expr2 such that, for every infinite
word w, expr1(w) holds iff w ∈ L(f1) and expr2(w) holds iff w ∈ L(f2). If we introduce the
following clause:

25. not contained(X)← expr1(X) ∧ ¬ expr2(X)

we have that L(f1) ⊆ L(f2) iff M(Pf ∪ {23, 24, 25}) 6|= ∃Xnot contained(X). By performing a
sequence of transformation steps which is similar to the one we have performed in Example 4,
from program Pf ∪ {23, 24, 25} we get the following monadic ω-program T :

26. not contained(Ja|XK)← ¬new3(X) ∧ new4(X)
27. new3(Ja|XK)← new3(X)

28. new3(Jb|XK)←
29. new4(Ja|XK)← new4(X)

30. new4(Jb|XK)← new5(X)
31. new5(Ja|XK)← new4(X)

32. new5(Jb|XK)← new5(X)

33. new5(Jb|XK)← ¬ new6(X)
34. new6(Ja|XK)←
35. new6(Jb|XK)← new6(X)

By using the proof method for monadic ω-programs of [17] we have that:
M(T ) 2 ∃X not contained(X)

and, thus, L(f1) ⊆ L(f2).

6. Related Work and Conclusions

There have been various proposals for extending logic programming languages to infinite struc-
tures (see, for instance, [5, 13, 14, 24]). In order to provide the semantics of infinite structures,
these languages introduce new concepts, such as complete Herbrand interpretations, rational

trees, and greatest models. Moreover, the operational semantics of these languages requires an
extension of SLDNF-resolution by means of equational reasoning and new inference rules, such
as the so-called coinductive hypothesis rule.

On the contrary, the semantics of ω-programs we consider in this paper is very close to the
usual perfect model semantics for logic programs on finite terms, and we do not define any
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new operational semantics. Indeed, the main objective of this paper is not to provide a new
model for computing over infinite structures, but to present a methodology, based on unfold/fold
transformation rules, for reasoning about such structures and proving their properties.

Very little work has been done for applying transformation techniques to logic languages that
specify the (possible infinite) computations of reactive systems. Notable exceptions are [28]
and [7], where the unfold/fold transformation rules have been studied in the context of guarded

Horn clauses (GHC) and concurrent constraint programs (CCP). However, GHC and CCP pro-
grams are definite programs and do not manipulate terms denoting infinite lists.

The transformation rules presented in this paper extend to ω-programs the rules for general
programs proposed in [8, 16, 21, 22, 23]. In Sections 3 and 4 we discuss in detail the relationship
of the rules in those papers with our rules here.

In Section 5 we have used our transformation rules for extending to infinite lists a verification
methodology proposed in [16] and, as an example, we have shown how to verify properties of
the infinite behaviour of Büchi automata and properties of ω-regular languages. This extends
our previous work (see [17]), as already illustrated at the beginning of Section 5.

The verification methodology based on transformations we have proposed here, is very general
and it can be applied to the proof of properties of infinite state reactive systems and, thus, it
goes beyond the capabilities of finite state model checkers. The focus of our paper has been the
proposal of correct transformation rules, that is, rules which preserve the perfect model, while
the automation of the verification methodology itself is left for future work. This automation
requires the design of suitable transformation strategies that can be defined by adapting to
ω-programs some strategies already developed in the case of logic programs on finite terms (see,
for instance, [19, 16]).

Many other papers use logic programming, possibly with constraints, for specifying and verify-
ing properties of finite or infinite state reactive systems (see, for instance, [1, 6, 9, 11, 12, 15, 20]),
but they do not consider terms which explicitly represent infinite structures. As we have seen in
the examples of Section 5, infinite lists are very convenient for specifying those properties and
the use of infinite lists avoids ingenious encodings which would have been otherwise required.
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A. Proofs for Section 4

We start off by showing that admissible transformation sequences preserve the local stratifica-
tion σ for the initial program P0 as stated in the following lemma.

Lemma 4.6 (Preservation of Local Stratification)
Suppose that P0 is a locally stratified ω-program, σ is a local stratification for P0, and P0, P1, . . . ,
Pn is an admissible transformation sequence. Then the programs P0 ∪Defsn, P1, . . . , Pn are
locally stratified w.r.t. σ.

Proof. Since P0, . . . , Pn is an admissible transformation sequence, every definition in Defsn

is locally stratified w.r.t. σ (see Point (1) of Definition 4.5). Since, by hypothesis, P0 is locally
stratified w.r.t. σ, also P0 ∪Defsn is locally stratified w.r.t. σ.
Now we will prove that, for k = 0, . . . , n, Pk is locally stratified w.r.t. σ by induction on k.

Basis (k = 0). By hypothesis P0 is locally stratified w.r.t. σ.

Step. We assume that Pk is locally stratified w.r.t. σ and we show that Pk+1 is locally stratified
w.r.t. σ. We proceed by cases depending on the transformation rule which is applied to derive
Pk+1 from Pk.

Case 1. Program Pk+1 is derived by definition introduction (rule R1). We have that Pk+1 =
Pk ∪ {δ1, . . . , δm}, where Pk is locally stratified w.r.t. σ by the inductive hypothesis. Since
P0, . . . , Pn is an admissible transformation sequence, {δ1, . . . , δm} is locally stratified w.r.t. σ
(see Point (1) of Definition 4.5). Thus, Pk+1 is locally stratified w.r.t. σ.

Case 2. Program Pk+1 is derived by instantiation (rule R2). We have that Pk+1 = (Pk −
{γ}) ∪ {γ1, . . . , γh}, where γ is the clause H ← B and, for i = 1, . . . , h, γi is the clause (H ←
B){X/Jsi|XK}.
Take any i ∈ {1, . . . , h}. Let L{X/Jsi|XK} be a literal in the body of γi. Let v be any valuation
and v′ be the valuation such that v′(X) = Jsi|v(X)K and v′(Y ) = v(Y ) for every variable Y
different from X. We have:

σ(v(H{X/Jsi|XK})) = σ(v′(H)) (definition of v′)
≥ σ(v′(L)) (γ is locally stratified w.r.t. σ)

= σ(v(L{X/Jsi|XK})) (definition of v′)

Thus, γi is locally stratified w.r.t. σ. Hence, Pk+1 is locally stratified w.r.t. σ.

Case 3. Program Pk+1 is derived by positive unfolding (rule R3). We have that Pk+1 =
(Pk − {γ}) ∪ {η1, . . . , ηm}, where γ is a clause in Pk of the form H ← GL ∧A ∧GR and clauses
η1, . . . , ηm are derived by unfolding γ w.r.t. A. Since, by the induction hypothesis, (Pk −{γ}) is
locally stratified w.r.t. σ, it remains to show that, for i = 1, . . . ,m, clause ηi is locally stratified
w.r.t. σ. For i = 1, . . . ,m, ηi is of the form (H ← GL ∧ Bi ∧ GR)ϑi, where γi: Ki ← Bi is a
clause in a variant of Pk such that γi has no variable in common with γ and Aϑi = Kiϑi. Take
any valuation v and let v′ be a valuation such that, for every variable X occurring in γ or γi,
v′(X) = v(Xϑi).

Let GL ∧Bi∧GR be the conjunction of s (≥ 0) literals L1, . . . , Ls. Without loss of generality,
we assume that GL ∧GR is L1 ∧ . . . ∧ Lr and Bi is Lr+1 ∧ . . . ∧ Ls, with 0 ≤ r ≤ s.

For j = 1, . . . , r, we have:

σ(v(Hϑi)) = σ(v′(H)) (definition of v′)

≥ σ(v′(Lj)) (γ is locally stratified w.r.t. σ)
= σ(v(Ljϑi)) (definition of v′)
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For j = r + 1, . . . , s, we have:

σ(v(Hϑi)) = σ(v′(H)) (definition of v′)

≥ σ(v′(A)) (γ is locally stratified w.r.t. σ)

= σ(v′(Ki)) (definition of v′ and because Aϑi = Kiϑi)

≥ σ(v′(Lj)) (γi is locally stratified w.r.t. σ)

= σ(v(Ljϑi)) (definition of v′)

Thus, the clause ηi is locally stratified w.r.t. σ.

Case 4. Program Pk+1 is derived by negative unfolding (rule R4). We have that Pk+1 =
(Pk −{γ}) ∪ {η1, . . . , ηr}, where γ is a clause in Pk of the form H ← GL ∧¬A∧GR and clauses
η1, . . . , ηr are derived by negative unfolding γ w.r.t. ¬A. Since, by the inductive hypothesis,
(Pk − {γ}) is locally stratified w.r.t. σ, it remains to show that, for j = 1, . . . , r, clause ηj is
locally stratified w.r.t. σ.

Let γ1: K1 ← B1, . . . , γm: Km ← Bm be the clauses in a variant of Pk such that, for
i = 1, . . . ,m, A = Kiϑi for some substitution ϑi. Then, for j = 1, . . . , r, ηj is of the form
H ← Lj1 ∧ . . . ∧ Ljs and, by construction, for p = 1, . . . , s, Ljp is a literal such that either
(Case a) Ljp is an atom that occurs positively in GL ∧GR, or (Case b) Ljp is a negated atom
that occurs in GL ∧ GR, or (Case c) Ljp is an atom M and ¬M occurs in Biϑi, for some
i ∈ {1, . . . ,m}, or (Case d) Ljp is a negated atom ¬M and M is an atom that occurs positively
in Biϑi, for some i ∈ {1, . . . ,m}.

Take any j ∈ {1, . . . , h}. Take any p ∈ {1, . . . , s}. Take any valuation v. In Cases (a) and
(b) we have σ(v(H)) ≥ σ(v(Ljp)) because, by the inductive hypothesis, γ is locally stratified
w.r.t. σ. In Case (c) we have:

σ(v(H)) > σ(v(A)) (γ is locally stratified w.r.t. σ and ¬A occurs in the body of γ)

= σ(v(Kiϑi)) (A = Kiϑi)

> σ(v(Ljp)) (γi is locally stratified w.r.t. σ)

In Case (d) we have:

σ(v(H)) ≥ σ(v(A)) + 1 (γ is locally stratified w.r.t. σ and ¬A occurs in the body of γ)

= σ(v(Kiϑi)) + 1 (A = Kiϑi)

≥ σ(v(Ljp)) + 1 (γi is locally stratified w.r.t. σ)

Thus, ηj is locally stratified w.r.t. σ. Hence, Pk+1 is locally stratified w.r.t. σ.

Case 5. Program Pk+1 is derived by subsumption (rule R5). Pk+1 is locally stratified w.r.t. σ
by the inductive hypothesis because Pk+1 ⊆ Pk.

Case 6. Program Pk+1 is derived by positive folding (rule R6). We have that Pk+1 = (Pk −
{γ}) ∪ {η}, where η is a clause of the form H ← BL ∧Kϑ ∧ BR derived by positive folding of
clause γ of the form H ← BL∧Bϑ∧BR using a clause δ of the form K ← B ∈ Defsk. We have
to show that η is locally stratified w.r.t. σ, that is, for every valuation v, σ(v(H)) ≥ σ(v(K)ϑ).

Take any valuation v. By the inductive hypothesis, since γ is locally stratified w.r.t. σ, we
have that: (α) for every literal L occurring in BL ∧Bϑ ∧BR, we have σ(v(H)) ≥ σ(v(L)).

By the applicability conditions of rule R6, clause δ is the unique clause defining the predicate of
its head and, by the hypothesis that the transformation sequence is admissible, this definition is
σ-tight (see Point (2) of Definition 4.5). Thus, for every valuation v′, we have that: (1) for every
L in B, σ(v′(K)) ≥ σ(v′(L)), and (2) there exists an atom A in B such that σ(v′(K)) = σ(v′(A)).

Let the valuation v′ be defined as follows: for every variable X, v′(X) = v(Xϑ). Then, we have
that: (β.1) for every L in B, σ(v(Kϑ)) ≥ σ(v(Lϑ)), and (β.2) there exists an atom A in B such
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that σ(v(Kϑ)) = σ(v(Aϑ)). Thus, from (α), (β.1), and (β.2), we get that σ(v(H)) ≥ σ(v(Kϑ)).
Hence, η is locally stratified w.r.t. σ.

Case 7. Program Pk+1 is derived by negative folding (rule R7). We have that Pk+1 = (Pk −
{γ}) ∪ {η} and, by the hypothesis that the transformation sequence is admissible, η is locally
stratified w.r.t. σ (see Point (3) of Definition 4.5).

In the rest of this Appendix we will consider:

(i) a local stratification σ : Bω →W ,

(ii) an ω-program P0 which is locally stratified w.r.t. σ, and

(iii) an admissible transformation sequence P0, . . . , Pn.

Definition A.1 (Old and New Predicates, Old and New Literals) Each predicate occur-

ring in P0 is called an old predicate and each predicate introduced by rule R1 is called a new
predicate. An old literal is a literal with an old predicate. A new literal is a literal with a new

predicate.

Thus, the new predicates are the ones which occur in the heads of the clauses of Defsn.

Without loss of generality, we will assume that the admissible transformation sequence P0, . . . ,
Pn is of the form P0, . . . , Pd, . . . , Pn, with 0≤d≤n, where:

(1) the sequence P0, . . . , Pd, with d≥0, is constructed by applying d times the definition intro-
duction rule, and

(2) the sequence Pd, . . . , Pn, is constructed by applying any rule, except the definition introduc-
tion rule R1.

Thus, Pd = P0 ∪ Defsn. In order to prove the correctness of the admissible transformation
sequence P0, . . . , Pn (see Proposition A.16 below) we will show that M(Pd) = M(Pn). In order
to prove Proposition A.16, we introduce the notion of a proof tree which is the proof-theoretic
counterpart of the perfect model semantics (see Theorem A.4 below). A proof tree for an atom
A ∈ Bω and a locally stratified ω-program P is constructed by transfinite induction as indicated
in the following definition.

Definition A.2 (Proof Tree for Atoms and Negated Atoms) Let A be an atom in Bω,

let P be a locally stratified ω-program, and let σ be a local stratification for P . Let PT<A denote

the set of proof trees for H and P , where H ∈ Bω and σ(H) < σ(A).

A proof tree for A and P is a finite tree T such that :

(i) the root of T is labeled by A,

(ii) a node N of T has children labeled by L1, . . . , Lr iff N is labeled by an atom H ∈ Bω and

there exist a clause γ ∈ P and a valuation v such that v(γ) is H ← L1 ∧ . . . ∧ Lr, and

(iii) every leaf of T is either labeled by the empty conjunction true or by a negated atom ¬H,

with H ∈ Bω, such that there is no proof tree for H and P in PT<A.

Let A be an atom in Bω and P be a locally stratified ω-program.

A proof tree for ¬A and P exists iff there are no proof trees for A and P . There exists at most

one proof tree for ¬A and P and, when it exists, it consists of the single root node labeled by ¬A.

Remark A.3. (i) For any A ∈ Bω if there is a proof tree for A and P , then there is no proof

tree for ¬A and P .

(ii) In any proof tree if a node H is an ancestor of a node A then σ(H) ≥ σ(A).
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The following theorem, whose proof is omitted, shows that proof trees can be used for defining
a semantics equivalent to the perfect model semantics.

Theorem A.4 (Proof Tree and Perfect Model) Let P be a locally stratified ω-program.

For every A ∈ Bω, there exists a proof tree for A and P iff A ∈M(P ).

In order to show that M(Pd) = M(Pn), we will use Theorem A.4 and we will show that, given
any atom A ∈ Bω, there exists a proof tree for A and Pd iff there exists a proof tree for A and Pn.

In the following, we will use suitable measures which we now introduce.

Definition A.5 (Three Measures: size, weight , µ) (i) For any proof tree T , size(T ) denotes

the number of nodes in T labeled by atoms in Bω.

(ii) For any atom A ∈ Bω, the ordinal σ(A) is said to be the stratum of A.

For any ordinal α ∈W , for any proof tree T , weight(α, T ) is the number of nodes of T whose

label is an atom with stratum α. (Recall that true, that is, the empty conjunction of literals,

is not an atom.)

(iii) For any atom A ∈ Bω, we define:

min-weight(A) =def min{weight(α, T ) | σ(A)=α and T is a proof tree for A and Pd}.

(iv) For any atom A ∈ Bω such that there exists at least a proof tree for A and Pd, we define:

µ(A) =def 〈σ(A),min-weight(A)〉 if A is an old atom

µ(A) =def 〈σ(A),min-weight(A)− 1〉 if A is a new atom

(v) For any atom A ∈ Bω such that there exists no proof tree for A and Pd, we define:

µ(¬A) =def 〈σ(A), 0〉.

Remark A.6. (i) If A is an old atom then min-weight(A)>0 else min-weight(A)≥0.

(ii) For any atom A ∈ Bω, µ(A) is undefined if there is no proof tree for A and Pd.

Now we extend µ to conjunctions of literals. First, we introduce the binary operation ⊕ :
(W × N)2 → (W × N), where W is the set of countable ordinals and N is the set of natural
numbers, defined as follows:

〈α1,m1〉 ⊕ 〈α2,m2〉 =





〈α1, m1〉 if α1 > α2

〈α1, m1+m2〉 if α1 = α2

〈α2, m2〉 if α1 < α2

or equivalently,

〈α1,m1〉⊕ 〈α2,m2〉 = 〈max(α1, α2), if α1 =α2 then m1+m2 else (if α1 >α2 then m1 else m2)〉

Given a conjunction of literals L1 ∧ . . . ∧ Lr such that, for i = 1, . . . , r, with r ≥ 1, there is a
proof tree for Li and Pd, we define:

µ(L1 ∧ . . . ∧ Lr) =def µ(L1)⊕ · · · ⊕ µ(Lr)

For true, which is the empty conjunction of literals, we define:

µ(true) =def 〈0, 0〉

Note that the definition of µ(true) is consistent with the fact that true is the neutral element
for ∧ and, thus, µ(true) should be the neutral element for ⊕, which is 〈0, 0〉.

The following lemma follows from the definition of the measure µ. Recall that a new predicate
can only be defined in terms of old predicates.



21.

Lemma A.7 (Properties of µ for a Definition in Pd) Let δ ∈ Pd be a σ-tight clause intro-

duced by the definition rule R1 with m=1, that is, δ is the only clause defining the head predicate

of δ in Pd. Let v be a valuation and v(δ) be of the form: K ← L1 ∧ . . . ∧ Lq. We have that :
µ(K) = µ(L1)⊕ . . . ⊕ µ(Lq).

Proof. Without loss of generality, we may assume that L1 is an atom and σ(K) = σ(L1)
because δ is σ-tight and, thus, L1 is σ-maximal. We have that:

Thus

µ(K) = 〈σ(K), min-weight(K)−1〉.

Now, min-weight(K) = {by definition of min-weight} =

= min{weight(σ(K), TK )} where TK is a proof tree for K and Pd =

= {by definition of weight (see also Figure 2)} =

=
(
min

∑
i=1,...,q weight(σ(K), Ti)

)
+1 where for i=1, . . . , q, Ti is a proof tree for Li and Pd =

= {by definition of weight and Remark A.3} =

=
(
min

∑
i=1,...,q ∧ σ(Li)=σ(K) weight(σ(K), Ti)

)
+1 = {by min

∑
=

∑
min} =

=
(∑

i=1,...,q ∧ σ(Li)=σ(K)min-weight(Li)
)
+1 = {by σ-tightness} =

=
(∑

i=1,...,q ∧ σ(Li)=σ(L1)min-weight(Li)
)
+1.

Thus,

µ(K) = 〈σ(L1),
∑

i=1,...,q ∧ σ(Li)=σ(L1)min-weight(Li)〉 = {by definition of ⊕} =

= µ(L1)⊕ . . .⊕ µ(Lq).

K

L1 Lq

T1 Tq

. . .

Figure 2: A proof tree for K and Pd. There is a valuation v and a clause δ ∈ Pd such that v(δ)
is of the form: K ← L1 ∧ . . . ∧ Lq. For i = 1, . . . , q, Ti is a proof tree for Li and Pd.

Let > denote the usual greater-than relation on N. Let >lex denote the lexicographic ordering
over W × N.

Let π1 and π2 denote, respectively, the first and second projection function on pairs. Given a
pair A = 〈a, b〉 by A1 we denote a and by A2 we denote b.

Lemma A.8 (Properties of ⊕) (i) ⊕ is an associative, commutative binary operator.

(ii) For every A,B,C ∈W × N and R ∈ {≥lex, >lex}, we have that :
(ii.1) A⊕B ≥lex A

(ii.2) if A ≥lex B then A⊕ C ≥lex B ⊕ C

(ii.3) if A >lex B, A1 ≥ C1, and A2 > 0 then A⊕ C >lex B ⊕ C

(ii.4) if A R B and A1 > C1 then A R B ⊕ C
(ii.5) if A R B ⊕ C then A R B and A R C
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Proof. (i) It follows immediately from the definition.

(ii.1) By cases. If A1 > B1 then A⊕B = A ≥lex A. If A1 = B1 then A⊕B = 〈A1, A2+B2〉 ≥lex

A. If B1 > A1 then A⊕B = B >lex A.

(ii.2) Let us consider the following two pairs:
(α) =def A⊕ C = 〈max(A1, C1), if A1 =C1 then A2+C2 else if A1 >C1 then A2 else C2〉

and
(β) =def B ⊕ C = 〈max(B1, C1), if B1 =C1 then B2+C2 else if B1 >C1 then B2 else C2〉.

We have to show that (α) ≥lex (β).
Since A ≥lex B, there are two cases. Case (1): A = B, and Case (2): A >lex B. Case (2)
consists of two subcases: Case (2.1): A1 > B1, and Case (2.2): A1 = B1 and A2 > B2.
In Case (1) we have that (α) = (β). Thus, we get (α) ≥lex (β) as desired.
In Case (2.1) we consider two subcases: Case (2.1.1): A1 > B1 and B1 ≥ C1, and Case (2.1.2):
A1 > B1 and B1 < C1.
In Case (2.1.1) we have that max(A1, C1) > max(B1, C1) and thus, we get that (α) ≥lex (β).
In Case (2.1.2) (β) reduces to 〈C1, C2〉 and, since A1 > B1 ≥ C1, we get that (α) ≥lex (β).
In Case (2.2) since A1 = B1, (β) reduces to
〈max(A1, C1), if A1 = C1 then B2+C2 else if A1 > C1 then B2 else C2〉

and, since A2 > B2, we get that (α) ≥lex (β).

(ii.3) Let us consider again the two pairs:
(α) =def A⊕ C = 〈max(A1, C1), if A1 =C1 then A2+C2 else if A1 >C1 then A2 else C2〉

and
(β) =def B ⊕ C = 〈max(B1, C1), if B1 =C1 then B2+C2 else if B1 >C1 then B2 else C2〉.

We have to show (α) >lex (β).
Since A >lex B there are two cases. Case (1): A1 > B1 and A1 ≥ C1 and A2 > 0. Case (2):
A1 = B1 and A2 > B2 and A1 ≥ C1 and A2 > 0.
For Case (1) we consider two subcases: Case (1.1) A1 = C1 and Case (1.2) A1 > C1.
In Case (1.1) we have that (α) reduces to 〈C1, A2 + C2〉 and
(β) reduces to 〈C1, if B1 = C1 then B2+C2 else if B1 > C1 then B2 else C2〉
and since A1 > B1 and A1 = C1, we get that (β) further reduces to 〈C1, C2〉 and, since A2 > 0,
we get that (α) >lex (β).
In Case (1.2) we have that (α) reduces to 〈A1, . . .〉 and (β) reduces to 〈max(B1, C1), . . .〉, and
since A1 > B1 and A1 > C1 we get that (α) >lex (β).

For Case (2) we consider two subcases: Case (2.1) A1 = B1 = C1 and Case (2.2) A1 = B1 > C1.
In Case (2.1) we have that (α) reduces to 〈A1, A2 + C2〉 and (β) reduces to 〈A1, B2 + C2〉, and
since in Case (2) we have that A2 > B2, we get that (α) >lex (β).
In Case (2.2) we have that (α) reduces to 〈A1, A2〉 and (β) reduces to 〈B1, B2〉, and since A1 = B1

and in Case (2) we have that A2 > B2, we get that (α) >lex (β).

(ii.4) We have that:
B ⊕ C = 〈max(B1, C1), if B1 = C1 then B2+C2 else if B1 > C1 then B2 else C2〉

We reason by cases. Case (1): we assume A = B and A1 > C1 and we show A ≥lex B ⊕ C.
Case (2): we assume A >lex B and A1 > C1 and we show A >lex B ⊕ C.

Case (1). Since A = B, from A1 > C1 we get that B1 > C1 and thus, B ⊕ C = B. Thus,
A ≥lex B ⊕ C.

Case (2). There are two subcases: (2.1) A1 > B1 and A1 > C1, and (2.2) (A1 = B1 and
A2 > B2) and A1 > C1.
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Case (2.1). We have that: A1 > max(B1, C1) and thus, A ≥lex B ⊕ C.
Case (2.2). Since A1 = B1 and A1 > C1, we have that: B ⊕ C = 〈B1, B2〉 =def B. Since
A1 = B1 and A2 > B2 we get A >lex B, and thus, A >lex B ⊕ C.

(ii.5) We have that:
B ⊕ C = 〈max(B1, C1), if B1 = C1 then B2+C2 else if B1 > C1 then B2 else C2〉

We reason by cases: Case (1) A = B ⊕ C, and Case (2) A >lex B ⊕ C. In order to show
Point (ii.5) in Case (1) we have to show A ≥lex B and A ≥lex C, and in Case (2) we have to
show A >lex B and A >lex C.

Case (1) Assume A = B ⊕ C.
Case (1.1): B1 = C1. Thus, A1 = B1 = C1 and A2 = B2 + C2. Thus, A ≥lex B and A ≥lex C.
Case (1.2): B1 > C1. Thus, A1 = B1 and A2 = B2. Thus, A ≥lex B and A ≥lex C.
Case (1.3): B1 < C1. Like Case (1.2), by interchanging B and C.

Case (2) Assume A >lex B ⊕ C.
Case (2.1): A1 > max(B1, C1). We get: A >lex B and A >lex C.
Case (2.2): A1 = max(B1, C1).
Case (2.2.1): B1 = C1. We have: A1 = B1 = C1 and, since A >lex B⊕C, we have: A2 > B2+C2.
Thus, we get A >lex B and A >lex C.
Case (2.2.2): B1 > C1. Thus, A1 = max(B1, C1) = B1. Since A >lex B⊕C and A1 = π1(B⊕C),
we have: A2 > π2(B ⊕ C), that is,

A2 > if B1 =C1 then B2+C2 else if B1 > C1 then B2 else C2, that is,
A2 > B2.

Thus, we get A >lex B and, since B1 > C1, we also get A >lex C.
Case (2.2.3): B1 < C1. Like Case (2.2.2), by interchanging B and C.

Notation A.9. By L we will denote the negative literal ¬L, if L is a positive literal, and the
positive literal A, if L is the negative literal ¬A.

Lemma A.10. For all atoms A ∈ Bω, literals L1, . . . , Lm, which are either atoms in Bω or

negation of atoms in Bω, if for i = 1, . . . ,m, σ(A) ≥ σ(Li) then µ(A) ≥lex µ(L1)⊕ · · · ⊕ µ(Lm).

Proof. The proof is by induction on m by recalling that the ⊕ is associative and commutative.
We do the induction step. The base case can be proved similarly to Cases (1) and (2.1) below.

We assume that µ(A) ≥lex µ(L1)⊕ · · · ⊕ µ(Lj), for some j ≥ 1, and we show that µ(A) ≥lex

µ(L1)⊕ · · · ⊕ µ(Lj)⊕ µ(Lj+1).
By definition, µ(A) = 〈σ(A), 0〉. Let µ(L1) ⊕ · · · ⊕ µ(Lj) = 〈β,w1〉, for some β ∈ W and

w1 ∈ N. Thus, the induction hypothesis can be stated as follows: 〈σ(A), 0〉 ≥lex 〈β,w1〉.
We have the following two cases.
Case (1). Assume that Lj+1 is a positive literal, say B. Let µ(B) be 〈σ(B), w2〉, for some

w2 ∈ W . Since σ(A) ≥ σ(Lj+1) > σ(B), by Lemma A.8 (ii.4) we get that µ(A) ≥lex µ(L1) ⊕
· · · ⊕ µ(Lj)⊕ µ(B).

Case (2). Assume that Lj+1 is a negative literal, say ¬B. Let µ(¬B) be 〈σ(B), 0〉. By
hypothesis, we have σ(A) ≥ σ(Lj+1) = σ(B). We have three subcases.
Case (2.1). σ(B) > β. By induction hypothesis we have that 〈σ(A), 0〉 ≥lex 〈β,w1〉. We
also have that 〈β,w1〉 ⊕ 〈σ(B), 0〉 = 〈σ(B), 0〉 and 〈σ(A), 0〉 ≥lex 〈σ(B), 0〉. Thus, we get
〈σ(A), 0〉 ≥lex 〈β,w1〉 ⊕ 〈σ(B), 0〉.
Case (2.2). σ(B) = β. By induction hypothesis we have that 〈σ(A), 0〉 ≥lex 〈β,w1〉. We also
have that 〈β,w1〉 ⊕ 〈σ(B), 0〉 = 〈β,w1〉. Thus, we get 〈σ(A), 0〉 ≥lex 〈β,w1〉 ⊕ 〈σ(B), 0〉.
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Case (2.3). σ(B) < β. As Case (2.2).

Now we introduce the notion of a µ-consistent proof tree which will be used in Proposition A.16
below. This notion is a generalization of the one of a rank-consistent proof tree introduced
in [26].

Definition A.11 (σ-max Derived Clause) We say that a clause γ in a program Pk of the

sequence Pd, . . . , Pn is a σ-max derived clause if γ is a descendant of a clause β in Pj , with

d<j≤k, such that β has been derived by unfolding a clause α in Pj−1 w.r.t. an old σ-maximal

atom. (Recall that, by definition, a clause is a descendant of itself.)

Definition A.12 (µ-consistent Proof Tree) Let A be an atom in Bω and Pk be a program in

the transformation sequence Pd, . . . , Pn. We say that a proof tree T for A and Pk is µ-consistent
if for all atoms H, all literals L1, . . . , Lr which are the children of H in T , where H ← L1∧. . .∧Lr

is a clause v(γ) for some valuation v and some clause γ ∈ Pk, we have that :
if H has a new predicate and γ is not σ-max derived then µ(H) ≥lex µ(L1)⊕ · · · ⊕ µ(Lr)
else µ(H) >lex µ(L1)⊕ · · · ⊕ µ(Lr).

The proof tree for the negated atom ¬A and Pk, if any, is µ-consistent. (Recall that this proof

tree, if it exists, consists of the single root node labeled by ¬A.)

Let us consider the following ordering on Bω which will be used in the proof of Proposition A.16.

Definition A.13 (Ordering ≻) Given any two atoms A1, A2 ∈ Bω, we write A1 ≻ A2 if either

(i) µ(A1) >lex µ(A2), or

(ii) µ(A1) = µ(A2) and A1 is a new atom and A2 is an old atom.

By abuse of notation, given any two atoms A1, A2 ∈ Bω, we write A1 ≻ ¬A2 if σ(A1)> σ(A2)
(that is, σ(A1)≥σ(A2)).

We have that ≻ is a well-founded ordering on Bω.

Lemma A.14. Let T be a µ-consistent proof tree for an atom A and a program P . Then, for

every atom B and literal L which is a child of B in T , we have B ≻ L.

Proof. Let L1, . . . , Lr be the children of B in T , for some γ ∈ P and valuation v such that
v(γ) is B ← L1 ∧ . . . ∧Lr, and let L be the literal Li. If Li is the negated atom ¬Ai then, since
P is locally stratified w.r.t. σ, we have σ(B) > σ(Ai) and B ≻ Li. Let us now consider the case
where Li is positive.

If the predicate of B is old then, by µ-consistency of T , µ(B) >lex µ(L1) ⊕ · · · ⊕ µ(Lr). By
Lemma A.8 (ii.1), µ(L1)⊕· · ·⊕µ(Lr) ≥lex µ(Li) and, thus, µ(B) >lex µ(Li). By definition of ≻,
we have that B ≻ Li.

If the predicate of B is new and γ is σ-max derived then, by µ-consistency of T , µ(B) >lex µ(Li)
and, thus, B ≻ Li.

Finally, if the predicate of B is new and γ is not σ-max derived then γ is a descendant of a
clause that has not been derived by folding and, thus, the predicate of Li is old. By µ-consistency,
µ(B) ≥lex µ(Li) and, since the predicate of B is new and the one of Li is old, we have B ≻ Li.

Lemma A.15. Consider the locally stratified ω-program Pd of the admissible transformation se-

quence P0, . . . , Pd, . . . , Pn, where: (1) P0, . . . , Pd is constructed by using rule (R1), and (2) Pd, . . . ,
Pn is constructed by applying rules (R2)–(R7). If there exists a proof tree for A and Pd then

there exists a µ-consistent proof tree for A and Pd.
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Proof. Let us consider a proof tree T for A and Pd such that min-weight(A) = weight(σ(A), T ).
We want to show that T is µ-consistent. That tree T can be depicted as in Figure 3. That tree
has been constructed by using at the top the clause γ and a valuation v such that v(γ) is of the
form A← L1 ∧ . . . ∧ Ln.

tree T : A

L1 Ln

T1 Tn

. . .

Figure 3: A proof tree T for A and Pd such that min-weight(A) = weight(σ(A), T ). There is a
valuation v and a clause γ ∈ Pd such that v(γ) is of the form: A← L1∧. . .∧Ln. For i = 1, . . . , n,
Ti is a µ-consistent proof tree for Li and Pd.

By induction on size(T ), we may assume that T1, . . . , Tn are µ-consistent proof trees. Since γ
is locally stratified, we also have that for i=1, . . . , n, σ(A) ≥ σ(Li).
(Recall that if Li, for some i ∈ {1, . . . , n}, is a negated atom, then Ti consists of the single node
Li and Ti is µ-consistent.)

In order to prove the lemma we have to show the following two points:
(P1) if A is a new atom then µ(A)≥lex µ(L1)⊕ ∧ . . . ∧ ⊕µ(Ln), and
(P2) if A is an old atom then µ(A)>lex µ(L1)⊕∧ . . . ∧ ⊕µ(Ln).

(Note that A ← L1 ∧ . . . ∧ Ln is not an instance of a σ-max derived clause belonging to Pd,
because no such a clause exists in Pd and, thus, if Points (P1) and (P2) hold then the proof tree
T is µ-consistent.)

Now, let us consider the following two cases: (1) A is a new atom, and (2) A is an old atom.

Case (1): A is a new atom. We have that:

µ(A) = 〈σ(A), min-weight(A)−1〉 = 〈σ(A),
∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)〉.

Now, we consider two subcases.
Case (1.1): for i = 1, . . . , n, σ(A)>σ(Li). In this case we have that:

〈σ(A),
∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)〉 =

= 〈σ(A), 0〉 >lex µ(L1)⊕ . . .⊕ µ(Ln).

This last inequality holds because π1(µ(L1)⊕ . . . ⊕ µ(Ln)) = max{σ(Li) | i = 1, . . . , n} < σ(A)
because for i = 1, . . . , n, σ(A)>σ(Li).
Case (1.2): there exists i ∈ {1, . . . , n} such that σ(A)=σ(Li). In this case we have that:

〈σ(A),
∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)〉 = µ(L1)⊕ . . .⊕ µ(Ln),

because µ(Lp) ⊕ µ(Lq) = µ(Lp), whenever π1(µ(Lp)) > π1(µ(Lq)). This concludes the proof of
Case (1) and of Point (P1).

Case (2): A is an old atom. We have that:

µ(A) = 〈σ(A), min-weight(A)〉 =

= {the proof tree T for A and Pd is such that min-weight(A) = weight(σ(A), T )} =

= 〈σ(A),
( ∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)
)

+ 1〉.

Let M be the subset of {1, . . . , n} such that for all j ∈M , σ(Lj)=σ(A). We have that:
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〈σ(A),
( ∑

i=1,...,n ∧ σ(Li)=σ(A) min-weight(Li)
)

+ 1〉 =

= 〈σ(A),
( ∑

j∈M min-weight(Lj)
)

+ 1〉 >lex µ(L1)⊕ . . .⊕ µ(Ln).

This last inequality holds because
∑

j∈M min-weight(Lj) = π2(µ(L1) ⊕ . . . ⊕ µ(Ln). This con-
cludes the proof of Case (2), of Point (P2), and of the lemma.

Proposition A.16. Let P0 be a locally stratified ω-program, σ be a local stratification for P0,

and P0, . . . , Pd, . . . , Pn be an admissible transformation sequence where: (1) P0, . . . , Pd is con-

structed by using rule (R1), and (2) Pd, . . . , Pn is constructed by applying rules (R2)–(R7).
Then, for every atom A ∈ Bω, we have that, for k = d, . . . , n:

(Soundness) if there exists a proof tree for A and Pk, then there exists a proof tree for A and

Pd, and

(Completeness) if there exists a µ-consistent proof tree for A and Pd, then there exists a µ-consist-

ent proof tree for A and Pk.

Proof. We prove the (Soundness) and (Completeness) properties by induction on k.

Clearly they hold for k = d.

Now, let us assume, by induction, that:

(IndHyp) the (Soundness) and (Completeness) properties hold for k, with d≤k<n.

We have to show that they hold for k+1.

In order to prove that the (Soundness) and (Completeness) properties hold for k+1, it is
sufficient to prove that:

(S) for every atom A ∈ Bω, if there exists a proof tree for A and Pk+1 then there exists a proof
tree for A and Pk, and

(C) for every atom A ∈ Bω, if there exists a µ-consistent proof tree for A and Pk then there
exists a µ-consistent proof tree for A and Pk+1.

We proceed by complete induction on the ordinal σ(A) associated with the atom A. The
inductive hypotheses (IS) and (IC) for (S) and (C), respectively, are as follows:

(IS) for every atom A′ ∈ Bω such that σ(A′) < σ(A), if there exists a proof tree for A′ and
Pk+1 then there exists a proof tree for A′ and Pk,

and

(IC) for every atom A′ ∈ Bω such that σ(A′)<σ(A), if there exists a µ-consistent proof tree
for A′ and Pk then there exists a µ-consistent proof tree for A′ and Pk+1.

By the inductive hypotheses (IS) and (IC), we have that:

(ISC) for every atom A′ ∈ Bω such that σ(A′)<σ(A) (and thus, A ≻ A′), there exists a proof
tree T ′ for A′ and Pk iff there exists a proof tree U ′ for A′ and Pk+1.

Proof of (S). Given a proof tree U for A and Pk+1 we have to prove that there exists a proof

tree T for A and Pk. The proof is by complete induction on size(U). The inductive hypothesis is:

(Isize) for every atom A′ ∈ Bω, for every proof tree U ′ for A′ and Pk+1, if size(U ′) < size(U)
then there exists a proof tree T ′ for A′ and Pk.
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Let η be a clause in Pk+1 and v be a valuation. Let v(η) be a clause of the form A← L1∧. . .∧Lr

used at the root of U . We proceed by considering the following cases: either (Case 1) η belongs
to Pk or (Case 2) η does not belong to Pk and it has been derived from a clause in Pk by
applying a transformation rule among R2, R3, R4, R6, and R7. These two cases are mutually
exclusive and exhaustive because rule R5 removes a clause.

We have that, for i = 1, . . . , r, there is a proof tree Ti for Li and Pk. Indeed, (i) if Li is an
atom then, by induction on (Isize), there exists a proof tree Ti for Li and Pk, and (ii) if Li is a
negated atom ¬Ai then, by the fact that program Pk+1 is locally stratified w.r.t. σ and by the
inductive hypothesis (ISC), there is no proof tree for Ai and Pk and hence, by definition, there
is a proof tree Ti for Li and Pk.

Case 1. A proof tree T for A and Pk can be constructed by using v(η) and the proof trees
T1, . . . , Tr for L1, . . . , Lr, respectively, and Pk.

Case 2.1 (Pk+1 is derived from Pk by using rule R2.) Clause η is derived by instantiating a
variable X in a clause γ ∈ Pk. We have that γ is a clause of the form Ã← L̃1 ∧ . . . ∧ L̃r and η
is of the form (Ã ← L̃1 ∧ . . . ∧ L̃r){X/Js|XK} for some s ∈ Σ. Thus, v(Ã{X/Js|XK}) = A and,
for i=1, . . . , r, v(L̃i{X/Js|XK}) = Li.

Let v′ be the valuation such that v′(X) = v(Js|XK) and v′(Y ) = v(Y ) for every variable Y
different from X. Then v′(γ) = v(η) and a proof tree T for A and Pk can be constructed from
T1, . . . , Tr by using v′(γ) at the root of T .

Case 2.2 (Pk+1 is derived from Pk by using rule R3.) Clause η is derived by unfolding a clause
γ ∈ Pk w.r.t. a positive literal, say K̃, in its body using clause γi. Recall that clauses γ and γi

are assumed to have no variables in common (see rule R3). Without loss of generality, we may
assume that: (i) η is of the form (Ã← L̃1∧. . .∧L̃r)ϑi, (ii) γ is of the form Ã← K̃∧L̃q+1∧. . .∧L̃r,

with 0≤ q ≤ r, and (iii) γi is of the form H̃ ← L̃1 ∧ . . . ∧ L̃q, where ϑi is an (idempotent and

without identity bindings) most general unifier of K̃ and H̃.

Let v′ be the valuation such that:(i) v′(X) = v(Xϑi) for every variable X in the domain of ϑi,
and (ii) v′(Y ) = v(Y ) for every variable Y not in the domain of ϑi. For this choice of v′ we have
that v′(K̃) = {by definition of v′} = v(K̃ϑi) = {since K̃ϑi = H̃ϑi} = v(H̃ϑi) = {by definition
of v′} = v′(H̃).

For instance, given γ: p(X) ← q(X,Y ) ∧ s(X,Y,W ) and γi: q(Z, a) ← r(Z), by unfolding γ
w.r.t. q(X,Y ) using γi, we get a most general unifier ϑi = {Z/X, Y/a} and the clause η: p(X)←
r(X)∧s(X,a,W ). Thus, if v(η)=p(b)← r(b)∧s(b, a, c), we have v′(X)=b, v′(W )=c, v′(Z)=b,
and v′(Y )=a.

Now, since v′(K̃) = v′(H̃), given the proof trees T1, . . . , Tr for L1, . . . , Lr, respectively, and
Pk, we can construct a proof tree T for A and Pk as follows. Let K denote v′(K̃). (i) We first
construct a proof tree TK for K and Pk from T1, . . . , Tq by using clause v′(γi) at the root of TK ,
and then, (ii) we construct T from TK , Tq+1, . . . , Tr by using clause v′(γ) at the root of T .

Case 2.3 (Pk+1 is derived from Pk by using rule R4.) Clause η is derived by unfolding a clause
γ ∈ Pk w.r.t. a negative literal, say ¬K̃, in its body. Recall that we have assumed that v(η) is
of the form A← L1 ∧ . . . ∧ Lr. Without loss of generality, we may assume that:

(i) there exist m substitutions ϑ1, . . . , ϑm and m clauses γ1, . . . , γm in Pk such that, for i =
1, . . . ,m, ϑi is a most general unifier of K̃ and hd(γi), K̃ =hd(γi)ϑi, and v(γiϑi) is of the form
K ← Bi, and

(ii) v(γ) is of the form A← ¬K ∧Lm+1∧ . . .∧Lr, with 0 ≤ m ≤ r, (note that, by Condition (1)
of rule R4, γ is not instantiated by the negative unfolding). Thus, v(η) = A ← L1 ∧ . . . ∧ Lr,
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is derived from A ← ¬(B1 ∨ . . . ∨ Bm) ∧ Lm+1 ∧ . . . ∧ Lr by pushing ¬ inside and pushing ∨
outside.

Now, let us assume by absurdum that there exists a proof tree UK for K and Pk+1. Then,
there exists a valuation v′ such that the children of the root of UK are labeled by the literals
M1, . . . ,Ms, where v′(bd(γiϑi)) = M1 ∧ . . . ∧Ms, for some i, with 1 ≤ i ≤ m. Since γi has no
existential variables, without loss of generality we take v′(X) = v(X), for every variable X. By
the definition of the negative unfolding rule, there exist j ∈ {1, . . . , s} and h ∈ {1, . . . ,m} such
that Mj = Lh. By hypothesis, there exists a proof tree for Lh and Pk and, thus, UK is not a
proof tree for K and Pk+1. This is a contradiction and, thus, we have that there is no proof tree
for K and Pk+1. Since σ(K) < σ(A), by the inductive hypothesis (ISC), we have that there is
no proof tree for K and Pk. Hence, there is a proof tree T¬K for ¬K and Pk. Thus, we can
construct a proof tree T for A and Pk from T¬K , Tm+1, . . . , Tr by using clause v(γ) at the root
of T .

Case 2.4 (Pk+1 is derived from Pk by using rule R6.) Let us assume that clause η of the
form Ã ← L̃1 ∧ L̃2 ∧ . . . ∧ L̃r is derived by positive folding from a clause γ ∈ Pk of the form
Ã ← M̃ ′

1 ∧ . . . ∧ M̃ ′
s ∧ L̃2 ∧ . . . ∧ L̃r using a clause δ ∈ Defsk of the form K̃ ← M̃1 ∧ . . . ∧ M̃s.

Without loss of generality, we may assume that L̃1 = K̃ϑ, where ϑ is a substitution such that,
for i = 1, . . . , s, M̃iϑ = M̃ ′

i . Thus, the literal L1 in the body of v(η) is v(K̃ϑ). We have that
δ ∈ Pd and the definition of the head predicate of δ in Pd consists of clause δ only.

By induction on k, we have that the (Soundness) property holds for k. We know that there
is a proof tree for L1 and Pk. Hence, by Conditions (i) and (ii) of rule R6, there exists a proof
tree for L1 and Pd, for some valuation v′ such that v′(δ) is of the form L1 ←M1∧ . . .∧Ms (note
that if X∈vars(η) then v′(X) = v(X)).

By induction on k, we have that the (Soundness) and (Completeness) properties hold for k.
Thus, there are proof trees U1, . . . , Us for M1, . . . ,Ms, respectively, and Pk.

Finally, by induction on (Isize), we know that there exist the proof trees T2, . . . , Tr for
L2, . . . , Lr, respectively, and Pk. As a consequence, we can construct a proof tree T for A
and Pk from U1, . . . , Us, T2, . . . , Tr by using clause v(γ) at the root of T .

Case 2.5 (Pk+1 is derived from Pk by using rule R7.) Clause η is derived by negative folding
from a clause γ ∈ Pk using clauses δ1, . . . , δm in Defsk. Thus, we have that: (i) v(γ) is of the
form A← N1 ∧ . . .∧Nm ∧L2∧ . . .∧Lr, (ii) for i = 1, . . . ,m, v(δi) is of the form K ← Bi, where
either Ni is a positive literal Ai and Bi is ¬Ai, or Ni is a negative literal ¬Ai and Bi is Ai, and
(iii) v(η) is of the form A← ¬K ∧ L2 ∧ . . . ∧ Lr. Thus, L1 = ¬K.

By the inductive hypothesis (ISC), there exists a proof tree for L1 and Pk and, since L1 = ¬K,
there is no proof tree for K and Pk. By induction on k, we have that the (Completeness) holds
for k and, therefore, there exists no proof tree for K and Pd. We have that {δ1, . . . , δm} ⊆ Pd

and the clauses defining the head predicate of δ1, . . . , δm in Pd are {δ1, . . . , δm}. Thus, there are
no proof trees for B1, . . . , Bm and Pd.

By induction on k, the (Soundness) property holds for k and, therefore, there are no proof
trees for B1, . . . , Bm and Pk. Thus, there are proof trees U1, . . . , Um for N1, . . . , Nm, respectively,
and Pk. Finally, by induction on (Isize), we have that there are the proof trees T2, . . . , Tr

for L2, . . . , Lr, respectively, and Pk. We can construct a proof tree T for A and Pk from
U1, . . . , Um, T2, . . . , Tr by using clause v(γ) at the root of T .

Proof of (C). Given a µ-consistent proof tree T for A and Pk, we prove that there exists a

µ-consistent proof tree U for A and Pk+1.
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The proof is by well-founded induction on ≻ ⊆ Bω×Bω. The inductive hypothesis is:

(Iµ) for every atom A′ ∈ Bω such that A ≻ A′, if there exists a µ-consistent proof tree T ′ for
A′ and Pk then there exists a µ-consistent proof tree U ′ for A′ and Pk+1.

Let γ be a clause in Pk and v be a valuation such that v(γ) is the clause of the form A ←
L1 ∧ . . . ∧ Lr used at the root of T . We consider the following cases: either (Case 1) γ belongs
to Pk+1 or (Case 2) γ does not belong to Pk+1 because it has been replaced by zero or more
clauses derived by applying a transformation rule among R2–R7.

Case 1. By the µ-consistency of T and Lemma A.14, for i = 1, . . . , r, we have A ≻ Li. Hence,
by the inductive hypotheses (Iµ) and (ISC), there exists a µ-consistent proof tree Ui for Li and
Pk+1. A µ-consistent proof tree U for A and Pk+1 is constructed by using v(γ) at the root of U
and the proof trees U1, . . . , Ur for L1, . . . , Lr, respectively, and Pk+1.

Case 2.1 (Pk+1 is derived from Pk by using rule R2.) Suppose that by instantiating a variable
X of clause γ in Pk we derive clauses γ1, . . . , γh in Pk+1. For i = 1, . . . , h, γi is γ{X/Jsi|XK},
with si ∈ Σ. Hence, there exist i ∈ {1, . . . , h} and a valuation v′ such that v(γ) = v′(γi). By the
µ-consistency of T and Lemma A.14, for i = 1, . . . , r, we have A ≻ Li. Hence, by the inductive
hypotheses (Iµ) and (ISC), for i = 1, . . . , r, there exists a µ-consistent proof tree Ui for Li and
Pk+1. A proof tree U for A and Pk+1 is constructed by using v′(γi) at the root of U and the
proof trees U1, . . . , Ur for L1, . . . , Lr, respectively, and Pk+1.

The proof tree U is µ-consistent because: (i) by (Iµ), we have that U1, . . . , Ur are µ-consistent,
(ii) γi is σ-max derived iff γ is σ-max derived, and (iii) since T is µ-consistent, we have that if γ
is not σ-max derived then µ(A) ≥lex µ(L1)⊕ . . .⊕ µ(Lr) else µ(A) >lex µ(L1)⊕ . . . ⊕ µ(Lr).

Case 2.2 (Pk+1 is derived from Pk by using rule R3.) Suppose that by unfolding γ w.r.t. an
atom B in its body we derive clauses η1, . . . , ηm in Pk+1. Without loss of generality, we assume
that B is the leftmost literal in the body of γ. Hence, there exists a clause γi in (a variant of) Pk

such that: (i) v(γi) is of the form L1 ←M1∧. . .∧Mq, (ii) v(ηi) is A←M1∧. . .∧Mq∧L2∧. . .∧Lr,
and (iii) v(γi) is the clause which is used for constructing the children of L1 in T . By the
µ-consistency of T and Lemma A.14, for i = 1, . . . , q, we have A ≻Mi and, for i = 2, . . . , r, we
have A ≻ Li. Hence, by the inductive hypotheses (Iµ) and (ISC), for i = 1, . . . , q, there exists
a µ-consistent proof tree Vi for Mi and Pk+1 and, for i = 2, . . . , r, there exists a µ-consistent
proof tree Ui for Li and Pk+1. A proof tree U for A and Pk+1 is constructed by using v(ηi) at
the root of U and the proof trees V1, . . . , Vq, U2, . . . , Ur for M1, . . . ,Mq, L2, . . . , Lr, respectively,
and Pk+1.

It remains to show that the proof tree U is µ-consistent. There are two cases: (a) and (b).

Case (a): in this first case we assume that A is new and ηi is not σ-max derived.

Since T is µ-consistent we get µ(A) ≥lex µ(L1) ⊕ µ(L2) ⊕ . . . ⊕ µ(Lr) and µ(L1) ≥lex µ(M1) ⊕
. . .⊕µ(Mq). By Lemma A.8 (ii.2), we get µ(A) ≥lex µ(M1)⊕ . . .⊕µ(Mq)⊕µ(L2)⊕ . . .⊕µ(Lr).

Case (b): in this second case, we assume that A is old or ηi is σ-max derived. We have two
subcases (b.1) and (b.2).

Subcase (b.1): A is old. Since T is µ-consistent, we get that µ(A) >lex µ(L1) ∧ . . . ∧ µ(Lr) and
µ(L1) ≥lex µ(M1) ∧ . . . ∧ µ(Mq). By Lemma A.8 (ii.2) we get µ(A) >lex µ(M1) ∧ . . . ∧ µ(Mq).

Subcase (b.2): ηi is σ-max derived. We may assume that A is new, because in Subcase (b.1)
we have considered that A is old. Now we consider two subcases of this Subcase (b.2).

Subcase (b.2.1): ηi is σ-max derived, A is new, and γ is σ-max derived, and

Subcase (b.2.2): ηi is σ-max derived, A is new, and γ is not σ-max derived.
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Subcase (b.2.1). Since T is µ-consistent we get µ(A) >lex µ(L1) ⊕ µ(L2) ⊕ . . . ⊕ µ(Lr) and
µ(L1) ≥lex µ(M1)⊕ . . .⊕µ(Mq). By Lemma A.8 (ii.2), we get µ(A) >lex µ(M1)⊕ . . .⊕µ(Mq)⊕
µ(L2)⊕ . . .⊕ µ(Lr).

Subcase (b.2.2). Since T is µ-consistent and L1 is old, we get: (†1) µ(L1) >lex µ(M1) ⊕ . . . ⊕
µ(Mq), and (†2) π2(µ(L1)) > 0. Since ηi is σ-maximal derived, we have that, for i = 2, . . . , r,
σ(L1) ≥ σ(Lj). Thus, (†3) σ(L1) ≥ π1(µ(L2) ⊕ . . . ⊕ µ(Lr)). From (†1), (†2), and (†3), by
Lemma A.8 (ii.3), we get: (†4) µ(L1)⊕µ(L2)⊕ . . .⊕µ(Lr) >lex µ(M1)⊕ . . .⊕µ(Mq)⊕µ(L2)⊕
. . . ⊕ µ(Lr). Since T is µ-consistent, we have that µ(A) ≥lex µ(L1) ⊕ . . . ⊕ µ(Lr), and by (†4)
we get: µ(A) >lex µ(M1)⊕ . . .⊕ µ(Mq)⊕ µ(L2)⊕ . . .⊕ µ(Lr), as desired.

This concludes the proof that U is a µ-consistent proof tree.

Case 2.3 (Pk+1 is derived from Pk by using rule R4.) Suppose that we unfold γ w.r.t. a negated
atom in its body and we derive clauses η1, . . . , ηs in Pk+1. Without loss of generality, we assume
that we unfold γ w.r.t. the leftmost literal in its body. Let γ1, . . . , γm be all clauses in (a variant
of) Pk whose heads are unifiable with the leftmost literal in the body of γ. We may assume
that, for i = 1, . . . ,m, v(γi) is of the form A1 ← Bi, where L1 = ¬A1 and Bi is a conjunction
of literals. Since there is no proof tree for A1 and Pk, for i = 1, . . . ,m, there exists a literal
Ri in Bi such that there is no proof tree for Ri and Pk. By definition, there is a proof tree for
Ri and Pk. Moreover, (i) A ≻ ¬A1 because by hypothesis the proof tree T is µ-consistent, and
(ii) σ(¬A1) ≥ σ(Ri), because Pk is locally stratified w.r.t. σ.

Now we have two cases: (i) Ri is an atom, and (ii) Ri is a negated atom, say ¬Ci. In
Case (i) we have that σ(A) > σ(A1) ≥ σ(Ri) and, thus, A ≻ Ri. In Case (ii) we have that
σ(A) > σ(A1) ≥ σ(¬Ci) and, thus, σ(A) > σ(Ci) = σ(Ri) and µ(A) > µ(Ri). Hence, A ≻ Ri.
Thus, in both cases A ≻ Ri.

Since A ≻ Ri, by the inductive hypotheses (Iµ) and (ISC), we have that, for i = 1, . . . ,m, there
exists a µ-consistent proof tree Vi for Ri and Pk+1. By the µ-consistency of T , for i = 2, . . . , r,
there exists a µ-consistent proof tree Ui for Li and Pk+1. By the definition of rule R4, there
exists a clause ηp among the clauses η1, . . . , ηs derived from γ, such that v(ηp) is of the form
A← R1 ∧ . . . ∧Rm ∧ L2 ∧ . . . ∧ Lr. (To see this, recall that by pushing ¬ inside and ∨ outside,
from ¬((C1 ∧ C2) ∨ (D1 ∧D2)) we get (C1 ∧D1) ∨ (C1 ∧D2) ∨ (C2 ∧D1) ∨ (C2 ∧D2).)

A proof tree U for A and Pk+1 is constructed by using v(ηp) at the root of U and the proof
trees V1, . . . , Vm, U2, . . . , Ur for R1, . . . , Rm, L2, . . . , Lr, respectively, and Pk+1.

In order to show that U is µ-consistent we need to consider two cases. In the first case, we
assume that A is old or η is σ-max derived. Thus, in this case, also γ is σ-max derived. By
µ-consistency of T , we have µ(A) >lex µ(L1) ⊕ · · · ⊕ µ(Lr). By local stratification of Pk and
by Lemma A.10, µ(L1) ≥lex µ(R1) ⊕ · · · ⊕ µ(Rm). Therefore, by Lemma A.8 (ii.2), µ(A) >lex

µ(R1)⊕ · · · ⊕ µ(Rm)⊕ µ(L2)⊕ · · · ⊕ µ(Lr) and U is µ-consistent.

In the second case, A is new and η is not σ-max derived. As a consequence, also γ is not σ-max
derived. By µ-consistency of T we have µ(A) ≥lex µ(L1) ⊕ · · · ⊕ µ(Lr). By local stratification
of Pk and by Lemma A.10, µ(L1) ≥lex µ(R1)⊕· · ·⊕µ(Rm) and, by Lemma A.8 (ii.2), µ(A) ≥lex

µ(R1)⊕ · · · ⊕ µ(Rm)⊕ µ(L2)⊕ · · · ⊕ µ(Lr). Therefore, U is µ-consistent.

Case 2.4 (Pk+1 is derived from Pk by using rule R5.) Suppose that the clause γ is removed from
Pk by subsumption. Hence, there exists a clause γ1 in Pk − {γ} and a valuation v′ such that
v′(γ1) is of the form A ←. The clause γ1 belongs to Pk+1 and, therefore, a proof tree U for A
and Pk+1 can be constructed by using v′(γ1) at the root of U . The proof tree U consists of the
root A with the single child true. Now we prove that the proof tree U is µ-consistent, that is,
µ(A) >lex µ(true). We have to prove that µ(A) >lex 〈0, 0〉. We have the following three cases:
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(a), (b.1), and (b.2).
Case (a). A is an old atom. In this case we have that µ(A) >lex 〈0, 0〉, because, as stated in
Remark A.6, for any old atom B, we have that min-weight(B)>0.
Case (b). A is a new atom. Since A is new, there is a valuation v′ and a clause δ in Pd such that
v′(δ) is of the form A← G, for some goal G. Now, let us consider the following two subcases.
Case (b.1) G is of the form: GL ∧ B ∧ GR and B is an old atom. By (1) the hypothesis that
T is a µ-consistent proof tree for A in Pk, (2) the (Soundness) property, and (3) Lemma A.15,
we have that there exists a µ-consistent proof tree Td for A and Pd where B is a child of A. By
µ-consistency of Td, we have that µ(A) ≥lex µ(B). Since µ(B) =def 〈σ(B),min-weight(B)〉 and,
since B is an old atom, by Remark A.6, we have that min-weight(B) > 0. Thus, we get that
µ(A)>lex 〈0, 0〉.
Case (b.2) G is of the form: GL ∧ ¬B ∧GR and B is an old atom. Since δ is locally stratified,
σ(A)>σ(B) and, thus, σ(A)>0. Hence, µ(A) =def 〈σ(A),min-weight(A)−1〉 >lex 〈0, 0〉.

This concludes the proof tree U is µ-consistent.

Case 2.5 (Pk+1 is derived from Pk by using rule R6.) Let us assume that clause η of the form
Ã ← K̃ϑ ∧ L̃q+1 ∧ . . . ∧ L̃r is derived by positive folding from a clause γ ∈ Pk of the form

Ã ← L̃1 ∧ . . . ∧ L̃q ∧ L̃q+1 ∧ . . . ∧ L̃r using a clause δ ∈ Defsk of the form K̃ ← L̃′
1 ∧ . . . ∧ L̃′

q

and where ϑ is a substitution such that, for i=1, . . . , q, L̃′
iϑ= L̃i. We have that δ ∈ Pd and the

definition of the head predicate of δ in Pd consists of clause δ only.
Thus, there is a valuation v such that v(Ã) = A and in the proof tree T for A and Pk the

children of A are the nodes L1, . . . , Lq, Lq+1, . . . , Lr such that for i = 1, . . . , q, Li = v(L̃′
i) and

for i = q + 1, . . . , r, Li = v(L̃i). By the induction hypothesis (IndHyp) there exist proof trees
for v′(L̃′

1), . . . , v
′(L̃′

q) and Pk, for some valuation v′ such that, for i= 1, . . . , q, v′(L̃′
iϑ) = v(L̃i).

Let K be v′(K̃ϑ).
Since δ ∈ Pd and M(Pd) |= δ, by Theorem A.4 and Definition A.12, there is a µ-consistent

proof tree for K and Pd. By induction hypothesis, the (Completeness) property holds for k and,
thus, we have that there exists a µ-consistent proof tree for K and Pk. By the hypothesis that the
transformation sequence P0, . . . , Pd, . . . , Pn is admissible and by Condition (2) of Definition 4.5,
either A is old or γ is σ-max derived. Thus, by the µ-consistency of the proof tree T , we have
that µ(A) >lex µ(L1)⊕ · · · ⊕ µ(Lq)⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr).

Since δ is a clause in Defsk, by Lemma A.7 we have that µ(K) = µ(L1) ⊕ · · · ⊕ µ(Lq) and,
thus, µ(A) >lex µ(K)⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr).

Moreover, by Lemma A.8 (ii.5), µ(A) >lex µ(K). Thus, A ≻ K and, by the inductive hypoth-
esis (Iµ), there exists a µ-consistent proof tree UK for K and Pk+1. By the µ-consistency of T
and Lemma A.14, for i = q + 1, . . . , r, we have A ≻ Li. Hence, by the inductive hypotheses (Iµ)
and (ISC), for i = q + 1, . . . , r, there exists a µ-consistent proof tree Ui for Li and Pk+1. A
proof tree U for A and Pk+1 is constructed by using v′(η) at the root of U and the proof trees
UK , Uq+1, . . . , Ur for K,Lq+1, . . . , Lr, respectively, and Pk+1. The proof tree U is µ-consistent
because, as we have shown above, µ(A) >lex µ(K)⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr).

Case 2.6 (Pk+1 is derived from Pk by using rule R7.) Suppose that we fold γ using clauses
δ1, . . . , δq, belonging to (a variant of) Defsk, and we derive a clause η in Pk+1. Without loss
of generality, by the definition of rule R7 and the commutativity of ∧, we may assume that
(i) v(γ) is of the form A ← L1 ∧ . . . ∧ Lq ∧ Lq+1 ∧ . . . ∧ Lr, (ii) for i = 1, . . . , q, v(δi) is of
the form K ← Mi, where Mi = Ai, if Li = ¬Ai, and Mi = ¬Ai, if Li = Ai, and (iii) v(η)
is of the form A ← ¬K ∧ Lq+1 ∧ . . . ∧ Lr. By the inductive hypothesis, the (Soundness) and
(Completeness) properties hold for k and, therefore, for i = 1, . . . , q, there is no proof tree for
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Mi and Pd. Since M(Pd) |= K ↔ M1 ∨ . . . ∨Mq, there is no proof tree for K and Pd. By the
inductive hypothesis, the (Soundness) property holds for k and, thus, we have that there is no
proof tree for K and Pk. By the hypothesis that the transformation sequence P0, . . . , Pd, . . . , Pn

is admissible and by Condition (3) of Definition 4.5, σ(A) > σ(K). Hence, by the inductive
hypothesis (IS), there is no proof tree for K and Pk+1, that is, there is a proof tree U¬K for ¬K
and Pk+1. By the µ-consistency of T and Lemma A.14, for i = q+1, . . . , r, we have A ≻ Li.
Hence, by the inductive hypotheses (Iµ) and (ISC), there exists a µ-consistent proof tree Ui for
Li and Pk+1. A proof tree U for A and Pk+1 is constructed by using v(η) at the root of U and
the proof trees U¬K , Uq+1, . . . , Ur for ¬K,Lq+1, . . . , Lr, respectively, and Pk+1.

In order to show that U is µ-consistent we need to consider two cases.

In the first case, we assume that A is old or γ is σ-max derived. Thus, in this case, also η is σ-
max derived. By µ-consistency of T , we have µ(A) >lex µ(L1)⊕· · ·⊕µ(Lq)⊕µ(Lq+1)⊕· · ·⊕µ(Lr).
By Lemma A.8 (ii.5), we have that µ(A) >lex µ(Lq+1)⊕ · · · ⊕ µ(Lr). Since the transformation
sequence P0, . . . , Pn is admissible, clause η is locally stratified and, thus, σ(A) > σ(K). Hence,
π1(µ(A)) = {by definition of µ} = σ(A) > σ(K) = {by definition of µ} = π1(µ(¬K)). Therefore,
by Lemma A.8 (ii.4), we have that: µ(A) >lex µ(¬K) ⊕ µ(Lq+1) ⊕ · · · ⊕ µ(Lr). Thus, U is
µ-consistent.

In the second case, A is new and γ is not σ-max derived. As a consequence, also η is not σ-max
derived. By µ-consistency of T we have µ(A) ≥lex µ(L1)⊕ · · · ⊕ µ(Lq)⊕ µ(Lq+1)⊕ · · · ⊕ µ(Lr).
And, by Lemma A.8 (ii.5), µ(A) ≥lex µ(Lq+1)⊕ · · · ⊕ µ(Lr). Since π1(µ(A)) > π1(µ(¬K)) (see
the first case), by Lemma A.8 (ii.4), we have that: µ(A) ≥lex µ(¬K) ⊕ µ(Lq+1) ⊕ · · · ⊕ µ(Lr).
Thus, U is µ-consistent. This completes the proof.

The correctness of admissible transformation sequences, that is, Theorem 4.7 of Section 4,
follows immediately from Theorem A.4 and Proposition A.16 because: (i) Pd = P0 ∪Defsn , and
(ii) a µ-consistent proof tree is a proof tree.
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Notes in Computer Science 4079. Springer, 330–345.

[25] Staiger, L. 1997. ω-Languages. In Handbook of Formal Languages, G. Rozenberg and
A. Salomaa, Eds. Vol. 3. Springer, Berlin, 339–387.

[26] Tamaki, H. and Sato, T. 1984. Unfold/fold transformation of logic programs. In Pro-
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