
Verifying Parameterized Protocols

by Transforming Strati�ed Logic Programs

(Preliminary Version)

Alberto Pettorossi1, Maurizio Proietti2, Valerio Senni1

(1) DISP, University of Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy
pettorossi@info.uniroma2.it, senni@disp.uniroma2.it
(2) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

proietti@iasi.rm.cnr.it

Abstract. We propose a method for the speci�cation and the auto-
mated veri�cation of temporal properties of parameterized protocols.
Our method is based on logic programming and program transformation.
We specify the properties of parameterized protocols by using an exten-
sion of strati�ed logic programs. This extension allows premises of clauses
to contain �rst order formulas over arrays of parameterized length. A
property of a given protocol is proved by applying suitable unfold/fold
transformations to the speci�cation of that protocol. We demonstrate our
method by proving that the parameterized Peterson's protocol among N
processes, for any N≥2, ensures the mutual exclusion property.

1 Introduction

Protocols are rules that govern the interactions among concurrent processes.
In order to guarantee that these interactions enjoy some desirable properties,
many sophisticated protocols have been designed and proposed in the literature.
These protocols are, in general, di�cult to verify because of their complexity
and ingenuity. This di�culty has motivated the development of methods for the
formal speci�cation and the automated veri�cation of properties of protocols.
One of the most successful methods is model checking [4]. It can be applied to
every protocol that can be formalized as a �nite state system, that is, a set of
transitions over a �nite set of states.

Usually, the number of the interacting concurrent processes is not known in
advance. Thus, people have designed protocols which can work properly for any
number of interacting processes. These protocols are said to be parameterized

w.r.t. the number of processes.
In this paper we will address the problem of proving properties of parameter-

ized protocols by using the program transformation methodology. The formulas
which we manipulate in our transformations, describe the parameterized proto-
cols and the processes themselves. These formulas include the so called array

formulas which will be presented below.



We will demonstrate our proof method by considering the parameterized
Peterson's protocol. It is used for ensuring mutually exclusive access to a given
resource which is shared among N processes. Each of these N processes wants to
access and possibly modify the shared resource. The number N is the parameter
of the parameterized protocol.

We assume that for any i, with 1 ≤ i ≤ N , the i-th process consists of an
in�nite loop whose body is made out of two portions of code: (i) a portion
called critical section, denoted cs, in which the process accesses and modi�es
the resource, and (ii) a portion called non-critical section, denoted ncs, in which
the process does not access the resource. We also assume that every process is
initially in its non-critical section.

We want the following property of the computation of the given system of N
processes to hold.

Mutual Exclusion: the statements of the critical section are executed by any one
of the N processes while no other process is executing a statement of the critical
section.

The parameterized Peterson's protocol consists in adding two portions of
code to every process: a �rst portion to be executed before entering into the
critical section, and a second portion to be executed after exiting from the critical
section.

We have two arrays Q[1, . . . , N ] and S[1, . . . , N −1] of integers which are
shared among the N processes. The N elements of the array Q are initially set
to 0 and may get values from 0 to N−1. The N−1 elements of the array S are
initially set to 1 and may get values from 1 to N .

We also have the array J [1, . . . , N ] whose elements are initially set to 1 and
may get values from 1 to N . The array J is not shared, because for i = 1, . . . , N ,
every process i reads and writes J [i] only, but it does nothing on the other
elements of the array J .

Process i is of the form given below (see also Figure 1 where it is represented
in the form of a �nite state diagram).

while true do // Process i
non-critical section of process i ;
for J [i] = 1, . . . , N−1 do

begin Q[i] := J [i]; S[J [i]] := i;
λ: if (∀k (k 6= i → Q[k] < J [i]) ∨ (S[J [i]] 6= i) then skip else goto λ;

end;
critical section of process i ;
Q[i] := 0;

od

The N processes execute their portions of code in a concurrent way. We assume
that some operations are atomic and, in particular:
- the tests `J [i] < N ' and `∀k (k 6= i → Q[k] < J [i]) ∨ (S[J [i]] 6= i)' are atomic,
and

2



�
��

�
��
��

��
��

��
��

��
��

6

- -

�

6

?

Q[i] :=0

ncs

cs

w1

w2

J [i] :=1 ;

Q[i] :=J [i] ;

S[J [i]] := i

Q[i] := J [i] ;

S[J [i]] := i

J [i]<N ?

ϕ ?

J [i] :=J [i]+1

¬ ϕ ?

¬ J [i]<N ?

Fig. 1. Finite state diagram corresponding to process i of a system ofN processes
using Peterson's protocol. The formula ϕ is ∀k(k 6= i→ Q[k] < J [i])∨S[J [i]] 6= i.

- the assignments `Q[i] := 0;' and `J [i] := J [i] + 1;', and the two sequences of
assignments `J [i] := 1; Q[i] := J [i]; S[J [i]] := i;' and `Q[i] := J [i]; S[J [i]] := i;'
are all atomic.

Actually, less stringent atomicity conditions are su�cient for ensuring that
Peterson's protocol guarantees mutual exclusion.

We assume that the value of N does not change over time, in the sense that
while the computation progresses, neither a new process is constructed nor an
existing process is destroyed.

In the original paper [15] G. L. Peterson does not prove the mutual exclusion
property of its parameterized protocol in a formal way. He leaves that proof
to the reader by saying that the correctness of the protocol in the case of N
processes, for N ≥ 2, can be derived from the informal proof provided for the
case of two processes because, for each value of J [i] = 1, . . . , N −1, at least
one process is discarded from the set of those which may enter into the critical
section. In other words, when going from `level' J [i] to `level' J [i]+1, at least
one process is eliminated from the set of those competing for entering into the
critical section.

In Peterson's protocol, the value of the variable J [i] of process i indicates the
level that process i has reached since it �rst requested to enter into its critical
section. When process i has completed its non-critical section and requests to
enter into the critical section, it goes to the state w1, while its level J [i] has
value 1. When process i goes from state w1 back to state w1 through state w2,
it increases its level from J [i] to J [i]+1.

For each level J [i] = 1, . . . , N−1, process i tests whether or not the following
property ϕ holds, where:

3



ϕ ≡ ∀k(k 6= i→ Q[k] < J [i]) ∨ S[J [i]] 6= i

If ϕ holds then process i enters the next level J [i] + 1. When process i has
successfully tested the property ϕ at the �nal level N−1, it can enter into its
critical section.

In order to formally show that Peterson's protocol ensures mutual exclusion
we cannot use directly the model checking technique. Indeed, since the param-
eter N is unbounded, the parameterized Peterson's protocol can be viewed as
a system with an in�nite number of states. Now, in order to reduce a system
with an in�nite number of states to a system with a �nite number of states, and
thus, be able to apply model checking, one needs to apply an abstraction which,
however, is not easily mechanizable.

In this paper we propose an alternative method for the speci�cation and the
automated veri�cation of properties of parameterized protocols which does not

need an abstraction. Our method is based on logic programming and program
transformation.

We consider properties of parameterized protocols that can be expressed by
using the CTL branching time temporal logic [4]. We formally specify these
temporal properties by using an extension of strati�ed logic programs where
premises of clauses may contain �rst order formulas over arrays of parameterized
length. Our speci�cation method is demonstrated in Section 2 by considering
the mutual exclusion property of the parameterized Peterson's protocol. Then,
in Section 3, we show that this mutual exclusion property can be proved by
transforming the given speci�cation using the unfold/fold transformation rules.
Finally, in Section 4 we brie�y illustrate the related work in the area of the
veri�cation of parameterized protocols.

2 Specifying Parameterized Protocols

In this section we present our method for the speci�cation of temporal properties
of parameterized protocols. Our method is an extension of other methods based
on logic programming and constraint logic programming [6,7,10,12,19]. The main
new feature of our method is that in the speci�cations of protocols we use a �rst
order theory of arrays.

Similarly to the model checking approach, we represent a protocol as a set
of transitions between states which are assumed to belong to a possibly in�nite
set. The transition relation is speci�ed as a binary predicate t, de�ned by a set
of statements of the form:

t(a, a′)← τ

where a and a′ are terms representing states and τ is a �rst order formula. We
assume that the transition t(a, a′)← τ is not recursive, that is, t does not occur
in τ .

For the representation of states and transitions, it is often useful to consider
arrays of length N , where N is the number of processes that participate in the
protocol. Thus, in order to specify the transition relation, we assume that the

4



formula τ is an array formula, that is, a formula of the �rst order theory of
arrays.

Array formulas are arbitrarily quanti�ed formulas constructed as usual in
�rst order logic starting from the following predicates and function symbols:
(i) the equality = between constants (such as the labels ncs, w1, w2, and cs of
the states of Figure 1), between natural numbers, and between arrays, (ii) the
inequalities < and ≤, and the disequality 6= between natural numbers, (iii) the
constant 0, (iv) the successor +1 and predecessor −1, (v) the unary function
length denoting the length of an array, and (vi) the binary function − [−] such
that A[i] denotes the i-th element of the array A.

Statements with array formulas in their premises extend the usual syntax of
clauses in logic programs. However, we can translate a non-recursive statement
of the form H ← τ into a strati�ed set of clauses. Indeed, the predicates used
in array formulas can be easily de�ned by logic programs. For example, the
predicate A[i] = e can be de�ned by a ternary predicate member as follows:

member([E|A], 1, E)←
member([E1|A], I, E)← I=J+1 ∧member(A, J,E)

Moreover, any non-recursive statement of the form H ← τ can be translated
into a strati�ed set of clauses by applying the Lloyd-Topor transformation [13].
For instance, given the statement:

p← ∀n ∃A ∀i (i≥1 ∧ n≥ i → ∃e A[i]=e)
by applying the Lloyd-Topor transformation we get:

p← ¬newp1
newp1← ¬newp2(N)
newp2(N)← ¬newp3(N,A)
newp3(N,A)← I≥1 ∧N≥I ∧ ¬newp4(A, I)
newp4(A, I)← member(A, I,E)

When specifying protocols we will use statements with array formulas, instead
of the corresponding clausal translations, because statements are more concise
and intuitive. By abuse of language, we will use the term `clause' also to indicate
any statement in which array formulas may occur.

Let us now show how the parameterized Peterson's protocol is speci�ed by
using clauses with array formulas.

A state is represented by a term of the form s(P, J,Q, S), where:

1. P is the array P [1, . . . , N ] such that, for i = 1, . . . , N , P [i] belongs to the
set {cs, ncs, w1, w2} and represents the state of process i. The constants cs
and ncs denote the critical and the non-critical section, respectively, while
the constants w1 and w2 denote two distinct waiting states.

2. Q and S are shared arrays such that, for i = 1, . . . , N , Q[i] belongs to
{0, . . . , N−1} and, for i = 1, . . . , N−1, S[i] belongs to {1, . . . , N}. These two
arrays can be read and modi�ed by the individual processes.

3. J [1, . . . , N ] is an array such that, for i = 1, . . . , N , J [i] belongs to {1, . . . , N}
and represents a local variable that can be read and modi�ed by process i
only.

5



The transition relation is de�ned by six clauses T1, . . . , T6, where for r = 1, . . . , 6,
Tr is of the form:

Tr : t(s(P, J,Q, S), s(P ′, J ′, Q′, S′))← τr(s(P, J,Q, S), s(P ′, J ′, Q′, S′))
and τr(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) is an array formula de�ned as follows:

transition ncs→ w1 :
τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡

∃i(P [i]=ncs ∧
P ′[i]=w1 ∧ J ′[i]=1 ∧ Q′[i]=J ′[i] ∧ S′[J ′[i]]= i ∧
∀k(k 6= i → (P ′[k]=P [k] ∧ Q′[k]=Q[k] ∧ J ′[k]=J [k])) ∧
∀k(k 6=J [i] → S′[k]=S[k]))

transition w1 → w1 :
τ2(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡

∃i(P [i]=w1 ∧ ∃k(k 6= i ∧ Q[k]≥J [i]) ∧ S[J [i]]= i) ∧
P ′ =P ∧ J ′ =J ∧ Q′ =Q ∧ S′ =S

transition w1 → w2 :
τ3(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡

∃i(P [i]=w1 ∧ (∀k(k 6= i → Q[k]<J [i]) ∨ S[J [i]] 6= i) ∧
P ′[i]=w2 ∧ J ′[i]=J [i]+1 ∧
∀k(k 6= i → P ′[k]=P [k] ∧ J ′[k]=J [k])) ∧

Q′ =Q ∧ S′ =S
transition w2 → w1 :

τ4(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡
∃i(P [i]=w2 ∧ J [i] < length(P ) ∧
P ′[i]=w1 ∧ Q′[i]=J [i] ∧ S′[J [i]]= i ∧
∀k(k 6= i → (P ′[k]=P [k] ∧ Q′[k]=Q[k])) ∧
∀k(k 6=J ′[i] → S′[k]=S[k])) ∧

J ′ =J
transition w2 → cs :

τ5(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡
∃i(P [i]=w2 ∧ J [i]= length(P ) ∧ P ′[i]=cs ∧
∀k(k 6= i → P ′[k]=P [k])) ∧

J ′ =J ∧ Q′ =Q ∧ S′ =S
transition cs→ ncs :

τ6(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡
∃i(P [i]=cs ∧ P ′[i]=ncs ∧ Q′[i]=0 ∧
∀k(k 6= i → (P ′[k]=P [k] ∧ Q′[k]=Q[k]))) ∧

S′ =S ∧ J ′ =J

We express the properties of interest of the parameterized protocols by using
the CTL branching time temporal logic [4]. In particular, the mutual exclusion
property of Peterson's protocol is expressed by the temporal formula:

initial → ¬EF unsafe
where initial and unsafe are atomic properties of states which we will specify
below. This temporal formula holds at a state a i� if a is an initial state then
there exists no unsafe state in the future of a.

6



The truth of a CTL temporal formula is de�ned by the following locally
strati�ed logic program, where the predicate holds(a, f) means that the temporal
formula f holds at state a:

holds(X,F )← atomic(X,F )
holds(X,¬F )← ¬holds(X,F )
holds(X,F → G)← ¬holds(X,F )
holds(X,F → G)← holds(X,F ) ∧ holds(X,G)
holds(X, ef (F ))← holds(X,F )
holds(X, ef (F ))← t(X,X ′) ∧ holds(X ′, ef (F ))

The unary constructor ef encodes the temporal logic operator EF . Other tem-
poral operators can be de�ned by using locally strati�ed logic programs [7,12].
For reasons of simplicity, here we have restricted ourselves to the operator EF
which is the only operator needed for specifying the mutual exclusion property
of Peterson's protocol.

The atomic properties of the states are speci�ed by a set of non-recursive
clauses of the form:

atomic(a, p)← ψ

where ψ is an array formula stating that the atomic formula p holds at state a.
In particular, initial and unsafe are atomic properties speci�ed as follows.

atomic(s(P, J,Q, S), initial)← ∀i (P [i]=ncs ∧ J [i]=1 ∧Q[i]=0 ∧ S[i]=1)
The premise of the above clause will also be written as init_state(s(P, J,Q, S)),
and it means that in an initial state every process is in its non-critical section, J
is an array whose elements are all 1's, Q is an array whose elements are all 0's,
and S is an array whose elements are all 0's.

atomic(s(P, J,Q, S), unsafe)← ∃i, j (P [i] = cs ∧ P [j] = cs ∧ i 6= j)
The premise of the above clause will also be written as unsafe_state(s(P, J,Q, S)),
and it means that in an unsafe state two distinct processes are in critical section.

Let Peterson be the program consisting of the clauses that de�ne the binary
predicates holds and atomic, and the binary transition relation t. Peterson is a
locally strati�ed program which, therefore, has a perfect model [1], denoted by
M(Peterson). We will prove that the temporal formula initial → ¬EF unsafe
holds for every state, by showing that:

M(Peterson) |= ∀X holds(X, initial → ¬ef (unsafe))
Notice that X ranges over terms of the form s(P, J,Q, S) where the length of
the array P of the states of the processes is the parameter N . Thus, by showing
the above formula we show that Peterson's protocol ensures mutual exclusion
for any number N of processes.

3 Transformational Veri�cation of the Parameterized

Peterson's Protocol

In this section we prove that the mutual exclusion property holds for the param-
eterized Peterson's protocol by using program transformation. As a �rst step we
introduce the statement:

7



mutex ← ∀X holds(X, initial → ¬ef (unsafe))
which, by applying the Lloyd-Topor transformation [13], is transformed into the
following set of clauses:

1. mutex ← ¬new1
2. new1← new2(X)
3. new2(X)← holds(X, initial) ∧ holds(X, ef (unsafe))
We have that:

M(Peterson) |= ∀X holds(X, initial → ¬ef (unsafe)) i�

M(Peterson ∪ {1, 2, 3}) |= mutex
We will show that M(Peterson ∪ {1, 2, 3}) |= mutex by applying unfold/fold
transformation rules that preserve the perfect model [9,20] and deriving from
the program Peterson ∪ {1, 2, 3} a new program T which contains the clause
mutex ←.

The unfold/fold transformation rules are guided by a transformation strategy
similar to the ones presented in [7,16]. We do not indicate this strategy here and
we only show it in action in our veri�cation of Peterson's protocol.

First we transform clause 3 with the objective of deriving the specialized
de�nitions corresponding to the instances of the atom holds(X,F ) for various
values of the state X and the formula F . Indeed, by doing so we will discover
that new2(X), which corresponds to the instance of holds(X,F ) where X is an
initial state and F is ef (unsafe), is false. Then, by unfolding, we can easily derive
the clause mutex ←.

Starting from clause 3, we apply the following transformation steps: (i) we
unfold clause 3, thereby deriving a new set, say G, of clauses, (ii) we manipulate
the array formulas occurring in the clauses of that set G, by replacing these
formulas by equivalent ones, and we remove each clause whose body contains
an unsatis�able formula, (iii) we introduce new predicate de�nitions and we fold
every instance of holds(X,F ). Starting from every new predicate de�nition which
has been introduced, we repeat the above transformation steps (i), (ii), and (iii)
until we are able to fold every instance of holds(X,F ) by using a predicate
de�nition introduced at a previous step.

As already mentioned in [7,16], this unfolding/de�nition/folding procedure
is not ensured to terminate in general, because properties of programs are in
general undecidable. However, for many classes of programs and properties, this
procedure terminates and, for those classes, it behaves as a decision procedure.

Let us now show some of the transformation steps for verifying that Peter-
son's protocol enjoys the mutual exclusion property. By unfolding clause 3 we
get:

4. new2(s(P, J,Q, S))← init_state(s(P, J,Q, S)) ∧ unsafe_state(s(P, J,Q, S))
5. new2(s(P, J,Q, S))← init_state(s(P, J,Q, S)) ∧

t(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧
holds(s(P ′, J ′, Q′, S′), ef (unsafe))

By unfolding clause 5 w.r.t. the atom t we get six new clauses, one for each clause
T1, . . . , T6 de�ning the transition relation (see previous Section 2). The clauses

8



derived from T2, . . . , T6 are removed because their bodies contain unsatis�able
array formulas. Also clause 4 is removed because the formula

init_state(s(P, J,Q, S)) ∧ unsafe_state(s(P, J,Q, S))
occurring in its body is unsatis�able. Thus, the only clause derived from clause
3 after the unfolding and removal steps is:

6. new2(s(P, J,Q, S))← init_state(s(P, J,Q, S)) ∧
τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧
holds(s(P ′, J ′, Q′, S′), ef (unsafe))

where τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) is the array formula de�ned in the previ-
ous section. Let us consider the formula c1(s(P ′, J ′, Q′, S′)) de�ned as follows:

c1(s(P ′, J ′, Q′, S′)) ≡
∃P, J,Q, S (init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)))

This formula c1(s(P ′, J ′, Q′, S′)) characterizes the set of successor states of the
state s(P, J,Q, S). We have that the following equivalence holds:

c1(s(P ′, J ′, Q′, S′)) ≡ ∃i(P ′[i]=w1 ∧ Q′[i]=J ′[i] ∧ S′[J ′[i]]= i ∧ J ′[i]=1 ∧
∀k(k 6= i→ (P ′[k] = ncs ∧ Q′[k] = 0)))

In order to fold the atom holds(s(P ′, J,Q′, S′), ef (unsafe)) in the body of clause 6
by applying the folding rule of [9], we need to introduce a new predicate de�nition
of the form:

7. new3(s(P, J,Q, S))← genc1(s(P, J,Q, S)) ∧
holds(s(P, J,Q, S), ef (unsafe))

where genc1(s(P, J,Q, S)) is a generalization of c1(s(P, J,Q, S)), in the sense
that ∀P, J,Q, S (c1(s(P, J,Q, S))→ genc1(s(P, J,Q, S))) holds. As usual in the
program transformation approach, this generalization step requires ingenuity.
Here we will not address the problem of how to mechanize the generalization
steps. This crucial issue is left for future research. In our example we continue
the derivation by introducing the following array formula genc1(s(P, J,Q, S))
which expresses the fact that, for any set of processes which are in state w1,
there exists a process i which has been the last one to enter w1 and to set
S[J [i]] = i:

genc1(s(P, J,Q, S)) ≡ ∃i(P [i]=w1 ∧ Q[i]=J [i] ∧ J [i]=1 ∧ S[J [i]]= i) ∧
∀k((P [k]=ncs ∧ Q[k]=0) ∨

(P [k]=w1 ∧ Q[k]=J [k] ∧ J [k]=1))

By folding clause 6 using the newly introduced clause 7 we get:

6.f new2(s(P,Q, S, J))← init_state(s(P, J,Q, S)) ∧
τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧
new3(s(P ′, J ′, Q′, S′))

9



Now, starting from clause 7, we repeat the transformation steps (i), (ii), and (iii)
described above, until we are able to fold every instance of holds(X,F ) by using
a predicate de�nition introduced at a previous step. By doing so we derive the
following program S where:

- genc1 is de�ned as indicated above,

- genc2, . . . , genc8 are de�ned as indicated in the Appendix,

- τ1, . . . , τ6 are the array formulas that de�ne the transition relation as indicated
in Section 2, and

- the arguments a and a′ stand for the states s(P, J,Q, S) and s(P ′, J ′, Q′, S′),
respectively.

1. mutex ← ¬new1 Program S

2. new1← new2(X)

6.f new2(a)← initial(a) ∧ τ1(a, a′) ∧ new3(a′)

8. new3(a)← genc1(a) ∧ τ1(a, a′) ∧ new3(a′)
9. new3(a)← genc1(a) ∧ τ2(a, a′) ∧ new3(a′)
10. new3(a)← genc1(a) ∧ τ3(a, a′) ∧ new4(a′)
11. new3(a)← genc1(a) ∧ τ3(a, a′) ∧ new5(a′)

12. new4(a)← genc2(a) ∧ τ1(a, a′) ∧ new8(a′)
13. new4(a)← genc2(a) ∧ τ2(a, a′) ∧ new4(a′)
14. new4(a)← genc2(a) ∧ τ3(a, a′) ∧ new4(a′)
15. new4(a)← genc2(a) ∧ τ4(a, a′) ∧ new4(a′)
16. new4(a)← genc2(a) ∧ τ5(a, a′) ∧ new9(a′)

17. new5(a)← genc3(a) ∧ τ1(a, a′) ∧ new5(a′)
18. new5(a)← genc3(a) ∧ τ2(a, a′) ∧ new5(a′)
19. new5(a)← genc3(a) ∧ τ3(a, a′) ∧ new4(a′)
20. new5(a)← genc3(a) ∧ τ3(a, a′) ∧ new5(a′)
21. new5(a)← genc3(a) ∧ τ4(a, a′) ∧ new6(a′)
22. new5(a)← genc3(a) ∧ τ5(a, a′) ∧ new7(a′)

23. new6(a)← genc4(a) ∧ τ1(a, a′) ∧ new6(a′)
24. new6(a)← genc4(a) ∧ τ2(a, a′) ∧ new6(a′)
25. new6(a)← genc4(a) ∧ τ3(a, a′) ∧ new6(a′)
26. new6(a)← genc4(a) ∧ τ4(a, a′) ∧ new6(a′)
27. new6(a)← genc4(a) ∧ τ5(a, a′) ∧ new7(a′)

28. new7(a)← genc5(a) ∧ τ2(a, a′) ∧ new7(a′)
29. new7(a)← genc5(a) ∧ τ6(a, a′) ∧ new6(a′)

30. new8(a)← genc6(a) ∧ τ1(a, a′) ∧ new8(a′)
31. new8(a)← genc6(a) ∧ τ2(a, a′) ∧ new8(a′)
32. new8(a)← genc6(a) ∧ τ3(a, a′) ∧ new8(a′)
33. new8(a)← genc6(a) ∧ τ4(a, a′) ∧ new8(a′)
34. new8(a)← genc6(a) ∧ τ5(a, a′) ∧ new10(a′)

35. new9(a)← genc7(a) ∧ τ1(a, a′) ∧ new10(a′)
36. new9(a)← genc7(a) ∧ τ6(a, a′) ∧ new2(a′)

10



37. new10(a)← genc8(a) ∧ τ1(a, a′) ∧ new10(a′)
38. new10(a)← genc8(a) ∧ τ2(a, a′) ∧ new10(a′)
39. new10(a)← genc8(a) ∧ τ3(a, a′) ∧ new10(a′)
40. new10(a)← genc8(a) ∧ τ4(a, a′) ∧ new10(a′)
41. new10(a)← genc8(a) ∧ τ6(a, a′) ∧ new8(a′)

An inspection of program S reveals that predicates new1 through new10 are
useless, that is, for every predicate p in the set {new1, . . . ,new10} and for every
clause C that de�nes p in S, there exists a predicate q in {new1, . . . ,new10}
which occurs positively in the body of C. The removal of the clauses that de-
�ne useless predicates preserves the perfect model of the program [9]. Thus, we
remove clauses 2, 6.f, and 8 through 41, and we derive a program consisting of
clause 1 only. By unfolding clause 1 we get the �nal program T , which consists
of the clause mutex ← only. Thus, M(T ) |= mutex and we have proved that:

M(Peterson) |= ∀X holds(X, initial → ¬ef (unsafe))

that is, for any initial state and for any number N of processes, the mutual
exclusion property holds for Peterson's protocol for N processes.

4 Related Work and Conclusions

The protocol veri�cation method presented in this paper is based on the program
transformation approach proposed in [16] for the veri�cation of properties of
locally strati�ed logic programs. We use locally strati�ed logic programs which
are extended with array formulas and the properties we consider are temporal
properties of parameterized systems, that is, systems consisting of an arbitrary

number of �nite state processes.

As yet, our method is not fully mechanical and human intervention is needed
for the following two tasks: (i) the veri�cation of array formulas and (ii) the
introduction of new de�nitions by generalization.

The problem of verifying array formulas has been addressed in several papers
(see [21] for a short survey). In general this problem is undecidable. However,
some decidable fragments such as the quanti�er-free extensional theory of arrays,
have been identi�ed [21]. Unfortunately, the array formulas considered in this
paper cannot be reduced to formulas of the quanti�er-free extensional theory of
arrays. As an alternative approach we are working on the design of (necessarily
incomplete) transformational strategies which would allow us to check validity
of most array formulas that occur in practice in the veri�cation of parameterized
protocols.

The introduction of suitable new de�nitions by generalization is a typical
issue of the program transformation methodology [3] and it corresponds to the
discovery of suitable invariants of the protocol to be veri�ed. There is no univer-
sal method for automating these generalization steps. However, we believe that
suitable techniques can be devised by focusing on speci�c classes of protocols.

11



Other veri�cation methods based on the transformational approach presented
in [16] are those described in [7] and [8]. In [7] it is presented a method for veri-
fying CTL properties of systems consisting of a �xed number of in�nite state
processes. The method of [7] makes use of locally strati�ed constraint logic
programs, where the constraints are linear equations and disequations on real
numbers. In this paper we have followed a paradigm similar to constraint logic
programming where, however, the constraints are array formulas. The method
presented here can be easily extended to deal with parameterized in�nite state
systems by considering, for instance, arrays of in�nite state processes.

The paper [7] describes the veri�cation of the mutual exclusion property for
the parameterized Bakery protocol [11]. That paper uses locally strati�ed logic
programs extended with formulas of the Weak Monadic Second Order Theory of
k-Successors (WSkS), which describes monadic properties of strings. The array
formulas considered in this paper are more expressive than WSkS formulas,
because array formulas may express polyadic properties. However, as already
mentioned, the general theory of array formulas is undecidable, while the theory
WSkS is decidable.

Other transformational approaches to the veri�cation of concurrent systems
have been proposed in [12,18,19].

The method described in [12] uses partial deduction and abstract interpre-
tation of logic programs for verifying safety properties of in�nite state systems.
Partial deduction is strictly less powerful than unfold/fold program transforma-
tion, which, on the other hand, is more di�cult to mechanize when unrestricted
transformations are considered. One of the main objectives of our future re-
search is the design of suitably restricted unfold/fold transformations which are
powerful enough for veri�cation purposes and yet amenable to mechanization.

The work presented in [18,19] is the most similar to ours. Indeed, the authors
of [18,19] use unfold/fold rules for transforming programs and proving proper-
ties of parameterized concurrent systems. Our paper di�ers from [18,19] in that,
instead of using de�nite logic programs, we use logic programs with locally strat-
i�ed negation and array formulas for the speci�cation of concurrent systems and
their properties. As a consequence, also the transformation rules we consider are
di�erent and more general than those used in [18,19].

Besides the above mentioned transformational methods, some more veri�ca-
tion methods based on (constraint) logic programming have been proposed in
the literature [6,10,14,17].

The methods proposed in [14,17] deal with �nite state systems only. In par-
ticular, the method presented in [14] uses CLP with �nite domains, extended
with constructive negation and tabled resolution, for �nite state local model
checking, and the method described in [17] uses tabled logic programming to
e�ciently verify µ-calculus properties of �nite state systems expressed in the
CCS calculus.

The methods presented in [6,10] deal with in�nite state systems. In partic-
ular, the method presented in [6] uses constraint logic programs to represent
in�nite state systems. This method can be applied to verify CTL properties of

12



in�nite state systems by computing approximations of least and greatest �xed
points via abstract interpretation. An extension of this method has also been
used for the veri�cation of parameterized cache coherence protocols [5]. The
method described in [10] uses logic programs with linear arithmetic constraints
and Presburger arithmetic to verify safety properties of Petri nets. However,
parameterized systems that use arrays, like Peterson's protocol, cannot be di-
rectly speci�ed and veri�ed using the methods in [6,10], because in general array
formulas cannot be encoded as constraints over the real numbers or Presburger
formulas.

Several veri�cation techniques for parameterized systems have been presented
also outside the area of logic programming (see [22] for a survey of some of these
techniques). These techniques extend �nite state model checking with various
forms of induction (for proving properties for every value of the parameter)
or abstraction (for reducing the veri�cation of a parameterized system to the
veri�cation of a �nite state system).

We do not have the space here for discussing the relationships of our work
with all these techniques. We only want to mention the technique presented
in [2], which is also applied for the veri�cation of the parameterized Peterson's
protocol. The technique proposed in [2] can be applied for verifying in an auto-
matic way safety properties of all systems that satisfy a so-called strati�cation

condition. Indeed, when this restriction holds for a given parameterized system,
then the veri�cation task can be reduced to the veri�cation of a number of �nite-
state systems that are instances of the given parameterized system for suitable
values of the parameter. However, Peterson's protocol does not satisfy the strat-
i�cation condition and its treatment with the technique proposed in [2] requires
a substantial amount of ingenuity.

Finally, we want to notice that techniques based on deduction and trans-
formation which have been developed in the area of logic programming, seem
particularly promising when moving from the problem of verifying �nite state
systems to the problem of verifying in�nite state systems and parameterized
systems, because in the latter veri�cation logical reasoning plays a crucial role.

Appendix

Below we give the de�nitions of the array formulas genc2 through genc8 occurring
in the program S.

genc2(s(P, J,Q, S)) ≡
∃i, k(1≤k≤ length(P ) ∧

((P [i]=w1 ∧ Q[i]=J [i] ∧ J [i]=k−1 ∧ S[J [i]]= i) ∨
(P [i]=w2 ∧ Q[i]=J [i]−1 ∧ J [i]=k ∧ S[J [i]−1]= i)) ∧
∀j(j 6= i → P [j]=ncs ∧ Q[j]=0))

genc3(s(P, J,Q, S)) ≡
∃i(P [i]=w1 ∧ Q[i]=J [i] ∧ J [i]=1 ∧ S[J [i]]= i) ∧

13



∀k((P [k]=ncs ∧ Q[k]=0) ∨
(P [k]=w1 ∧ Q[k] = J [k] ∧ J [k]=1) ∧
(P [k]=w2 ∧ Q[k] = J [k]−1 ∧ J [k]=2))

genc4(s(P, J,Q, S)) ≡
∃m(m≤ length(P ) ∧
∀k(1≤k≤m → ∃i(P [i]=w1 ∧ Q[i]=J [i] ∧ J [i]=k−1 ∧ S[J [i]]= i)) ∧
∀j((P [j]=ncs ∧ Q[j]=0) ∨
∃k(k≤m ∧ ((P [j]=w1 ∧ Q[j]=J [j] ∧ J [j]=k−1) ∨

(P [j]=w2 ∧ Q[j]=J [j]−1 ∧ J [j]=k)))))

genc5(s(P, J,Q, S)) ≡
∃i(P [i]=cs ∧ Q[i]=J [i]−1 ∧ J [i]= length(P ) ∧ S[J [i]−1]= i) ∧
∀k(1≤k≤ length(P )−1 →
∃i(P [i]=w1 ∧ Q[i]=J [i] ∧ J [i]=k ∧ S[J [i]]= i))

genc6(s(P, J,Q, S)) ≡
∃l, n(n≤ length(P ) ∧

((P [l]=w1 ∧ Q[l]=J [l] ∧ J [l]=n−1 ∧ S[J [l]]= l) ∨
(P [l]=w2 ∧ Q[l]=J [l]−1 ∧ J [l]=n ∧ S[J [l]−1]= l)) ∧
∃m(m ≤ n ∧
∀k(1≤k≤m → ∃i(P [i]=w1 ∧ Q[i]=J [i] ∧ J [i]=k−1 ∧ S[J [i]]= i)) ∧
∀j((P [j]=ncs ∧ Q[j]=0) ∨
∃k(k≤m ∧ ((P [j]=w1 ∧ Q[j]=J [j] ∧ J [j]=k) ∨

(P [j]=w2 ∧ Q[j]=J [j]−1 ∧ J [j]=k))))))

genc7(s(P, J,Q, S)) ≡
∃i(P [i]=cs ∧ Q[i]=J [i]−1 ∧ J [i]= length(P ) ∧ S[J [i]−1]= i ∧
∀k(k 6= i → (P [k]=ncs ∧ Q[k]=0)))

genc8(s(P, J,Q, S)) ≡
∃i(P [i]=cs ∧ Q[i]=J [i]−1 ∧ J [i]= length(P ) ∧ S[J [i]−1]= i ∧
∃m(m≤ length(P ) ∧
∀l(1≤ l≤m → ∃j(P [j]=w1 ∧ Q[j]=J [j] ∧ J [j]= l−1 ∧ S[J [j]]= j)) ∧
∀j(j 6= i → ((P [j]=ncs ∧ Q[j]=0) ∨

∃k(k≤m ∧
((P [j]=w1 ∧ Q[j]=J [j] ∧ J [j]=k−1) ∨
(P [j]=w2 ∧ Q[j]=J [j]−1 ∧ J [j]=k)))))))

References

1. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19, 20:9�71, 1994.

2. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized veri�ca-
tion with automatically computed inductive assertions. In Proceedings of the 13th
International Conference on Computer Aided Veri�cation, pages 221�234. ACM,
July 2001.

14



3. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44�67, January 1977.

4. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
5. G. Delzanno. Constraint-based veri�cation of parameterized cache coherence pro-

tocols. Formal Methods in System Design, 23(3):257�301, 2003.
6. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-

national Journal on Software Tools for Technology Transfer, 3(3):250�270, 2001.
7. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of in�-

nite state systems by specializing constraint logic programs. In Proceedings of
the ACM Sigplan Workshop on Veri�cation and Computational Logic VCL'01,
Florence (Italy), Technical Report DSSE-TR-2001-3, pages 85�96. University of
Southampton, UK, 2001.

8. F. Fioravanti, A. Pettorossi, and M. Proietti. Veri�cation of sets of in�nite state
systems using program transformation. In A. Pettorossi, editor, Proceedings of
LOPSTR 2001, Eleventh International Workshop on Logic-based Program Synthe-
sis and Transformation, Lecture Notes in Computer Science 2372, pages 111�128.
Springer-Verlag, 2002.

9. F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally
strati�ed constraint logic programs. In K.-K. Lau and M. Bruynooghe, editors,
Program Development in Computational Logic, Lecture Notes in Computer Science
3049, pages 292�340. Springer, 2004.

10. L. Fribourg and H. Olsén. A decompositional approach for computing least �xed-
points of Datalog programs with z-counters. Constraints, 2(3/4):305�335, 1997.

11. L. Lamport. A new solution of Dijkstra's concurrent programming problem. Com-
munications of the ACM, 17(8):453�455, 1974.

12. M. Leuschel and T. Massart. In�nite state model checking by abstract interpre-
tation and program specialization. In A. Bossi, editor, Proceedings of LOPSTR
'99, Venice, Italy, Lecture Notes in Computer Science 1817, pages 63�82. Springer,
1999.

13. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second Edition.

14. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic
model-checking. In J. W. Lloyd, editor, First International Conference on Compu-
tational Logic, CL 2000, London, UK, 24-28 July, 2000, Lecture Notes in Arti�cial
Intelligence 1861, pages 384�398. Springer-Verlag, 2000.

15. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115�116, 1981.

16. A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transfor-
mations. In J. W. Lloyd, editor, First International Conference on Computational
Logic, CL 2000, London, UK, 24-28 July, 2000, Lecture Notes in Arti�cial Intel-
ligence 1861, pages 613�628. Springer, 2000.

17. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. E�cient model checking using tabled resolution.
In CAV '97, Lecture Notes in Computer Science 1254, pages 143�154. Springer-
Verlag, 1997.

18. A. Roychoudhury and I. V. Ramakrishnan. Automated inductive veri�cation of
parameterized protocols. In CAV 2001, pages 25�37, 2001.

19. A. Roychoudhury and C. R. Ramakrishnan. Unfold/fold transformations for au-
tomated veri�cation. In M. Bruynooghe and K.-K. Lau, editors, Program Devel-
opment in Computational Logic, Lecture Notes in Computer Science 3049, pages
261�290. Springer, 2004.

15



20. H. Seki. Unfold/fold transformation of strati�ed programs. Theoretical Computer
Science, 86:107�139, 1991.

21. A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for
an extensional theory of arrays. In 16th IEEE Symposium on Logic in Computer
Science, pages 29�37. IEEE Press, 2001.

22. L. D. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameter-
ized systems (a survey). Computer Languages, Systems & Structures, 30(3-4):139�
169, 2004.

16


