
J. LOGIC PROGRAMMING 1994:19, 20:197–679 197

SYNTHESIS AND TRANSFORMATION OF
LOGIC PROGRAMS USING UNFOLD/FOLD
PROOFS

ALBERTO PETTOROSSI AND MAURIZIO PROIETTI

. We present a method for proving properties of definite logic programs.
This method is called unfold/fold proof method because it is based on the
unfold/fold transformation rules. Given a program P and two goals (that
is, conjunctions of atoms) F (X,Y) and G(X,Z), where X, Y , and Z are
pairwise disjoint vectors of variables, the unfold/fold proof method can be
used to show that the equivalence formula ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z))
holds in the least Herbrand model of P . Equivalence formulas of that
form can be used to justify goal replacement steps, which allow us to
transform logic programs by replacing old goals, such as F (X,Y), by
equivalent new goals, such as G(X,Z). These goal replacements preserve
the least Herbrand model semantics if we find non-ascending unfold/fold
proofs of the corresponding equivalence formulas, that is, unfold/fold proofs
which ensure suitable well-founded orderings between the successful SLD-
derivations of F (X,Y) and G(X,Z), respectively.

We also present a method for program synthesis from implicit definitions.
It can be used to derive a definite logic program for the predicate newp im-
plicitly defined by an equivalence formula of the form ∀X(∃Y F (X,Y)↔
∃Z (H(X,Z),newp(X,Z))), such that the predicates occurring in the goals
F (X,Y) and H(X,Z) are defined in a given program P , and newp is a
predicate symbol not occurring in P . The set of clauses defining newp,
say Eureka, allows us to prove that the above equivalence formula holds in
the least Herbrand model of P ∪Eureka using an unfold/fold proof. Thus,

Last revised June 15, 2009. This paper is a revised version of “Synthesis of Programs from
Unfold/Fold Proofs”. In: Yves Deville (ed.) Logic Program Synthesis and Transformation,
LoPSTr ’93, Louvain-la-Neuve, Belgium, Springer-Verlag, Workshops in Computing Series,
1994, 141–158. This work has been partially supported by: ‘Progetto Coordinato del CNR
Programmazione Logica’, ‘Progetto Coordinato del CNR Verifica, Analisi e Trasformazione
dei Programmi Logici’ Finsiel S.p.A., Progetto Cofinanziato MURST, INTAS Project, and
Programma Galileo.

Address correspondence to Alberto Pettorossi, DISP, Università di Roma Tor Vergata, Via
di Tor Vergata, I-00133 Roma, Italy; Maurizio Proietti, IASI-CNR, Viale Manzoni 30, I-00185
Roma, Italy; E-mail: {adp,proietti}@iasi.cnr.it. URL: http://www.iasi.cnr.it/̃ {adp,proietti}.

THE JOURNAL OF LOGIC PROGRAMMING

c© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

198

the correctness of our synthesis method derives from the one of the un-
fold/fold proof method. We finally illustrate our synthesis method through
some examples of program specialization, program synthesis, and program
transformation, which can all be viewed as program syntheses from implicit
definitions.

/

1. INTRODUCTION

The unfold/fold transformation rules were originally introduced for deriving correct
and efficient programs from initial program versions whose correctness could easily
be verified [8, 24, 28]. These rules can also be used for other purposes, such as
program analysis, synthesis, specialization, and verification. Indeed, for instance,
in [19] we can find a method based on unfold/fold rules, for proving the equivalence
of functional expressions. This method can also be adapted to the case of logic
programs [4, 26] for proving equivalences of goals, that is, equivalences of conjunc-
tions of atoms. In this paper, which builds upon [26], we formalize this method,
called unfold/fold proof method, for the case of definite logic programs w.r.t. the
least Herbrand model semantics. We also present a method for program synthesis
from implicit definitions which is based on the unfold/fold proof method and can
be used for the specialization, synthesis, and transformation of programs.

In all these areas our synthesis method is very effective and powerful. In par-
ticular, (i) it provides a uniform framework for program specialization w.r.t. input
properties rather than input values, (ii) it allows for the change of data structure
representations, which is otherwise done in the literature using ad hoc techniques,
and finally, (iii) it allows for the derivation of more efficient logic programs by
avoiding unnecessary nondeterminism.

Our synthesis method is related to the traditional methods for synthesizing logic
programs (see, for instance [16] and also [11] for a survey) from initial specifications
of the form: ∀X (spec(X) ↔ newp(X)), where newp is the predicate for which we
want to synthesize a program and spec is any formula of the first order predicate
calculus which provides the specification of the predicate newp. The unfold/fold
rules can indeed be viewed as derivation rules in these synthesis methods.

Our synthesis method is also related to the proofs-as-programs method [1, 7, 12,
23] whereby the constructive proof of a property of the form ∀X ∃Y spec(X, Y) can
be used for synthesizing a program which, for any input X, computes an output Y
such that spec(X, Y) holds.

The main difference between our method and the ones we have mentioned
above is that we allow for a more general form of specifications. In particular,
in the method for program synthesis from implicit definitions we assume that
given a program P , the specification of a new program to be synthesized for
the predicate newp(X,Z) is provided by an equivalence formula of the form (†):
∀X(∃Y F (X,Y)↔ ∃Z (H(X,Z),newp(X,Z))), where F (X,Y) and H(X,Z) con-
tain predicates defined in P and newp is a predicate symbol not occurring in P .
We say that newp is implicitly defined by that formula. Here and in what follows,
the conjunction connective is denoted by comma “,” and overlined variables or

199

overlined terms stand for vectors of variables or terms, respectively. Through our
synthesis method which we describe below and whose correctness derives from the
one of the unfold/fold proof method, we construct a set of new clauses, say Eureka,
which constitute the definition of newp(X,Z). That set allows us to show via an
unfold/fold proof that the above equivalence formula of the form (†) holds in the
least Herbrand model of P ∪ Eureka.

In Section 2 we list the unfold/fold rules for program transformation which we
consider in this paper. In Section 3 we present the unfold/fold proof method for
logic programs by showing how to use our transformation rules for proving that
given a program P and two goals F (X,Y) and G(X,Z), where X, Y , and Z are
pairwise disjoint vectors of variables, the equivalence formula ∀X(∃Y F (X,Y) ↔
∃Z G(X,Z)) holds in the least Herbrand model of P . In Section 4 we give a suffi-
cient condition which ensures that goal replacements based on proofs of equivalence
formulas preserve total correctness w.r.t. the least Herbrand model semantics. This
condition is useful for the mechanization of the method for program synthesis from
implicit definitions which is presented in Section 5. In Section 5 we also indicate
how that synthesis method can be used to specialize programs. In particular, we
show how it can be used for deriving programs which avoid type checking when
the input values are known to be of the required type. In Section 6 we apply the
program synthesis method to the automatic improvement of data representations
by performing the so called difference-list introduction. In Section 7 we apply our
synthesis method for avoiding unnecessary nondeterminism and deriving efficient
right recursive programs from inefficient left recursive ones. Finally, in Section 8
we compare our method to related work in the areas of program specialization,
program synthesis, and program transformation.

2. THE PROGRAM TRANSFORMATION RULES

In this section we introduce the rules that we use for transforming programs and
we state the conditions which ensure that they preserve the least Herbrand model
semantics. These rules are similar to the ones presented in [28], with the exception
of the rules for definition introduction and for folding, which are similar to the ones
in [14, 22]. In contrast to [28], the definition introduction rule considered here may
be used to introduce a new predicate by means of n clauses, with n ≥ 1 (in [28] n
is 1), and the folding rule may be used to replace n clauses, with n ≥ 1, by a single
clause (in [28] n is 1).

In this paper we consider definite programs and for the notions not explicitly
introduced here we refer to [20]. We assume that a goal is a conjunction of n (≥ 0)
atoms defined as follows: goal ::= true | atom | goal , goal where the conjunction
operator “,” is associative and it has true as neutral element (in [20] a goal is the
negation of a conjunction of atoms). We will refer to true as the empty conjunction,
or the empty goal.

A clause C is a formula of the form H ← B, where the head H is an atom denoted
by hd(C) and the body B is a goal denoted by bd(C). The clause H ← true may
also be written as H ←. A definite program (or program, for short) is a finite set
of clauses. Programs will also be denoted without the surrounding curly brackets
for sets.

By t we denote a vector of terms of the form (t1, . . . , tk), for some k ≥ 0. The
vector (t1, . . . , tk) is also written without its enclosing round parentheses. Given a

200

vector t and a partition (t1, . . . , tk) of t into order-preserving subvectors of contigu-
ous components, we will feel free to identify t with (t1, . . . , tk). Thus, for instance,
(a, b, c) = ((a, b), (c)). By G(X), where X is a vector of variables, we denote a goal
whose variables are among those in X, and by G(t) we denote the goal obtained
from the one denoted by G(X) by replacing each variable in X by the corresponding
term in t.

We allow for the silent renaming of the variables occurring in a clause, that is,
we allow for the replacement of a clause by one of its variants. Obviously, variable
renamings preserve the least Herbrand model semantics (see below).

We assume that all our programs are written using symbols taken from a fixed
language L which contains an infinite set of variable symbols and an infinite set
of function and predicate symbols. The Herbrand universe associated with L is
denoted by HU, and this universe is assumed to be the same for all programs
derived by transformation from a given initial program.

We also adopt the following notation: (i) given a substitution θ = {X1/t1, . . . ,
Xn/tn}, dom(θ) denotes the set of variables {X1, . . . , Xn} and range(θ) denotes
the set of terms {t1, . . . , tn}, and (ii) given a term t, vars(t) denotes the set of
variables occurring in t (a similar notation will also be used for variables occurring
in vectors of terms, atoms, goals, and clauses).

We assume the existence of a set of basic predicates which denote primitive rela-
tions and for which no defining clauses are given in the programs. This set includes
the equality predicate ‘=’. For instance, predicates which may be considered to be
basic, are ‘≤’ and plus. With each basic predicate, say b, it is associated the set Sb

of atoms of the form b(t), where t is a vector of ground terms in HU, such that b(t)
is assumed to be true.

Given a definite program P , by M(P) we denote the least model among all
Herbrand models of P which: (i) have universe HU, and (ii) include Sb for every
basic predicate b. For simplicity, we feel free to refer to M(P) as the least Herbrand
model of P . As a consequence, the properties of the basic predicates, such as
associativity of plus, hold in M(P) for every program P we consider.

As for the operational semantics of the programs, the following definition of an
SLD-derivation (which is a simplified version of the one in [20]) is adequate for our
purposes here.

Let C be a (possibly renamed) clause in a program P and (L,A,M) be a goal,
where A is an atom called the selected atom. We say that the goal (L,B,M)θ,
where θ is a substitution, is derived from (L,A,M) using P iff one of the following
two conditions holds:

1. (i) A is an atom with non-basic predicate, (ii) θ is an mgu of A and hd(C),
and (iii) B is bd(C).

2. (i) A is of the form b(u), where b is a basic predicate, (ii) b(u)θ ∈ Sb, and B
is true (since true is the neutral element w.r.t. the conjunction operator, in
this case (L, B,M)θ is equal to (L,M)θ).

An SLD-derivation of the goal G using the program P is a (finite or infinite)
sequence of goals G0, G1, . . . such that G0 is G and for i = 0, 1, . . ., the goal Gi+1

is derived from the goal Gi using P . An SLD-derivation is successful iff it is finite
and its last goal is true.

Given a finite SLD-derivation ∆ of the form: G0, . . . , Gn, we denote by λ(∆) the

201

number of indexes i, with 0 ≤ i ≤ n−1, such that the selected atom in Gi does not
have a basic predicate.

The program transformation process can be viewed as the construction of a
sequence of programs, called a transformation sequence, starting from a given initial
program P0. Let us assume that we have constructed the transformation sequence
〈P0, . . . , Pk〉. We may then perform a transformation step and construct the next
program Pk+1 in the sequence, by applying one of the rules R1–R6 listed below,
collectively called unfold/fold rules.

R1. Definition introduction. From program Pk we derive by definition introduction
the new program Pk+1 by adding to Pk the following n (≥ 1) new clauses:

newp(X)← Body1, . . . , newp(X)← Bodyn

such that: 1) newp is a new predicate symbol, that is, it does not occur in
〈P0, . . . , Pk〉, and 2) for j = 1, . . . , n, all predicate symbols occurring in the goal
Bodyj occur in the initial program P0. We say that newp is the predicate defined
by those n clauses, which constitute the definition of newp.

During the construction of the sequence 〈P0, . . . , Pk〉 of programs, we store in the
set Defk, for k ≥ 0, all clauses, called definition clauses, which have been introduced
by the definition introduction rule. Obviously, Def0 ={ }.

R2. Unfolding. Let C and D be clauses such that: 1) C is a clause in Pk of the
form H ← F,A, G, where A is an atom with a non-basic predicate, 2) D is a variant
of a clause, call it D′, such that vars(C) ∩ vars(D′) = { }, and the atoms hd(D′)
and A are unifiable with mgu θ. The unfolding of C w.r.t. A using D is the clause
(H ← F, bd(D′), G)θ.

Let D1, . . . , Dn, with n ≥ 0, be the clauses in program Pk such that for i =
1, . . . , n, there is a variant of Di, say D′

i, whose head hd(D′
i) is unifiable with A.

Let C1, . . . , Cn be the unfoldings of C w.r.t. A using D1, . . . , Dn, respectively. By
unfolding C w.r.t. A in Pk we derive the program Pk+1 = (Pk−{C})∪{C1, . . . , Cn}.
The atom A is said to be the selected atom for unfolding.

For i=1, . . . , n, we say that clause Ci is derived from C and we write C ⇒ Ci.

Notice that the unfolding of a clause C amounts to the removal of C from Pk if
n = 0. Sometimes in the literature this particular case is treated as an extra rule
called clause removal or clause deletion rule.

R3. Folding. Let C1, . . . , Cn, with n ≥ 1, be clauses in program Pk. Let D1, . . . , Dn

be the clauses in Defk which constitute the definition of a predicate, say newp. Let
Di be of the form newp(X) ← Body i, for i=1, . . . , n. Suppose that there exists a
substitution θ such that for i=1, . . . , n, the following two conditions hold:

1. Ci is of the form H ← F,Body iθ, G, and

2. for every variable V occurring in Body i and not in X, we have that: (i) V θ
is a variable which does not occur in (H,F, G), and (ii) for any variable Y
occurring in Body i and different from V , the variable V θ does not occur in
Y θ.

Let C be the clause H ← F,newp(X)θ, G. By folding C1, . . . , Cn we derive the
new program Pk+1 = (Pk − {C1, . . . , Cn}) ∪ {C}.

202

For i=1, . . . , n, we say that clause C is derived from Ci and we write Ci ⇒ C.

R4. Goal replacement. Let C be a clause in Pk of the form H ← L,F (X,Y),M
and let G(X,Z) be a goal. Let us assume that: (i) X, Y , and Z are pairwise dis-
joint vectors of variables, (ii) vars(H,L,M) ∩ vars(Y ,Z) = { }, (iii) the predicates
occurring in F (X,Y) and the predicates occurring in G(X,Z) occur in P0, and (iv)
M(P0) |= ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z)).

Let D be the clause H ← L,G(X,Z),M . By goal replacement we derive the
new program Pk+1 = (Pk − {C}) ∪ {D}.

We say that clause D is derived from C and we write C ⇒ D.

Notice that rule R4 is a self-inverse, in the sense that if Pk+1 can be derived
from Pk by goal replacement, then a program Pk+2 equal to Pk can be derived from
Pk+1 by goal replacement. Obviously, for the goal replacement from Pk+1 to Pk+2

we use the fact that M(P0) |= ∀X (∃Z G(X,Z) ↔ ∃Y F (X,Y)) holds. Thus, if
C ⇒ D holds by rule R4, then D ⇒ C holds by rule R4.

R5. Generalization + equality introduction. Let C be a clause in program Pk of the
form (H ← Body){X/t}, such that the variable X does not occur in t. By gener-
alization + equality introduction we derive from C the clause D: H ←X = t, Body
and we get the program Pk+1 by replacing C by D in Pk.

We say that clause D is derived from C and we write C ⇒ D.

R6. Simplification of equality. Let C be a clause in program Pk of the form:
H ← X = t,Body , where X does not occur in t. By simplification of equality we
derive from C the clause D: (H ← Body){X/t}, and we get the program Pk+1 by
replacing C by D in Pk.

We say that clause D is derived from C and we write C ⇒ D.

Rule R6 is the inverse of rule R5 in the sense that, if Pk+1 can be derived from
Pk by rule R5, then a program Pk+2 equal to Pk can be derived from Pk+1 by rule
R6. Thus, if C ⇒ D holds by rule R5, then D ⇒ C holds by rule R6. Analogously,
rule R5 is the inverse of rule R6.

We stipulate that the ⇒ relation is closed w.r.t. variable renaming, that is, if
C ⇒ D holds for two clauses C and D, then C ′ ⇒ D′ holds for any variant C ′ and
D′ of C and D, respectively.

A derivation path from clause C0 to clause Cn is a sequence C0, . . . , Cn of clauses,
with n ≥ 0, such that for i = 0, . . . , n−1, Ci ⇒ Ci+1. A derivation path from C0

to Cn is also written as C0 ⇒ . . .⇒ Cn. There exists a derivation path from C0 to
Cn iff C0 ⇒∗ Cn, where as usual, ⇒∗ is the reflexive and transitive closure of ⇒.

The transformation rules R1–R6 preserve the least Herbrand model semantics
as specified by the following Definition 2.1 and Theorem 2.1.

Definition 2.1. [Non-ascending goal replacement] Let 〈P0, . . . , Pk〉 be a transfor-
mation sequence. Given a goal H such that W is the vector of the variables
occurring in H and M(P0) |= ∃W H, we define µ(H)=min{λ(∆) | ∆ is a suc-
cessful SLD-derivation of H using P0}. Given two goals F (X,Y) and G(X,Z)
such that M(P0) |= ∀X (∃Y F (X,Y) ↔ ∃Z G(X,Z)) we say that the replace-
ment of F (X,Y) by G(X,Z) in the body of a clause in Pk is non-ascending iff
for each vector t of ground terms such that M(P0) |= ∃Y F (t, Y) we have that
µ(F (t, Y)) ≥ µ(G(t, Z)).

203

Theorem 2.1. [Total correctness of a transformation sequence] Let 〈P0, . . . , Pk〉 be
a transformation sequence constructed by using the transformation rules R1–R6
with the following restrictions:

(α) the folding rule is applied in program Ph, with 0<h<k, to clauses C1,. . . ,Cm

with head predicate p using clauses D1, . . . , Dm only if

- either p occurs in P0

- or for every i ∈ {1, . . . ,m}, there exist two clauses, say A in Pj and B
in Pj+1, for some j, with 0 ≤ j < h, such that A⇒ B ⇒∗ Ci where B
is derived from A by unfolding, and

(β) all goal replacements are non-ascending.

Then M(P0 ∪Defk)=M(Pk).

Proof. It is an extension of the correctness results reported in [14, 29]. The total
correctness of the rules R1–R6 presented above is proved in [29] (see Theorem
3.7), with the restriction that the folding rule is allowed only in the case where
the number of folded clauses is 1. In particular, our notion of non-ascending goal
replacement is subsumed by the notion of goal replacement consistent with a weight-
tuple measure used in the proof of Theorem 3.7 in [29]. The correctness of our more
general folding rule R3 by which we derive a new clause by folding n (≥ 1) clauses at
a time, is proved by Theorem 1 of [14]. However, in [14, 29] the correctness of each
rule is not proved in isolation. On the contrary, in those papers the total correctness
of an entire transformation sequence is proved when some suitable conditions on
the set of rules and on the order of their application are satisfied. (These conditions
are similar to our restrictions (α) and (β).) Thus, our total correctness theorem
is not a straightforward consequence of the above mentioned results. Nevertheless,
the proofs in [29] can be extended to the case where we use the more general folding
rule R3. We do not present this extension here because the amount of technical
machinery is rather large and the differences from the proof in [29] are of minor
importance. 2

3. THE UNFOLD/FOLD PROOF METHOD

In this section we present the unfold/fold proof method following the approach
described in [19, 26]. This method can be used to prove that an equivalence formula,
say Equiv , of the form ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z)) holds in the least Herbrand
model of a given program P . The soundness of the method (see Theorem 3.1) relies
on the correctness of the transformation rules R1–R6 w.r.t. the least Herbrand
model semantics (see Theorem 2.1).

Definition 3.1. [Unfold/fold proof] Let P be a program and Equiv be the formula
∀X (∃Y F (X,Y) ↔ ∃Z G(X,Z)), where X,Y , and Z are pairwise disjoint vec-
tors of variables and F (X,Y) and G(X,Z) are two given goals. An unfold/fold
proof of Equiv using P consists of two totally correct transformation sequences
T1 : 〈P, P ∪ {C1}, . . . , P ∪ S1〉 and T2 : 〈P, P ∪ {C2}, . . . , P ∪ S2〉 (see Fig. 3.1)
such that:

204

P ∪ C1 : new1(X)← F (X, Y) C2 : new2(X)← G(X, Y) ∪ P

(R2 + R3 + R4 + R5 + R6)∗

? ?

(R2 + R3 + R4 + R5 + R6)∗

P ∪ S1

{new1/new2}
= S2 ∪ P

FIGURE 3.1. Unfold/fold proof of ∀X (∃Y F (X, Y)↔ ∃Z G(X, Z)) using program P .

(i) the sequences T1 and T2 are constructed by first adding, using rule R1, to
program P the following definition clauses C1 and C2, respectively:

C1 : new1(X)← F (X,Y)

C2 : new2(X)← G(X,Z)

and then applying a sequence of transformation rules, each of which is taken
from the set {R2,R3,R4,R5,R6},

(ii) for i = 1, 2, and for each clause D derived during the construction of Ti we
have that Ci ⇒∗ D, and

(iii) S2 can be obtained from S1 by substituting the predicate symbol new2 for
new1. 2

Notice that, by the folding rule R3 in T1 every folding step is performed using
clause C1 only, and analogously, in T2 every folding step is performed using C2 only.

The following theorem shows that the unfold/fold proof method is sound w.r.t.
the least Herbrand model semantics.

Theorem 3.1. [Soundness of the unfold/fold proof method] If there exists an un-
fold/fold proof of the formula ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z)) using P , then we
have that: M(P) |= ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z)).

Proof. Without loss of generality, let us assume that each of the vectors X, Y ,
and Z in the formula ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z)) consists of one variable only.
Suppose that the unfold/fold proof of ∀X (∃Y F (X, Y) ↔ ∃Z G(X, Z)) consists of
the transformation sequences T1 and T2 constructed as indicated in Definition 3.1.
By our assumptions of Section 2 we have that the Herbrand universe HU is the same
for all programs in the transformation sequences T1 and T2. Since S2 is equal to S1

modulo the substitution of new2 for new1, we have that for every term t ∈ HU :

M(P ∪ S1) |= new1(t) iff M(P ∪ S2) |= new2(t).

In P ∪ {C1} the predicate new1 is defined by clause C1 only, and in P ∪ {C2}
the predicate new2 is defined by clause C2 only. Thus, we have that the following
two properties hold for every term t ∈ HU :

M(P ∪ {C1}) |= new1(t) iff M(P ∪ {C1}) |= ∃Y F (t, Y)

M(P ∪ {C2}) |= new2(t) iff M(P ∪ {C2}) |= ∃Z G(t, Z).

205

From the assumption that T1 and T2 are totally correct (see Definition 3.1), it
follows that M(P ∪ S1)=M(P ∪ {C1}) and M(P ∪ S2)=M(P ∪ {C2}). Thus, we
have that for every term t ∈ HU :

M(P ∪ {C1}) |= ∃Y F (t, Y) iff M(P ∪ {C2}) |= ∃Z G(t, Z).

Now, since the predicate symbols occurring in F (t, Y) and G(t, Z) do not depend
on new1 and new2 (because new1 and new2 are new predicate symbols), we can
replace both M(P ∪ {C1}) and M(P ∪ {C2}) by M(P) and we conclude that for
every term t ∈ HU :

M(P) |= ∃Y F (t, Y) iff M(P) |= ∃Z G(t, Z).

Finally, by observing that HU is the universe of M(P) we get:

M(P) |= ∀X (∃Y F (X, Y)↔ ∃Z G(X, Z)). 2

The following example shows an application of the unfold/fold proof method.

Example 3.1. [Functionality of Fibonacci] We give the unfold/fold proof of the
functionality of the Fibonacci predicate. We recall that a predicate p(X,Y) is said
to be functional w.r.t. X in a program P iff we have that:

for all vectors t, u, and v of ground terms, M(P) |= (p(t, u), p(t, v))→ u=v

which is equivalent to:
M(P) |= ∀X,Y , Z ((p(X,Y), p(X,Z))↔ (p(X,Y), Y =Z)).
Let us consider the following program Fib for the computation of the Fibonacci

numbers:

fib(0, s(0))←
fib(s(0), s(0))←
fib(s(s(N)), F2)← fib(s(N), F1), fib(N,F), plus(F1, F, F2)

where the predicate plus(X, Y, Z) is a basic predicate which is assumed to be func-
tional w.r.t. X and Y , that is, the following formula holds in M(Fib) (recall that
the least Herbrand model of a program includes the true ground facts about all
basic predicates):
∀X, Y, Z1, Z2 ((plus(X, Y, Z1), plus(X, Y, Z2))↔ (plus(X, Y, Z1), Z1=Z2)).
We want to prove that the predicate fib(N,F) is functional w.r.t. N , that is, the

following equivalence formula holds in M(Fib):
Equiv1: ∀N,F1, F2 ((fib(N,F1), fib(N,F2))↔ (fib(N,F1), F1=F2)).

We apply the unfold/fold proof method and we introduce the following two
clauses:

C1: new1(N,F1, F2)← fib(N,F1), fib(N,F2)
C2: new2(N,F1, F2)← fib(N,F1), F1=F2

By applying the transformation rules, clauses C1 and C2 can be transformed into
the two sets of clauses S1 and S2, respectively, shown in Fig. 3.2. Those two sets
are equal modulo predicate renaming. Therefore, Equiv1 holds in M(Fib).

206

Notice that the functionality of plus, which is used as a lemma in the above un-
fold/fold proof, can also be proved by the unfold/fold method, in case the predicate
plus is considered to be a non-basic predicate and its defining clauses are given in
the program. 2

The reader should notice that the unfold/fold proof method cannot be used for
proving that a formula ϕ is a logical consequence of a program P (i.e. ϕ is true in
all models of P) because in general the unfold/fold rules do not preserve all models
of P but only the least Herbrand model.

An important issue is how to find unfold/fold proofs in a mechanical way. Obvi-
ously, the existence of unfold/fold proofs is undecidable, in general. As usual in the
field of automated theorem proving, we may cope with this limitation by (i) suit-
ably restricting the class of programs we consider, and/or (ii) adopting strategies
which may help us construct the two transformation sequences T1 and T2 required
by our proof method. We will not further discuss here this mechanization issue.
However, in Section 5 we will propose a strategy for finding the so called Eureka
sets of clauses, which when successful, allows us to automatically construct the
transformation sequences T1 and T2.

In the following Section 4, we will further study the correctness of the unfold/fold
proof method w.r.t. the goal replacement rule, and in later sections we will illustrate
some applications of this method to the areas of program synthesis and program
transformation.

4. UNFOLD/FOLD PROOFS AND GOAL REPLACEMENT

In the previous section we have seen that proofs of equivalence formulas are needed
to apply the goal replacement rule. However, these proofs are not sufficient for
ensuring the total correctness of a transformation sequence when it includes a goal
replacement step, as the following example shows.

Example 4.1. Let us consider the program
P : p← q, q ←

We have that M(P) |= p↔ q. By replacing q by p in p← q we get:
Q : p← p, q ←

and M(Q) = {q} 6= {p, q} = M(P). 2

As stated by Theorem 2.1, a sufficient condition for the total correctness of
a transformation sequence is that goal replacements are performed only if they
are non-ascending. In what follows we provide a sufficient condition for ensuring
that a goal replacement is non-ascending. Our condition relies on the construction
of a suitable unfold/fold proof of the equivalence formula which justifies the goal
replacement.

Definition 4.1. [Non-ascending unfold/fold proof] Let P be a program and Equiv
be the formula ∀X (∃Y F (X,Y) ↔ ∃Z G(X,Z)), where X,Y , and Z are pair-
wise disjoint vectors of variables and F (X,Y) and G(X,Z) are two given goals.

207

Fib ∪ C1: new1(N, F1, F2)←
fib(N, F1), fib(N, F2)

C2: new2(N, F1, F2)← ∪ Fib

fib(N, F1), F1=F2

?

unfold w.r.t. fib(N, F1)

and fib(N, F2)

new1(0, s(0), s(0))←
new1(s(0), s(0), s(0))←
new1(s(s(N)), F1, F2)←

fib(s(N), F11), fib(N, F12),

plus(F11, F12, F1),

fib(s(N), F12), fib(N, F22),

plus(F21, F22, F2)

?

fold (twice)

using C1

?
unfold w.r.t. fib(N, F1)

new2(0, s(0), s(0))←
new2(s(0), s(0), s(0))←
new2(s(s(N)), F1, F2)←

fib(s(N), F11), fib(N, F12),

plus(F11, F12, F1), F1=F2

?

goal replacement
(functionality of plus)

. . .

new2(s(s(N)), F1, F2)←
fib(s(N), F11), fib(N, F12),

plus(F11, F12, F1), plus(F11, F12, F2)

?

generalization + equality
introduction (twice)

. . .

new2(s(s(N)), F1, F2)←
fib(s(N), F11), fib(N, F12),

plus(F11, F12, F1), plus(F21, F22, F2),

F11=F21, F12=F22

?

fold (twice)
using C2

Fib ∪ S1:

new1(0, s(0), s(0))←
new1(s(0), s(0), s(0))←
new1(s(s(N)), F1, F2)←

new1(s(N), F11, F21),

new1(N, F12, F22),

plus(F11, F12, F1),

plus(F21, F22, F2)

=
{new1/new2}

S2: ∪ Fib

new2(0, s(0), s(0))←
new2(s(0), s(0), s(0))←
new2(s(s(N)), F1, F2)←

new2(s(N), F11, F21),

new2(N, F12, F22),

plus(F11, F12, F1),

plus(F21, F22, F2)

FIGURE 3.2. Unfold/fold proof of the functionality of the Fibonacci predicate fib

assuming the functionality of the predicate plus.

208

A non-ascending unfold/fold proof of Equiv consists of two transformation se-
quences T1 : 〈P, P ∪ {C1}, . . . , P ∪ S1〉 and T2 : 〈P, P ∪ {C2}, . . . , P ∪ S2〉
satisfying the properties at Points (i)–(iii) of Definition 3.1 and also satisfying
the following properties:

(iv) Each transformation sequence includes at least one unfolding step.

(v) In each transformation sequence if a folding step is not the last one, then it
is followed by folding steps only. (Recall that, by our folding rule R3, in T1

every folding step is performed using clause C1 only, and analogously, in T2

every folding step is performed using C2 only.)

(vi) In each transformation sequence each application of the goal replacement
rule which replaces goal G1 by goal G2 is restricted to one of the following
two cases: (1) in G1 and G2 there are basic predicates only; (2) G1 is
of the form (H1,H2) and G2 is of the form (H2,H1) (that is, the goal
replacement consists in rearranging the order of the goals). In these two
cases the equivalence formulas which justify the goal replacements hold in
the least Herbrand model of every program.

(vii) For each derivation path R1 : C1 ⇒ . . .⇒ L, where L is a clause in S1 there
exists a derivation path R2 : C2 ⇒ . . . ⇒ M , where M is a clause in S2

such that: (1) M can be obtained from L by replacing every occurrence of
new1 by new2, and (2) the number of clauses obtained by unfolding steps
and occurring in R1, is not less than the number of clauses obtained by
unfolding steps and occurring in R2.

An example of a non-ascending unfold/fold proof is given by the proof of the
functionality of the Fibonacci predicate in Example 3.1. By the following theorem
we have that goal replacement steps justified by non-ascending unfold/fold proofs
(see Definition 4.1) are non-ascending (see Definition 2.1) and thus, by Theorem 2.1,
they are totally correct w.r.t. the least Herbrand model semantics.

Theorem 4.1. Let P0 be a program and let F (X,Y) and G(X,Z) be goals. If there
exists a non-ascending unfold/fold proof of ∀X (∃Y F (X,Y) ↔ ∃Z G(X,Z))
using P0, then for each transformation sequence 〈P0, . . . , Pk〉 the replacement
of F (X,Y) by G(X,Z) in the body of a clause in Pk is a non-ascending goal
replacement.

Proof. See Appendix.

5. A METHOD FOR PROGRAM SYNTHESIS FROM IMPLICIT DEFINI-
TIONS AND ITS APPLICATION TO PROGRAM SPECIALIZA-
TION

In this section we present a method for the synthesis of programs from implicit
definitions, and we see an example of its use for program specialization.

We assume that given a program P , the set of clauses to be synthesized for
a new predicate, say newp, not occurring in P , is specified by a closed formula

209

Equiv2 of the form: ∀X (∃Y F (X,Y) ↔ ∃Z (H(X,Z),newp(X,Z))), where: (i)
the predicates occurring in the goals F (X,Y) and H(X,Z) are defined in P and
(ii) X,Y and Z are pairwise disjoint vectors of variables. The formula Equiv2 is
said to be an implicit definition of newp.

Recall that a variable in (U, V) need not occur in a goal denoted by G(U, V) (see
Section 2). For instance, the atom p(X) is among the goals denoted by G(X, Y).
Analogously, we stipulate that newp(X,Z) denotes an atom with predicate newp
all of whose arguments are variables taken from the vector (X,Z).

Thus, the following formulas are examples of implicit definitions of a predicate
newp:
∀X (∃Y f(X, Y)↔ ∃Z (h1(X), h2(Z),newp(X, Z)))
∀X (∃Y f(X, Y)↔ ∃Z (h(X),newp(X, Z)))
∀X (∃Y f(X, Y)↔ ∃Z (h(Z),newp(X, Z)))
∀X (∃Y f(X)↔ (h(X),newp(X)))
The method for program synthesis we present here, has the objective of gener-

ating a set of clauses, say Eureka, which provide a definition of newp, such that
M(P ∪ Eureka) |= Equiv2. The reader who is familiar with the abduction theory,
may realize that the task of generating the set Eureka can be viewed as an instance
of an abduction problem [17], where Equiv2 is the observed formula and Eureka is
a set of abductive explanations to be added to P for justifying the formula Equiv2.

We will now present our synthesis method by looking, at the same time, at its
application to a program specialization problem which can be stated as follows.

Given a program P , a predicate p(X) defined in P , and a set I of input values,
the problem of specializing p(X) w.r.t. I is the problem of generating a set Eureka of
clauses defining a new predicate spec p(X) such that p(X) is equivalent to spec p(X)
for all X in I.

We assume that I is specified by a predicate defined in P , say input(X), such
that X belongs to I iff input(X) holds in the least Herbrand model of P . Thus, the
problem of specializing p(X) w.r.t. I is the problem of synthesizing a set Eureka of
clauses defining spec p(X), such that

M(P ∪ Eureka) |= ∀X ((input(X), p(X))↔ (input(X), spec p(X)))

Obviously, as a trivial solution of this problem we may choose spec p(X) to be p(X)
itself. However, this trivial solution is not of interest to us. In Examples 5.1, 5.2,
and 5.3 we will show that our synthesis method from implicit definitions is powerful
enough to produce a non-trivial solution different from p(X).

Example 5.1. [Specializing List Concatenation with Type Checks] Let us consider
the following program LConcat for concatenating lists:

concat([],Ys,Ys)← list(Ys)
concat([X|Xs],Ys, [X|Zs])← list(Xs), list(Ys), list(Zs), concat(Xs,Ys,Zs)
list([])←
list([X|Xs])← list(Xs)

Similarly to [13], we would like to specialize our predicate concat(Xs,Ys,Zs) w.r.t.
the set of triples (Xs,Ys,Zs) in the Herbrand universe such that the conjunction
list(Xs), list(Ys), list(Zs) holds. Thus, we would like to introduce a new predicate,
say conc(Xs,Ys,Zs), and generate a set Eureka of clauses such that:

210

P ∪ C1 : new1(X)← F (X,Y) C2 : new2(X)← H(X,Z),newp(X,Z) ∪ P

(R2+R3+R4+
R5+R6)∗

?

Phase (1)

Phase (2)

Phase (3)

Phase (4)

Phase (5)

?

generating the Eureka clauses
(Steps 5.1, 5.2, and 5.3
of Fig. 5)

V2 ∪ P

6

6

(R4+R5+R6)∗

unfolding
using C2

P ∪ S1
-

{new1/new2}
=

S2 ∪ P

FIGURE 5.1. Five phase synthesis method from implicit definitions using unfold/fold

proofs.

M(LConcat ∪ Eureka) |= ∀Xs,Ys,Zs
(list(Xs), list(Ys), list(Zs), concat(Xs,Ys,Zs)

↔ list(Xs), list(Ys), list(Zs), conc(Xs,Ys,Zs))
The Eureka clauses defining the predicate conc should perform list concatenation

of Xs and Ys to produce Zs, without checking that the values of these variables are
lists. 2

This example will be continued below (see Examples 5.2 and 5.3). Let us now
present our method for program synthesis from implicit definitions with reference
to a given program P and a formula Equiv2 of the form: ∀X (∃Y F (X,Y) ↔
∃Z (H(X,Z),newp(X,Z))), where F (X,Y) and H(X,Z) are goals, and X,Y and
Z are pairwise disjoint vectors of variables. It consists of the following five phases
(see also Fig. 5.1).

Phase (1). We introduce the following two clauses:

C1: new1(X)← F (X,Y)

C2: new2(X)← H(X,Z), newp(X,Z)

where new1 and new2 are predicate symbols not occurring in P and for
i = 1, 2, all the universally quantified variables of Equiv2 occur in the head
of Ci.

Phase (2). We construct a totally correct transformation sequence 〈P, P ∪
{C1}, . . . , P ∪ S1〉 by first adding (using rule R1) clause C1 to program
P and then applying a sequence of transformation rules, each of which is

211

taken from the set {R2,R3,R4,R5,R6}. We assume that each clause in S1

is derived, in zero or more steps, from clause C1, that is, for each clause D
not in P , derived during the construction of the transformation sequence,
we have that C1 ⇒∗ D.

Phase (3). We get a set S2 of clauses from the set S1 by replacing every occurrence
of the predicate symbol new1 by new2.

Phase (4). We eliminate the occurrences of new2 from the bodies of the clauses
in S2 by performing some unfolding steps using clause C2. We then apply
zero or more times the rules R4, R5, and R6, thereby getting a new set of
clauses, say V2.

Phase (5). We generate a set Eureka of clauses which allows us to construct a
transformation sequence from P ∪ Eureka ∪ {C2} to P ∪ Eureka ∪ V2 by
applying rules R2, R4, R5, and R6. This final phase is further detailed
below.

During Phases (4) and (5) we restrict the application of rule R4 to the cases
indicated at Point (vi) of Definition 4.1, and during Phase (5) we perform
at least one unfolding step.

Notice that, when at the end of Phase (5) we have derived the set Eureka,
there is a transformation sequence T1 : 〈P ∪ Eureka, P ∪ Eureka ∪ {C1}, . . . , P ∪
Eureka ∪ S1〉 and also a transformation sequence T2 : 〈P ∪ Eureka, P ∪ Eureka ∪
{C2}, . . . , P ∪Eureka∪S2〉. This is due to the fact that, so to speak, we can reverse
the transformation steps from S2 to V2. Indeed, (i) the unfolding steps using C2

can be reversed by folding steps using C2, (ii) the goal replacement rule R4 is a
self-inverse (see the definition of R4 in Section 2), and (iii) the generalization +
equality introduction rule R5 is the inverse of the simplification of equality rule R6,
and vice versa.

The total correctness of the transformation sequence T1 easily follows from the
total correctness of the transformation sequence constructed in Phase (2), and the
total correctness of the transformation sequence T2 follows from that fact that its
construction complies with the restrictions (α) and (β) of Theorem 3.1. Thus, T1

and T2 constitute an unfold/fold proof of the equivalence formula Equiv2 using
P ∪ Eureka and the following theorem follows from Theorem 3.1.

Theorem 5.1. [Soundness of the synthesis method] Let P be a program, F (X,Y)
and H(X,Z) be goals and newp be a predicate symbol not occurring in
P . Let Eureka be the set of clauses defining newp derived by the synthesis
method from implicit definitions starting from the formula ∀X (∃Y F (X,Y) ↔
∃Z (H(X,Z),newp(X,Z))). Then M(P ∪ Eureka) |= ∀X (∃Y F (X,Y) ↔
∃Z (H(X,Z),newp(X,Z))).

Now we illustrate the five phase synthesis method from implicit definitions that
we have described, by continuing our Example 5.1.

Example 5.2. [Specializing List Concatenation with Type Checks, Continued] The
set Eureka of clauses for conc(Xs,Ys,Zs), which is the specialized version of
concat(Xs,Ys,Zs), is generated according to the following five phases.

212

Phase (1). We introduce the two clauses:

C1: new1(Xs,Ys,Zs)← list(Xs), list(Ys), list(Zs), concat(Xs,Ys,Zs)

C2: new2(Xs,Ys,Zs)← list(Xs), list(Ys), list(Zs), conc(Xs,Ys,Zs)

Phase (2). We first unfold clause C1 w.r.t. concat(Xs,Ys,Zs), we then perform
some unfolding steps w.r.t. list atoms, we delete duplicate atoms (this is an
instance of goal replacement), and we finally perform one folding step. Thus,
we get the following set of clauses:

S1: new1([],Ys,Ys)← list(Ys)

new1([X|Xs],Ys, [X|Zs])← new1(Xs,Ys,Zs)

Phase (3). We replace the predicate symbol new1 by new2 and we get the following
set of clauses:

S2: new2([],Ys,Ys)← list(Ys)

new2([X|Xs],Ys, [X|Zs])← new2(Xs,Ys,Zs)

Phase (4). We perform an unfolding step using clause C2 and we get the set V2

made out of the following two clauses:

D1: new2([],Ys,Ys)← list(Ys)

D2: new2([X|Xs],Ys, [X|Zs])← list(Xs), list(Ys), list(Zs), conc(Xs,Ys,Zs)

Phase (5). The generation of the set Eureka of clauses which allows us to derive the
program LConcat ∪Eureka ∪V2 from the program LConcat ∪Eureka ∪{C2}
is shown in Example 5.3. 2

Phase (5) of our synthesis method is the most complex phase of all, and indeed,
no algorithm exists for the generation of the set Eureka in all cases. We will now
present a strategy which is successful in our specialization problem (see Example 5.3
below) and also in many other cases (see, for instance, Examples 6.1 and 7.1).

Our strategy for Phase (5) consists of the following three steps (see Fig. 5.2).

Step 5.1. (Instantiation) Let us assume that V2 is the set {Di | i = 1, . . . , n}, where
for i = 1, . . . , n, the clause Di is of the form: new2(ti)← Body i.

In this step we construct a multiset SE = {Ei | i = 1, . . . , n} of instances of clause
C2 such that the heads of the clauses in SE are equal (modulo variable renaming)
to the heads of the clauses in V2.

This construction is performed by applying to C2, for i = 1, . . . , n, the substitu-
tion {X/ti} (possibly with identity bindings), thereby obtaining:

Ei: new2(ti)← H(ti, Z), newp(ti, Z)

where we assume that the following two constraints are satisfied: (1) the variables
affected by non-identity bindings occur in newp(X,Z), and (2) vars(ti)∩vars(Z) =
{ }.

213

C2 :
new2(X) H(X,Z) newp(X,Z)

� ,
Step 5.1:
Instantiation
of C2 via {X/ti}

. . . i−1 i i+1 . . .
�� �� �� �� �� �� �� �� ��XX XX XX XX XX XX XX XX XX

?. . . ?. . .Ei :
new2(ti) H(ti, Z) newp(ti, Z)

� , Step 5.2:
Old Predicate
Transformations
on H(ti, Z)

Fi :
new2(ti) Oldpi(Q, V) newp(ti, ui)

� ,
Step 5.3:
Clause Synthesis
Ni : newp(ti, ui)←

Rest i(Q, W)

Di : (Di ∈ V2)
new2(ti) Oldpi(Q,V) Rest i(Q,W)

� ,

?

?

?

unfolding
w.r.t.
newp(ti, ui)
using Ni

Body i

FIGURE 5.2. Steps 5.1, 5.2, and 5.3 of the strategy for the synthesis of the set Eureka

of clauses.

This first step is motivated by the fact that in order to derive the clauses of V2

from C2, we should eventually derive clauses whose heads are equal to the heads of
the clauses in V2. This instantiation may provide a guidance for further transfor-
mation steps. Notice that, unlike [8], instantiation is not among the transformation
rules we have considered. However, we show below that the form of instantiation
we require here, may be viewed as an unfolding step using the clauses in the set
Eureka.

Step 5.2. (Old Predicate Transformations) For i = 1, . . . , n, starting from clause Ei,
we repeatedly apply transformation rules taken from {R2, R4, R5, R6} (with the
restrictions mentioned at Point (vi) of Definition 4.1) whose only effect on the atom
with predicate newp may be an instantiation. Moreover, unfolding steps are allowed
only if they produce exactly one clause, whose head is equal (modulo variable
renaming) to the one of Ei. Notice that by complying with these restrictions, the
body of each derived clause contains exactly one occurrence of the predicate newp.
We stop this transformation process which started from Ei, when we get to a clause
of the form:

Fi: new2(ti)← Oldpi(Q, V), newp(ti, ui)

where: (i) Q is the vector of the variables occurring in newp(ti, ui), (ii) V is the
vector of the variables of Fi not occurring in Q, and (iii) Di is equal to a clause of
the form: new2(ti)← Oldpi(Q,V), Rest i(Q,W), where W is a vector of variables
which do not belong to vars(Q,V). By suitable variable renamings, we may also
assume that vars(Z) ∩ vars(Q,V , W) = { }.

Step 5.3. (Clause Synthesis) For each clause Fi derived at Step 5.2 we consider the

214

clause:
Ni: newp(ti, ui)← Rest i(Q,W)
and we take Eureka to be the set {Ni | i = 1, . . . , n}.

Now we can prove that there exists a transformation sequence from P ∪{Ni | i =
1, . . . , n} ∪ {C2} to P ∪ {Ni | i = 1, . . . , n} ∪ V2. The proof which we now give, is
based on the fact that Z, Q, V , and W are pairwise disjoint vectors of variables.
(i) We unfold C2 w.r.t. newp(X,Z) using the clauses {Ni | i = 1, . . . , n} syn-
thesized at Step 5.3, and we derive a set of clauses of the form {new2(ti) ←
H(ti, ui), Rest i(Q, W) | i = 1, . . . , n} (whose heads are equal to the ones of the
clauses in the multiset SE derived at Step 5.1).
(ii) We apply the generalization + equality introduction rule and we derive a set of
clauses of the form {new2(ti)← H(ti, Z), Z = ui, Rest i(Q,W) | i = 1, . . . , n}.
(iii) We perform the old predicate transformations corresponding to those per-
formed at Step 5.2, and we derive the set of clauses {new2(ti)← Oldpi(Q,V), ui =
ui,Rest i(Q, W) | i = 1, . . . , n}. Notice that for i = 1, . . . , n, these transforma-
tions determine the instantiation of Z to ui, because newp(ti, Z) in Ei becomes
newp(ti, ui) in Fi.
(iv) We get V2 by simplification of equality.

In the following example we illustrate the Steps 5.1, 5.2, and 5.3 for performing
Phase 5 of Example 5.2.

Example 5.3. [Specializing List Concatenation with Type Checks, Continued]
Step 5.1. By instantiation, from C2 of Example 5.2, we get:

E1: new2([],Ys,Ys)← list([]), list(Ys), list(Ys), conc([],Ys,Ys)
E2: new2([X|Xs],Ys, [X|Zs]) ← list([X|Xs]), list(Ys), list([X|Zs]),

conc([X|Xs],Ys, [X|Zs])

The heads of clauses E1 and E2 are equal to those of clauses D1 and D2 in V2 of
Example 5.2, respectively.

Step 5.2. By unfolding clauses E1 and E2 w.r.t. list atoms and deleting duplicate
atoms we get the two clauses:

F1: new2([],Ys,Ys)← list(Ys), conc([],Ys,Ys)
F2: new2([X|Xs],Ys, [X|Zs])←list(Xs), list(Ys), list(Zs),

conc([X|Xs],Ys, [X|Zs])

With reference to Fig. 5.2 we have that (see also clauses D1 and D2 of Phase (4)
of Example 5.2):

Oldp1(Ys) is list(Ys),
Rest1(Ys) is the empty goal true,
Oldp2(X,Xs,Ys,Zs) is (list(Xs), list(Ys), list(Zs)),
Rest2(X,Xs,Ys,Zs) is conc(Xs,Ys,Zs).

Step 5.3. The set Eureka consists the following two clauses:

N1: conc([],Ys,Ys)←
N2: conc([X|Xs],Ys, [X|Zs])← conc(Xs,Ys,Zs)

When we use the clauses for conc, instead of those for concat, no list type check
is performed. Indeed, those checks are not necessary if we know in advance that
the arguments of concat are lists. 2

215

Before closing the section let us remark that our specialization technique based
on the synthesis method from implicit definitions is an extension of partial eval-
uation [21]. Indeed, partial evaluation corresponds to the case where program
specialization is applied using a predicate input(X) of the form: X = t, for some
(possibly non-ground) term t.

6. SYNTHESIS OF PROGRAMS THAT USE DIFFERENCE-LISTS

Difference-lists are data structures which are sometimes used, instead of lists, for
implementing algorithms that manipulate sequences of elements. The advantage of
using difference-lists is that the concatenation Z of two sequences X and Y , repre-
sented as difference-lists, can be performed in constant time, while it takes linear
time (w.r.t. the length of X) if we use the standard predicate for list concatenation,
which in this section we denote by the basic predicate app(X, Y, Z).

A difference-list can be thought of as a pair of lists, denoted by L\R, such that
there exists a third list Y for which app(Y,R, L) holds [9]. In that case we say
that Y is represented by the difference-list L\R. Obviously, a single list can be
represented by many difference-lists.

Programs that use lists are often simpler to write and understand than the
equivalent ones which make use of difference-lists. Thus, one may be interested
in providing techniques for transforming in an automatic way programs which use
lists, into programs which use difference-lists. Several such techniques have been
proposed in the literature [15, 31].

We will show that by applying our program synthesis method we can automati-
cally perform the transformation which introduces difference-lists. Our method is
very general and it can be used also to perform other changes of data representa-
tions.

The problem of transforming programs which use difference-lists, instead of lists,
can be formulated as follows. Let p(X, Y) be a predicate defined in a program P
where Y is a list. We want to synthesize a new predicate, say diff p(X, L\R), where
L\R is a difference-list, together with an additional set of clauses, say Eureka,
defining diff p. We also want diff p(X, L\R) to be equivalent to p(X, Y) when L\R
is a difference-list representing Y .

Thus, our program transformation problem reduces to the problem of looking
for a set Eureka of clauses such that:

M(P ∪ Eureka) |= ∀X, Y (p(X, Y)↔ ∃L,R (app(Y,R, L), diff p(X, L\R)))

where, as already mentioned, app(Y,R, L) holds iff L\R is a difference-list repre-
senting Y .

In the following example which we take from [27, page 297], we show how our
synthesis method may derive a program which uses difference-lists from an initial
program which uses lists.

Example 6.1. [Implementing Queues by Difference-lists] Let us consider the fol-
lowing program Queue defining a predicate queue(S) which holds iff S is a se-
quence of enqueue and dequeue operations represented as a list of terms of the
form enqueue(X) and dequeue(X), respectively.

216

queue(S)← q(S, [])
q([enqueue(X)|Xs], Q)← app(Q, [X], Q1), q(Xs, Q1)
q([dequeue(X)|Xs], Q)← app([X], Q1, Q), q(Xs, Q1)
q([], Q)← Q=[]

Queues of elements are represented as lists. The second argument of the predicate
q is a queue which is initially empty (represented as []), and it is updated according
to the sequence of enqueue(X) and dequeue(X) operations specified by the value
of the first argument of q. The enqueue(X) and dequeue(X) operations are imple-
mented by means of list concatenations using app(Q, [X], Q1) and app([X], Q1, Q),
respectively, that is, elements enter a queue from the ‘right end’ and exit a queue
from the ‘left end’. Since the evaluation of app(Q, [X], Q1) is expensive, we would
like to represent the lists Q and Q1, which occur in the second argument of q, as
difference-lists. Thus, we look for a predicate diff q(S, L\R) defined by a set Eureka
of clauses such that:
Equiv3: M(Queue ∪ Eureka) |= ∀S, Q (q(S, Q)

↔ ∃L,R (app(Q, R,L), diff q(S, L\R)))
The predicates app, ‘=’, and ‘6=’ are considered to be basic predicates (this

hypothesis allows us to apply Theorem 5.1 to prove the soundness of our synthesis).
The synthesis of Eureka can be performed by routine application of our five phase

synthesis method as follows.

Phase (1). We introduce two clauses:

C1: new1(S, Q)← q(S, Q)

C2: new2(S, Q)← app(Q,R,L), diff q(S, L\R)

Phase (2). We unfold clause C2 w.r.t. q(S, Q). We then perform some folding steps
and we get the following set of clauses:

S1: new1([enqueue(X)|Xs], Q)← app(Q, [X], Q1), new1(Xs, Q1)

new1([dequeue(X)|Xs], Q)← app([X], Q1, Q), new1(Xs, Q1)

new1([], Q)← Q=[]

As one may expect by looking at clause C1, the clauses for new1 are equal
to those for q where each occurrence of q has been replaced by new1.

Phase (3). By replacing the predicate symbol new1 by new2 we get the following
set of clauses:

S2: new2([enqueue(X)|Xs], Q)← app(Q, [X], Q1), new2(Xs, Q1)

new2([dequeue(X)|Xs], Q)← app([X], Q1, Q), new2(Xs, Q1)

new2([], Q)← Q=[]

Phase (4). By unfolding using clause C2, by performing goal replacement steps
which are justified by properties of the basic predicates (see below), and
finally, by applying the generalization + equality introduction rule, we get
the set V2 consisting of the following three clauses:

217

D1: new2([enqueue(X)|Xs], Q)← app(Q,R,L), R=[X|R1], diff q(Xs, L\R1)

D2: new2([dequeue(X)|Xs], Q) ← app(Q,R,L), L=[X|L1], R 6=[X|L1],
diff q(Xs, L1\R)

D3: new2([], Q)← app(Q,R,L), R=L

We have used the following three simple properties of app for deriving D1,
D2, and D3, respectively:

∀Q,X, R1, L (∃Q1 (app(Q, [X], Q1), app(Q1, R1, L))↔ app(Q, [X|R1], L))

∀Q,X, R,L1 (∃Q1 (app([X], Q1, Q), app(Q1, R, L1))↔
(app(Q, R, [X|L1]), R 6=[X|L1]))

∀Q (Q=[]↔ ∃L, R (app(Q,L,R), R=L))

Phase (5). The set Eureka can now be synthesized according to the following three
steps:

Step 5.1 (Instantiation) By instantiation and variable renaming from C2 we get:

E1: new2([enqueue(X)|Xs], Q) ← app(Q,R,L), diff q([enqueue(X)|Xs], L\R)
E2: new2([dequeue(X)|Xs], Q) ← app(Q,R,L), diff q([dequeue(X)|Xs], L\R)
E3: new2([], Q)← app(Q,R,L), diff q([], L\R)

Step 5.2 (Old Predicate Transformations) No transformation is applied because,
with reference to Fig. 5.2, we have that for i = 1, 2, 3, Fi is Ei, and

Oldp1(X,Xs, L,R, Q) is app(Q,R,L),
Rest1(X,Xs, L,R, R1) is (R=[X|R1], diff q(Xs, L\R1)),
Oldp2(X,Xs, L,R, Q) is app(Q,R,L),
Rest2(X,Xs, L,R, L1) is (L=[X|L1], R 6=[X|L1], diff q(Xs, L1\R)),
Oldp3(L,R,Q) is app(Q, R,L),
Rest3(L, R) is R=L.

Step 5.3 (Clause Synthesis) The set Eureka consists of the clauses:

diff q([enqueue(X)|Xs], L\R)← R=[X|R1], diff q(Xs, L\R1)
diff q([dequeue(X)|Xs], L\R) ← L=[X|L1], R 6=[X|L1], diff q(Xs, L1\R)
diff q([], L\R)← R=L

By simplification of the equalities, we get:

diff q([enqueue(X)|Xs], L\[X|R1])← diff q(Xs, L\R1)
diff q([dequeue(X)|Xs], [X|L1]\R)← R 6=[X|L1], diff q(Xs, L1\R)
diff q([], L\L)←
Notice that, by Equiv3, for Q=[] the following property holds:
M(Queue ∪ Eureka) |= ∀S (q(S, [])↔ ∃L diff q(S, L\L))

Thus, we can express the predicate queue in terms of diff q as follows:
queue(S)← diff q(S, L\L)

This clause, together with the clauses of the set Eureka (see Step 5.3), is analo-
gous to the program given in [27], except for the inequality occurring in the body
of one of our final clauses. As the reader may verify, that inequality is necessary
for establishing Equiv3. 2

218

7. A TRANSFORMATION STRATEGY FOR AVOIDING UNNECESSARY
NONDETERMINISM

In this section we present, through an example, a new transformation strategy for
improving program efficiency by avoiding unnecessary nondeterminism. For some
steps of our strategy we make use of the method of program synthesis from implicit
definitions described in Section 4.

A well known technique for avoiding nondeterminism is based on clause fu-
sion [10]. It consists in replacing two clauses of the form:

H ← I, F
H ← I,G

by the clauses

H ← I,B
B ← F
B ← G

where B is an atom with a new predicate symbol, say newp. Thus, clause fusion
can be viewed as a definition step, for introducing the predicate newp, followed by
a folding step. By this transformation we factorize the goal I which is common to
the two initial clauses for H and we avoid the repeated evaluation of this atom in
case of backtracking.

However, computations which are common to several clauses are not always
apparent in the syntactic structure of the clauses. In fact, we may have clauses of
the form:

H ← Body1
H ← Body2

where Body1 and Body2 do not syntactically include any common subgoal and
yet during their evaluation, they produce redundant computations. Indeed, this
is the case when there exist three goals, say I, F , and G, such that the following
equivalence formulas hold in the least Herbrand model of the program at hand:
Equiv4: ∀X1 (∃Y1 Body1↔ ∃Z1 (I, F))
Equiv5: ∀X2 (∃Y2 Body2↔ ∃Z2 (I,G))

In Equiv4, X1 denotes the vector of the variables in vars(H) ∩ vars(Body1), Y1

denotes the vector of variables occurring in Body1 and not occurring in X1, and
Z1 denotes the vector of variables occurring in (I, F) and not in X1. Similarly in
Equiv5, X2 denotes the vector of the variables in vars(H)∩vars(Body2), Y2 denotes
the vector of variables occurring in Body2 and not occurring in X2, and Z2 denotes
the vector of variables occurring in (I,G) and not in X2.

In this case, in order to avoid unnecessary nondeterminism, we may replace
Body1 by (I, F) and Body2 by (I,G) and then we apply clause fusion as described
above. For these transformations to be totally correct transformations it is required
that these two goal replacements are non-ascending (see Theorem 2.1).

The proposal of an automatic method for finding such goals I, F , and G, is
beyond the scope of the present paper. However, we may use a strategy which will
be applied in Example 7.1 below. The first step of this strategy is a preliminary
analysis of the resolution steps starting from the goal H, and this analysis may
suggest us a suitable choice for the goal I. Then, in order to construct the goals

219

F and G such that Equiv4 and Equiv5 hold for the chosen goal I, we may apply
our synthesis method from implicit definitions. For instance, in order to construct
F we may introduce a new predicate, say f , which is implicitly defined by the fact
that the following equivalence formula holds in the least Herbrand model of the
program at hand:
Equiv6: ∀X1 (∃Y1 Body1↔ ∃Z1 (I, f(X1, Z1)))
where Z1 is the vector of the variables occurring in I and not in X1.

If we are able to construct a set EurekaF of clauses defining f , by using our
synthesis method, then we may stipulate that the goal F is f(X1, Z1). Analogously,
we can apply our synthesis method for constructing the goal G, thereby deriving
the set EurekaG of clauses which define a new predicate, say g.

Our strategy will then continue by transforming the sets EurekaF and EurekaG of
clauses defining f and g, because they, in turn, may still contain some unnecessary
nondeterminism.

The reader should notice that the addition to the program at hand of the clauses
EurekaF and EurekaG may not be possible by rule R1 which does not allow for the
introduction of recursive definitions. However, we can use Theorem 2.1 for showing
the total correctness of a suitable transformation sequence constructed by applying
our strategy for avoiding nondeterminism. Indeed, given the initial program P+

0 =
P0 ∪ EurekaF ∪ EurekaG , Theorem 2.1 ensures that the transformation sequence
from program P+

0 ∪{H ← Body1}∪{H ← Body2} to the new program P+
0 ∪{H ←

I, F}∪{H ← I, G} is totally correct if it is due to non-ascending goal replacements.
In the following example we verify that the suitable goal replacements are non-

ascending by constructing non-ascending unfold/fold proofs and using Theorem 4.1.

Example 7.1. [Reachability in a graph] Let us consider the following program P0

which defines the reachability relation in a directed graph:

1. reach(X)← initial(X)
2. reach(X)← reach(Y), edge(Y, X)

together with some suitable clauses defining the initial and edge predicates, which
we do not show here.

Program P0 may perform some redundant computations when evaluating the
goal reach(X), where X is an unbound variable, according to the standard left-
to-right, depth-first Prolog strategy. Indeed, the computed answer substitutions
for the goal reach(X) are obtained by evaluating goals of the form (initial(X0),
edge(X0, X1), edge(X1, X2), . . ., edge(Xn, X)) for increasing values of n. However,
the partial results obtained during the evaluation of ‘shorter’ goals, are not taken
into account for the evaluation of ‘longer’ goals, and equal subgoals may be repeat-
edly evaluated along different branches of the SLD-tree (for whose definition we
refer to [20]).

In order to discover redundant computations of this kind, we may symbolically
generate and examine the set of the SLD-derivations starting from a given goal.
(Symbolic evaluation is a standard analysis technique used in various program
transformation methods [6, 8, 30].) In particular, by constructing a finite up-
per portion of the SLD-tree starting from the goal of interest, we may find equal
subgoals which have to be evaluated along distinct branches of that SLD-tree, and
thus, they produce redundant computations. The description of general analysis
techniques which can be used for this search, is beyond the scope of this paper.

220

reach(X)

N0 : initial(X) M : reach(Y), edge(Y, X)

��������)

Q
Q

Q
Qs

clause 1 clause 2

initial(Y), edge(Y, X)N1 : N2 : reach(W), edge(W,Y), edge(Y, X)
. . .

��������)

Q
Q

Q
Qs

clause 1 clause 2

�

FIGURE 7.1. An upper portion of the SLD-tree for reach(X).

In our case, in order to avoid unnecessary computations and reduce nondeter-
minism, we may apply the strategy we have described earlier in this section. It
consists in looking for some goals I, F , and G, such that clauses 1 and 2 can be
rewritten as:

1′. reach(X)← I, F
2′. reach(X)← I, G

We start off by considering the upper portion of the SLD-tree with root goal
reach(X) depicted in Fig. 7.1.

By analyzing that SLD-tree, we discover that for all successful SLD-derivations
starting from reach(X) we will get to a goal of the from initial(Z), E where E is
a goal whose definition may depend on the SLD-derivation. In particular, (i) the
SLD-derivation which uses clause 1 in the first step, contains an occurrence of the
goal initial(Z) with Z = X (see goal N0), and (ii) all successful SLD-derivations
which use clause 2 in the first step, contain a goal of the form: (initial(Z), G(Z,X))
where Z is a variable distinct from X and G(Z,X) is a goal whose definition depends
on the SLD-derivation. Property of Point (ii) derives from the fact that a leftmost
subgoal of the goal N2 is an instance of the goal in M (see the dashed arrow in
Fig. 7.1).

As a result of this analysis, we may conclude that (i) the body of clause 1 is
equivalent to the goal (initial(Z), Z =X) and (ii) the body of clause 2 is equivalent
to a goal of the form (initial(Z), G(Z,X)) for a suitable goal G(Z,X).

Thus, in clauses 1′ and 2′ we can choose the goal I to be initial(Z), the goal
F to be Z = X, and the goal G to be g(Z,X), where g(Z,X) is a new predicate
implicitly defined by:

Equiv7: M(P0 ∪ EurekaG) |= ∀X (∃Y (reach(Y), edge(Y,X))
↔ ∃Z (initial(Z), g(Z,X)))

The suitable set EurekaG of clauses defining g(Z,X) can be generated by using, as
we will indicate below, our five phase synthesis method.

When we have the set EurekaG, the transformation continues by adding this
set of clauses to P0 and replacing clauses 1 and 2 (by using the generalization +
equality introduction and goal replacement rules, respectively) by the following two
clauses:

221

1*. reach(X)← initial(Z), Z =X
2*. reach(X)← initial(Z), g(Z,X)

Here are the five phase synthesis method for constructing the set EurekaG .

Phase (1). We introduce two clauses:

C1: new1(X)← reach(Y), edge(Y, X)

C2: new2(X)← initial(Z), g(Z,X)

Phase (2). By unfolding clause C1 w.r.t. reach(Y) we get the set R1 consisting of
the following two clauses:

R1: new1(X)← initial(Y), edge(Y, X)

new1(X)← initial(Y 1), edge(Y 1, Y), edge(Y, X)

and then by folding we derive the set S1 of clauses:

S1: new1(X)← initial(Y), edge(Y, X)

new1(X)← new1(Y), edge(Y, X)

Phase (3). By replacing in S1 the predicate symbol new1 by new2 we get the
following set S2 of clauses:

S2: new2(X)← initial(Y), edge(Y, X)

new2(X)← new2(Y), edge(Y,X)

Phase (4). By unfolding the second clause in S2 using clause C2 and by variable
renaming, we get the set V2 consisting of the two clauses:

D1: new2(X)← initial(Z), edge(Z,X)

D2: new2(X)← initial(Z), g(Z, Y), edge(Y, X)

Phase (5). The set EurekaG can now be synthesized according to the following
three steps.

Step 5.1. (Instantiation) By instantiation from C2 we get two copies of the same
clause:

E1: new2(X)← initial(Z), g(Z,X)
E2: new2(X)← initial(Z), g(Z,X)

Step 5.2. (Old Predicate Transformations) We do not apply any transformation
rule to E1 or E2 because the conditions stated in Step 5.2 of Section 5 for stopping
the transformation process are already satisfied. Indeed, with reference to Fig. 5.2
we have that:

F1 is E1, F2 is E2, and
Oldp1(Z,X) is initial(Z), Rest1(Z,X) is edge(Z,X),
Oldp2(Z,X) is initial(Z), Rest2(Z, Y, X) is (g(Z, Y), edge(Y, X)).

Step 5.3. (Clause Synthesis) The set EurekaG consists of the following clauses:

222

3. g(Z,X)← edge(Z,X)
4. g(Z,X)← g(Z, Y), edge(Y, X)

Thus, the derived program version P1 is:

1*. reach(X)← initial(Z), Z =X
2*. reach(X)← initial(Z), g(Z,X)
3. g(Z,X)← edge(Z,X)
4. g(Z,X)← g(Z, Y), edge(Y, X)

together with the clauses defining the predicates initial and edge. By Theorem 2.1
we have that M(P0 ∪ EurekaG) = M(P1 ∪ EurekaG) because it is the case that
the replacement of the body of clause 2 by (initial(Z), g(Z,X)) is a non-ascending
goal replacement. This property can be established by providing a non-ascending
unfold/fold proof of Equiv7 using P0 ∪EurekaG and by applying Theorem 4.1. We
now show the two transformation sequences T1 and T2 which constitute that proof
and then we show that the proof is non-ascending.

The initial program of T1 is P0 ∪EurekaG . By definition introduction we derive
P0∪EurekaG∪{C1}, then by unfolding C1 w.r.t. reach(Y) we get P0∪EurekaG∪R1,
and finally, by folding we get P0 ∪ EurekaG ∪ S1.

The initial program of T2 is P0 ∪EurekaG . By definition introduction we derive
P0 ∪ EurekaG ∪ {C2}, then by unfolding C2 w.r.t. g(Z,X) we get P0 ∪ EurekaG ∪
{D1, D2}, and finally, by folding clause D2 using C2 we get P0 ∪ EurekaG ∪ S2.

The sequences T1 and T2 constitute a non-ascending proof because: (i) every
derivation path from C1 to a clause in S1 contains precisely one unfolding step, and
(ii) for each clause, say E, in S2 there is a derivation path in T2 from C2 to E which
contains precisely one unfolding step (for the notion of a non-ascending proof given
in Definition 4.1 the number of applications of the other transformation rules is not
significant).

Now we may continue our derivation from program P1 and we may apply the
clause fusion technique. Thus, we replace clauses 1* and 2* by the following three
clauses (by performing a definition introduction and a folding step):

5. reach(X)← initial(Z), b(Z,X)
6. b(Z,X)← Z =X
7. b(Z,X)← g(Z,X)

The current program version, call it P2, consists of clauses 3, 4, 5, 6, and 7,
together with the clauses for edge and initial. Now our strategy continues by trans-
forming the clauses for the predicate g. We consider an upper portion of the SLD-
tree with root-goal g(Z,X) and we perform an analysis similar to the one described
above for reach(X). By this analysis we get that the body of clause 4 is equivalent
to a goal of the form (edge(Z, V), Q(V,X)). Thus, we may apply our synthesis
method by introducing the new predicate q implicitly defined by the equivalence
formula:
Equiv8: M(P2 ∪ EurekaQ) |=

∀X, Z (∃Y (g(Z, Y), edge(Y, X)↔ ∃V (edge(Z, V), q(V,X)))
where EurekaQ is the set of clauses which should be generated.

By one more application of our five phase method which we do not present here,
we derive the following EurekaQ clauses for the predicate q:

223

8. q(Z,X)← edge(Z,X)
9. q(Z,X)← q(Z, Y), edge(Y, X)

Thus, the clauses defining q are equal to those defining g and we may replace q
by g in Equiv8, and we get:

Equiv9: M(P2) |= ∀X, Z (∃Y (g(Z, Y), edge(Y, X)↔ ∃V (edge(Z, V), g(V,X)))

By a goal replacement justified by Equiv9, from clause 4 we derive:

10. g(Z,X)← edge(Z, V), g(V,X)

We may easily verify that also this goal replacement step is non-ascending (by
constructing a non-ascending unfold/fold proof of Equiv9) and therefore M(P2) =
M(P3), where P3 is the program obtained from P2 by replacing clause 4 by clause
10. Now we may apply the clause fusion technique to clauses 3 and 10. In order to
do so, we apply rule R5 to clause 3 and we get:

3′. g(Z,X)← edge(Z, V), V =X

and then we fold clauses 3′ and 10 by using clauses 6 and 7. We thus derive:

11. g(Z,X)← edge(Z, V), b(V,X)

The current program version P4 is:

5. reach(X)← initial(Z), b(Z,X)
6. b(Z,X)← Z =X
7. b(Z,X)← g(Z,X)

11. g(Z,X)← edge(Z, V), b(V,X)

together with the clauses 8 and 9 and the clauses for edge and initial.
By some final transformation steps by which (i) we unfold the equality in the

body of clause 6 (by rule R6), (ii) we unfold clause 7 w.r.t. the predicate g, and
(iii) we discard clauses 8 and 9 because the predicate q is not needed, we get the
following final program P5 (apart from the clauses for edge and initial):

5. reach(X)← initial(Z), b(Z,X)
12. b(X, X)←
13. b(Z,X)← edge(Z, V), b(V,X)

This program is right-recursive and it computes the set of reachable vertices from
the given initial ones in a forward-chaining fashion. This means that the evaluation
of the goal reach(X) is done by program P5 in a more deterministic way w.r.t. the
initial program P0 which, instead, is left-recursive and evaluates the goal reach(X)
in a backward-chaining fashion. 2

A similar transformation of left-recursive programs into right-recursive programs
was presented in [5] where, however, the transformation of P0 into P5 is presented
in one ‘big step’ as a schema-based transformation, which is validated by an ad-hoc
inductive proof. We believe that our approach based on transformation rules and
strategies, is much more flexible than the schema-based approach. Indeed, it is
possible to use our approach to perform program derivations analogous to the one
we have presented here, even if the initial program is not an instance of a known
schema.

224

8. RELATED WORK AND CONCLUSIONS

The use of unfold/fold rules for the verification of program properties has been often
suggested since the early days of program transformation [8]. In this paper we have
formalized a method based on unfold/fold transformations, called the unfold/fold
proof method, which can be used for proving properties of logic programs w.r.t.
the least Herbrand model semantics. Since the unfold/fold transformations may
be designed to preserve many different semantics (see, for instance, [24]), one may
extend our method to prove properties w.r.t. those semantics as well.

We have provided some conditions which ensure that, when a property is used
as a lemma to perform program transformations, these transformations are indeed
totally correct, that is, they preserve the least Herbrand model semantics. These
conditions rely on the existence of a non-ascending unfold/fold proof of the property
of interest, and thus, since they refer to finite objects, they have a more constructive
nature w.r.t. other techniques, such as those based on consistency with weight tuple
measures [29] or non-increasingness [2], which rely on the verification of properties
of possibly infinite sets of SLD-derivations.

We have also presented a method for synthesizing programs from unfold/fold
proofs of program properties. Although our method makes use of unfold/fold trans-
formations, we feel that it falls into the category of synthesis methods because the
initial specification is not in Horn clause form (that is, it is not a logic program),
but it is assumed to be a more general formula of the form:

∀X (∃Y F (X,Y)↔ ∃Z (H(X,Z), newp(X,Z))) (8.1)

where F (X,Y) and H(X,Z) are conjunctions of atoms and newp is the predicate
for which we would like to synthesize a program. Specifications of the form (8.1)
can be considered to be an implicit definition of the new predicate newp, and thus,
we say that our proposed technique is a synthesis method from implicit definitions.

A very large number of synthesis methods have been proposed in the literature.
All these methods may vary because of: (i) the form of the initial specification, (ii)
the rules used for deriving programs from specifications, and (iii) the language used
for the synthesized programs (see, for instance, [7, 11, 12, 16] for references in the
case of logic programs).

Our synthesis method is related to the methods for logic program synthesis (see,
for instance, [16]) where the initial specification is an equivalence formula of the
first order predicate calculus and one is allowed to use derivation rules similar to
the unfold/fold rules. These methods, called deductive synthesis methods in the
survey paper [11], allow for initial specifications of the form:

∀X (spec(X)↔ newp(X))

where newp is the predicate for which we want to synthesize a program and spec is
any formula of the first order predicate calculus. Thus, no implicit definitions like
those provided by formulas of the form (8.1) above are allowed.

Our synthesis method can also be viewed as a technique for the extraction of
a program from an unfold/fold proof. Thus, the basic idea of our method is also
related to the proofs-as-programs approach [1, 7, 12, 23] whereby the constructive
proof of a property can be used for synthesizing a program which satisfies that
property. However, between our approach and the proofs-as-programs approach,
there are many differences. Among them we recall the differences due to: (i) the

225

derivation rules considered (in particular, constructive type theory is used in [1, 7],
untyped first-order logic is used in [23], and extended execution is used in [12]), (ii)
the languages in which the synthesized programs are written (indeed, the authors
of [1, 23] consider applicative languages), and (iii) the form of the specifications.
With reference to this last difference, one should notice that the synthesis methods
based on the proofs-as-programs approach are used for synthesizing programs from
specifications of the form:

∀X ∃Y spec(X, Y)

Thus, in the case of functional programming, this means that a synthesized pro-
gram corresponds to a total function f such that ∀X spec(X, f(X)), or equivalently,
∀X ∀Y (Y = f(X) → spec(X, Y)). This specification is less general than the im-
plicit definitions considered in this paper. The same holds in the case of logic
programming.

The synthesis method we propose also extends the standard techniques which
are currently available in the framework of unfold/fold program transformation.
An informal argument to support this claim can be given as follows.

By using the unfold/fold rules as defined in [28], a new predicate, say newp, can
be introduced in terms of already available predicates only in an explicit way, in
the sense that one may add to the current program P a clause C of the form:

newp(X)← F (X, Y)

where F is a conjunction of atoms whose predicates occur in P . Thus, in the least
Herbrand model of P ∪ {C} the new predicate newp is specified by the formula:

∀X (∃Y F (X, Y)↔ newp(X))

which is a less general formula than the ones we have considered in this paper.
Implicit definitions are also considered in [18], where some modifications of the

unfolding and folding rules are introduced to deal with generalized definitions of
the form:

(H(X), newp(X))← F (X, Y)

for some goal H(X) and F (X, Y). In our method we do not need to introduce any
modified rule. Moreover, in [18] the form of allowed derivations is very restricted,
while in our case, the unfold/fold proofs may be of any general form.

The reader may also verify that the program specialization and difference-list
transformation examples we have presented cannot be derived in a natural way by
using the unfold/fold transformations of [28]. Some modified versions of the rules
should be used instead, like, for instance, the unfold/fold rules with constraints
introduced by [3] for specializing logic programs, or the inverse definition and the
data structure mapping introduced by [31].

Our last example on the avoidance of nondeterminism shows that the unfold/fold
transformation technique enhanced with our synthesis method, is able to derive pro-
grams for which other methods require the off-line proof of some insightful lemmas
(like the schema-based equivalence in [5]). By using our synthesis method, in fact,
we produce equivalences which may be used as lemmas during the program deriva-
tion itself. Thus, the synthesis method we propose may also be useful to enhance

226

other unfold/fold-based techniques for avoiding nondeterminism which do not use
lemmas (like, for instance, [25]).

We would like to stress the point that the program specialization method pre-
sented here as an application of our synthesis method, is strictly more general than
the usual partial evaluation methods [21]. Indeed, we are able to specialize our ini-
tial program w.r.t. a set of input values which can be described by any predicate,
while in [21] the set of input values can only be a set of instances of a given tuple
of terms.

More formally, by using our method one can solve program specialization prob-
lems specified by the formula:

∀X ((input(X), p(X))↔ (input(X), spec p(X)))

where input(X) is any predicate and spec p(X) is the specialized version of p(X)
which satisfies input(X) for each X. The methods based on [21] can only solve
problems specified by:

∀Y (p(t(Y))↔ spec p(t(Y)))

which can be viewed as a special case of the above specification when X = t(Y) and
input(t(Y)) is true.

A final remark concerns the mechanization of our synthesis method. As it is the
case for general purpose synthesis and transformation techniques, suitable strategies
need to be devised for dealing with particular classes of program specifications and
ensuring the derivation of efficient programs. If one uses our approach various
strategies, such as the ones described in [24], are available and one can indeed
apply them for guiding the application of the unfold/fold transformation rules.

9. ACKNOWLEDGEMENTS

We would like to thank all members of the community of the Logic Program Syn-
thesis and Transformation (LoPSTr) Workshops and the referees who stimulated us
with suggestions and comments. Particular thanks go to A. Bossi, N. Cocco, D. De
Schreye, L. Fribourg, and M. Leuschel for illuminating conversations. The occasion
of a special issue of the Journal of Logic Programming edited by A. Bossi and Y.
Deville, encouraged us to improve the preliminary version of this paper presented
at LoPSTr ’93. S. Renault implemented a system for unfold/fold transformations
which helped us in the program derivations presented in this paper.

REFERENCES

1. J. L. Bates and R. L. Constable. Proofs as programs. ACM Toplas, 7(1):113–136,
1985.

2. A. Bossi and N. Cocco. Preserving universal termination through unfold/fold.
In Proceedings ALP ’94, Lecture Notes in Computer Science 850, pages 269–286.
Springer-Verlag, 1994.

3. A. Bossi, N. Cocco, and S. Dulli. A method for specializing logic programs. ACM
Transactions on Programming Languages and Systems, 12(2):253–302, April 1990.

227

4. D. Boulanger and M. Bruynooghe. Deriving unfold/fold transformations of logic
programs using extended OLDT-based abstract interpretation. Journal of Symbolic
Computation, 15:495–521, 1993.

5. D. R. Brough and C. J. Hogger. Grammar-related transformations of logic pro-
grams. New Generation Computing, 9(1):115–134, 1991.

6. M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling control. Journal of
Logic Programming, 6:135–162, 1989.

7. A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logic programs from induc-
tive proofs. In J. W. Lloyd, editor, Computational Logic, Symposium Proceedings,
Brussels, November 1990, pages 135–149, Berlin, 1990. Springer-Verlag.

8. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.

9. K. L. Clark and S.-Å. Tärnlund. A first order theory of data and programs. In
Proceedings Information Processing ’77, pages 939–944. North-Holland, 1977.

10. S. K. Debray and D. S. Warren. Automatic mode inference for logic programs.
Journal of Logic Programming, 5:207–229, 1988.

11. Y. Deville and K.-K. Lau. Logic program synthesis. Journal of Logic Programming,
19, 20:321–350, 1994.

12. L. Fribourg. Extracting logic programs from proofs that use extended Prolog
execution and induction. In D. H. D. Warren and P. Szeredi, editors, Proceedings
Seventh International Conference on Logic Programming, Jerusalem, Israel, June
18-20, 1990, pages 685–699. The MIT Press, 1990.

13. J. P. Gallagher and D.A. de Waal. Deletion of redundant unary type predicates
from logic programs. In Proceedings of LoPSTr’92, Manchester, U.K., pages 151–
167. Springer-Verlag, 1993.

14. M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite clause
programs. In M. Hermenegildo and J. Penjam, editors, Proceedings Sixth Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming (PLILP ’94), Lecture Notes in Computer Science 844, pages 340–354.
Springer-Verlag, 1994.

15. Å. Hansson and S.-Å. Tärnlund. Program transformation by data structure map-
ping. In K. L. Clark and S.-Å. Tärnlund, editors, Logic Programming, pages 117–
122. Academic Press, 1982.

16. C. J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372–392,
1981.

17. A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2:719–770, 1992.

18. T. Kanamori and M. Maeji. Derivation of logic programs from implicit definition.
Technical Report TR-178, ICOT, Tokyo (Japan), 1986.

19. L. Kott. The McCarthy’s induction principle: ‘oldy’ but ‘goody’. Calcolo, 19(1):59–
69, 1982.

20. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second Edition.

21. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11:217–242, 1991.

22. M. J. Maher. Correctness of a logic program transformation system. IBM Research
Report RC 13496, T. J. Watson Research Center, 1987.

228

23. Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Toplas, 2:90–121, 1980.

24. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. Journal of Logic Programming, 19,20:261–320, 1994.

25. A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while spe-
cializing logic programs. In Proc. 24-th ACM Symposium on Principles of Pro-
gramming Languages, Paris, France, pages 414–427. ACM Press, 1997.

26. M. Proietti and A. Pettorossi. Synthesis of programs from unfold/fold proofs.
In Y. Deville, editor, Logic Program Synthesis and Transformation, Proceedings of
LoPSTr ’93, Louvain-la-Neuve, Belgium, Workshops in Computing, pages 141–158.
Springer-Verlag, 1994.

27. L. S. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1994. Second
Edition.

28. H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-
Å. Tärnlund, editor, Proceedings of the Second International Conference on Logic
Programming, Uppsala, Sweden, pages 127–138. Uppsala University, 1984.

29. H. Tamaki and T. Sato. A generalized correctness proof of the unfold/fold logic
program transformation. Technical Report 86-4, Ibaraki University, Japan, 1986.

30. V. F. Turchin. The concept of a supercompiler. ACM TOPLAS, 8(3):292–325,
1986.

31. J. Zhang. An automatic d–list transformation algorithm for Prolog programs.
Technical report, Department of Computer Science, University College of Swansea,
U.K., 1987.

10. APPENDIX

Proof of Theorem 4.1
Since restriction (α) of Theorem 2.1 is implied by Points (iv) and (v) of Defini-
tion 4.1, and restriction (β) of that theorem is implied by Point (vi) of that defini-
tion, we have that by Theorem 2.1 the transformation sequences T1 and T2 of Defini-
tion 4.1 are totally correct. Thus, a non-ascending unfold/fold proof is a particular
unfold/fold proof. By Theorem 3.1, we have that M(P0) |= ∀X (∃Y F (X,Y) ↔
∃Z G(X,Z)).

We have to prove that, for each vector t of terms in HU such that M(P0) |=
∃Y F (t, Y), we have that: µ(F (t, Y)) ≥ µ(G(t, Z)). (Notice that by the com-
pleteness of SLD-resolution and by the equivalence M(P0) |= ∀X (∃Y F (X,Y) ↔
∃Z G(X,Z)), for each t such that M(P0) |= ∃Y F (t, Y), there exist successful
SLD-derivations using P0 of both F (t, Y) and G(t, Z) and thus, µ(F (t, Y)) and
µ(G(t, Z)) are both defined.)

For reasons of simplicity we present the proof of this fact in the case where no
basic predicates occur either in the SLD-derivations of F (t, Y), or in the ones of
G(t, Z), or in the unfold/fold proof of ∀X (∃Y F (X,Y)↔ ∃Z G(X,Z)) (recall also
that we assume that ‘=’ is a basic predicate). In particular, rules R4, R5, and R6
are not applied in this unfold/fold proof. The extension of our proof to the general
case where also basic predicates may occur, is straightforward, because the function
µ does not depend on the SLD-derivation steps which are performed by selecting
basic predicates.

229

Let MF be the set of vectors t of ground terms in HU such that M(P0) |=
∃Y F (t, Y). Let us consider the ordering > on the set MF defined as follows: given
any two vectors t and u of ground terms in MF we have t > u iff µ(F (t, Y)) >
µ(F (u, Y)). The > ordering on MF is well-founded.

Let us now prove, by complete induction w.r.t. the > ordering, that for each
t ∈MF , µ(F (t, Y)) ≥ µ(G(t, Z)).

Given any t ∈ MF , we assume by induction hypothesis that for each u ∈ MF ,
if t > u then µ(F (u, Y)) ≥ µ(G(u, Z)) and we have to show that µ(F (t, Y)) ≥
µ(G(t, Z)).

Let ρ be µ(F (t, Y)), that is, the length of the shortest successful SLD-derivation
of F (t, Y) using P0 (recall that no basic predicates occur in that SLD-derivation).
Let the transformation sequences T1 and T2, the clauses C1 and C2, and the sets S1

and S2 of clauses be defined as in the Definition 4.1 of a non-ascending unfold/fold
proof. We can construct:
(i) a successful SLD-derivation of F (t, Y) using P0 of length ρ of the form:
F0, F1, . . . , Fm, . . . , true (recall that in this paper a goal is a conjunction of atoms
and by a successful SLD-derivation we mean a derivation whose last goal is the
empty conjunction true) and
(ii) a derivation path R1 (taken from the transformation sequence T1) from C1 to
a clause L in S1 of the form:

R1 : E0 ⇒ E1 ⇒ . . .⇒ Em ⇒ Em+1 ⇒ . . .⇒ Em+k

such that the following conditions hold:
(a.1) E0 = C1 = new1(X)← F (X,Y)
(b.1) Em+k = L
(c.1) for i = 1, . . . ,m, with m ≥ 1, Ei is derived from Ei−1 by unfolding, and
(d.1) for i = m+1, . . . ,m+k, with k ≥ 0, Ei is derived from Ei−1 by folding using
C1.
We also have that for i = 0, . . . ,m, the goal Fi is bd(Eiθi), where θi is the mgu of
new1(t) and hd(Ei) (in particular, θ0 = {X/t} and F0 = F (t, Y)).

By definition of a non-ascending unfold/fold proof there exist a clause M in S2

and a derivation path R2 (taken from the transformation sequence T2) of the form:
R2 : Q0 ⇒ Q1 ⇒ . . .⇒ Qn ⇒ Qn+1 ⇒ . . .⇒ Qn+k

where:
(a.2) Q0 = C2 = new2(X)← G(X,Z)
(b.2) Qn+k = M and M is derived from L by substituting new2 for new1,
(c.2) for i = 1, . . . , n, with n ≥ 1, Qi is derived from Qi−1 by unfolding, and
(d.2) for i = n + 1, . . . , n + k, Qi is derived from Qi−1 by folding using C2.

Notice that in R1 there are as many folding steps as in R2 because: (1) the
number of occurrences of new1 in the body of L is the number of folding steps
performed in R1, (2) by Point (b.2) above, and (3) the number of occurrences of
new2 in the body of M is the number of folding steps performed in R2. Notice also
that m ≥ n because of Point (vii) of Definition 4.1.

Let us now consider the sequence of clauses: Q0η0, Q1η1, . . . , Qnηn, where
Q0, Q1, . . . , Qn are the clauses occurring the initial part of the derivation path
R2 and, for i = 0, . . . , n, the substitution ηi is the mgu of new2(t) and hd(Qi). We
have that η0 = θ0. We also have that ηn = θm because the arguments of hd(Em)
are equal to the ones of hd(Qn), and this is the case because: (i) hd(Em) = hd(L)
and hd(Qn) = hd(M) (recall that folding steps only are performed to derive L from
Em and M from Qn), and (ii) M is derived from L by substituting new2 for new1.

230

By construction, Qn can be obtained from Em by first folding k times using
E0 (which is C1), then replacing the occurrences of new1 by new2, and finally
unfolding k times using Q0 (which is C2). Thus, Qnηn can be obtained from
Emθm by replacing k instances, say F (t1, Y 1), . . . , F (tk, Y k), of F (X,Y) by the
corresponding k instances G(t1, Z1), . . . , G(tk, Zk) of G(X,Z). By the definition
of the folding rule and, in particular, as a consequence of Condition 2 of R3, we
have that for i = 1, . . . , k, Yi and Zi are vectors of variables and each variable in Yi
does not occur in the clause Emθm outside the instance F (ti ,Yi), and, analogously,
each variable in Zi does not occur in the clause Qnηn outside the instance G(ti ,Zi).

Without loss of generality, we may assume that t1, . . . , tk are vectors of ground
terms (if they are not, we may replace them by some other vectors of ground terms
without changing the length of the shortest successful SLD-derivation of bd(Emθm)
using P0). We have that t > t1, . . . , t > tk and therefore, by inductive hypothesis,
we have that µ(F (t1, Y 1)) ≥ µ(G(t1, Z1)), . . . , µ(F (tk, Y k)) ≥ µ(G(tk, Zk)).

Now, the function µ satisfies the following property: if A and B are goals such
that M(P0) |= ∃U (A,B), where U = vars((A,B)), and vars(A) ∩ vars(B) = { },
then µ((A,B)) = µ(A) + µ(B).

Since for i = 1, . . . , k, F (ti, Y i) does not share any variable with other goals in
bd(Emθm), and G(ti, Zi) does not share any variable with other goals in bd(Qnηn),
we have that µ(bd(Emθm)) ≥ µ(bd(Qnηn)) (recall that a successful SLD-derivation
of bd(Qnηn) using P0 exists because: (1) M(P0) |= ∃V bd(Emθm)↔ ∃W bd(Qnηn),
where V and W are the variables of bd(Emθm) and bd(Qnηn), respectively, (2) by
hypothesis, a successful SLD-derivation of bd(Emθm) (which is Fm) using P0 exists,
and (3) SLD-resolution is complete).

The following sequence of goals is a successful SLD-derivation of G(t, Z) us-
ing P0: bd(Q0η0), bd(Q1η1), . . . , bd(Qnηn), . . . , true, where bd(Q0η0) = G(t, Z) and
the SLD-derivation bd(Qnηn), . . . , true is the shortest successful SLD-derivation of
bd(Qnηn) using P0. Since m ≥ n we have that:

µ(F (t, Y)) = m + µ(bd(Emθm)) ≥ n + µ(bd(Qnηn)) ≥ µ(G(t, Z)). 2

