
A Business Process Knowledge Base for Composite

Services Development1

Michele Missikoff
1
, Maurizio Proietti

1
, Fabrizio Smith

1,2

1 IASI-CNR, Viale Manzoni 30, 00185, Rome, Italy
2 DIEI, Università degli Studi de L‟Aquila, Italy

{antonio.denicola, michele.missikoff,

fabrizio.smith}@iasi.cnr.it

Abstract. In this paper we present a semantic approach to complex service

composition. The proposal is based on a synergic use of an ontological

framework (OPAL), to capture the semantics of a business scenario, and a

business process modelling framework (BPAL), to represent the underlying

application logic. Both frameworks are grounded in a logic-based formalism

and therefore it is possible to apply effective reasoning methods to make

inferences over a BPKB (Business Process Knowledge Base) stemming fron the

fusion of the two. Particular attention is dedicated to the BPAL framework,

based on a MOF architecture, allowing a comprehensive modelling method that

spans from the ground level (BP traces), to the BP schema modelling level, to

the meta-modeling level (design princliples). On top, the meta-metamodelling

level is represented by the logic-based formalism (Horn rules). Finally, we

show how the BPKB can be queried, to support the complex service

composition, and the complex service can be checked for correctness.

Keywords: business process, BPMN, horn logic, BPAL, query language,

composite service, orchestration.

1 Introduction

A composite service is described as a process schema that put together other basic

or composite services. Service orchestration relates to the execution of a business

process that in turn, after a suitable „packaging‟, becomes a composite service. A

service orchestration is then modeled by a graph (the flow structure), which defines

the order of execution among the nodes in the process. In general, the graph may

include activities, gateways, and event nodes, where activity nodes represent the

invocation of a basic or composite services, gateways specify the alternatives and

rules controlling the execution flow, while event nodes enable service processes to

send and receive several types of events. A well-known and widely adopted

1 This work is partially supported by the Tocai Project (http://www.dis.uniroma1.it/~tocai/),

funded by the FIRB Programme of the Italian Ministry of University and Research (MIUR).

2 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

executable language for service orchestration is BPEL4WS [1], but here, as an

exemplary notation, we refer to BPMN [2], since it is more intuitive, provide a

graphical notation, and its block structured subset can be easily translated to

BPEL4WS.

The focus of this paper is on complex service composition. In particular, we

propose a methodological framework and a tool that support the service designer in

assembling a complex service, by defining the business logic, and verifying if the

assembled complex service is compliant with a number of pre-defined properties.

In this context, we intend to offer also a tool that manages a repository of business

process schemas (BPS), supporting the service designer in searching for the BPS (or

fragments of it) and, once the desired BPS has been assembled, in verifying its

correctness (with respect to certain criteria, see later). In this frame, we consider

particularly relevant the reuse of BPS. A business expert should query a repository of

composite services in order to retrieve schemas (or process fragments, or atomic

components) to be used in the design of a new service orchestration, specifying

features and properties that the retrieved artifacts must exhibit.

In this scenario, we consider important that the proposed method exhibits the

following features:

 Strong support in capturing the complexity of the business reality: besides the

behavior of a business process, i.e., the execution flow represented by the activity

sequencing, there are other relevant aspects of a structural nature regarding the

domain in which the process take place, such as actors associated to activities,

managed objects, and their relationships;

 Grounding of the modeling framework to a formal and expressive representation

language, in order to avoid ambiguities and allow reasoning over the process

descriptions;

 Providing a reasoning mechanism to prove the correctness of a BPS;

 Providing a query language sufficiently expressive to formally capture the user

requests;

 Providing a mechanism to evaluate queries in an effective manner;

 Providing a reasoning mechanism to prove the correctness of the query answers.

In Figure 1 we briefly introduce a fragment of an eProcurement process that will

be used as a running example throughout the rest of the paper. An ACME supplier

company receives a purchase order from a buyer and sends back an invoice. In the

meanwhile, the supplier sends a gift to the buyer if she/he is classified as „golden

client.‟ After receiving the payment clearance from the bank, the supplier sends the

goods to the buyer.

A Business Process Knowledge Base for Composite Services Development 3

Fig. 1. BPMN specification of a fragment of an eProcurement example

2 Business Process Knowledge Representation

An effective design of a business processes requires a complex analysis of the

business reality and the modeling of different kinds of knowledge. Primarily, the

behavioral knowledge, but also the structural knowledge regarding the domain in

which the process take place, such as actors associated to activities, managed objects,

and their relationships.

In order to provide a uniform and formal representation (suited for automatic

reasoning) of both behavioral and structural knowledge we rely on an expressive,

logic-based representation technique.

Fig. 2. Business Process Knowledge Base

Furthermore, we intend to systematically address the global modelling framework

in a unitary vision. To this end, the overall approach that we assumed is based on the

MOF paradigm [3] with the four levels sketchily reported below.

M3: Meta-metalevel. The top level is represented by the logical formalism that we

apply to describe the following levels. In particular we adopted Horn Logic,

4 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

seen its wide adoption and the mature technological support provided by the

numerous Prolog systems existing in our community.

M2: Metalevel. Here we specify the basic formation rules that guide the complex

service designer in the specification of the BPS.

M1: BPS. This is the modeling level where the service designer actually define the

diagram that represents the business logic of the complex service.

M0: BP trace. This is the ground level, used to model the traces that are produced by

the execution of a complex service, in accordance with the corresponding

BPS.

For the formalization of the framework we use standard notions of first order logic

and logic programming [4].

The rich knowledge about the business processes and the context they operate in is

stored in a Business Process Knowledge Base (BPKB) depicted in Figure 2. In the rest

of this section we present the main components of the BPKB, namely: i) OPAL

(Object, Process, Actor modelling Language), an ontological framework for the

structural representation of a business domain; ii) BPAL (Business Process Abstract

Language), to represent the behavioural knowledge of a business process (metamodel,

schema and traces); and iii) the Semantic Annotation, constituting a bridge among the

aforementioned components.

2.1 OPAL

OPAL [5] is an ontology representation framework supporting business experts in

building a structural ontology, i.e., where concepts are defined in terms of their

information structure and static relationships. In building an OPAL ontology,

knowledge engineers typically start from a set of upper level concepts, and proceed

according to a paradigm that highlights the active entities (actors), passive entities

(objects), and transformations (processes). The latter are represented only in their

structural components, without modeling the behavioral issues, delegated to BPAL.

Therefore, the top level concepts are: i) opal:Process, representing any business

activity or operation aimed at the accomplishment of a business goal, operating on a

set of business objects; ii) opal:Actor, representing active elements of a business

domain, able to activate, perform, or monitor a business process; iii) opal:Object,

representing an entity on which a business process operates. As shown in [5], a

significant core of an OPAL ontology can be formalized by a fragment of OWL,

relying within the OWL-RL profile. OWL-RL [6], is an OWL subset designed for

practical implementations using rule-based technologies such as logic programming

[7].

Hereafter we present OWL expressions using the triple notation by means of the

ternary predicate T(s, p, o), representing a generalized RDF triple (with subject s,

predicate p, and object o) and assuming the usual prefixes: rdfs, owl, xsd, plus opal

for the pre-defined primitives of OPAL. For the semantics of an OWL-RL ontology

we refer to the axiomatization described in [6] by a set of FOL rules over the

predicate T (OWL 2 RL/RDF rules). In Table 1 some axioms of a business reference

ontology BRO related to the eProcurement process of Figure 1 are reported.

A Business Process Knowledge Base for Composite Services Development 5

T(bro:Supplier, rdfs:subClassOf, opal:Actor) The Supplier is an actor

T(bro:Delivering, rdfs:subClassOf, opal:Process)

T(bro:SendingGift, rdfs:subClassOf, bro:Delivering)

T(bro:SendingGoods, rdfs:subClassOf, bro:Delivering)

SendingGoods and SendingGift are

specializations of the Delivering

process

T(bro:Delivering, rdfs:subClassOf, bro:r1)

T(bro:r1, owl:allValuesFrom, bro:Supplier)

T(bro:r1, owl:onProperty, bro:PerformedBy)

Every Delivering is performed by a

Supplier

T(bro:Gadget, rdfs:subClassOf, opal:Object)

T(bro:Product, rdfs:subClassOf, opal:Object)

Gadgets and Products are business

object of the domain

T(bro:SendingGoods, rdfs:subClassOf, bro:r2)

T(bro:r2, owl:allValuesFrom, bro:Product)

T(bro:r2, owl:onProperty, opal:OperateOn)

A Sending Good activity involves

only Products

T(bro:SendingGift, rdfs:subClassOf, bro:r3)

T(bro:r3, owl:allValuesFrom, bro:Gadget)

T(bro:r3, owl:onProperty, opal:OperateOn)

A Sending Gift activity involves

only Gadgets

Table 1. Excerpt of a business reference ontology

2.2 BPAL

The Business Process Abstract Language (BPAL) [8] is a logic-based language

(grounded in Horn Logic) that has been conceived to provide a declarative modeling

method capable of fully capturing the procedural knowledge in a business process.

BPAL constructs are common to the most used and widely accepted BP modeling

languages (e.g., BPMN, UML activity diagrams, EPC) and, in particular, its core is

based on BPMN 2.0 specification [1].

 From a formal point of view, the BPAL language consists of two syntactic

categories: (i) a set Entities of constants denoting entities to be used in the

specification of a business process schema (e.g., business activities, events, and

gateways) and (ii) a set Pred of predicates denoting relationships among BPAL

entities. Finally, a BPAL business process schema (BPS) is specified by a set of

ground facts (i.e., atomic formulas) of the form 𝑝(𝐶1, … , 𝐶𝑛), where p Pred and

𝐶1, … , 𝐶𝑛 Entities.

The entities occurring in a BP are represented by a set of unary predicates. They

are illustrated in Figure 3, and organized into a hierarchy showing the BPAL

predicates together with the corresponding BPMN notation.

Furthermore BPAL provides a set of relational predicates to model primarily the

sequencing of activities. Then, in case of branching flows, BPAL provides parallel

(i.e., AND), exclusive (i.e., XOR), and inclusive (i.e., OR) branching/merging of the

control flow. Here we adopted the standard semantics for branching and merging

points:

seq(el1,el2): the flow element el1 is immediately followed by el2.

par_branch(gat,el1,el2): gat is a parallel branch point from which the business

process branches to two sub-processes started by el1 and el2 executed in parallel;

par_mrg(el1,el2,gat): gat is a parallel merge point where the two sub-processes

ended by el1 and el2 are synchronized;

6 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

inc_branch(gat,el1,el2): gat is an inclusive branch point from which the business

process branches to two sub-processes started by el1 and el2. At least one of the sub-

processes started by el1 and el2 is executed;

inc_mrg(el1,el2,gat): gat is an inclusive merge point. At least one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed;

exc_branch(gat,el1,el2): gat is an exclusive branch point from which the business

process branches to two sub-processes started by el1 and el2 executed in mutual

exclusion;

exc_mrg(el1,el2,gat): gat is an exclusive merge point. Exactly one of the two sub-

processes ended by el1 and el2 must be completed in order to proceed;

bpId(id,start,end): to assign the process identifier id to a process given its start and

end events.

Fig. 3. Hierarchy of the BPAL unary predicates

2.3 Semantic Annotation

A Business Reference Ontology is intended to provide a semantic representation of

the business context in which the business processes take place. A semantic

annotation is a correspondence between elements of the BPS and elements of the

BRO achieved with the „sigma‟ predicate. In our case, the Semantic Annotation of a

BPAL BPS consists of a set of assertion of the form 𝜎(Act,Conc), where Act is a

constant used to denote an activity or an event of a BPAL BPS, and Conc is a

constant used to denote a concept defined in the OPAL ontology. This relation allows

a bridge to be built between an OPAL ontology and a BPAL BPS, specifying the

meaning of the entities of a business process in term of a suitable conceptualization of

the domain of interest. The definition of 𝜎 mainly requires that: i) 𝜎 is preserved by

the subclass relation, i.e.𝜎 𝑥, 𝑦 ∧ 𝑇 𝑦, 𝑟𝑑𝑓𝑠: 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑂𝑓, 𝑧 → 𝜎 𝑥, 𝑧 , and ii) every

activity or event must be annotated with a sub class of opal:Process.

The process fragment of Figure 1 is reported in Table 2 encoded as a BPAL BPS.

In the BPAL translation we assume to have an available reference ontology BRO in

order to perform also the semantic annotation step. To keep the notation lightweight

A Business Process Knowledge Base for Composite Services Development 7

we use assertions of the form activity (A1::bro:Invoicing) to denote that the activity

A1 is annotated with the concept Invoicing, i.e. 𝜎 𝐴1, 𝑏𝑟𝑜: 𝐼𝑛𝑣𝑜𝑖𝑐𝑖𝑛𝑔 .

int_ev(E1::bro:ReceivingPO)
activity(A1:: bro:Invoicing)
activity(A2:: bro:WaitingClearence)
activity(A3:: bro:PreparingGift)
activity(A4:: bro:SendingGift)
activity(A5:: bro:SendingGoods)

par_branch_pt(G1)
par_merge_pt(G2)
exc_branch_pt(G3)
exc_merge_pt(G4)
par_branch(G1,A1,G3)
par_merge(A2,G4,G2)

exc_branch(G3,G4,A3)
exc_merge(G3,A4,G4)
seq(E1,G1)
seq(A1,A2)
seq(A3,A4)
seq(G4,G5)

Table 2. Annotated BPAL BPS of the eProcurement example.

2.4 BPAL Metamodel

In order to provide a clear modelling guidance, we explicitly introduce a specification

of a business process metamodel [8] (the level M2 in the MOF hierarchy). The meta-

model of BPAL is defined by means of a first order logic theory M, which specifies

when a business process schema is well-formed, i.e., it is correct from a syntactical

point of view.

The theory M consists of two sets of formulas: a set K of first order formulas,

called schema constraints, and a set F of Horn clauses, called formation axioms.

Schema constraints are formulas expressing:

1. the relationships among BPAL unary predicates; e.g. that activities, events, and

gateways belong to pairwise disjoint sets, i.e.: activity(x) event(x)

gateway(x);

2. the typing of the relational predicates; e.g. for the predicate par_branch, we have

par_branch(x,l,r) par_branch_pt(x) flow_el(l) flow_el(r);

3. an unambiguous specification of the precedence relations; e.g. for the seq predicate

we can specify at most one successor and at most one predecessor of any flow

element: seq(x,y) seq(x,z) y=z, seq(x,z) seq(y,z) x=y.

Formation Axioms provide the guidelines for building a well-formed BPS. The

main assumption imposed by the BPAL meta-model is the structuredness. A strictly

structured BP can be defined as follows: it consists of m sequential blocks, T1 …Tm.

Each block Ti is either elementary, i.e., it is an activity or an event, or complex. A

complex block i) starts with a branch node (a parallel, inclusive or exclusive gateway)

that is associated with exactly one merge node of the same kind that ends the block,

ii) each path in the workflow graph originating in a branch node leads to its

corresponding merge node and consists of n sequential blocks (simple or complex).

Then, to verify if a process respects such restriction, F defines the predicates:

wf_proc(bpId), which holds if the business process bpId is well-formed (i.e.,

structured);

wf_subproc(bpId,start,end), which define the well-formedness of the sub-process

starting in start and ending in end, i.e. the sub-process is an elementary or complex

block according to the above definition.

Furthermore F defines properties regarding the BPS, like:

8 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

belongs(flow_el,bpid) which holds if flow_el belongs to set of flow elements of the

process bpId;

belongs(flow_el,bpid,start,end) which holds if flow_el belongs to set of flow elements

of the sub-process of bpId, starting in start and ending in end.

We are now ready to give a definition of the well-formedness of a BPS B1. We say

that B1 is well-formed if:

(i) every schema constraint C in K can be inferred from B1F, and

(ii) wf_proc(bpId) can be inferred from B1F.

2.5 BPAL Traces

An execution (or instance, or enactment) of a business process is a sequence of

instances of activities (or events) called steps. Steps are denoted by constants taken

from a set Step disjoint from Entities (see Section 2.2). Thus, a possible execution of a

business process is a sequence [𝑠1, 𝑠2,…, 𝑠𝑛], called a trace, where 𝑠1, 𝑠2,…, 𝑠𝑛

Step. The instance relation between steps and activities (or events) is specified by a

binary predicate stepOf(step,activity). For example, stepOf(RQ, ReceivingQuotation)

states that the step RQ is an instance of the ReceivingQuotation activity.

A trace is correct w.r.t. a well-formed business process schema B1 if it is

conformant to B1 according to the intended semantics of the BPAL relational

predicates (as informally described in Section 2.2). Below we list two correct traces of

the process fragment of Table 2 (the instances are identified by small letters

corresponding to the capital letters of the corresponding activity name):

 [e1,a1,a2,a5]

 [e1,a3,a1,a4,a2,a5]

The trace semantics of a BPS [8] is defined by a set T of Horn clauses, called trace

axioms, which can also be viewed as rules for constructing correct traces. T defines

the predicates

1. trace(t,bpId), which holds if t is a correct trace of the process bpId;

2. sub_trace(s,t,e): which holds if t is a correct sub-trace from s to e.

We say that a trace t is correct w.r.t. B1 if trace(t,bp) can be inferred from B1T.

These rules have a double nature, since they can be used to check correctness but also

to generate correct traces.

At the trace level we can formalize dependency constraints, expressing the

dependencies among tasks (events or activities) in the possible executions of the

modeled process. We report here some examples of constraints, and their

formalization within T, where i) the arguments s and e limit the scope of the

constraint, considered within the sub-process starting in s and ending in e, and ii)

member(s,t) holds is s is a step in t.

Precedence: a task A precedes B if every execution of B follows the execution of A.

𝑝𝑟𝑒𝑐 𝑎, 𝑏, 𝑠, 𝑒 ≡𝑑𝑒𝑓 ∀ 𝑡1, 𝑡2, 𝑠1, 𝑏1, 𝑒1 (𝑠𝑡𝑒𝑝𝑂𝑓 𝑠1, 𝑠 ∧ 𝑠𝑡𝑒𝑝𝑂𝑓 𝑏1, 𝑏
∧ 𝑠𝑡𝑒𝑝𝑂𝑓 𝑒1, 𝑒 ∧ 𝑠𝑢𝑏_𝑡𝑟𝑎𝑐𝑒(𝑠1, 𝑡1, 𝑏1) ∧ 𝑠𝑢𝑏_𝑡𝑟𝑎𝑐𝑒 𝑏1, 𝑡2, 𝑒1
→ ∃ 𝑎1 (𝑠𝑡𝑒𝑝𝑂𝑓(𝑎1, 𝑎) ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑎1, 𝑡1)))

A Business Process Knowledge Base for Composite Services Development 9

Response: a task B responds to A if every time A is executed, activity B has to be

executed after it.

𝑟𝑒𝑠𝑝 𝑎, 𝑏, 𝑠, 𝑒 ≡𝑑𝑒𝑓 ∀ 𝑡1, 𝑡2, 𝑠1, 𝑎1, 𝑒1 (𝑠𝑡𝑒𝑝𝑂𝑓 𝑠1, 𝑠 ∧ 𝑠𝑡𝑒𝑝 𝑎1, 𝑎
∧ 𝑠𝑡𝑒𝑝𝑂𝑓 𝑒1, 𝑒 ∧ 𝑠𝑢𝑏_𝑡𝑟𝑎𝑐𝑒(𝑠1, 𝑡1, 𝑎1) ∧ 𝑠𝑢𝑏_𝑡𝑟𝑎𝑐𝑒 𝑎1, 𝑡2, 𝑒1
→ ∃ 𝑏1 (𝑠𝑡𝑒𝑝𝑂𝑓(𝑏1, 𝑏) ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑏1, 𝑡2)))

MutualExclusion: A and B are not compatible and cannot be executed together.

𝑚𝑢𝑡𝑒𝑥 𝑎, 𝑏, 𝑠, 𝑒 ≡𝑑𝑒𝑓 ∃ 𝑡, 𝑠1, 𝑒1, 𝑎1, 𝑏1 (𝑠𝑡𝑒𝑝𝑂𝑓 𝑠1, 𝑠 ∧ 𝑠𝑡𝑒𝑝𝑂𝑓 𝑒1, 𝑒
∧ 𝑠𝑡𝑒𝑝𝑂𝑓 𝑎1, 𝑎 ∧ 𝑠𝑡𝑒𝑝 𝑏1, 𝑏 ∧ 𝑠𝑢𝑏_𝑡𝑟𝑎𝑐𝑒(𝑠1, 𝑡, 𝑒1)
∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑎1, 𝑡) ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑏1, 𝑡))

To conclude the section we give the formal definition of Business Process

Knowledge Base:

BPKB = BRO M T B 𝚺

where: BRO is an OPAL Business Reference Ontology, M is the Meta-Model theory,

T is the Trace theory, B is a set of BPAL Business Process Schemas, and 𝚺 is the

Semantic Annotation. It is worth noting that BPKB can be translated in a

straightforward way into a logic program in order to be effectively used for reasoning

within a Prolog environment.

3 Querying a Business Process Knowledge Bases

Business Processes play a growing role in business realities and they are seen as

important assets for organizations. In a near future, we foresee a scenario where huge

repositories of process models developed by different designers have to be managed.

In such a scenario there will be the need for advanced reasoning systems aimed at

query processing, for the retrieval of process fragments to be used in the design of

new BP models, and at verifying that some desiderd properties hold. In the BPAL

framework we can capture several types of queries, both at intentional and extensional

level.

Queries over BP schemas. The execution semantics of certain constructs is not

considered (e.g., gateways), but a BP is considered as a graph that satisfies some

properties regarding the flow elements (activities, events, gateways) and their

relationships (sequence flows). Querying the BPS allows the search for certain

patterns adopted in the design phase and the verification of constrains that descend

from structural requirements to be done. Queries of this type are based on the

predicates introduced by BPAL (Section 2.2) and by the meta-model theory M

(Section 2.4).

Queries over BP traces. Here the behavior at execution time is of interest, and the

properties to be verified regard the temporal sequencing of activities in the set of

correct traces (e.g. the dependency constraints introduced in Section 2.5). Queries of

this type are based on the predicates introduced by the trace theory T (Section 2.5).

Queries over the Business Ontology. Here the focus is on the domain entities

(processes, actors, objects) and their relationships. Queries of this type are based on

10 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

the generic ternary predicate T used for the definition of the business reference

ontology.

In this scenario the role of the semantic annotation 𝚺 is orthogonal to the above

query classification, since it basically allows us to express queries in terms of the

ontology vocabulary, decoupled from the business processes. This gives a great

advantage in particular when an enterprise has to deal with a huge number of business

processes. In fact, in such a scenario, it is possible to formulate queries in general

terms related to the specific domain that the ontology describes, without knowing

exactly what are the BPs it will impact on.

3.1 Query Language

In order to provide the user with a simple and expressive query language that does not

require to understand the technicalities of the underline engine, we propose a simple

abstract syntax, that can be directly translated into Prolog [4] rules.

In the queries we use question mark to denote variables (e.g., ?x), and we use the

notation ?x::ConceptID to indicate the semantic typing of the variable ?x, i.e. ?x

ranges over activities and events annotated with the concept ConceptID. A (well-

formed) BPS is denoted by <bpId>, where bpId is a business process identifier. A

(well-formed) sub-process is denoted by <bpId,start,end>, where start and end are

the flow elements (activities, events or gateways) of the BPS bpId that start and end

the sub-process, respectively. Syntactically a query is an expression of the form:

SELECT [?x1,….,?xn] <?bpId> <?bpId,?start,?end >

FROM <bpId> | <bpId,start,end> | *

WHERE comparison_predicate

The SELECT statement defines the output of the query evaluation, i.e. the following

target list:

 a list [?x1,….,?xn] of variables occurring in the WHERE statement;

 a BPS, denoted by <?bpId>;

 a sub-process of a BPS, denoted by the triple <?bpId,?start,?end>.

The FROM statement indicates the process(es) from which data is to be retrieved:

 a particular BPS, <bpId >;

 a particular sub-process of a BPS, <bpId,start,end >;

 the whole repository, *.

In the WHERE statement it can be specified an expression which restricts the data

returned by the query. The comparison_predicate is a sentence built from:

 the set of the BPKB predicates, defined in the:

o BPAL, e.g., flow_el(el), bpId(p,s,e);

o meta-model M, e.g., wf_proc(bpId), belongs(el,bpId);

o trace theory T, e.g., prec(a,b,s,e), mutex(a,b,s,e);

o OPAL ontology, i.e., T(s,p,o).

 where arguments are:

o semantically typed variables. (i.e.: ?x::conceptId);

A Business Process Knowledge Base for Composite Services Development 11

o constants denoting entities in the BPKB.

 the connectives AND, OR, NOT, = with the standard logic semantics.

As stated in Section 2 a BPKB can be directly encoded as a logic program, and

used within a Prolog engine for evaluate conjunctive queries, formulated in the Prolog

syntax as rules of the form:

𝑞 𝑥 :- 𝑝1 𝑥1 , … , 𝑝𝑚 𝑥𝑚 , 𝑛𝑜𝑡 𝑝𝑚+1 𝑥𝑚+1 , … , 𝑛𝑜𝑡 𝑝𝑛 𝑥𝑛

where 𝑝1,. . ,𝑝𝑛 are predicates defined in the BPKB, 𝑞 𝑥 is the goal to be evaluated

by the engine, 𝑥1, … , 𝑥𝑛 are vectors of variables such that every 𝑥 occurring in 𝑥
occurs also in some 𝑥𝑖 .

3.2 Query Examples

In this section we present some examples of query over a BPKB. We report a natural

language description of the query, the corresponding formulation according to the

language described in the previous section and the translation into Prolog rules.

Ex1: In order to avoid multiple dispatching of products to the same supplier within

the processing of a purchase order,

Q1. Retrieve the processes that contain more than one “Delivering” activity:

SELECT <?p>

FROM *

WHERE belongs(?x::Delivering,?p) AND belongs(?y::Delivering,?p) AND NOT

?x=?y

q(p):- belongs (x,p), 𝜎 (x,Delivering), belongs(y,p), 𝜎(y, Delivering), x/=y.

Ex2. In order to complete the composition of a service for processing purchase

orders, it is needed to:

Q2: Retrieve any sub-process that starts with the receiving of a purchase order,

contains an activity of invoicing and ends with the delivery of the goods

SELECT <?p,?s,?e >

FROM *

WHERE flow_el(?s::ReceivingPO) AND flow_el(?e::Delivering) AND

belongs(?s,?x::Invoicing,?s,?e)

q(p,s,e):- wf_sub_proc(p,s,e), 𝜎(s,ReceivingPO), 𝜎(e,Delivering),

belongs(x,p,s,e), 𝜎(x,Invoicing), belongs(s,p), belongs(e,p).

Ex3. In order to verify the compliance of the BPS P with respect to the enterprise

policy, we need to

Q3. Verify if in the BPS the receiving of the bank clearance may follow any kind of

product delivering:

FROM <P>

WHERE bpId(P,?s,?e) AND prec(?x::WaitingClearence,?y::Delivery,?s,?e)

12 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

q:- bpId(P,s,e), not aux_ q(s,e).

aux_q(s,e):- 𝜎(x, WaitingClearence), 𝜎(y, Delivering), not prec(x,y,s,e).

If we consider the eProcurement process fragment of Section 2.3 annotated with the

business domain ontology BRO of Section 2.1,

 Q1 retrive the eProcurement process, since both SendingGift and SendingGoods

are Delivering activities;

 Q2 match with the sub-process delimited by e1 and a5;

 The answer of Q3 is false, since it may happen that SendingGift is executed before

WaitingClearence.

3.3 BPAL Query Platform

Fig. 4. Logical Architecture of the Query Platform

The prototype of the proposed framework has been implemented as a Java

application, interfaced with the XSB and deductive database system [9]. The BPKB is

fed as shown in Figure 4. The process repository is populated by process models

represented by XPDL [10](XML Process Definition Language) and translated into a

set of BPAL ground facts by means of the service XPDL2BPAL. The

business ontology is imported from the OPAL Ontology Management System (OMS)

Athos[11], that has been extended to allow the annotation of BP schemas and to

export OPAL ontologies directly in the triple notation. To implement the

terminological reasoning over the ontology a subset of the OWL 2 RL/RDF rules [6]

have been included in the BPKB. Finally the queries, expressed in the abstract syntax

described in Section 3.1 are translated to Prolog rules and evaluated as goals against

the BPKB.

A Business Process Knowledge Base for Composite Services Development 13

4 Related Works

Our work is related to two main research areas, namely the semantic enrichment of

service models by means of ontology based approaches and the querying of business

processes.

Semantic Web Services. Relevant work in this field has been done within the

OWL-S [12] and WSMO [13] initiatives. Both approaches make an essential use of

ontologies to describe a web service from several perspectives: (a) “what a service

does”, in terms of input, output, pre-conditions and post-conditions (OWL-S Profile,

WSMO Capability and Goal); (b) “how a service works”, where the service behavior

is modeled as a process workflow (OWL-S Service Model, WSMO Orchestration and

Choreography); and (c) the grounding of the modeled service to detailed

specifications of message formats, protocols, and so forth, normally expressed in

WSDL (OWL-S Grounding, WSMO Mediator). With respect to the BPAL

framework, the main difference is in the modeling of the service behavior (b).

Conversely to OWL-S and WSMO, the execution semantics of BPAL is formally

defined and several verification tasks are provided. Furthermore is also defined an

environment to reason with and query both the ontological description of the services

and their dynamic properties. Finally, regarding (a), there are inherent differences in

the ontological representation of a service, since in OWL-S and WSMO the notion of

process instance (i.e., a particular execution of a service), is not modeled, while the

ground level is constituted by the concrete services (possibly an implementation of a

Web Service) that the ontology models.

Business Process Query. BP-QL [14] is based on an abstract representation of the

BPEL (Business Process Execution Language) standard. It is a visual language,

formally based on graph grammars, that allows to query the process specification (i.e.

the graph representation of a process workflow) of a BPEL process, rather than

possible runs, ignoring the run-time semantics of certain constructs such as choice or

parallel execution. A similar perspective is also shared by [15] and [16], where

queries are posed over the process definition from a structural point of view and the

evaluation is performed by searching a match to the query graph in the process graph.

With respect to these approaches, we allow more expressive queries, where also the

dynamic properties of the process are taken into account, together with the domain

knowledge provided by the ontology.

We end this section with some relevant works in the emerging area of Semantic

Business Process Management [17], that aims at improving the level of automation in

the management of business processes by adopting the most significant results from

the area of semantic web. To this end the annotation of process models [18,19] has

been proposed to support the verification of semantic constraints and structural

requirements involving both knowledge about the domain and the process structure.

[20] presents a reasoning framework where several ontologies model functional,

behavioral, organizational and informational perspectives and the entities of a

business process are then represented as instances of such on ontologies. The

semantic annotation of a process model, at an abstract level, can be seen as a further

14 Michele Missikoff1, Maurizio Proietti1, Fabrizio Smith1,2

application of BPAL, since a core (blocked) subset of BPMN and the OWL-RL

profile are fully supported by the framework for reasoning.

5 Conclusion

In this paper we presented the main ideas of a platform conceived to support the

composition of complex services. The proposed platform consists of several parts: (i)

an ontological framework, OPAL, to capture the semantics of the business scenario;

(ii) a business process modeling framework, to capture the application logic; (ii) a

reasoning engine, based on Horn logic, that operates on the two above structures in an

integrated way; (iv) a BP query language, developed on top of the reasoning engine;

finally, (v) a verification mechanism, tightly connected to the latter.

The paper presents the first version of the proposed solution that we intend to

elaborate further, working in several directions:

 Extend the framework to handle any graph-structured process schemas (arbitrary

looping, no blocked assumption) and hence the verification of behavioral

properties (e.g. dependency constraints) over (possibly) infinite sets of infinite

traces.

 The literature has been also investigated the query and verification at run time (i.e.

performed over a running instance of the process during its enactment) and the a-

posteriori analysis (i.e., log mining) over the information stored during the

execution. The extension of the proposed framework to allow querying of running

and executed traces is considered as a future work.

 Business Rules (BRs). In real world applications the operations of an enterprise is

regulated by a set of BPs that are often integrated by specific business rules. We

intend to develop an extended the framework where BPs and BRs are integrated

and jointly analyzed to check if, for instance, there are processes that violate a

business rule.

 On an engineering ground, we intend to investigate the problem of Business

Process Reengineering, and explore the possibility of manipulating a set of

business processes to produce a new, optimized (e.g., in terms of process length or

aggregating sub-processes that are shared by different BPs) set of reengineered

BPs

6 References

1. Thatte, S. (Ed.). Business Process Execution Language for Web Services Version 1.1.

http://www.ibm.com/developerworks/library/specification/ws-bpel. 2003.

2. OMG: Business Process Model and Notation. Version 2.0, August 2009,

http://www.omg.org/spec/BPMN/2.0.

3. OMG, (2006), Meta Object Facility (MOF) Core Specification V2.0,

http://www.omg.org/docs/formal/06-01-01.pdf.

4. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

http://www.omg.org/spec/BPMN/2.0

A Business Process Knowledge Base for Composite Services Development 15

5. D‟Antonio, F., Missikoff, M., Taglino, F.: Formalizing the OPAL eBusiness ontology

design patterns with OWL. In the 3rd I-ESA Conference, 2007.

6. OWL 2: Profiles, http://www.w3.org/TR/owl2-profiles.

7. B. N. Grosof, I. Horrocks, R. Volz, S. Decker: Description Logic Programs: Combining

Logic Programs with Description Logic, in: Proceedings of the 12th International

Conference on World Wide Web, ACM, 2003.

8. Missikoff M., Proietti M., Smith F.: A Logic-Based Method for Business Process

Knowledge Base Management. SEBD 2010, Rimini, Italy, June 2010.

9. The XSB Logic Programming System. Version 3.1, Aug. 2007, http://xsb.sourceforge.net.

10. XPDL 2.1 Complete Specification, Oct. 2008, http://www.wfmc.org/xpdl.html.

11. ATHENA, D.A3.2 “Updated version of the Ontology Authoring and Management System

with semantic search functions", ATHENA IP, deliverable, 2005.

12. W3C: OWL-S, Semantic markup for web services. 22 november 2004,

http://www.w3.org/Submission/OWL-S/.

13. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology, 1(1): 77-

106, IOS Press, 2005.

14. Beeri, C., Eyal, A., Kamenkovich, S., and Milo, T. 2008. Querying business processes with

BP-QL. Information Systems. 33, 6 (Sep. 2008), 477-507.

15. Ahmed Awad: BPMN-Q: A Language to Query Business Processes. EMISA 2007.

16. Ruopeng Lu and ShaziaWasim Sadiq. Managing Process Variants as an Information

Resource. In Lecture Notes in Computer Science, vol.4102, pages 426–431. Springer, 2006

17. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel., D.: Semantic business process

management: A vision towards using semantic web services for business process

managemen. In: ICEBE 2005, pp. 535–540. IEEE Computer Society, Los Alamitos (2005).

18. Dimitrov, M., Simov, A., Stein, S., Konstantinov, M.: A BPMO based Semantic Business

Process Modelling Environment. In Proc. of the Workshop on Semantic Business Process

and Product Lifecycle Management at the ESWC, volume 251 of CEUR-WS, 2007.

19. Di Francescomarino C., Ghidini C., Rospocher M., Serafini L., Tonella P., Semantically-

aided business process modeling, 8th International Semantic Web Conference (ISWC 2009),

Washington DC, USA, 2009.

20. Markovic, I. Advanced Querying and Reasoning on Business Process Models. In Proc. of

the International Conference on Business Information Systems, Innsbruck, Austria, 2008.

http://www.w3.org/Submission/OWL-S/
http://u-gov.fbk.eu/publications/author/2988
http://u-gov.fbk.eu/publications/author/2856
http://u-gov.fbk.eu/publications/author/3005
http://u-gov.fbk.eu/publications/author/2835
http://u-gov.fbk.eu/publications/author/2806

