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Abstract. We consider an extension of the class of logic programs,
called ω-programs, that can be used to define predicates over infinite
lists. The ω-programs allow us to specify properties of the infinite be-
haviour of reactive systems and, in general, properties of infinite se-
quences of events. The semantics of ω-programs is an extension of the
perfect model semantics. We present a general methodology based on
an extension of the unfold/fold transformation rules which can be used
for verifying properties of ω-programs. Then we propose a strategy for
the mechanical application of those rules and we demonstrate the power
of that strategy by proving some properties of ω-regular languages and
Büchi automata.

1 Introduction

The problem of specifying and verifying properties of reactive systems, such as
communication protocols and concurrent systems, has received much attention
over the past fifty years or so. The main peculiarity of reactive systems is that
they perform nonterminating computations and, in order to specify and verify
the properties of these computations, various formalisms dealing with infinite
sequences of events have been proposed. Among these we would like to mention:
(i) ω-languages [26], (ii) Büchi automata and other classes of finite automata on
infinite sequences [28], and (iii) various temporal and modal logics (see [4] for a
brief overview of these logics).

Also logic programming has been proposed as a formalism for specifying
computations over infinite structures, such as infinite lists or infinite trees (see,
for instance, [5,13,14,25]). One advantage of using logic programming languages
is that they are general purpose languages and, together with a model-theoretic
semantics, they also have an operational semantics. Thus, logic programs over
infinite structures can be used for specifying infinite computations and, in fact,
providing executable specifications for them. However, very few techniques which
use logic programs over infinite structures have been proposed in the literature
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for verifying properties of infinite computations. We are aware only of a recent
work which is based on coinductive logic programming [10], that is, a logic
programming language whose semantics is defined in terms of greatest models.

In this paper we want to develop a methodology based on the familiar un-
fold/fold transformation rules [3,27] for reasoning about infinite structures and
verifying properties of programs over such structures. In order to do so, we do
not introduce a new programming language and, instead, we consider the simple
extension of logic programming which was proposed in [18]. In that paper we
introduced the class of ω-programs, which are logic programs that act on infinite
lists (as well as finite terms) and admit the perfect model semantics (see [2] for
a survey on negation in logic programming).

As indicated in [18], one can extend to ω-programs the classical unfold/fold
transformation rules for locally stratified programs [8,16,22,23,24]. In this paper,
by applying those extended rules, we will adapt to ω-programs the transfor-
mation-based methodology for verifying properties of programs which was first
presented in [16].

That verification methodology consists of two steps. In the first step, starting
from an ω-program which represents the reactive system under consideration and
the property to be verified, we apply a strategy, called TransfM, for guiding the
application of the transformation rules and we derive an ω-program which is
monadic (see Definition 1). In the second step we apply a decision procedure for
monadic ω-programs and we decide whether or not the given property holds.

We will demonstrate the power of our verification methodology through some
examples. In particular, we will prove: (i) the containment between languages
denoted by ω-regular expressions, and (ii) the non-emptiness of languages rec-
ognized by Büchi automata.

The paper is structured as follows. In Section 2 we introduce the class of
ω-programs and we define the perfect model semantics for locally stratified
ω-programs. In Section 3 we present the transformation rules and we establish
their correctness, that is, the fact that they preserve the perfect model seman-
tics. In Section 4 we present the transformation-based verification method, we
introduce our transformation strategy TransfM, and in Section 5 we see it in
action in some examples. Finally, in Section 6 we discuss related work in the
area of program transformation and program verification.

2 Programs on Infinite Lists

Let us consider a first order language Lω given by a set Var of variables, a set
Fun of function symbols, and a set Pred of predicate symbols. We assume that
Fun includes: (i) a finite, non-empty set Σ of constants, (ii) the constructor J | K
of the infinite lists of elements of Σ, and (iii) at least one constant not in Σ.
Thus, Js|tK is an infinite list whose head is s ∈ Σ and whose tail is the infinite
list t. Let Σω denote the set of the infinite lists of elements of Σ.

We assume that Lω is a typed language [13] with three basic types: (i) fterm,
which is the type of the finite terms, (ii) elem, which is the type of the constants
in Σ, and (iii) ilist, which is the type of the infinite lists of Σω.

2



Every function symbol in Fun−(Σ ∪ {J | K}), with arity n (≥ 0), has type
(fterm×· · ·×fterm) → fterm, where fterm occurs n times to the left of →.
The function symbol J | K has type (elem×ilist)→ilist. A predicate symbol
of arity n (≥ 0) in Pred has type of the form τ1×· · ·×τn, where τ1, . . . , τn ∈
{fterm, elem, ilist}. An ω-clause γ is a formula of the form A← L1∧ . . .∧Lm,
with m≥0, where A is an atom and L1, . . . , Lm are (positive or negative) literals,
constructed as usual from symbols in the typed language Lω, with the following
extra condition: every predicate in γ has, among its arguments, at most one
argument of type ilist. This condition makes it easier to prove the correctness
of the positive and negative unfolding rules (see Section 3 for further details).
An ω-program is a set of ω-clauses.

Given a term or a formula f , by vars(f) we denote the set of variables oc-
curring in f .

Let HU be the Herbrand universe constructed from the set Fun−(Σ∪{J | K})
of function symbols. An interpretation for our typed language Lω , called an
ω-interpretation, is a function I such that: (i) I assigns to the types fterm, elem,
and ilist, respectively, the sets HU, Σ, and Σω, (which by our assumptions are
non-empty) (ii) I assigns to the function symbol J | K, the function J | KI such
that, for any element s ∈ Σ and infinite list t ∈ Σω, Js|tKI is the infinite list Js|tK,
(iii) I is an Herbrand interpretation for all function symbols in Fun−(Σ∪{J | K}),
and (iv) I assigns to every n-ary predicate p ∈Pred of type τ1×. . .×τn, a relation
on D1×· · ·×Dn, where, for i = 1, . . . , n, Di is either HU or Σ or Σω, if τi

is either fterm or elem or ilist, respectively. We say that an ω-interpretation
I is an ω-model of an ω-program P if for every clause γ ∈ P we have that
I � ∀X1 . . . ∀Xk γ, where vars(γ) = {X1, . . . , Xk}.

A valuation is a function v : Var → HU ∪Σ ∪ Σω such that: (i) if X has
type fterm then v(X)∈HU, (ii) if X has type elem then v(X)∈Σ, and (iii) if
X has type ilist then v(X)∈Σω. The valuation function v can be extended to
any term t, or literal L, or conjunction B of literals, or clause γ, by making the
function v act on the variables occurring in t, or L, or B, or γ.

We extend the notion of Herbrand base [13] to ω-programs by defining it to
be the set Bω = {p(v(X1), . . . , v(Xn)) | p is an n-ary predicate symbol and v is
a valuation}. Thus, any ω-interpretation can be identified with a subset of Bω.

A local stratification is a function σ: Bω →W , where W is the set of countable
ordinals. Given A ∈ Bω, we define σ(¬A) = σ(A)+1. Given an ω-clause γ of
the form H ← L1 ∧ . . .∧Lm and a local stratification σ, we say that γ is locally
stratified w.r.t. σ if for i = 1, . . . , m, for every valuation v, σ(v(H)) ≥ σ(v(Li)).
An ω-program P is locally stratified w.r.t. σ, or σ is a local stratification for P , if
every clause in P is locally stratified w.r.t. σ. An ω-program P is locally stratified
if there exists a local stratification σ such that P is locally stratified w.r.t. σ.

A level mapping is a function ℓ : Pred → N. A level mapping is extended
to literals as follows: for any literal L having predicate p, if L is a positive
literal, then ℓ(L) = ℓ(p) and, if L is a negative literal then ℓ(L) = ℓ(p) + 1. An
ω-clause γ of the form H ← L1∧ . . .∧Lm is stratified w.r.t. ℓ if, for i = 1, . . . , m,
ℓ(H) ≥ ℓ(Li). An ω-program P is stratified if there exists a level mapping ℓ such
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that all clauses of P are stratified w.r.t. ℓ [13]. Clearly, every stratified ω-program
is a locally stratified ω-program.

Similarly to the case of logic programs on finite terms, for every locally strat-
ified ω-program P , we can construct a unique perfect ω-model (or perfect model,
for short) denoted by M(P ) (see [2] for the case of logic programs on finite
terms). Now we present an example of this construction.

Example 1. Let: (i) Σ = {a, b} be the set of constants of type elem, (ii) S be a
variable of type elem, and (iii) X be a variable of type ilist. Let p and q be
predicates of type ilist. Let us consider the following ω-program P :

p(X)← ¬q(X) q(Jb|XK)← q(Ja|XK)← q(X)
where: (i) p(u) holds iff u is an infinite list of a’s and (ii) q(u) holds iff at least
one b occurs in u. Program P is stratified w.r.t. the level mapping ℓ such that
ℓ(q) = 0 and ℓ(p)=1. The perfect model M(P ) is constructed by starting from
the ground atoms of level 0 (i.e., those with predicate q). We have that, for
all u ∈ {a, b}ω, q(u) ∈M(P ) iff u∈ a∗b(a+b)ω, that is, q(u) 6∈M(P ) iff u∈ aω

(note that if q(u) ∈M(P ) then there is at least one occurrence of b in u and,
if q(u) 6∈ M(P ), then there are no occurrences of b in u, and thus, u = aω).
Then, we consider the ground atoms of level 1 (i.e., those with predicate p). For
all u∈{a, b}ω, p(u)∈M(P ) iff q(u) 6∈M(P ). Thus, p(u)∈M(P ) iff u∈aω.

Let us now introduce a subclass of ω-programs, called monadic ω-programs,
which enjoy decidability properties that will be used in the transformation-based
verification method presented in Section 4.

Definition 1 (Monadic ω-Programs). A monadic ω-clause is an ω-clause of
the form A0 ← L1 ∧ . . . ∧ Lm, with m ≥ 0, such that: (i) A0 is an atom of the
form p0 or q0(Js|X0K), where q0 is a predicate of type ilist and s∈Σ, (ii) for
i = 1, . . . , m, Li is either an atom Ai or a negated atom ¬Ai, where Ai is of the
form pi or qi(Xi), and qi is a predicate of type ilist, and (iii) there exists a level
mapping ℓ such that, for i = 1, . . . , m, if Li is an atom and vars(A0) 6⊇ vars(Li),
then ℓ(A0) > ℓ(Li) else ℓ(A0) ≥ ℓ(Li). A monadic ω-program is a finite set of
monadic ω-clauses.

We denote by F the set of formulas F such that F is either (1) of the form p,
where p is a 0-ary predicate symbol, or (2) of the form ∃X(L1 ∧ . . .∧Ln), with
n≥ 1, where, for i = 1, . . . , n, Li is either a positive literal qi(X) or a negative
literal ¬qi(X). The following result has been presented in [17].

Theorem 1 (Decidability of Monadic ω-Programs). There is a decision
procedure MDec for the problem of checking, for any monadic ω-program P and
formula F in F , whether or not M(P ) � F holds.

3 Transformation Rules

Given an ω-program P0, a transformation sequence is a sequence P0, . . . , Pn,
with n ≥ 0, of ω-programs constructed as follows. Suppose that we have con-
structed a sequence P0, . . . , Pk, for 0≤ k≤n−1. Then, the next program Pk+1
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in the sequence is derived from program Pk by applying one of the following
transformation rules R1–R7.

First we have the definition introduction rule which allows us to introduce a
new predicate definition.

R1. Definition Introduction. Let us consider m (≥1) clauses of the form:

δ1 : newp(X1, . . . , Xd)← B1, . . . , δm : newp(X1, . . . , Xd)← Bm

noindent where: (i) newp is a predicate symbol not occurring in {P0, . . . , Pk},
(ii) X1, . . . , Xd are distinct variables occurring in {B1, . . . , Bm}, (iii) none of
the Bi’s is the empty conjunction of literals, and (iv) every predicate symbol
occurring in {B1, . . . , Bm} also occurs in P0. The set {δ1, . . . , δm} of clauses is
said to be the definition of newp.
By definition introduction from program Pk we derive the new program Pk+1 =
Pk ∪ {δ1, . . . , δm}. For n ≥ 0, Defsn denotes the set of clauses introduced by
the definition rule during the transformation sequence P0, . . . , Pn. In particular,
Defs0 ={}.

In the following instantiation rule we assume that the set of the constants of
type elem in the language Lω is the finite set Σ ={s1, . . . , sh} with h≥0.

R2. Instantiation. Let γ: H ← B be a clause in program Pk and X be a
variable of type ilist occurring in γ. By instantiation of X in γ, we get the
clauses:

γ1: (H ← B){X/Js1|XK}, . . . , γh: (H ← B){X/Jsh|XK}

and we say that clauses γ1, . . . , γh are derived from γ. From Pk we derive the
new program Pk+1 = (Pk − {γ}) ∪ {γ1, . . . , γh}.

The unfolding rule consists in replacing an atom A occurring in the body of
a clause by its definition in Pk. We present two unfolding rules: (1) the positive
unfolding, and (2) the negative unfolding. They correspond, respectively, to the
case where A or ¬A occurs in the body of the clause to be unfolded.

R3. Positive Unfolding. Let γ : H ← BL ∧ A ∧ BR be a clause in program
Pk and let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k such that, for i = 1, . . . , m, A is unifiable with Ki,

with most general unifier ϑi.
By unfolding γ w.r.t. A we get the clauses η1, . . . , ηm, where for i = 1, . . . , m, ηi

is (H ← BL∧Bi∧BR)ϑi, and we say that clauses η1, . . . , ηm are derived from γ.
From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}.

In rule R3, and also in the following rule R4, the most general unifier can be
computed by using a unification algorithm for finite terms (see, for instance, [13]).
Note that this is correct, even in the presence on infinite terms, because in
any ω-program each predicate has at most one argument of type ilist. On
the contrary, if predicates may have more than one argument of type ilist,
in the unfolding rule it is necessary to use a unification algorithm for infinite
structures [5]. For reasons of simplicity, we do not make that extension of the
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unfolding rule and we stick to our assumption that every predicate has at most
one argument of type ilist.

The existential variables of a clause γ are the variables occurring in the body
of γ and not in its head.

R4. Negative Unfolding. Let γ: H ← BL ∧ ¬A ∧BR be a clause in program
Pk and let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm (m ≥ 0)

be all clauses of program P ′
k, such that, for i = 1, . . . , m, A is unifiable with Ki,

with most general unifier ϑi. Assume that: (1) A = K1ϑ1 = · · · = Kmϑm,
that is, for i = 1, . . . , m, A is an instance of Ki, (2) for i = 1, . . . , m, γi has
no existential variables, and (3) from ¬(B1ϑ1 ∨ . . . ∨ Bmϑm) we get a logically
equivalent disjunction D1 ∨ . . . ∨ Dr of conjunctions of literals, with r ≥ 0, by
first pushing ¬ inside and then pushing ∨ outside.
By unfolding γ w.r.t. ¬A using Pk we get the clauses η1, . . . , ηr, where, for
i=1, . . . , r, clause ηi is H ← BL ∧Di ∧ BR, and we say that clauses η1, . . . , ηr

are derived from γ. From Pk we derive the new program Pk+1 = (Pk − {γ}) ∪
{η1, . . . , ηr}.

The following subsumption rule allows us to remove from Pk a clause γ such that
M(Pk)=M(Pk− {γ}).

R5. Subsumption. Let γ1: H ← be a clause in program Pk and let γ2 in
Pk − {γ1} be a variant of (H ← B)ϑ, for some conjunction of literals B and
substitution ϑ. Then, we say that γ2 is subsumed by γ1 and by subsumption,
from Pk we derive the new program Pk+1 = Pk − {γ2}.

The folding rule consists in replacing instances of the bodies of the clauses that
define an atom A by the corresponding instance of A. Similarly to the case of the
unfolding rule, we have two folding rules: (1) positive folding and (2) negative
folding. They correspond, respectively, to the case where folding is applied to
positive or negative occurrences of literals.

R6. Positive Folding. Let γ be a clause in Pk and let Defs ′
k be a variant of

Defsk without variables in common with γ. Let the definition of a predicate in
Defs ′

k consist of the clause δ : K ← B, where B is a non-empty conjunction of
literals. Suppose that there exists a substitution ϑ such that clause γ is of the
form H ← BL ∧ Bϑ ∧ BR and, for every variable X ∈ vars(B)− vars(K), the
following conditions hold: (i) Xϑ is a variable not occurring in {H, BL, BR}, and
(ii) Xϑ does not occur in the term Y ϑ, for any variable Y occurring in B and
different from X .
By folding γ using δ we get the clause η: H ← BL ∧ Kϑ ∧ BR, and we say
that clause η is derived from γ. From Pk we derive the new program Pk+1 =
(Pk − {γ}) ∪ {η}.

R7. Negative Folding. Let γ be a clause in Pk and let Defs ′
k be a variant

of Defsk without variables in common with γ. Let the definition of a predicate
in Defs ′

k consist of the q clauses δ1 : K ← L1, . . . , δq : K ← Lq such that, for
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i = 1, . . . , q, Li is a literal and δi has no existential variables. Suppose that there
exists a substitution ϑ such that clause γ is of the form H ← BL ∧ (M1 ∧ . . . ∧
Mq)ϑ ∧ BR, where, for j = 1, . . . , q, if Lj is the negative literal ¬Aj then Mj

is Aj , and if Lj is the positive literal Aj then Mj is ¬Aj .
By folding γ using δ1, . . . , δq we get the clause η: H ← BL ∧ ¬Kϑ ∧ BR, and
we say that clause η is derived from γ. From Pk we derive the program Pk+1 =
(Pk − {γ}) ∪ {η}.

In order to prove that the transformation rules R1–R7 are correct we now
introduce the notion of correctness of a transformation sequence w.r.t. the perfect
model semantics.

Definition 2 (Correctness of a Transformation Sequence). Let P0 be a
locally stratified ω-program and P0, . . . , Pn, with n≥ 0, be a transformation se-
quence. We say that P0, . . . , Pn is correct if (i) P0 ∪Defsn and Pn are locally
stratified ω-programs and (ii) M(P0 ∪Defsn) = M(Pn).

In order to guarantee the correctness of a transformation sequence P0, . . . , Pn

(see Theorem 2 below) we will require that the application of the transformation
rules satisfy some suitable conditions that refer to the local stratification σ for P0.
We begin by providing the following definitions.

Definition 3 (σ-Maximal Atom). Consider a clause γ: H ← G. An atom A
in G is said to be σ-maximal if, for every valuation v and for every literal L
in G, we have that σ(v(A))≥σ(v(L)).

Definition 4 (σ-Tight Clause). A clause δ: H ← G is said to be σ-tight if
there exists a σ-maximal atom A in G such that, for every valuation v, we have
that σ(v(H))=σ(v(A)).

Definition 5 (Descendant Clause). A clause η is said to be a descendant of
a clause γ if either η is γ itself or there exists a clause δ such that η is derived
from δ by using a rule in {R2, R3, R4, R6, R7}, and δ is a descendant of γ.

Definition 6 (Admissible Transformation Sequence). Let P0 be a locally
stratified ω-program and let σ be a local stratification for P0. A transformation
sequence P0, . . . , Pn, with n≥0, is said to be admissible if:
(1) every clause in Defsn is locally stratified w.r.t. σ,
(2) for k=0, . . . , n−1, if Pk+1 is derived from Pk by positive folding of clause γ
using clause δ, then: (2.1) δ is σ-tight and either (2.2.i) the head predicate of γ
occurs in P0, or (2.2.ii) γ is a descendant of a clause β in Pj, with 0 < j ≤ k,
such that β has been derived by positive unfolding of a clause α in Pj−1 w.r.t.
an atom which is σ-maximal in the body of α and whose predicate occurs in P0,
and
(3) for k = 0, . . . , n−1, if Pk+1 is derived from Pk by applying the negative folding
rule thereby deriving a clause η, then η is locally stratified w.r.t. σ.
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Note that Condition (1) can always be fulfilled because the predicate in-
troduced in program Pk+1 by rule R1 does not occur in any of the programs
P0, . . . , Pk. Conditions (2) and (3) are technical conditions which are required
for establishing Lemma 1 and Theorem 2. Unfortunately, those conditions can-
not be checked in an algorithmic way for arbitrary programs and arbitrary lo-
cal stratification functions. In particular, the program property of being locally
stratified is undecidable. However, there are significant classes of programs, like,
for instance, the stratified programs, where these conditions are decidable and
easy to verify.

The following Lemma 1 and Theorem 2, whose proofs can be found in [19],
show that: (i) when constructing an admissible transformation sequence P0, . . . ,
Pn, the application of the transformation rules preserves the local stratification σ
for the initial program P0 and, thus, all programs in the transformation sequence
are locally stratified w.r.t. σ, and (ii) any admissible transformation sequence
preserves the perfect model.

Lemma 1 (Preservation of Local Stratification). Let P0 be a locally strati-
fied ω-program, σ be a local stratification for P0, and P0, . . . , Pn be an admissible
transformation sequence. Then the programs P0 ∪ Defsn, P1, . . . , Pn, are all lo-
cally stratified w.r.t. σ.

Theorem 2 (Correctness of Admissible Transformation Sequences).
Every admissible transformation sequence is correct.

The notion of admissible transformation sequence will be used in the following
Section 4 to prove that the transformation strategy we propose is correct, that
is, it generates only admissible transformation sequences.

4 Transformation Strategies for Verifying Properties of

ω-Programs

In this section we present a general method for verifying properties of ω-programs.
Our method is based on a strategy that guides the application of the transfor-
mation rules presented in Section 3, so that verification can be performed in an
automatic way.

We assume we are given an ω-program P defining a unary predicate prop of
type ilist, which specifies a property of interest, and we want to check whether
or not M(P ) |= ∃X prop(X). Our verification method consists of two steps:

Step 1. Starting from P , by using the transformation rules of Section 3 ac-
cording to a strategy, called TransfM, that we will present below, we derive a
monadic ω-program T (see Definition 1 below), such that M(P ) |= ∃X prop(X)
iff M(T ) |= ∃X prop(X).

Step 2. We apply to T the decision procedure MDec for monadic ω-programs
(see Theorem 1) and we check whether or not M(T ) |= ∃X prop(X).

Note that there exists no strategy which always terminates and transforms
a given ω-program into a monadic ω-program. Indeed, the problem of verifying
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whether or not, for an arbitrary ω-program P , M(P ) |= ∃X prop(X) holds, is un-
decidable (because ω-programs include locally stratified logic programs on finite
terms), while as already mentioned the same problem for monadic ω-programs
is decidable.

Now we introduce our transformation strategy, called TransfM, which trans-
forms an ω-program into a monadic ω-program. Obviously, the strategy TransfM
may not terminate due to the undecidability results we have mentioned above.

We leave it for future research the problem of determining suitable syn-
tactic restrictions on the ω-programs which ensure termination of our strategy
TransfM, thereby defining subclasses of ω-programs for which the verification
problem is decidable. In this paper, we only show some examples where our
transformation strategy terminates (see Section 5).

Our strategy is composed of two sub-strategies. The first sub-strategy, called
Specialize, is an extension to arbitrary ω-programs of the strategy presented
in [17] for specializing programs which encode the branching time logic CTL∗

w.r.t. a given CTL∗ formula. The Specialize sub-strategy performs a special-
ization of the given ω-program P w.r.t. the goal prop(X) which encodes the
property of interest. If the Specialize sub-strategy terminates, then it produces
a stratified ω-program SpecP.

The second sub-strategy, called Eliminate-Finite-Terms, or EFT for short,
eliminates from the program SpecP the arguments of type fterm. It is developed
along the lines of the strategies in [16,20] for eliminating unnecessary variables.
The EFT sub-strategy works bottom-up from the lowest stratum of the strati-
fied program SpecP to its highest stratum with the objective of eliminating the
arguments of type fterm. If the EFT sub-strategy terminates, then it returns a
monadic ω-program T (which, as indicated in Definition 1, has no arguments of
type fterm).

The Transformation Strategy TransfM

Input : An ω-program P .

Output : A monadic ω-program T such that
M(P ) |= ∃X prop(X) iff M(T ) |= ∃X prop(X).

Specialize(P,SpecP);

Eliminate-Finite-Terms(SpecP, T )

We do not provide here the details of this strategy. We only present some
examples of its application in the next section.

The following result, whose proof is omitted, follows from the fact that every
transformation sequence generated by the strategy TransfM is admissible.

Theorem 3 (Correctness of the Transformation Strategy). Every trans-
formation sequence generated by the strategy TransfM is correct.
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5 Applications of the Verification Method

In this section we consider two examples where we apply our transformation-
based verification methodology and, in particular, our strategy TransfM. For lack
of space, we cannot show all steps of the transformation sequences generated by
that strategy, and we will not show that every step indeed complies with the
conditions which ensure admissibility.

Example 2 (Containment Between ω-Regular Languages).
In this first application of our verification methodology, we will consider regular
sets of infinite words over a finite alphabet Σ [28]. These sets are denoted by
ω-regular expressions whose definition is as follows: for any a ∈ Σ,

e ::= a | e1e2 | e1+e2 | e∗ (regular expressions)

f ::= eω | e1e
ω
2 | f1+f2 (ω-regular expressions)

Given a regular expression e denoting the language L(e)⊆Σ∗, eω denotes the
set {u0u1 . . . ∈ Σω | for i≥0, ui ∈ L(e)}.

Now, we introduce an ω-program, called Pf , which defines the predicate ω-acc
such that, given an ω-regular expression f , and an infinite word u, ω-acc(f, u)
holds iff u ∈ L(f). Any infinite word a0a1 . . . ∈ Σω is represented by the infinite
list Ja0, a1, . . .K of symbols in Σ. The ω-program Pf is made out of the following
clauses:

1. acc(E, [E])← symb(E)
2. acc(E1E2, X)← app(X1, X2, X) ∧ acc(E1, X1) ∧ acc(E2, X2)
3. acc(E1+E2, X)← acc(E1, X)
4. acc(E1+E2, X)← acc(E2, X)
5. acc(E∗, [ ])←
6. acc(E∗, X)← app(X1, X2, X) ∧ acc(E, X1) ∧ acc(E∗, X2)
7. ω-acc(F1+F2, X)← ω-acc(F1, X)
8. ω-acc(F1+F2, X)← ω-acc(F2, X)
9. ω-acc(Eω, X)← ¬new1(E, X)

10. ω-acc(E1E
ω
2 , X)← prefix(X, N, X1) ∧ acc(E1, X1) ∧ ω-acc1(Eω

2 , X1, X)
11. new1(E, X)← nat(M) ∧ ¬new2(E, M, X)
12. new2(E, M, X)← geq(N, M) ∧ prefix(X, N, V ) ∧ acc(E∗, V )
13. ω-acc1(E, [ ], X)← ω-acc(E, X)
14. ω-acc1(E, [H |T ], JH |XK)← ω-acc1(E, T, X)
15. geq(N, 0)←
16. geq(s(N), s(M))← geq(N, M)
17. nat(0)←
18. nat(s(N))← nat(N)
19. prefix(X, 0, [ ])←
20. prefix(JS|XK, s(N), [S|Y ])← prefix(X, N, Y )
21. app([ ], Y, Y )←
22. app([S|X ], Y, [S|Z])← app(X, Y, Z)

together with the clauses defining the predicate symb, where symb(a) holds iff
a ∈ Σ. We have that prefix (X, N, Y ) holds iff Y is the list of the N (≥0) leftmost
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symbols of the infinite list X . Clauses 1–6 stipulate that, for any finite word u
and regular expression e, acc(e, u) holds iff u ∈ L(e). Analogously, clauses 7–14
stipulate that, for any infinite word u and ω-regular expression f , ω-acc(f, u)
holds iff u ∈ L(f). In particular, clauses 9, 11, and 12 correspond to the following
definition:

ω-acc(Eω, X) ≡def ∀N(N≥0→ ∃M∃V (M ≥ N∧prefix(X, M, V )∧acc(E∗, V )))

The program Pf is stratified.
Now, let us consider the ω-regular expressions f1 ≡def aω and f2 ≡def (b∗a)ω.

The following two clauses:

23. expr1(X)← ω-acc(aω , X) 24. expr2(X)← ω-acc((b∗a)ω, X)

together with program Pf , define the predicates expr1 and expr2 such that,
for every infinite word u, expr1(u) holds iff u ∈ L(f1) and expr2(u) holds iff
u ∈ L(f2). Now, we introduce the predicate prop defined by the following clause:

25. prop(X)← expr1(X) ∧ ¬ expr2(X)

We have that L(f1) ⊆ L(f2) iff M(Pf ∪ {23, 24, 25}) 6|= ∃Xprop(X).
In order to check whether or not L(f1) ⊆ L(f2), we proceed in two steps as

indicated in Section 4. In the first step we apply our strategy TransfM which,
in turn, consists of the application of the Specialize and the EFT sub-strategies.
The Specialize sub-strategy takes as input the ω-program Pf ∪ {23, 24, 25} and
returns the following specialized program SpecP:

25. prop(X)← expr1(X) ∧ ¬ expr2(X)
26. expr1(X)← ¬new1(X)
27. new1(X)← nat(Y ) ∧ ¬new2(X, Y )
28. new2(X, Y )← geq(Z, Y ) ∧ prefix(X, Z, W ) ∧ new3(W )
29. new3([ ])←
30. new3([a|X ])← new3(X)
31. expr2(X)← ¬new4(X)
32. new4(X)← nat(Y ) ∧ ¬new5(X, Y )
33. new5(X, Y )← geq(Z, Y ) ∧ prefix(X, Z, W ) ∧ new6(W )
34. new6([ ])←
35. new6(X)← app(Y, Z, X) ∧ new7(Y ) ∧ new6(Z)
36. new7(X)← new8(X, Y ) ∧ new9(Y )
37. new8([a], [ ])←
38. new8([X |Y ], [X |Z])← new8(Y, Z)
39. new9([ ])←
40. new9([b|X ])← new9(X)

The EFT sub-strategy takes as input the program SpecP and returns the follow-
ing monadic ω-program T :

41. prop(Ja|XK)← ¬new10(X) ∧ new11(X) 46.new12(Ja|XK)← new11(X)
42.new10(Ja|XK)← new10(X) 47.new12(Jb|XK)← new12(X)
43.new10(Jb|XK)← 48.new12(Jb|XK)← ¬new13(X)
44.new11(Ja|XK)← new11(X) 49.new13(Ja|XK)←
45.new11(Jb|XK)← new12(X) 50.new13(Jb|XK)← new13(X)
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The predicate symbols new1, . . . ,new13 are new symbols introduced by the strat-
egy TransfM. By using the MDec decision procedure we have that M(T ) 2

∃X prop(X) and, thus, L(f1) ⊆ L(f2).

Example 3 (Non-Emptiness of Languages Accepted by Büchi Automata).
In the second application of our verification methodology, we will consider Büchi
automata, which are finite automata acting on infinite words [28], and we will
present a method for checking whether or not the language they accept is empty.
It is well known that this verification problem has important applications in the
area of model checking (see, for instance, [4]).

A Büchi automaton A is a nondeterministic finite automaton 〈Σ, Q, q0, δ, F 〉,
where, as usual, Σ is the input alphabet, Q is the set of states, q0 is the initial
state, δ ⊆ Q×Σ×Q is the transition relation, and F is the set of final states.
A run of the automaton A on an infinite input word u = a0 a1 . . . ∈ Σω is an
infinite sequence ρ = ρ0 ρ1 . . . ∈ Qω of states such that ρ0 is the initial state q0

and, for all n ≥ 0, 〈ρn, an, ρn+1〉 ∈ δ. Let Inf (ρ) denote the set of states that
occur infinitely often in the infinite sequence ρ of states. An infinite word u ∈ Σω

is accepted by A if there exists a run ρ of A on u, called an accepting run, such
that Inf (ρ) ∩ F 6= ∅ or, equivalently, if there is no state ρm in ρ such that all
states ρn, with n ≥ m, are not final. The language accepted by A is the subset
of Σω, denoted L(A), of the infinite words accepted by A. In order to check
whether or not the language L(A) is empty, we construct an ω-program which
defines a predicate prop such that:

(α) L(A) 6= ∅ iff there exist a word u and an accepting run X of A on u
iff ∃X prop(X)

The predicate prop is defined by the following formulas:

(1) prop(X) ≡def run(X) ∧ ¬ rejecting(X)

(2) run(X) ≡def ∃S (occ(0, X, S) ∧ initial(S))∧
∀N ∀S1 ∀S2 (nat(N)∧occ(N, X, S1)∧occ(s(N), X, S2)→ ∃A tr(S1, A, S2)))

(3)rejecting(X)≡def ∃N(nat(N)∧∀M∀S(geq(M, N)∧occ(M, X, S)→ ¬final(S)))

where, for all n≥0, for all ρ=ρ0 ρ1 . . . ∈ Qω, for all q, q1, q2∈Q, and for all a∈Σ,
occ(sn(0), ρ, q) iff ρn = q, initial(q) iff q = q0, nat(sn(0)) iff n≥ 0, tr(q1, a, q2) iff
〈q1, a, q2〉∈δ, geq(sn(0), sm(0)) iff n≥m, and final(q) iff q∈F .

By (α) above, L(A) 6= ∅ iff there exists an infinite sequence ρ=ρ0 ρ1 . . . ∈ Qω

of states such that: (i) ρ0 is the initial state q0 and, for n≥0, 〈ρn, a, ρn+1〉 ∈ δ,
for some a ∈ Σ (see (2)), and (ii) there is no state ρm in ρ such that, for all
n ≥ m, ρn /∈ F (see (3)).

Now we introduce an ω-program PA defining the predicates prop, run, re-
jecting, nat, occ, and geq. In particular, clause 1 corresponds to formula (1),
clauses 2–4 correspond to formula (2), and clauses 5 and 6 correspond to for-
mula (3). (Actually, clauses 1–6 can be derived from formulas (1)–(3) by apply-
ing the Lloyd-Topor transformation [13].) In program PA any infinite sequence
ρ0ρ1. . . of states is represented by the infinite list Jρ0, ρ1, . . .K of constants.

Given a Büchi automaton A = 〈Σ, Q, q0, δ, F 〉, the encoding ω-program PA

consists of the following clauses (independent of A):
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1. prop(X)← run(X) ∧ ¬ rejecting(X)
2. run(X)← occ(0, X, S) ∧ initial(S) ∧ ¬not a run(X)
3. not a run(X)← nat(N)∧occ(N,X,S1)∧occ(s(N),X,S2)∧ ¬ exists tr(S1,S2)
4. exists tr(S1, S2)← tr(S1, A, S2)
5. rejecting(X)← nat(N) ∧ ¬ exists final(N, X)
6. exists final(M, X)← geq(N, M) ∧ occ(N, X, S) ∧ final(S)
7. nat(0)←
8. nat(s(N))← nat(N)
9. occ(0, JS|XK, S)←

10. occ(s(N), JS|XK, R)← occ(N, X, R)
11. geq(N, 0)←
12. geq(s(N), s(M))← geq(N, M)

together with the clauses (depending on A) which define the predicates initial,
tr, and final, where: (i) initial(s) holds iff s is q0, (ii) for all states s1, s2∈Q and
all symbols a ∈ Σ, tr(s1,a,s2) holds iff 〈s1,a,s2〉 ∈ δ, and (iii) final(s) holds iff
s∈F .

Now, let us consider a Büchi automaton A such that:
Σ={a, b}, Q={1, 2}, q0 =1, δ={〈1, a, 1〉, 〈1, b, 1〉, 〈1, a, 2〉, 〈2, a, 2〉}, F ={2}

which can be represented by the following graph:

1 2
a

a, b a

For this automaton A, program PA consists of clauses 1–12 and the following
clauses 13–18 which encode the initial state (clause 13), the transition relation
(clauses 14–17), and the final state of A (clause 18):

13. initial (1)← 14. tr(1, a, 1)← 15. tr(1, b, 1)←
16. tr(1, a, 2)← 17. tr(2, a, 2)← 18. final(2)←

Program PA is stratified.
In order to check whether or not L(A) = ∅ we proceed, again, in two steps.

The first step consists in applying our strategy TransfM to program PA. In
this example TransfM terminates and returns the monadic ω-program T which
consists of the following clauses 19–33:

19. prop(J1|XK)← ¬not a run(X) ∧ new1(X) ∧ ¬ rejecting(X)
20. not a run(J1|XK)← not a run(X)
21. not a run(J2|XK)← new2(X)
22. not a run(J2|XK)← not a run(X)
23. rejecting(J1|XK)← ¬new1(X)
24. rejecting(J1|XK)← rejecting(X)
25. rejecting(J2|XK)← rejecting(X)
26. new1(J2|XK)←
27. new1(J1|XK)← new1(X)
28. new2(J1|XK)←
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Fig. 1. Proof of ∃X prop(X) w.r.t. the monadic ω-program T . On the right we have
shown the infinite loop and the associated accepting run 122ω on A (that is, 12ω).

In the second step of our verification methodology, we check whether or not
∃X prop(X) holds in M(T ) by applying the proof method of [17], that is, the
decision procedure MDec. We construct the tree depicted in Figure 1, where the
literals occurring in the two lowest levels are the same (see the two rectangles)
and, thus, we have detected an infinite loop. According to conditions given in
Definition 6 of [17], this tree is a proof of ∃X prop(X). The run ρ = 12ω is a
witness for X and corresponds to the accepted word aω. Thus, L(A) 6= ∅.

6 Related Work and Conclusions

There have been various proposals for extending logic programming languages to
infinite structures (see, for instance, [5,13,14,25]). These languages introduce new
concepts to provide the semantics of infinite structures, such as complete Her-
brand interpretations, rational trees, and greatest models. Also the operational
semantics of these languages extends SLDNF-resolution by means of equational
reasoning and new inference rules, such as the coinductive hypothesis rule.

On the contrary, the semantics of ω-programs we consider in this paper is
very close to the usual perfect model semantics for logic programs on finite terms
and we do not define any new operational semantics. The main objective of this
paper is not to provide a new model for computing over infinite structures, but to
present a methodology, based on unfold/fold transformation rules, for reasoning
about such structures and proving their properties, and a strategy for guiding
the application of these rules.

Very little work has been done for applying transformation techniques to logic
languages that specify the (possible infinite) computations of reactive systems.
Notable exceptions are [29] and [7], where the unfold/fold transformation rules
have been studied in the context of guarded Horn clauses (GHC) and concur-
rent constraint programs (CCP). However, GHC and CCP programs are definite
programs and do not manipulate terms denoting infinite lists. Moreover, these
transformation rules have not been applied for proving program properties.

The transformation rules we considered in this paper are those presented
in [18] which extend to ω-programs the rules for general programs proposed
in [8,16,22,23,24]. The main focus of the present paper has been the proposal
of a novel transformation strategy which is an extension of those presented
in [16,17,20]. The effectiveness of the proposed strategy has been demonstrated
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through the verification of properties of ω-regular languages (see Example 2)
and the infinite behavior of Büchi automata (see Example 3). These examples
both refer to finite state systems. However, the verification methodology based
on transformations we have considered in this paper, is very general and it can
also be applied to the proof of properties of infinite state systems and, thus, it
goes beyond the capabilities of finite state model checkers.

Many other papers use logic programming, possibly with constraints, for
specifying and verifying properties of finite or infinite state reactive systems (see,
for instance, [1,6,9,11,12,15,21]), but they do not consider terms which explicitly
represent infinite structures. As we have seen in Examples 2 and 3, infinite lists
are very convenient for specifying those properties and the use of infinite lists
avoids ingenious encodings which would have been necessary otherwise.

There are some directions in which the transformational approach used in
this paper can be enhanced. Among them we would like to mention: (i) the
extension of the transformation rules and the verification method to other infinite
structures, such as the infinite trees, and (ii) the use of the transformational
approach for the synthesis of reactive systems with infinite behavior starting
from their logical specifications.

7 Acknowledgements

We thank Hirohisa Seki for stimulating conversations on the topics of this paper.
We also thank the anonymous referees for their constructive comments.

References

1. M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic
Computation, 8(3):277–295, 1989.

2. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19, 20:9–71, 1994.

3. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.

4. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-Å. Tärnlund,
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