
The Transformational Approach to
Program Development

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1,I-00133 Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. We present an overview of the program transformation techniques
which have been proposed over the past twenty-five years in the context of logic
programming. We consider the approach based on rules and strategies. First, we
present the transformation rules and we address the issue oftheir correctness.
Then, we present the transformation strategies and, through some examples, we
illustrate their use for improving program efficiency via the elimination of un-
necessary variables, the reduction of nondeterminism, andthe use of program
specialization. We also describe the use of the transformation methodology for
the synthesis of logic programs from first-order specifications. Finally, we illus-
trate some transformational techniques for verifying first-order properties of logic
programs and their application to model checking for finite and infinite state con-
current systems.

1 Introduction

When deriving programs from specifications there are, amongothers, two main ob-
jectives to achieve: (i) program correctness, and (ii) program efficiency. Unfortunately,
these two objectives are often in contrast with each other. Efficient programs may be
rather intricate and their correctness proofs may be quite complex and long.

In order to overcome this difficulty, one can use the so calledprogram transfor-
mationmethodology by which starting from the given formal specifications, one de-
rives efficient programs by applying a sequence oftransformation rules, each of which
preserves correctness. The transformation methodology isparticularly appealing when
programs are written in a declarative language such as a functional language or a logic
language. In those cases, in fact, (i) the formal specifications are formulas which can
easily be translated into an initial program which is, thus,correct by construction, and
(ii) the transformation rules can be viewed as correctness preserving deduction rules in
a suitable logic.

In order to get final programs which are more efficient than theinitial ones, we need
to apply the transformation rules according to suitabletransformation strategies. This
particular approach to program transformation, called therules+ strategiesapproach,
has been first advocated in the seminal paper by Burstall and Darlington [17] in the case
of functional programs. Then, as we will indicate at the beginning of the next section, it

has been adapted to logic programs [31,64], constraint logic programs [22,40], and the
so-called functional-logic languages [1].

The program transformation methodology can also be used forperformingprogram
synthesis(see, for instance, [41] and also [5] for a recent survey). Inthat case the ini-
tial program is the declarative specification of a problem and the derived, transformed
program is the encoding of an efficient algorithm for solvingthat problem.

In recent years program transformation has also been used asa technique forpro-
gram verification. It has been shown that via program transformation, one can prove
properties of programs [47] and also performmodel checkingfor finite or infinite state
systems [25].

In this paper we will focus our attention on the use of the program transformation
methodology for the development of logic programs and we will mainly refer to the con-
tributions coming from that area. In Section 2 we will present the most popular trans-
formation rules, such asunfoldingandfolding, and we will mention some correctness
results for those rules in various logic languages. In Section 3 we will describe some of
the strategies that can be used to guide the application of the transformation rules for
improving program efficiency. In Sections 4 and 5 we will present some transforma-
tional methods for program synthesis and program verification. Finally, in Section 6 we
will discuss some future research directions in program transformation.

2 Transformation Rules

Various sets of program transformation rules have been proposed in the literature for
several declarative programming languages. In their landmark paper [64] Tamaki and
Sato considered definite logic programs and presented a set of transformation rules,
includingdefinition, unfolding, folding, goal replacement, andclause deletion. Under
suitable restrictions, these rules arecorrect w.r.t. the least Herbrand model seman-
tics [64]. Indeed, if from programP0 we derive programPn by several applications
of the transformation rules, then under certain conditionsthe least Herbrand model is
preserved, that is,M(P0) = M(Pn), where byM(P) we denote the least Herbrand
model of the programP . In the subsequent years, Tamaki and Sato’s approach has been
extended in several directions as we now indicate.

(1) Transformation rules for other logic-based programming languages, besides definite
logic programs, have been considered. For instance, various rules have been presented
for transforming: (i) general logic programs withnegation[58], (ii) constraint logic
programs [22,26,40], (iii) concurrent constraint logic programs [23,24], (iv) constraint
handling rules [62], and functional-logic programs [1].

(2) The correctness of the transformation rules w.r.t. various semantics of logic lan-
guages has been proved. In particular, it has been shown that, under suitable condi-
tions, the unfolding and folding transformation rules preserve: (i) the set of answer
substitutions computed by SLD-resolution [6], (ii) the sequence of answer substitutions
computed according to the Prolog operational semantics [49], (iii) termination proper-
ties such as finite failure [58] and left-termination [11], universal termination [7], and
acyclicity [12], (iv) various semantics of general logic programs, such as the Clark com-
pletion [30], the perfect models of stratified programs [40,58], the stable models [57],

2

the well-founded models [59], and Kunen’s and Fitting’s three-valued models [10]. Sys-
tematic approaches for proving the correctness of the transformation rules based on the
notions ofsemantic kernelandargumentation semantics, have been proposed in [4] and
[65], respectively.

(3) The set of transformation rules has been extended eitherby adding extra rules such
asnegative unfoldingandnegative folding[26,60], andsimultaneous replacement[10],
or by relaxing the conditions under which we can apply the usual rules [48,53].

Now we present a set of transformation rules for locally stratified programs [40,45,60].
We will use these rules in the program transformations described in Sections 3, 4, and 5.

Given a locally stratified programP , throughout the paper byM(P) we denote
the perfect model ofP [2], which is equal to the least Herbrand model in the case of
definite logic programs. Given any conjunctionC of one or more literals, byvars(C)
we denote the set of variables occurring inC. A similar notation will also be used for
sets of conjunctions of literals. When applying the transformation rules we will feel
free to rewrite clauses by: (i) renaming their variables, and (ii) rearranging the order
and removing repeated occurrences of literals occurring intheir bodies.

The transformation rules are used to construct a sequenceP0, . . . , Pn of programs,
called atransformation sequence. The construction of that sequence is done as fol-
lows. Suppose that we have constructed the transformation sequenceP0, . . . , Pk, for
0≤ k≤ n−1. Then the next programPk+1 in the transformation sequence is derived
from programPk by the application of a transformation rule among the following rules
R1–R9.

Rule R1 is thedefinition introductionrule which is applied for introducing a new
predicate definition by one or more clauses.

R1. Definition Introduction. Let us considerm (≥1) clauses of the form:

δ1 : newp(X1, . . . , Xh)← B1, . . . , δm : newp(X1, . . . , Xh)← Bm

where: (i)newp is a predicate symbol not occurring in{P0, . . . , Pk}, (ii) X1, . . . , Xh

are distinct variables occurring in{B1, . . . , Bm}, (iii) every predicate symbol occur-
ring in {B1, . . . , Bm} also occurs inP0. The set{δ1, . . . , δm} of clauses is called the
definitionof newp.
By definition introductionfrom programPk we derive the programPk+1 = Pk ∪
{δ1, . . . , δm}. Fork≥ 0, Defsk denotes the set of clauses introduced by the definition
rule during the transformation sequenceP0, . . . , Pk. In particular,Defs0 ={}.

Theunfoldingrule consists in: (i) replacing an atomA occurring in the body of a
clause by a suitable instance of the disjunction of the bodies of the clauses whose heads
unify with A, and (ii) applying suitable boolean laws for deriving clauses. There are
two unfolding rules: (1) thepositive unfolding, and (2) thenegative unfolding, corre-
sponding to the case whereA occurs positively or negatively, respectively, in the body
of the clause to be unfolded.

R2. Positive Unfolding.Let γ : H ← GL ∧ A ∧ GR be a clause in programPk and
let P ′

k
be a variant ofPk without variables in common withγ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

3

be all clauses ofP ′

k
such that, fori = 1, . . . , m, A is unifiable withKi, with most

general unifierϑi.
By unfoldingγ w.r.t. A we derive the clausesη1, . . . , ηm, where fori = 1, . . . , m, ηi

is (H ← GL ∧ Bi ∧ GR)ϑi. FromPk we derive the programPk+1 = (Pk − {γ}) ∪
{η1, . . . , ηm}.

Theexistential variablesof a clauseγ are the variables occurring in the body ofγ
and not in its head.

R3. Negative Unfolding.Let γ : H ← GL ∧¬A∧GR be a clause in programPk and
let P ′

k
be a variant ofPk without variables in common withγ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of programP ′

k
such thatA is unifiable withK1, . . . , Km, with most

general unifiersϑ1, . . . , ϑm, respectively. Assume that:

1. A = K1ϑ1 = · · · = Kmϑm, that is, fori = 1, . . . , m, A is an instance ofKi,
2. for i = 1, . . . , m, γi has no existential variables, and
3. fromGL ∧¬(B1ϑ1 ∨ . . .∨Bmϑm)∧GR we get a logically equivalent disjunction

Q1 ∨ . . . ∨ Qr of goals, withr ≥ 0, by first pushing¬ inside and then pushing∨
outside.

By unfoldingγ w.r.t.¬A we derive the clausesη1, . . . , ηr, where fori = 1, . . . , r, ηi is
H ← Qi. FromPk we derive the new programPk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

Thefoldingrule consists in replacing instances of the bodies of the clauses which are
the definition of a predicate by the corresponding head. As for unfolding, we have both
the positive folding rule and the negative folding rule, depending on whether folding is
applied to positive or negative occurrences of (conjunctions of) literals. Note that by the
positive folding rule we may replacem (≥1) clauses by one clause only.

R4. Positive Folding.Let γ1, . . . , γm, with m≥1, be clauses inPk and letDefs′
k

be a
variant ofDefsk without variables in common withγ1, . . . , γm. Let the definition of a
predicate inDefs′

k
consist of them clauses

δ1 : K ← B1, . . . , δm : K ← Bm

where, fori = 1, . . . , m, Bi is a non-empty conjunction of literals. Suppose that there
exists a substitutionϑ such that, fori = 1, . . . , m, clauseγi is of the formH ←
GL ∧ Biϑ ∧ GR and, for every variableX ∈ vars(Bi) − vars(K), the following
conditions hold: (i)Xϑ is a variable not occurring in{H, GL, GR}, and (ii)Xϑ does
not occur in the termY ϑ, for any variableY occurring inBi and different fromX .
By foldingγ1, . . . , γm usingδ1, . . . , δm we derive the clauseη: H ← GL ∧Kϑ∧GR.
FromPk we derive the programPk+1 = (Pk − {γ1, . . . , γm}) ∪ {η}.

R5. Negative Folding.Let γ be a clause inPk and letDefs′
k

be a variant ofDefsk
without variables in common withγ. Suppose that there exists a predicate inDefs′

k

whose definition consists of a single clauseδ : K ← A, whereA is an atom. Suppose
also that there exists a substitutionϑ such that clauseγ is of the form:H ← GL ∧
¬Aϑ ∧GR andvars(K) = vars(A).

By folding γ usingδ we derive the clauseη: H ← GL ∧ ¬Kϑ ∧ GR. FromPk we
derive the programPk+1 = (Pk−{γ}) ∪ {η}.

4

The followingclause deletionrule allows us to remove fromPk a redundant clauseγ,
that is, a clauseγ such thatM(Pk) = M(Pk−{γ}). Since the problem of testing
whether or notM(Pk) = M(Pk−{γ}) is undecidable, we will consider some sufficient
conditions based on decidable properties. These sufficientconditions are based on the
notions ofsubsumedclause, clausewith false body, anduselessclause, which we now
define.

A clauseγ is subsumedby a clause of the formH ← G1 if γ is of the form
(H ← G1 ∧G2)ϑ for some substitutionϑ and conjunction of literalsG2. A clausehas
a false bodyif it is of the formH ← G1 ∧A ∧ ¬A ∧G2.

The set ofuseless predicatesin a programP is the maximal setU of predicates
occurring inP such that a predicatep is in U iff every clauseγ with head predicatedp
is of the formp(. . .) ← G1 ∧ q(. . .) ∧ G2 for someq in U . A clause in a programP
is uselessif the predicate of its head is useless inP . For example, in the following
program:

p(X)← q(X) ∧ ¬r(X)
q(X)← p(X)
r(a)←

p andq are useless predicates, whiler is not useless.

R6. Clause Deletion.Letγ be a clause inPk. By clause deletionwe derive the program
Pk+1 = Pk − {γ} if one of the following three cases occurs:

R6s. γ is subsumed by a clause inPk − {γ};

R6f. γ has a false body;

R6u. γ is useless inPk.

The followinggoal replacementrule allows us to replace a conjunction of literals oc-
curring in the body of a clause by an equivalent conjunction of literals.

R7. Goal Replacement.Let γ: H ← G1 ∧Q∧G2 be a clause inPk. Suppose that for
some conjunctionR of literals we have:

M(P0) |= ∀X1 . . . ∀Xu (∃Y1 . . .∃Yv Q↔ ∃Z1 . . .∃Zw R)

where: (i) {X1, . . . , Xu} = vars({H, G1, G2}), (ii) {Y1, . . . , Yv} = vars(Q)−
{X1, . . . , Xu}, and (iii) {Z1, . . . , Zw} = vars(R)− {X1, . . . , Xu}.
Then bygoal replacementfrom γ we derive the clauseη: H ← G1 ∧R∧G2. FromPk

we derive the new programPk+1 = (Pk − {γ}) ∪ {η}.

The followingequality introductionrule R8i allows us to substitute a variable for a
term occurring in a clause, by adding an equality in the body of the clause. Theequality
eliminationrule R8e can be viewed as the inverse of rule R8i.

R8. Equality Introduction and Elimination. Let γ be a clause of the form(H ←
Body){X/t}, such that the variableX does not occur int and letδ be the clause:
H ←X = t ∧ Body .
R8i. By equality introductionwe derive clauseδ from clauseγ. If γ occurs inPk then
we derive the new programPk+1 = (Pk − {γ}) ∪ {δ}.
R8e.By equality eliminationwe derive clauseγ from clauseδ. If δ occurs inPk then
we derive the new programPk+1 = (Pk − {δ}) ∪ {γ}.

5

Theclause splittingrule allows us to reason by cases according to the truth valueof
a given atom.

R9. Clause Splitting.Let γ : H ← G be a clause inPk andA be an atom. Then from
clauseγ we derive the two clausesγ1: H ← A ∧ G andγ2: H ← ¬A ∧ G. FromPk

we derive the new programPk+1 = (Pk − {γ}) ∪ {γ1, γ2}.

We say that a transformation sequenceP0, . . . , Pn is correct (w.r.t. the perfect
model semantics), ifP0 ∪Defsn andPn are locally stratified andM(P0 ∪Defsn) =
M(Pn). Note that, since we can introduce new predicate symbols by using rule R1, it
may be the case that for a correct transformation sequence wehaveM(P0) 6= M(Pn).

Transformation sequences constructed by an unrestricted use of the transformation
rules may not be correct. Consider, for instance, the program:

P0: p← q q ←

The perfect model ofP0 is M(P0)={p, q} andM(P0) |= p↔ q. Thus, we may apply
the goal replacement rule R7 and replaceq by p in p← q. We derive the new program:

P1: p← p q ←

The transformation sequenceP0, P1 is not correct, becauseM(P1) = {q} and, thus,
M(P0) 6=M(P1). Indeed,P0 succeeds for the goalp, while P1 does not terminatefor
the goalp.

One can show that the correctness of a transformation sequence is guaranteed if
termination is preserved, that is, if the initial program terminates then also the final
program terminates. Now we will state a sufficient conditionfor the correctness of
the transformation rules R1–R9 based on the notion ofleft termination[3]. An LDNF
derivationis an SLDNF derivation constructed by using theleftmost selection rule[3].

Definition 1. A programP is calledleft terminatingif all LDNF derivations ofP start-
ing from a ground goal, are finite.

The following Theorem 1 which follows from results presented in [3,9], states that
if we consider a transformation sequence of locally stratified, non-floundering [3,39]
programs, then the preservation of left termination guarantees the preservation of the
perfect model.

Theorem 1 (Correctness of the Transformation Rules).Let P0, . . . , Pn be a trans-
formation sequence such that, fork = 0, . . . , n, programPk is locally stratified, non-
floundering, and left terminating. ThenM(P0 ∪Defsn)=M(Pn).

In Theorem 1 we referred to the notion of left termination. However, weaker notions
of termination may be considered and in [36], for instance, there is a correctness result
for definite programs based onexistential termination.

Theorem 1 is theoretically relevant because it relates the correctness of a trans-
formation sequence and the preservation of left termination. However, this result is of
limited use in practice for two reasons: (1) left termination is an undecidable property
(as well as the properties of being locally stratified and non-floundering), and (2) left
termination (or other notions of termination) may be too restrictive, especially in the
cases where logic programs are used as specifications.

6

In Section 5 we will show some examples of transformation of nonterminating pro-
grams in the context of program verification and model checking. Correctness results
w.r.t. the perfect model semantics which do not make explicit use of termination prop-
erties can be found in [26,40,52,58,60]. For lack of space wedo not report those results
here.

3 Transformation Strategies

In order to construct a transformation sequenceP0, . . . , Pn such that the final program
Pn is more efficient than the initial programP0, we need to apply suitable procedures,
calledtransformation strategies.

In this section we will describe some of the strategies whichhave been proposed in
the literature. In particular, we will present: (i) a strategy for eliminating unnecessary
variables[50], (ii) a strategy forreducing nondeterminism[26], and (iii) a strategy for
performingprogram specialization[46].

Several other strategies for transforming logic programs have been proposed. For
instance, (i) the strategy for derivingtail recursiveprograms [20], (ii) the strategy for
compiling control[13], and (iii) the strategy forchanging data representationsand, in
particular, for replacing ordinary lists bydifference-lists[68].

3.1 Eliminating Unnecessary Variables

Logic programs written in a declarative style often make useof existential variables
(see Section 2) andmultiple variables, that is, variables with multiple occurrences in
the body of a clause. Existential variables and multiple variables are collectively called
unnecessary variables. In the practice of logic programming, multiple occurrences of
existential variables are often used for storing intermediate results, while multiple oc-
currences of non-existential variables are often used for defining predicates which per-
form multiple traversals of the input data structure.

The strategy presented in [50] has the objective of eliminating unnecessary vari-
ables, thereby avoiding both the construction of intermediate results and the multiple
traversal of data structures. This strategy is related to the deforestation[67] and thetu-
pling [43] strategies, which were introduced for the case of functional programs, and it
is also related toconjunctive partial deduction[19] which is a technique for eliminating
unnecessary variables that follows thepartial deduction[37] approach, instead of the
rules+ strategiesapproach.

Now we show an example of application of the strategy for eliminating unnecessary
variables.

Example 1 (Two Players Impartial Game).Consider two players sitting at a table. On
the table there is a heap of matches. The two players play alternate moves and each
move consists in taking away either one (move 1) or two matches (move 2) from the
table. A player wins if after the opponent’s move, he finds no matches on the table.
Let us introduce the predicatewin(N, M) which holds iff eitherN =0 or there areN
matches on the table and the player who has to move, wins by making moveM .

7

Given a natural numberN , the following programGame computes a moveM , if it
exists, such thatwin(N, M) holds.

1. win(N, M)← nat(N) ∧move(M) ∧ w(N, M) 5. nat(0)←
2. w(0, M)← 6. nat(s(N))← nat(N)
3. w(s(N), 1)← ¬w(N, 1) ∧ ¬w(N, 2) 7. move(1)←
4. w(s(s(N)), 2)← ¬w(N, 1) ∧ ¬w(N, 2) 8. move(2)←

The variableM occurs twice in the body of clause 1. Likewise, the variableN occurs
twice in the body of clauses 1, 3, and 4. In particular, the multiple occurrences ofN
in clauses 3 and 4 leads to a computation withO(2n) time complexity for any query
win(n, M), wheren is a natural number andM is a variable. We want to improve
the efficiency of the above programGameby eliminating the multiple occurrences of
variables. The strategy which allows us to do so consists in the iteration of the following
two phases (see [50] for details).

Unfold phase: We apply the unfolding rule one or more times startingfrom clause 1,
thereby deriving a setU of clauses;

Define-Foldphase: For each clauseγ in U with multiple occurrences of variables in its
body, we introduce a suitable new clauseδ by rule R1, and we foldγ usingδ so that the
derived clauseη has no multiple occurrences of variables in its body.

For each new clause introduced during theDefine-Foldphase, we perform one more
iteration of theUnfoldandDefine-Foldphases. We store in a set, calledDefs, all clauses
introduced during everyDefine-Foldphase and we introduce a new clauseδ only if we
cannot apply the folding rule by using a clause already belonging to the setDefs.

Let us see this strategy for eliminating the multiple occurrences of variables in ac-
tion in our example.

First Iteration.

Unfold. We apply the positive unfolding rule to clause 1 w.r.t. the leftmost atom in its
body and we derive the following two clauses:

9. win(0, M)← move(M) ∧ w(0, M)
10. win(s(N), M)← nat(N) ∧move(M) ∧ w(s(N), M)

By several applications of the positive unfolding rule, from clauses 9 and 10 we derive:

11. win(0, M)← move(M)
12. win(s(N), 1)← nat(N) ∧ ¬w(N, 1) ∧ ¬w(N, 2)
13. win(s(N), 2)← nat(N) ∧ w(s(N), 2)

Define-Fold.We eliminate the multiple occurrences of the variableN from the bodies
of clauses 12 and 13 by applying the definition introduction rule R1 and the positive
folding rule R4 as follows. By rule R1 we introduce the following two clauses:

14. new1(N)← nat(N) ∧ ¬w(N, 1) ∧ ¬w(N, 2)
15. new2(N)← nat(N) ∧ w(s(N), 2)

and by folding clauses 12 and 13 using clauses 14 and 15, respectively, we derive:

16. win(s(N), 1)← new1(N)
17. win(s(N), 2)← new2(N)

8

without multiple occurrences of variables in their bodies.However, in the bodies of
clauses 14 and 15 there are multiple occurrences of variables and, in order to eliminate
them, we have to perform one more iteration of theUnfold and Define-Foldphases
starting from those two clauses.

Second Iteration.

Unfold.By unfolding clause 14 w.r.t. the leftmost atom in its body, we derive:

18. new1(0)← ¬w(0, 1) ∧ ¬w(0, 2)
19. new1(s(N))← nat(N) ∧ ¬w(s(N), 1) ∧ ¬w(s(N), 2)

By negative unfolding, clause 18 is deleted becausew(0, 1) (and alsow(0, 2)) holds
(see clause 2). From clause 19, by negative unfolding w.r.t.¬w(s(N), 1), we derive:

20. new1(s(N))← nat(N) ∧w(N, 1) ∧ ¬w(s(N), 2)
21. new1(s(N))← nat(N) ∧w(N, 2) ∧ ¬w(s(N), 2)

Define-Fold.By applying rule R1, we introduce the following two clauses:

22. new3(N)← nat(N) ∧ w(N, 1) ∧ ¬w(s(N), 2)
23. new4(N)← nat(N) ∧ w(N, 2) ∧ ¬w(s(N), 2)

By folding clauses 20 and 21 using clauses 22 and 23, respectively, we derive:

24. new1(s(N))← new3(N)
25. new1(s(N))← new4(N)

without multiple occurrences of variables in their bodies.Since in the clauses 22 and
23 introduced by rule R1, there are multiple occurrences of variables, we continue the
execution of the strategy starting from these two clauses aswe have done above starting
from clauses 14 and 15. After some more iterations of theUnfold and Define-Fold
phases we derive the following final programGameF without multiple occurrences of
variables.

11. win(0, N)← move(N) 26. new2(s(N))← new1(N)
16. win(s(N), 1)← new1(N) 27. new3(0)←
17. win(s(N), 2)← new2(N) 28. new4(0)←
24. new1(s(N))← new3(N) 29. new4(s(N))← new5(N)
25. new1(s(N))← new4(N) 30. new5(s(N))← new1(N)

It can be verified that for the program derivation we have now completed, the local
stratification, non-floundering, and left termination conditions of Theorem 1 are all sat-
isfied. In particular, the final programGameL is a left terminating,definiteprogram
(and, hence, locally stratified and non-floundering). Thus,M(Game)=M(GameL).

ProgramGameL runs in nondeterministicO(n) time for any query of the form
win(n, M). In the next section we will present the transformation fromprogramGameL

into a program running in deterministicO(n) time.

3.2 Reducing Nondeterminism

In this section we will present theDeterminization strategy[26] which can be applied
for improving the efficiency of logic programs by reducing the nondeterminism of their
computations. We will see this strategy in action by applying it to the programGameL

we have derived at the end of the previous section.

9

Example 2 (Two Players Impartial Game, Continued).The programGameL is nonde-
terministic because, for any given querywin(n, M), wheren is a ground term denoting
a natural number, SLD-resolution may generate a call which is unifiable with the head
of more than one program clause. For instance, ifn>0, the initial callwin(n, M) uni-
fies with the heads of both clause 16 and clause 17. In other terms, these two clauses
arenot mutually exclusivewith respect to calls of the formwin(n, M), wheren is a
ground term.

Non-mutually exclusive clauses can be avoided by transforming programGameL

as follows. By the equality introduction rule R8i, from clauses 16 and 17 we derive:

31. win(s(N), M)←M =1 ∧ new1(N)
32. win(s(N), M)←M =2 ∧ new2(N)

By applying the definition introduction rule, we introduce the following two clauses:

33. new6(N, M)←M =1 ∧ new1(N)

34. new6(N, M)←M =2 ∧ new2(N)

By folding clauses 31 and 32 using clauses 33 and 34 we derive:

35. win(s(N), M)← new6(N, M)

The predicatewin is defined by the two clauses 11 and 35 which are mutually exclusive
w.r.t. calls of the formwin(n, M). Indeed, for any given ground termn, there is at most
one clause in{11, 35} whose head is unifiable withwin(n, M).

Now we are left with the problem of transforming the two clauses 33 and 34 in-
troduced by rule R1, into a set of mutually exclusive clauses(w.r.t. calls of the form
new6(n, M), wheren is a ground term). The Determinization strategy proceeds simi-
larly to the strategy for eliminating unnecessary variables presented in Section 3.1, by it-
erating anUnfoldphase followed by aDefine-Foldphase. During theDefine-Foldphase
we derive mutually exclusive clauses by introducing new predicates possibly defined by
more than one clause(while in the strategy for eliminating unnecessary variables each
new predicate is defined by precisely one clause).

Let us now see how the Determinization strategy proceeds in action in our example.
For lack of space, we present the first iteration only.

First Iteration.

Unfold.By positive unfolding, from clauses 33 and 34 we derive:

36. new6(s(N), M)←M =1 ∧ new3(N)
37. new6(s(N), M)←M =1 ∧ new4(N)

38. new6(s(N), M)←M =2 ∧ new1(N)

Define-Fold.Clauses 36, 37, and 38 arenot mutually exclusive. By the definition intro-
duction rule we introduce the following three clauses:

39. new7(N, M)←M =1 ∧ new3(N)

40. new7(N, M)←M =1 ∧ new4(N)
41. new7(N, M)←M =2 ∧ new1(N)

By folding clauses 36, 37, and 38 using clauses 39, 40, and 41 we derive:

42.new6(s(N), M)← new7(N, M)

10

Clause 42 constitutes a set of mutually exclusive clauses for new6 (because it is one
clause only). In order to transform the newly introduced clauses 39, 40, and 41 into
mutually exclusive clauses, we continue the execution of the Determinization strategy
and, after several iterations we derive the following programGameD:

11. win(0, M)← move(M)
35. win(s(N), M)← new6(N, M)
42. new6(s(N), M)← new7(N, M) 45. new8(0, M)←M =2
43. new7(0, M)←M =1 46. new8(s(N), M)← new9(N, M)
44. new7(s(N), M)← new8(N, M) 47. new9(s(N), M)← new7(N, M)

ProgramGameD is left terminating and all conditions of Theorem 1 are satisfied. Thus,
M(Game)=M(GameD). Moreover, programGameD is a set of mutually exclusive
clauses and computes the winning move, for any natural number n, in O(n) determin-
istic time.

3.3 Program Specialization

Programs are often written in a parametric form so that they can be reused in different
contexts, and when a parametric program is reused, one may want to improve its per-
formance by taking advantage of the new context of use. This improvement can often
be realized by applying a transformation methodology, called program specialization
(see [29,32,37] for introductions).

The most used technique for program specialization ispartial evaluation, also called
partial deductionin the case of logic programs, where it has been first proposedby [33]
(see also [14,15,28,38,55,61,63,66] for early work on thissubject). Essentially, partial
deduction can be performed by applying the transformation rules R1 (definition in-
troduction), R2 (positive unfolding), R4 (positive folding), and R5 (negative folding)
presented in Section 2 with the following restriction: by rule R1 we can introduce a
new clause of the formnewp(X1, . . . , Xh)← A, whereA is an atom andX1, . . . , Xh

are the variables occurring inA. This restriction limits also folding, as rules R4 and R5
are applied using clauses introduced by rule R1.

Program specialization techniques which make use of more powerful rules, such as
unrestricted definition introduction (and, hence, unrestricted folding) and goal replace-
ment have been first proposed in [8]. Here we will present an example of application
of the specialization strategy introduced in [46], which extends partial deduction by
also eliminating unnecessary variables and reducing nondeterminism. In our example
we will derive a specialized pattern matcher for a given pattern, starting from a given
parametric pattern matcher. In this example we will use constraint logic programs. As
already mentioned, the extension of the transformation rules to the case of constraint
logic programs has been studied in [22,26,40].

Example 3 (Constrained Matching).We define a matching relation between two strings
of numbers called, respectively, thepatternP and thestring S. We say that the pattern
P matchesthe stringS, and we writem(P, S), iff P = [p1, . . . , pn] and inS there is
a substringQ = [q1, . . . , qn] such that fori = 1, . . . , n, pi ≤ qi. (Much more complex
matchers can be considered by allowing a matching relation which can be defined by
any constraint logic program.)

11

The following constraint logic programMatchcan be taken as the specification of
our parametric pattern matcher for the patternP :

1. m(P, S)←app(B, C, S) ∧ app(A, Q, B) ∧ leq(P, Q)
2. app([],Ys ,Ys)←
3. app([X |Xs],Ys , [X |Zs])← app(Xs,Ys ,Zs)
4. leq([], [])←
5. leq([X |Xs], [Y |Ys])← X≤Y ∧ leq(Xs ,Ys)

Suppose that we want to specialize this pattern matcher to the specific pattern
P = [1,0,2]. The specialization strategy we now apply has the same structure as the
strategies presented in Sections 3.1 and 3.2. The improvements gained through the ap-
plication of the specialization strategy are due to the factthat this strategy: (i) makes
some precalculations which depend on the specific patternP = [1,0,2], (ii) eliminates
unnecessary variables, and (iii) reduces nondeterminism.As already mentioned, these
improvements are possible because we use more powerful transformation rules with re-
spect to partial deduction (which would only perform the precalculations of Point (i)).

The specialization strategy starts off by introducing the following clause which de-
fines the specialized matching relationmsp :

6. msp(S)← m([1,0,2], S)

Now we iterateUnfold andDefine-Foldphases. The main difference with the applica-
tions of the strategies presented in Sections 3.1 and 3.2 will be that, in order to get mu-
tually exclusive clauses, before applying the definition introduction rule and the folding
rule, we will apply the clause splitting rule R9 whenever needed.

First Iteration

Unfold.We unfold clause 6 w.r.t. the atomm([1,0,2],S). We derive:

7. msp(S)← app(B, C, S) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Define-Fold.In order to fold clause 7, we introduce the following definition:

8. new1(S)← app(B, C, S) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Then we fold clause 7 and we derive:

9. msp(S)← new1(S)

Now the strategy continues by transforming the newly introduced clause 8.

Second Iteration

Unfold.We unfold clause 8 w.r.t. the atomsappandleq and we get:

10.new1([X |Xs])← 1≤X ∧ app(Q, C,Xs) ∧ leq([0,2], Q)
11.new1([X |Xs])← app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

Clause Splitting.In order to derive mutually exclusive clauses, thereby reducing nonde-
terminism, we apply the clause splitting rule to clause 11, by separating the cases when
1 ≤ X and when1 > X (that is,¬(1 ≤ X)). We get:

12.new1([X |Xs])←1≤X ∧ app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)
13.new1([X |Xs])←1>X ∧ app(B, C,Xs) ∧ app(A, Q, B) ∧ leq([1,0,2], Q)

12

Define-Fold.In order to fold clauses 10 and 12 we introduce the following two clauses
defining the predicatenew2:
14.new2(Xs)← app(Q, C,Xs) ∧ leq([0, 2], Q)
15.new2(Xs)← app(B,C,Xs) ∧ app(A,Q,B) ∧ leq([1,0,2],Q)

Then we fold clauses 10 and 12 by using the two clauses 14 and 15and we also fold
clause 13 by using clause 8. We derive the following clauses:
16.new1([X |Xs])← 1≤X ∧ new2(Xs)
17.new1([X |Xs])← 1>X ∧ new1(Xs)

Note that these two clauses: (i) are specialized w.r.t. the information that the first el-
ement of the pattern is 1, (ii) have no unnecessary variables, and (iii) are mutually
exclusive because of the constraints1≤X and1>X .

Now the program transformation strategy continues by transforming clauses 14 and
15, which define predicatenew2. After a few more iterations of theUnfold, Clause
Splitting, andDefine-Foldphases, we derive the following specialized programMatchsp :

9. msp(S)← new1(S)
16.new1([X |Xs])← 1≤X ∧ new2(Xs)
17.new1([X |Xs])← 1>X ∧ new1(Xs)
18.new2([X |Xs])← 1≤X ∧ new3(Xs)
19.new2([X |Xs])← 0≤X ∧ 1>X ∧ new4(Xs)
20.new2([X |Xs])← 0>X ∧ new1(Xs)
21.new3([X |Xs])← 2≤X ∧ new5(Xs)
22.new3([X |Xs])← 1≤X ∧ 2>X ∧ new3(Xs)
23.new3([X |Xs])← 0≤X ∧ 1>X ∧ new4(Xs)
24.new3([X |Xs])← 0>X ∧ new1(Xs)
25.new4([X |Xs])← 2≤X ∧ new6(Xs)
26.new4([X |Xs])← 1≤X ∧ 2>X ∧ new2(Xs)
27.new4([X |Xs])← 1>X ∧ new1(Xs)
28.new5([X |Xs])←
29.new6([X |Xs])←

This final programMatchsp has no occurrences of unnecessary variables and is de-
terministic in the sense that at most one clause can be applied during the evaluation
of any ground goal. The efficiency ofMatchsp is very high because it behaves like a
deterministic finite automaton (see Figure 1) as the Knuth-Morris-Pratt matcher.

4 Program Synthesis

Program synthesis is a technique for the automatic derivation of programs from their
formal specifications (see, for instance, [41] for the derivation of functional programs
and [16,27,31] for the derivation of logic programs from first-order logic specifications).

In this section we present a transformational approach to program synthesis [26,56].
By following this approach, the synthesis of anefficientlogic program from a first order
logic specification can be performed in two steps: first (1) wetranslate the specifica-
tion into a possibly inefficient logic program by applying the Lloyd-Topor transforma-
tion [39], and then (2) we derive an efficient program by applying the transformation
rules and strategies described in Sections 2 and 3.

13

Fig. 1. The finite automaton corresponding to the programMatchsp made out of clauses 9 and
16–29. The initial state isnew1 and the final states arenew5 andnew6.

The transformational program synthesis approach will be presented through the
N -queens example. This example also illustrates that powerful programming tech-
niques such as recursion and backtracking, which are often presented in the literature
for solving theN -queens problem, can indeed be automatically derived by transforma-
tion.

Example 4 (N -queens).We are required to placeN (≥ 0) queens on anN×N chess
board, so that no two queens attack each other, that is, they do not lie on the same
row, column, or diagonal. By using the fact that no two queensshould lie on the same
column, the positions of theN queens on the chess board can be denoted by the list
L = [i1, . . . , iN] such that, for1≤k≤N , ik is the row where the queen on columnk is
placed.

A specification of the solutionL for theN -queens problem is given by the following
first-order formula:

board(N, L) =def nat(N) ∧ nat−list(L) ∧ length(L, N) ∧
∀X (member (X, L)→ in(X, 1, N)) ∧
∀A∀B ∀K ∀M

((1≤K ∧K <M ∧ occurs(A, K, L) ∧ occurs(B,M,L))
→ (A 6=B ∧A−B 6=M−K ∧B−A 6=M−K))

where the various predicates that occur inboard(N, L), are defined by the following
constraint logic programP :

nat(0)←
nat(N)← N =M +1∧M≥0 ∧ nat(M)
nat−list([])←
nat−list([H |T])← nat(H) ∧ nat−list(T)
length([], 0)←
length([H |T], N)← N =M +1∧M≥0 ∧ length(T, M)
member(X, [H |T])← X =H
member(X, [H |T])← member(X, T)
in(X, M, N)← X =N ∧M≤N
in(X, M, N)← N =K+1∧M≤K ∧ in(X, M, K)
occurs(X, I, [H |T])← I =1 ∧X =H
occurs(X, J, [H |T])← J =I+1 ∧ I≥1 ∧ occurs(X, I, T)

14

In this programP we have that: (i)in(X, M, N) iff M≤X≤N , and (ii)occurs(X, I,
[a1, . . . , an]) iff X =ai andI = i. Now, we would like to synthesize a constraint logic
programR which computes a predicatequeens(N, L) such that, for everyN andL,
the following property holds:

M(R) |= queens(N, L) iff M(P) |= board(N, L) (α)

where byM(R) andM(P) we denote the perfect model of the programsR andP ,
respectively. By applying the technique presented in [26],we start off from the formula
queens(N, L) ← board(N, L) (whereboard(N, L) is the first order formula defined
above) and, by applying a variant of the Lloyd-Topor transformation, we derive the
following stratified programF :

queens(N, L)← nat(N)∧ nat−list(L)∧ length(L, N)∧¬aux1(L, N)∧¬aux2(L)
aux1(L, N)← member(X, L) ∧ ¬in(X, 1, N)
aux2(L)← 1≤K ∧K <M ∧ ¬(A 6=B ∧A−B 6=M−K ∧B−A 6=M−K) ∧

occurs(A, K, L) ∧ occurs(B, M, L)

It can be shown that this variant of the Lloyd-Topor transformation preserves the perfect
model semantics and, thus, we have that, for everyN andL:

M(P ∪ F) |= queens(N, L) iff M(P) |= board(N, L).

The derived programP ∪ F is not satisfactory from a computational point of view,
when using LDNF resolution. Indeed, for a query of the formqueens(n, L), wheren
is a nonnegative integer andL is a variable, programP ∪F works by first generating
a valuel for the list L and then testing whether or notlength(l, n) ∧ ¬aux1(l, n) ∧
¬aux2(l) holds. This generate-and-test behavior is very inefficientand it may also lead
to nontermination. Thus, the process of program synthesis proceeds by applying the
definition, unfolding, folding, and goal replacement transformation rules, according to
a strategy similar to the ones we have described in Section 3,with the objective of
deriving a more efficient program. We derive the following definite programR:

queens(N, L)← new2(N, L, 0)
new2(N, [], K)← N =K
new2(N, [H |T], K)← N ≥K +1 ∧ new2(N, T, K+1)∧ new3(H, T, N, 0)
new3(A, [], N, M)← in(A, 1, N) ∧ nat(A)
new3(A, [B|T], N, M)← A 6=B ∧A−B 6=M +1 ∧B−A 6=M +1 ∧ nat(B) ∧

new3(A, T, N, M +1)

together with the clauses listed above which define the predicatesin andnat .
Since the transformation rules preserve the perfect model semantics, for everyN

andL, we have that,M(R) |= queens(N, L) iff M(P ∪ F) |= queens(N, L) and,
thus, Property(α) holds. It can be shown that programR terminates for all queries of
the formqueens(n, L). ProgramR computes a solution for theN -queens problem in a
clever way: each time a new queen is placed on the board, programR tests whether or
not that queen attacks any other queen already placed on the board.

5 Program Verification

Proofs of program properties are often needed during program development for check-
ing the correctness of software components with respect to their specifications. It has

15

been shown that the transformation rules introduced in [17,64] can be used for proving
several kinds of program properties, such as equivalences of functions defined by recur-
sive equation programs [34], equivalences of predicates defined by logic programs [44],
first-order properties of predicates defined by constraint logic programs [47], and tem-
poral properties of concurrent systems [25,54].

In this section we see the use of program transformation for proving program prop-
erties specified either by first-order logic formulas or by temporal logic formulas.

5.1 The Unfold/Fold Proof Method

Through a simple example taken from [47], now we illustrate amethod, calledun-
fold/fold proof method, which uses the program transformation methodology for prov-
ing first-order properties of constraint logic programs. Consider the following constraint
logic programMemberwhich defines the membership relation between an element and
a list of elements:

member(X, [Y |L])← X =Y list([])←
member(X, [Y |L])← member(X, L) list([H |T])← list(T)

Suppose we want to show that every finite list of numbers has anupper bound, that is,
we want to prove the following formula:

∀L (list(L)→ ∃U ∀X (member(X, L)→ X≤U)) (β)

The unfold/fold proof method works in two steps, which are similar to the two steps
of the transformational synthesis approach presented in Section 4. In the first step, the
formulaβ is transformed into a set of clauses by applying a variant of the Lloyd-Topor
transformation, thereby deriving the following program:

P1: prop ← ¬p
p← list(L) ∧ ¬q(L)
q(L)← list(L) ∧ ¬r(L, U)
r(L, U)←X >U ∧ list(L) ∧member(X, L)

The predicateprop is equivalent toβ in the sense thatM(Member) |= β iff M(Member

∪P1) |= prop. The correctness of this transformation can be checked by realizing that
M(Member) |= β ↔ ¬∃L(list(L) ∧ ¬(∃U(list(L) ∧¬(∃X (X > U ∧ list(L) ∧
member(X, L))))).

In the second step, we eliminate theexistential variablesoccurring inP1 (see Sec-
tion 2 for a definition) by applying the transformation strategy for eliminating unnec-
essary variables presented in Section 3.1. We derive the following programP2 which
defines the predicateprop:

P2: prop ← ¬p p← p1 p1 ← p1

Now, P2 is a propositional program and has afinite perfect model, which is{prop}.
Since it can be shown that all transformations we have performed preserve the perfect
model, we have thatM(Member) |= β iff M(P2) |= prop and, therefore, we have
completed the proof ofβ becauseprop belongs toM(P2).

The expert reader will note that the unfold/fold proof method we have now illus-
trated, can be viewed as an extension to constraint logic programs of thequantifier
eliminationmethod, which has well-known applications in the field of automated theo-
rem proving (see [51] for a brief survey).

16

5.2 Infinite-State Model Checking

As indicated in [18], the behavior of a concurrent system that evolves over time accord-
ing to a given protocol can be modeled as astate transition system, that is, (i) a setS of
states, (ii) an initial states0 ∈ S, and (iii) atransition relationt ⊆ S × S. We assume
that the transition relationt is total, that is, for every states ∈ S there exists at least
one states′ ∈ S, called asuccessor stateof s, such thatt(s, s′) holds. Acomputation
pathstarting from a states1 (not necessarily, the initial state) is aninfinite sequence of
statess1 s2 . . . such that, for everyi≥1, there is a transition fromsi to si+1, that is,
t(si, si+1) holds.

The properties of the evolution over time, that is, the computation paths, of a concur-
rent system can be specified by using a formula of a temporal logic calledComputation
Tree Logic(or CTL, for short [18]). The formulas of CTL are built from a given set
of elementary properties, each of which may or may not hold in a particular state, by
using: (i) the connectives:not andand, (ii) the quantifiers along a computation path:
g (‘for all states on the path’ or ‘globally’),f (‘there exists a state on the path’ or ‘in
the future’),x (‘next time’), andu (‘until’), and (iii) the quantifiers over computation
paths:a (‘for all paths’) ande (‘there exists a path’). Quantified formulas are written in
a compact form and, for instance, we will writeef (F) andag(F), instead ofe(f(F))
anda(g(F)), respectively.

Very efficient algorithms and tools exist for verifying temporal properties offinite
state transition systems, that is, systems where the setS of states is finite [18]. How-
ever, many concurrent systems cannot be modeled by finite state transition systems. The
problem of verifying CTL properties ofinfinitestate transition systems is, unfortunately,
undecidable and, thus, it cannot be tackled by traditional model checking techniques.
For this reason various methods based on automated theorem proving have been pro-
posed for extending model checking so to deal with infinite state systems (see [21] for
a method based on constraint logic programming). Due to the above mentioned unde-
cidability limitation, all these methods are necessarily incomplete.

Now we present a method for verifying temporal properties of(finite or infinite)
state transition systems which is based on transformation techniques for constraint logic
programs [25]. As an example we consider theBakeryprotocol [35] and we verify that
it satisfies themutual exclusionandstarvation freedomproperties.

Let us consider two agentsA andB which want to access a shared resource in
a mutually exclusive way by using the Bakery protocol. The state of the agentA is
represented by a pair〈A1, A2〉, whereA1, called thecontrol state, is an element of the
set{t, w, u} (wheret, w, andu stand forthink, wait, anduse, respectively) andA2,
called thecounter, is a natural number. Analogously, the state of agentB is represented
by a pair〈B1, B2〉. The stateof the system consisting of the two agentsA andB,
whose states are〈A1, A2〉 and 〈B1, B2〉, respectively, is represented by the 4-tuple
〈A1, A2, B1, B2〉. The transition relationt of the two agent system from an old state
OldS to a new stateNewS , is defined as follows:

t(OldS , NewS)← tA(OldS , NewS)
t(OldS , NewS)← tB(OldS , NewS)

where the transition relationtA for the agentA is given by the following clauses whose
bodies are conjunctions of constraints (see also Figure 2):

17

$'

?

�

	

�

�

	

�
- -

�

	

�
〈think , A2, B1, B2〉

A2:=B2+1

〈wait , A2, B1, B2〉

A2<B2 ∨ B2=0

〈use, A2, B1, B2〉

A2:=0

Fig. 2. The Bakery protocol: a graphical representation of the transition relation tA for the
agentA. The assignmentX := e on the arc from a states1 to a states2 tells us that the value of
the variableX in s2 is the value of the expressione in s1. The boolean expressionb on the arc
from a states1 to a states2 tells us that the transition froms1 to s2 takes place iffb holds.

tA(〈t , A2, B1, B2〉, 〈w , A21, B1, B2〉)← A21=B2+1
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← A2<B2
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← B2=0
tA(〈u, A2, B1, B2〉, 〈t , A21, B1, B2〉)← A21=0

The following similar clauses define the transition relation tB for the agentB:

tB(〈A1, A2, t , B2〉, 〈A1, A2,w , B21〉)← B21=A2+1
tB(〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← B2<A2
tB(〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← A2=0
tB(〈A1, A2, u, B2〉, 〈A1, A2, t , B21〉)← B21=0

Note that the system has an infinite number of states, becausecounters may increase in
an unbounded way.

The temporal properties of a transition system are specifiedby defining a predicate
sat(S, P) which holds if and only if the temporal formulaP is true at the stateS. For
instance, the following clauses define the predicatesat(S, P) for the cases whereP is:
(i) an elementary formulaF , (ii) a formula of the formnot(F), (iii) a formula of the
form and(F1, F2), and (iv) a formula of the formef (F):

sat(S, F)← elem(S, F)
sat(S,not(F))← ¬sat(S, F)
sat(X, and(F1, F2))← sat(X, F1) ∧ sat(X, F2)
sat(S, ef (F))← sat(S, F)
sat(S, ef (F))← t(S, T) ∧ sat(T, ef (F))

whereelem(S, F) holds iff F is an elementary property which is true at stateS. In
particular, for the Bakery protocol we have the following clause:

elem(〈u, A2, u, B2〉, unsafe)←

that is,unsafeholds at a state where both agentsA andB are in the control stateu, that
is, both agents use the shared resource at the same time. We have thatsat(S, ef (F))
holds iff there exists a computation pathπ starting from stateS and there exists a state
S′ onπ such thatF is true atS′.

The mutual exclusion property holds for the Bakery protocolif there is no computa-
tion path starting from the initial state such that at a stateon this path theunsafeproperty
holds. Thus, the mutual exclusion property holds ifsat(〈t , 0, t , 0〉,not(ef (unsafe)))
belongs to the perfect modelM(Pmex), where: (i)〈t , 0, t , 0〉 is the initial state of the
system and (ii)Pmex is the program consisting of the clauses for the predicatest, tA,
tB, sat, andelemdefined above.

18

In order to show thatsat(〈t , 0, t , 0〉,not(ef (unsafe))) ∈ M(Pmex), we introduce
a new predicatemex defined by the following clause:

mex ← sat(〈t , 0, t , 0〉,not(ef (unsafe))) (µ)

and we transform the programPmex ∪ {µ} into a new programQ which contains a
clause of the formmex ← (see [25] for details). This transformation is performed
by applying the definition, unfolding, and folding rules according to a strategy similar
to the specialization strategy presented in Section 3.3, that is, a strategy that derives
specialized clauses for the evaluation of the predicatemex . From the correctness of the
transformation rules we have thatmex ∈M(Q) iff mex ∈M(Pmex∪{µ}) and, hence,
sat(〈t , 0, t , 0〉,not(ef (unsafe))) ∈ M(Pmex), that is, the mutual exclusion property
holds.

By applying the same methodology we can also prove thestarvation freedomprop-
erty for the Bakery protocol. This property ensures that an agent, sayA, which requests
the shared resource, will eventually get it. This property is expressed by the CTL for-
mula: ag(wA → af (uA)), which is equivalent to:not(ef (and(wA,not(af (uA))))).
The clauses defining the elementary propertieswA anduA are:

elem(〈w , A2, B1, B2〉,wA)←

elem(〈u, A2, B1, B2〉, uA)←

The clauses defining the predicatesat(S, P) for the case whereP is a CTL formula of
the formaf (F) are:

sat(X, af (F))← sat(X, F)

sat(X, af (F))← ts(X,Ys) ∧ sat all (Ys , af (F))

sat all([], F)←

sat all([X |Xs], F)← sat(X, F) ∧ sat all (Xs, F)

wherets(X,Ys) holds iff Ys is a list of all the successor states of the stateX . For
instance, one of the clauses defining predicatets in our Bakery example is:

ts(〈t , A2, t , B2〉, [〈w , A21, t , B2〉, 〈t , A2,w , B21〉])← A21=B2+1∧B21=A2+1

which says that the state〈t , A2, t , B2〉 has two successor states:〈w , A21, t , B2〉, with
A21=B2+1, and〈t , A2,w , B21〉, with B21=A2+1.

Let Psf denote the program obtained by adding toPmex the clauses defining: (i) the
elementary propertieswA anduA, (ii) the predicatets , (iii) the atomsat(X, af (F)),
and (iv) the predicatesat all . In order to verify the starvation freedom property we
introduce the clause:

sf ← sat(〈t , 0, t , 0〉,not(ef (and(wA,not(af (uA)))))) (σ)

and, by applying the definition, unfolding, and folding rules according to the specializa-
tion strategy, we transform the programPsf ∪{σ} into a new programR which contains
a clause of the formsf ←.

Note that the derivations needed for verifying the mutual exclusion and the starva-
tion freedom properties can be done in a fully automatic way by using the experimental
constraint logic program transformation system MAP [42].

19

6 Conclusions and Future Directions

We have presented the program transformation methodology and we have demonstrated
that it is very effective for: (i) the derivation of correct software modules from their for-
mal specifications, and (ii) the proof of properties of programs. Since program transfor-
mation preserves correctness and improves efficiency, it isvery useful for constructing
software products which are provably correct and whose timeand space performance is
very high.

During the past twenty-five years the research community in Italy has given a very
relevant contribution to the program transformation field and, more in general, to the
field of logic-based program development. The extent of thiscontribution is witnessed
by the numerous scientific papers, a small fraction of which have been mentioned in
this brief survey.

The contribution of the Italian research community has alsobeen carried out through
the participation in several national and international research projects which included
as an important topic the transformation methodology of logic programs. In particu-
lar, we would like to mention the following projects: (i) ESPRIT Alpes (1984–89),
(ii) Compulog I and Compulog II (1989–95), (iii) the INTAS Project ‘Efficient Sym-
bolic Computing’ (1994-98), (iv) the Network of Excellenceon Computational Logic,
(v) the Humal Capital and Mobility Project ‘Logic Program Synthesis and Transfor-
mation’ (1993–96), (vi) the Italian ‘Progetto FinalizzatoInformatica II’ (1989–93),
(vii) the ANATRA Project ‘Strumenti per l’analisi e la trasformazione dei programmi’
(1994–95), (viii) ‘Programmazione Logica: Strumenti per analisi e trasformazione di
programmi, Tecniche di ingegneria del software, Estensioni con vincoli, concorrenza
ed oggetti’ (1995–96), (ix) Progetto Speciale ‘Verifica, analisi e trasformazione di pro-
grammi logici’ (1998–99), and (x) ‘Tecniche formali per la specifica, l’analisi, la ver-
ifica, la sintesi e la trasformazione di sistemi software’ (1998–2000). These projects
were supported by the European Union, the Italian Ministry of Education, University,
and Research (MIUR), and the Italian National Research Council (CNR).

All these projects gave to the research community in Italy invaluable opportuni-
ties to cooperate with other scientific groups in Europe, to strengthen their theoretical
background on logic programming and to produce powerful systems and tools for logic
program development, logic program analysis, knowledge representation and manipu-
lation using logic. Research teams in Bologna, Padua, Pisa,Rome, and Venice, among
others, grew considerably strong through those projects and their expertise and compe-
tence spread all over the international community and sincethen, their high reputation
has been widely recognized.

Finally, the Italian research community has also given a very relevant contribution to
the organization and the scientific success of the various meetings dedicated to the dis-
semination of research in logic program transformation, such as the series of Workshops
and Symposia on Logic-Based Program Synthesis and Transformation (LOPSTR), held
annually since 1991, and on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM).

Now, looking at the directions for future research, we wouldlike to point out that,
in order to make program transformation even more effective, we need to increase the

20

level of automation of the transformation strategies for program improvement, program
synthesis, and program verification. Furthermore, these strategies should be incorpo-
rated into powerful tools for program development.

Another important direction for future research is the exploration of new areas of
application of the transformation methodology. In this paper we have described the use
of program transformation for verifying temporal properties of infinite state concurrent
systems. Similar techniques could also be devised for verifying other kinds of prop-
erties and other classes of systems, such as security properties of distributed systems,
safety properties of hybrid systems, and protocol conformance of multiagent systems.
A more challenging issue is the fully automatic synthesis ofsoftware systems which
are guaranteed to satisfy some given properties specified bythe designer.

7 Acknowledgements

We would like to thank the members of GULP, the Italian Association for Logic Pro-
gramming, who throughout all these years have been for us of great scientific support
and encouragement. Their cooperation and friendship are very much appreciated.

Many thanks also to Agostino Dovier and Enrico Pontelli, editors of this book, for
their invitation to present the contributions of the program transformation methodology
in the field of logic programming.

References

1. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A transformation system for lazy
functional logic programs. In A. Middeldorp and T. Sato, editors, Proceedings of the 4th
Fuji International Symposium on Functional and Logic Programming, FLOPS’99, Lecture
Notes in Computer Science 631, pages 147–162. Springer-Verlag, 1999.

2. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of Logic
Programming, 19, 20:9–71, 1994.

3. K. R. Apt and D. Pedreschi. Reasoning about termination ofpure logic programs.Informa-
tion and Computation, 106:109–157, 1993.

4. C. Aravindan and P. M. Dung. On the correctness of unfold/fold transformation of normal
and extended logic programs.Journal of Logic Programming, 24(3):201–217, 1995.

5. D. Basin, Y. Deville, P. Flener, A. Hamfelt, and J.F. Nilsson. Synthesis of programs in
computational logic. In M. Bruynooghe and K.-K. Lau, editors, Program Development in
Computational Logic. Springer-Verlag, 2004.

6. A. Bossi and N. Cocco. Basic transformation operations which preserve computed answer
substitutions of logic programs.Journal of Logic Programming, 16(1&2):47–87, 1993.

7. A. Bossi and N. Cocco. Preserving universal termination through unfold/fold. InProceedings
ALP ’94, Lecture Notes in Computer Science 850, pages 269–286, Berlin, 1994. Springer-
Verlag.

8. A. Bossi, N. Cocco, and S. Dulli. A method for specializinglogic programs.ACM Transac-
tions on Programming Languages and Systems, 12(2):253–302, April 1990.

9. A. Bossi, N. Cocco, and S. Etalle. Transforming normal programs by replacement. In A. Pet-
torossi, editor,Proceedings 3rd International Workshop on Meta-Programming in Logic,
Meta ’92, Uppsala, Sweden, Lecture Notes in Computer Science 649, pages 265–279, Berlin,
1992. Springer-Verlag.

21

10. A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs.Journal
of Logic and Computation, 6(1):79–120, 1996.

11. A. Bossi, N. Cocco, and S. Etalle. Transforming left-terminating programs: The reordering
problem. In M. Proietti, editor,Logic Program Synthesis and Transformation, Proceedings
LOPSTR ’95, Arnhem, The Netherlands, Lecture Notes in Computer Science 1048, pages
33–45, Berlin, 1996. Springer-Verlag.

12. A. Bossi and S. Etalle. Transforming acyclic programs.ACM Transactions on Programming
Languages and Systems, 16(4):1081–1096, July 1994.

13. M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling control. Journal of Logic Pro-
gramming, 6:135–162, 1989.

14. M. Bugliesi, E. Lamma, and P. Mello. Partial evaluation for hierarchies of logic theories.
In S. Debray and M. Hermenegildo, editors,Logic Programming: Proceedings of the 1990
North American Conference, Austin, Texas, October 1990, pages 359–376. The MIT Press,
1990.

15. M. Bugliesi and F. Rossi. Partial evaluation in Prolog: Some Improvements about Cut. In
E. L. Lusk and R. A. Overbeek, editors,Logic Programming: Proceedings of the North
American Conference 1989, Cleveland, Ohio, October 1989, pages 645–660. The MIT Press,
1989.

16. A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logic programs from inductive proofs.
In J. W. Lloyd, editor,Computational Logic, Symposium Proceedings, Brussels, November
1990, pages 135–149, Berlin, 1990. Springer-Verlag.

17. R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-
grams.Journal of the ACM, 24(1):44–67, January 1977.

18. E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
19. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen. Con-

junctive partial deduction: Foundations, control, algorithms, and experiments.Journal of
Logic Programming, 41(2–3):231–277, 1999.

20. S. K. Debray. Optimizing almost-tail-recursive Prologprograms. InProceedings IFIP In-
ternational Conference on Functional Programming Languages and Computer Architecture,
Nancy, France, Lecture Notes in Computer Science 201, pages 204–219. Springer-Verlag,
1985.

21. G. Delzanno and A. Podelski. Constraint-based deductive model checking.International
Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.

22. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer Sci-
ence, 166:101–146, 1996.

23. S. Etalle, M. Gabbrielli, and E. Marchiori. A transformation system for CLP with dynamic
scheduling and CCP. InPEPM ’97, pages 137–150. ACM Press, 1997.

24. S. Etalle, M. Gabbrielli, and M. C. Meo. Transformationsof ccp programs.ACM Transac-
tions on Programming Languages and Systems, 23(3):304–395, 2001.

25. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state sys-
tems by specializing constraint logic programs. InProceedings of the ACM Sigplan Work-
shop on Verification and Computational Logic VCL’01, Florence (Italy), Technical Report
DSSE-TR-2001-3, pages 85–96. University of Southampton, UK, 2001.

26. F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally stratified con-
straint logic programs. In K.-K. Lau and M. Bruynooghe, editors,Program Development in
Computational Logic, Lecture Notes in Computer Science 3049, pages 292–340. Springer-
Verlag, 2004.

27. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalization of correct
schemas for program synthesis.Journal of Symbolic Computation, 30(1):93–127, 2000.

28. J. P. Gallagher. Transforming programs by specialisinginterpreters. InProceedings Seventh
European Conference on Artificial Intelligence, ECAI ’86, pages 109–122, 1986.

22

29. J. P. Gallagher. Tutorial on specialisation of logic programs. InProceedings of the 1993 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manipulation,
PEPM ’93, Copenhagen, Denmark, pages 88–98. ACM Press, 1993.

30. P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations of logic programs. In J.-
L. Lassez and G. Plotkin, editors,Computational Logic, Essays in Honor of Alan Robinson,
pages 565–583. MIT, 1991.

31. C. J. Hogger. Derivation of logic programs.Journal of the ACM, 28(2):372–392, 1981.
32. N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program

Generation. Prentice Hall, 1993.
33. H. J. Komorowski. Partial evaluation as a means for inferencing data structures in an applica-

tive language: A theory and implementation in the case of Prolog. InNinth ACM Symposium
on Principles of Programming Languages, Albuquerque, New Mexico, USA, pages 255–267,
1982.

34. L. Kott. The McCarthy’s induction principle: ‘oldy’ but‘goody’. Calcolo, 19(1):59–69,
1982.

35. L. Lamport. A new solution of Dijkstra’s concurrent programming problem.Communica-
tions of the ACM, 17(8):453–455, 1974.

36. K.-K. Lau, M. Ornaghi, A. Pettorossi, and M. Proietti. Correctness of logic program trans-
formation based on existential termination. In J. W. Lloyd,editor,Proceedings of the 1995
International Logic Programming Symposium (ILPS ’95), pages 480–494. MIT Press, 1995.

37. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction:
Control issues.Theory and Practice of Logic Programming, 2(4&5):461–515, 2002.

38. G. Levi and G. Sardu. Partial evaluation of meta programsin a multiple worlds logic lan-
guage.New Generation Computing, 6(2&3):227–248, 1988.

39. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second
Edition.

40. M. J. Maher. A transformation system for deductive database modules with perfect model
semantics.Theoretical Computer Science, 110:377–403, 1993.

41. Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM Toplas,
2:90–121, 1980.

42. The MAP transformation system. http://www.iasi.cnr.it/∼proietti/system.html, 1995–2010.
43. A. Pettorossi. A powerful strategy for deriving efficient programs by transformation. In

ACM Symposium on Lisp and Functional Programming, pages 273–281. ACM Press, 1984.
44. A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using un-

fold/fold proofs.Journal of Logic Programming, 41(2&3):197–230, 1999.
45. A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transformations. In

J. W. Lloyd, editor,Proceedings of the First International Conference on Computational
Logic (CL 2000), London, UK, 24-28 July, Lecture Notes in Artificial Intelligence 1861,
pages 613–628. Springer-Verlag, 2000.

46. A. Pettorossi, M. Proietti, and S. Renault. Derivation of efficient logic programs by spe-
cialization and reduction of nondeterminism.Higher-Order and Symbolic Computation,
18(1-2):121–210, 2005.

47. A. Pettorossi, M. Proietti, and V. Senni. Proving properties of constraint logic programs
by eliminating existential variables. In S. Etalle and M. Truszczyński, editors,Proceedings
of the 22nd International Conference on Logic Programming (ICLP ’06), Lecture Notes in
Computer Science 4079, pages 179–195. Springer-Verlag, 2006.

48. A. Pettorossi, M. Proietti, and V. Senni. Automatic correctness proofs for logic program
transformations. In V. Dahl and I. Niemelä, editors,Proceedings of the 23rd International
Conference on Logic Programming (ICLP ’07), Lecture Notes in Computer Science 4670,
pages 364–379, 2007.

23

49. M. Proietti and A. Pettorossi. Semantics preserving transformation rules for Prolog. In1991
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program Manipu-
lation, PEPM ’91, Yale University, New Haven, Connecticut,USA, pages 274–284. ACM
Press, 1991.

50. M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for avoiding un-
necessary variables in logic programs.Theoretical Computer Science, 142(1):89–124, 1995.

51. M. O. Rabin. Decidable theories. In Jon Barwise, editor,Handbook of Mathematical Logic,
pages 595–629. North-Holland, 1977.

52. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan. Beyond
Tamaki-Sato style unfold/fold transformations for normallogic programs. International
Journal on Foundations of Computer Science, 13(3):387–403, 2002.

53. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan. An
unfold/fold transformation framework for definite logic programs. ACM Transactions on
Programming Languages and Systems, 26:264–509, 2004.

54. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A.
Smolka. Verification of parameterized systems using logic program transformations. InPro-
ceedings of the Sixth International Conference on Tools andAlgorithms for the Construction
and Analysis of Systems, TACAS 2000, Berlin, Germany, Lecture Notes in Computer Science
1785, pages 172–187. Springer, 2000.

55. S. Safra and E. Shapiro. Meta interpreters for real. In H.J. Kugler, editor,Proceedings
Information Processing 86, pages 271–278. North-Holland, 1986.

56. T. Sato and H. Tamaki. Transformational logic program synthesis. InProceedings of the
International Conference on Fifth Generation Computer Systems, pages 195–201. ICOT,
1984.

57. H. Seki. A comparative study of the well-founded and the stable model semantics: Trans-
formation’s viewpoint. InProceedings of the Workshop on Logic Programming and Non-
monotonic Logic, pages 115–123. Cornell University, 1990.

58. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer Science,
86:107–139, 1991.

59. H. Seki. Unfold/fold transformation of general logic programs for well-founded semantics.
Journal of Logic Programming, 16(1&2):5–23, 1993.

60. H. Seki. On inductive and coinductive proofs via unfold/fold transformations. InProceedings
of the 15th International Symposium on Logic Based Program Synthesis and Transformation
(LOPSTR ’09). Springer-Verlag, 2009.

61. L. Sterling and R. D. Beer. Incremental flavour-mixing ofmeta-interpreters for expert system
construction. InProceedings 3rd International Symposium on Logic Programming, Salt Lake
City, Utah, USA, pages 20–27. IEEE Press, 1986.

62. P. Tacchella, M. Gabbrielli, and M. C. Meo. Unfolding in CHR. In Proceedings of the 9th
International ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming (PPDP ’07), pages 179–186, 2007.

63. A. Takeuchi and K. Furukawa. Partial evaluation of Prolog programs and its application
to meta-programming. In H. J. Kugler, editor,Proceedings of Information Processing ’86,
pages 415–420. North-Holland, 1986.

64. H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-̊A. Tärnlund, ed-
itor, Proceedings of the Second International Conference on Logic Programming (ICLP’84),
pages 127–138, Uppsala, Sweden, 1984. Uppsala University.

65. F. Toni and R. Kowalski. An argumentation-theoretic approach to logic program transfor-
mation. In M. Proietti, editor,Logic Program Synthesis and Transformation, Proceedings
LOPSTR ’95, Arnhem, The Netherlands., Lecture Notes in Computer Science 1048, pages
61–75. Springer-Verlag, 1996.

24

66. R. Venken. A Prolog meta-interpretation for partial evaluation and its application to source-
to-source transformation and query optimization. In T. O’Shea, editor,Proceedings of ECAI
’84, pages 91–100. North-Holland, 1984.

67. P. L. Wadler. Deforestation: Transforming programs to eliminate trees.Theoretical Com-
puter Science, 73:231–248, 1990.

68. J. Zhang and P. W. Grant. An automatic difference-list transformation algorithm for Prolog.
In Proceedings 1988 European Conference on Artificial Intelligence, ECAI ’88, pages 320–
325. Pitman, 1988.

25

